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Abstract

It has become quite apparent that the genomes of many organisms are much more

complex than thought before the usage of routine high throughput sequencing of

genomes of various organisms. It is quite well known that there are coding regions of

the  genome that  are  transcribed  and  translated  to  form functional  proteins.  The

transcription and translation is not restricted to these regions but other non coding

regions are also transcribed and translated. These noncoding transcriptional events

have been claimed to be ‘transcriptional noise’ but we think otherwise. We show that

these  noncoding  transcriptional  events  are  not  noise  by  studying  Nascent  RNA

sequences from  Mus musculus and think that they can play an important role in

various cell  functions.  The work done in  the project  shows that  in Nascent  RNA

sequences from Mus musculus, there was no differential expression between knock-

out of a histone variant (which would leave the enhancers and chromatin open for

non-specific transcriptions to happen and therefore increasing noisy transcription)

when compared to  wild  type.  This  analysis  rules out  that  transcription of  sORFs

occurs due to noisy transcriptional events. Having established that sORFs are not

biological noise and we want to try and aim to further strengthen this argument by

finding expression of sORFs in healthy tissues by analyzing GTEx datasets. The

GTEx dataset, being a huge collection of mRNA data from normal human tissues,

helped us understand and quantify the expression of sORFs and other Novel ORFs

at a large scale. The project then goes on to study how various noncoding regions

like sORFs, altORFs, pseudogenes and de novo genes are expressed in 53 healthy

human tissue types from the GTEx database and quantifies their expression in these

tissues.
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1. Introduction

Since the  advent  of  routine  high  throughput  sequencing of  genomes of  a

number of organisms, it has become apparent that these genomes are much more

complex than previously thought. Not only there are known coding regions or genes

that are transcribed and translated to form proteins, recent evidence has shown that

transcription  and  translation  can  happen  pervasively  in  the  human  genome and

these events are not just restricted to the coding regions (Prabakaran et al., 2014).

The  magnitude  of  these  pervasive  transcriptional  and  translational  events  is

generally underestimated by the previously common strategies such as microarrays

and some of  the  existing  RNA sequencing  pipelines.  Systematic  identification  of

various pervasive transcriptional events have been possible due to various advanced

techniques such as Gro-seq, NET-seq, metabolic labeling (Bhatt et al., 2012; Herzel

and  Neugebauer,  2015) and  nascent  RNA  sequencing.  Along  with  these,

identification of various translation events from noncoding regions has been made

possible  due  to  various  Systems  Proteogenomics  approaches  and  Ribosome

profiling studies (Chew et al., 2013).

It  is not known whether the noncoding transcriptional events are biological

noise or they are translated into peptide products with some biological functions.

Various noncoding transcriptional  events have been claimed to be ‘transcriptional

noise’ but we think otherwise that these noncoding transcriptional  events are not

noise and can play an important role in various cell functions.

It is important for cells, tissues and various organisms to have an idea of the

time during the day as it is helpful to regulate various functions and controls inputs

from the environment as they fluctuate during a day i.e. circadian rhythm that are

changes that  oscillate  during the 24 hour  period cycle.  A nucleosome is a basic

structural unit of chromatin and is very important for DNA packaging. It is a histone

octamer formed by 2 copies of each H2A, H2B, H3 and H4 (the core histones) with

147 base pairs wrapped around it. There are variations of the histone that are also

present  as  a  barrier  to  various  enzymes  for  accessing  the  underlying  DNA for

replication and transcription processes.
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H2A.Z is a variant of H2A, which is encoded by two different genes H2afz and

H2afv. It is somewhat similar to the conventional H2A histone. H2afz gene is located

on the chromosome 3 and H2Afv gene is located on the chromosome 11 in the Mus

Musculus genome. The variation in the histone can change the structure of the the

nucleosome.  Nucleosomes containing both  histone variants  H3.3  and H2A.Z are

even  less  stable  than  nucleosomes  containing  the  conventional  H3.3  and  H2A

histones (Jin and Felsenfeld, 2007), which suggests that the DNA wraps around the

nucleosome which contains the histone variant H2A.Z and H3.3 is bound loosely.

Our collaborators wanted to study the role of the the dynamics and states of these

chromatin as these could be affected by these histone variants and to understand

their  role  in  circadian rhythm and gave us the Nascent  RNA Seq data that  was

sequenced from 

Various  noncoding  transcriptional  events  have  been  claimed  to  be

‘transcriptional noise’ but we think these noncoding transcriptional events can play

an important role in various cell functions. The project looks at non canonical open

reading frame like Small  open reading frames (sORFs) which can be defined as

open reading frames smaller  than 100 amino acids.  We are mainly  investigating

sORFs because the non-coding regions have been shown to be transcribed and

translated by previous studies (Bazin et al., 2017; Olexiouk et al., 2018). 

It  is  our  claim  that  a  mutant  histone  protein  leaves  the  enhancers  and

chromatin open for non-specific transcriptions to happen and hence one should find

random ORFs transcribed. But if there is no differential expression it could mean that

these events are not ‘biological noise’. This project involves analysis of nascent RNA

sequences obtained from a mouse embryonic fibroblasts (MEFs) that are bound to

chromatin  in  the nucleus and we use that  information to  infer  the prevalence of

various noncoding transcriptional events. We wanted to study if  knocking out the

H2afz-H2afv genes which code for the H2A.Z histone mutant show any differential

expression of genes when compared to the wild type and if there is any expression

of non coding transcription events likes sORFs.

In  Mus  musculus,  knocking-out  of  a  histone  variant  would  leave  the

enhancers  and  chromatin  open  for  non-specific  transcriptions  to  happen  and
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therefore  increasing  noisy  transcription  compared  to  wild  type.  If  we  find  no

differential  expression between the knock-out and the wild type cell  lines, it  hints

towards the fact that transcription of sORFs is not due to noisy transcriptional events.

We claim to establish that sORFs are not biological noise and we want to try

and aim to further strengthen this argument by finding the expression of sORFs in

various tissues.  The GTEx dataset,  being  a huge collection of  mRNA data  from

human tissues, would help us understand the expression of sORFs and other Novel

ORFs and quantify  the expression at  a large scale.  We study the expression of

various other novel ORFs like altORFs, pseudogenes and de novo genes in the 53

tissue types in the GTEx dataset. AltORFs stand for alternative open reading frames

which  are  non canonical  open reading frames but  contain  start  codons that  are

different from the canonical open reading frames and therefore altORFs code for an

alternative  protein  (Vanderperre  et  al.,  2012).  Pseudogenes  are  genomic  DNA

sequences that are related to normal genes. These gene generally have lost at least

some functionality, relative to the complete gene, either in terms gene expression in

the cell or their ability to code for proteins. De novo genes are those novel coding

genes that have evolved from previously noncoding regions, thus generating entirely

novel proteins.
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2. Methods

2.1 sORFs transcription in mouse Nascent RNA-seq

data:

The first part of the project involves analysis mouse Nascent RNA-seq data to

find out differential expression. It also involves finding the expression of sORFs in 

this mouse Nascent RNA-seq data.

2.1.1 Nascent RNA-Seq Samples:

Four  nascent,  nuclear  RNA  samples  from  Mus  musculus  Embryonic

Fibroblasts  (MEFs)  were  sequenced  using  the  Illumina  HiSeq  4000  workflow

generating a paired end read data. Two replicate samples (NEBNext02, NEBNext04)

(denoted by +TAM) were treated with Tamoxifen, a drug which leads to the deletion

of  H2afz  and  H2afv  genes.  The  remaining  two  replicate  samples  (NEBNext06,

NEBNext12) (denoted by -TAM) were wild-type cell samples. The sequence length of

the paired end sample reads was 150 base pairs and the total  sequences were

about 100Mb (Mega base pairs) in each of the four samples. These samples were

kindly provided to us by Dr. Kiran Padmanabhan’s Lab at ENS Lyon, France.

2.1.2 Quality Check of the Nascent RNA-Seq Samples:

The  four  Nascent  RNA  sample  reads  were  analyzed  using  FASTQC

(Andrews,  2010),  a  tool  which is  commonly used for  checking the quality  of  the

reads. It was observed that the ‘per base sequence quality’ which determines the

overall  quality  of  the sequencing was good but  a substantial  amount of ‘adapter

content’ was present in all of the reads. Figure 1(a) shows the graph for per base
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sequence quality for the sample NEBNext12 and Figure 1(b) shows the graph for

adapter content in NEBNext12 as a representative of the rest of the samples.

The adapter content in the Nascent RNA sample reads is due to the adapters

which  are  synthetic  sequences  and  are  added  to  the  samples  to  facilitate  RNA

sequencing. Removing adapter content is necessary as they can cause errors in the

alignment process and an increased number of unaligned reads, since the adapter

sequences are synthetic and do not occur in the genomic sequences. 

Due to the significant amount of adapter content in all of the reads, a

NGS data trimming tool called Trimmomatic (Bolger et al., 2014) was used to remove

these  adapters.  After  the  Trimmomatic’s  adapter  removal  and  quality  check  in

between 72.73% to 76.09% of the forward and reverse input reads were left. This

was a significant loss in the amount of data. Trimmomatic was also used with only

adapter  removal  and  quality  check  settings  but  didn’t  result  in  any  significant

increase in the result. Another adapter removal tool known as Cutadapt (Saeidipour

and Bakhshi, 2013) was used to see if this loss could be avoided but using Cutadapt

instead resulted in sequences of different lengths. Hence, the output generated by

Trimmomatic, having no adapter content, was used for further analysis. 
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2.1.3 Sequence Alignment:

A number of steps are to be followed to get differential expression between

the two conditions. Figure 2 shows the workflow and the various steps involved in

the quantification of Nascent RNA Sequencing data. This workflow was the same

that was suggested by a Nature protocol paper (Pertea et al., 2016). For alignment

of the reads to a indexed reference genome, an updated version of commonly used

HISAT (Kim et al., 2015), was used. HISAT which stands for hierarchical indexing for

spliced alignment of transcripts, is a tool for mapping RNA-seq reads. HISAT2 with ‘-

dta’ parameter (for downstream transcript assembly) was used for the alignment of

the indexed reference mouse genome to the four Nascent-RNA Seq samples which

generates  BAM  output  files.  The  Downstream  transcriptome  assembly  (-dta)

parameter  allows  HISAT2  to  report  alignments  for  transcript  assemblers  like
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StringTie.  HISAT2 then  requires  longer  anchor  lengths  for  de  novo  discovery  of

splice sites which leads to fewer alignments with short-anchors and increases the

spped and efficiency of transcript assemblers like String Tie. The indexed reference

mouse genome build GRCm38 for HISAT2 splice aware aligner was downloaded

from  ftp://ftp.ccb.jhu.edu/pub/infphilo/hisat2/data/grcm38_tran.tar.gz.  The  file  had

HGFM index for reference plus transcripts and was aligned with both the forward and

reverse stands for each of the four samples separately. An overall alignment rate in

between  95.69%  to  96.90%  was  achieved.  This  high  alignment  rate  could  be

because of the fact that the reads had already been trimmed before the alignment

and selected for high quality.

2.1.4 Transcript Assembly:

A transcript assembly tool known as StringTie (Pertea et al., 2015) was used

for assembling the aligned reads into transcripts with the help of a reference gene

annotation  file  downloaded  from  Ensembl  (Zerbino  et  al.,  2018).  String  is  a

commonly  used  assembler  which  assembles  RNA-Seq  alignments  into  potential

transcripts. It uses a novel network flow algorithm and is fast and efficient and hence

is  widely  used  for  assembling  transcripts.  The  reference  annotation  file  was

downloaded  from  ftp://ftp.ensembl.org/pub/release-

91/gtf/mus_musculus/Mus_musculus.GRCm38.91.gtf.gz.  This  file  along  with  the

BAM files generated by HISAT2 is given as an input to StringTie which assembles

the potential transcripts.

StringTie with the ‘-merge’ option is then used on the assembled transcripts

along with the reference genome are then merged into a single merged transcript file

containing a list of non-redundant transcripts using. This merged transcript GTF file

along with BAM files containing aligned reads were again given to StringTie with

parameters ‘-eB’ to calculate transcript TPM or FPKM values for each sample for the

differential expression analysis in .ctab files.
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2.1.5 Differential Expression Analysis:

To find any differential expressions between the two conditions (+TAM/KO and

-TAM/wt),  the .ctab files containing the transcript  TPM were given as an input to

Ballgown (Frazee et al., 2015). The total number of transcripts and unique genes on

merging the assembled transcripts of all the four samples were 135932 and 49563

respectively.  A ‘minimum abundance  variance  across  samples’ parameter  with  a

default variance of 1 is used in Ballgown to remove transcripts with low variance

(less than 1) which often occur in RNA-Seq data sets. The number of transcripts and

unique genes left after filtering were 12718 and 7990 respectively.

Transcripts Genes

Number 12718 7990

q-val < 0.05 0 0

q-val < 0.1 0 0

q-val < 0.2 0 0

Table 1: The table shows that no transcript or gene had q-values less than 0.05 or

0.1  or  0.2  indicating  that  no  differentially  expressed  transcripts  and  genes  are

observed at the transcript or at the gene level. q-values are the adjusted p-values

accounting for the false discovery rate (FDR).

2.1.6 RNA-Seq Quantification workflow on CGC:

A  RNA-Seq  Quantification  (HISAT2,  StringTie)  workflow  for  differential

expression analysis based a on Nature protocol paper (Pertea et al., 2016) was also

used for finding differential expression between the two conditions. This complete

workflow has been implemented on the Cancer Genomics Cloud by Seven Bridges

Genomics (http://cgc.sbgenomics.com).  The workflow takes an indexed reference

genome along with a reference gene annotation file and generates the output for

15



Ballgown for expression analysis at one go and is very fast and convenient than

performing the above steps individually. The total number of transcripts and unique

genes on merging the assembled transcripts of all the four samples were 146513

and 53229 respectively. The number of transcripts and unique genes left after the

variance filtering were 20751 and 10530 respectively. 

Transcripts Genes

Number 20751 10530

q-val < 0.05 0 0

q-val < 0.1 0 0

q-val < 0.2 1 0

Table  2:  The  table  shows  that  only  transcript  had  q-values  (q-values  are  the

adjusted  p-values  accounting  for  the  false  discovery  rate)  less  than  0.2.  The

transcript  (with  a  q-val  of  0.1851414149)  was  ENSMUST00000021296  which

comes from a gene Tmem101, a transmembrane protein. 

The RNA-Seq Quantification (HISAT2, StringTie) workflow was run again but

this time on the raw reads in which Trimmomatic was not run. The reason was to find

out whether the DE genes were lost by trimming almost 25% of the data. Ballgown

gave  that  the  total  number  of  transcripts  and  unique  genes  on  merging  the

assembled transcripts of all the four samples were 146653 and 53387 respectively.

The number of transcripts  and unique genes left  after the variance filtering were

20899 and 10634 respectively.

Transcripts Genes

Number 12718 7990

q-val < 0.05 0 0

q-val < 0.1 0 0

q-val < 0.2 0 0

Table 3: The table shows that no transcript or gene had q-values (adjusted p-values

accounting for the false discovery rate) less than 0.05 or 0.1 or 0.2 indicating that

no differentially expressed transcripts and genes are observed.
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2.1.7 Transcript Assembly using MAPS:

To detect rare open reading frames which StringTie may have missed, a new

transcript assembly tool known as MAPS (M-rna Assembly for ProteogenomicS) (Ma

et al., 2018) was also used to assemble the transcripts. MAPS optimizes for both

read  support  and  transcriptome  diversity,  which  allows  it  assemble  transcripts

containing rare open reading frames. Figure 3 shows the various steps involved in

the quantification of Nascent RNA Sequencing data by using StringTie (colored in

yellow) as a transcript assembler and MAPS as a transcript assembler (colored in

cyan).

Ballgown showed that the total number of transcripts and unique genes on

merging the assembled transcripts of all the four samples were 163981 and 64352

respectively. This is much more than the number of transcripts or genes assembled

17
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of Nascent RNA Sequencing data by using StringTie (colored in yellow) as 

a transcript assembler and MAPS as a transcript assembler (colored in 

cyan).



by StringTie. But the number of transcripts and unique genes left after the variance

filtering were 8306 and 5931 respectively.

Transcripts Genes

Number 8306 5931

q-val < 0.05 0 0

q-val < 0.1 0 0

q-val < 0.2 0 0

Table 4: The table shows that no transcript or gene had q-values (adjusted p-values

accounting for the false discovery rate) less than 0.05 or 0.1 or 0.2 indicating that

no  differentially  expressed  transcripts  and  genes  are  observed  even  when

assembled with MAPS.

2.1.8 Expression of sORFs in mouse:

To find out whether any sORFs are even expressed in mouse, the Mouse

sORF coordinates with annotations downloaded from sORFs.org  (Olexiouk et al.,

2018) database and SmProt (Hao et al., 2017) with annotations were looked at. This

database had been created previously in the lab. BEDTools intersect  (Quinlan and

Hall, 2010) was then used on this database and the merged transcript from StringTie

with a a minimum overlap of 99%. BEDTools intersect finds out overlapping regions

between two sets of genomes. It was found that the sORF database overlaps with

the merged transcript comprising of all the four samples. The total was 5232 sORFs

regions that overlapped with the transcripts,  with exonic sORFs – 1362, 5UTR –

1316, uORF – 11, 3UTR – 1, lncrna – 837 and unannotated sORFs being 1705 in

number.
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2.2 Expression of Novel ORFs in various Human 

tissues:

The next part of the project involved studying the expression of various novel 

Open Reading Frames like sORFs, altORFs, pseudogenes and de novo genes in 

multiple human tissue types.

2.2.1 GTEx dataset:

Genotype-Tissue Expression (GTEx)  (Lonsdale et al.,  2013) is an ongoing

project by the GTEx Consortium which aim to build a resource to study tissue wise

expression and regulation of various genes. RNA extraction and sequencing on a

number of samples was done using Illumina TruSeq polyA selection protocol, hence

the RNA sequenced was primarily mRNA for all GTEx tissues. These samples that

have been collected from 53 healthy  non-diseased tissue sites  from across 714

postmortem donors with a total of 11,688 RNA-Seq samples at its current V7 release

(Ardlie et al., 2015). The figure 4 shows the distribution of RNA-Seq samples for the

53 human tissue types.

19
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To find the expression of various novel ORFs in these human tissues, three

large files containing various different  information about  the data were download

from  the  GTEx  dataset  website.  The  first  file  was

gencode.v19.transcripts.patched_contigs.gtf  which  contained  the  evidence-based

annotation  of  the  human  genome  (GRCh37),  version  19  (Ensembl  74)  from

GENCODE.  Since  this  file  had  2,619,449  annotations  of  CDS,  exon,  gene,

Selenocysteine, start_codon, stop_codon, transcript and UTR, only the transcripts

which were 196,520 in number were extracted by sub-selecting those rows in which

third column was labeled as ‘transcript’. A ‘chr’ word was added before each entry in

the transcript file to make it in alignment with a GTF file for downstream usage. The

next  file  was  GTEx_v7_Annotations_SampleAttributesDS.txt  which  contained  the

information about which sample ID belong to which tissue types. Each of the 11,688

GTEx samples has a unique ID which doesn’t contain information about its tissue

type directly and needs to be mapped to the corresponding human tissue using this

file.  The  third  file  is  GTEx_Analysis_2016-01-

15_v7_RSEMv1.2.22_transcript_tpm.txt  which  contains  the  expression  values  in

TPM for 196,520 transcripts as row entries for all the 11,688 samples as columns

containing a total of 2,296,925,760 data points.

2.2.2 Using LiftOver on the GTEx transcripts:

As mentioned above, about  196,520 transcripts were sub-selected from the

bigger  gencode.v19.transcripts.patched_contigs.gtf  file.  The  original  file  which

contained  the  evidence-based  annotation  of  the  human  genome was  (GRCh37)

version 19 but all the novel ORF data was (GRCh38) version 39 assembly. Hence, a

conversion  of  these  transcripts  from  hg19  to  hg38  assembly  was  necessary.  A

commonly  used  batch  coordinate  conversion  tool  called  UCSC  Liftover  (UCSC

liftOver) was  used  to  convert  the  genome  annotation  file  and  the  genome

coordinates  from  hg19  to  hg38  human  assembly.  LiftOver  executible  was

downloaded from http://hgdownload.cse.ucsc.edu/admin/exe/liftOver.gz along with a

hg19ToHg38.over.chain file which has the required liftOver data needed to
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convert  hg19  (Human  Build  37)  coordinates  to  hg38  (Human  Build  38).  About

195,923 GTEx transcripts were converted from hg19 to hg38.

2.2.3 sORFs and Novel ORFs database:

sORFs stand for small open reading frames which are non canonical open

reading frames that are of lengths less than 100 amino acids or 300 nucleotides. The

human  sORFs  coordinates  with  annotations  were  downloaded  from  sORFs.org

(Olexiouk et al., 2018). sORFs.org is a database that contains a sORFs which have

been  computationally  predicted  along  with  some  sORFs  that  have  been

experimentally  verified  using  ribosome  profiling.  Human  sORFs  from  sORFs.org

were downloaded with  default  filters  along with  ‘GOOD’ and ‘EXTREME’ FLOSS

classification. Initially, I downloaded the database from sORFs.org and those entries

in which all parameters other than the ‘Sorf ID’ were exactly the same were removed.

It did remove duplicate entries to a certain level but there were still a lot of duplicate

entries remaining. It had about 519,698 sORF entries with Sorf ID set in a sequential

manner when sorted based on the genomic start site. 

Later a proper Novel ORF database was developed by various members of

the lab and was uploaded on GitHub. The Main Attributes that were downloaded

from  Biomart.biobix.be  were  ‘Sorf  ID’,  ‘Chromosome’,  ‘Sorf  Start’,  ‘Sorf  End’,

‘Strand’, ‘Spliced Start Parts’, ‘Spliced Stop Parts’, ‘Start Codon’, ‘Sorf Length’, ‘AA

sequence’, ‘Transcript sequence’, ‘Biotype’, ‘Annotation’, ‘Ensembl Transcript ID’ The

Genomic coordinates and splicing information were converted into bed12 format for

easy processing and then the duplicate entries were removed based on matching

genomics coordinates. This database had about 502,056 sORF entries in a GTF file

format. 

AltORFs stand for alternative open reading frames which are non canonical

open reading frames but contain start codons that are different from the canonical

open  reading  frames  and  therefore  altORFs  code  for  an  alternative  protein

(Vanderperre et al., 2012). These altORFs were downloaded from OpenProt (Brunet

et al., 2019). OpenProt has all the possible ORFs which are longer than 30 codons,
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and has protein conservation, translation and expression as supporting evidence.

OpenProt annotates all the proteins that are known and are termed as ‘RefProts’,

novel  predicted  isoforms termed as  ‘Isoforms’ and novel  predicted  proteins  from

alternative  ORFs termed as  ‘AltProts’.  The following  parameter  set  was used  to

download the altORFs from (http://www.openprot.org/p/download) with ‘Release’ set

to ‘1.3’,  ‘Species’ set to ‘Homo Sapiens’,  ‘Assembly’ set to ‘GRCg38.p5’,  ‘Protein

Type’  set  to  ‘AltProts,  Isoforms  and  Refprots’  and  ‘Annotation’  set  to  ‘Ensembl

(GRCh38.83)  +  RefSeq  (GRCh38.p7)  +  UniProt  (2017-09-27)’.  An  R  script  was

written to  select  only  those entries with  Mass Spectrometry evidence with  False

Discovery Rate of 0.001% and entries with Ribo-Seq evidence with False Discovery

Rate of 1%. The final number of entries in the in the curated database was 34,036.

Pseudogenes are genomic DNA sequences that are related to normal genes.

These gene generally have lost at least some functionality, relative to the complete

gene, either in terms gene expression in the cell or their ability to code for proteins.

De novo genes are those novel  coding genes that have evolved from previously

noncoding regions, thus generating entirely novel proteins. A similar database for

human pseudogenes and de novo genes was created by selecting gene-type as

‘pseudogene’ and ‘de_novo-gene’ respectively. Human pseudogenes database had

15,177 entries whereas the Human de novo genes database had just 41 entries. The

creation of the Novel ORF database was a collaborative project and the work was

done by various members (Matt  Neville,  Narendra Meena,  Chaitanya Erady and

Robin Kohze) of the Prabakaran lab. The Novel ORF database is available on the

Prabakaran  Lab  GitHub  page  (https://github.com/PrabakaranGroup/nORF-data-

prep). 

2.2.4 Finding sORFs and Novel ORFs transcripts using

BEDTools intersect:

After the GTEx database and the sORF and other Novel ORFs were ready,

the next step was to find the transcripts for these sORFs and Novel ORFs. This was

done using BEDTools intersect. BEDTools intersect is a tool which finds overlaps
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between two sets  of  genomic  features.  To find  the  sORF and other  Novel  ORF

transcripts, BEDTools was used to find overlap between the hg38 GTEx transcript

co-ordinates and the human Novel ORFs. We selected those GTEx transcripts that

were expressed in sORFs by overlapping the genomic coordinates of the sORFs and

GTEx  transcripts.  The  command  used  was:  “bedtools  intersect  -a

gencode.v19.transcripts.patched_contigs_transcript_chr_fixed.gtf -b sorfs.gtf -f 0.99

-s -wo” , where file ‘a’ is the GTEx transcript file and file ‘b’ is the sorfs file in GTF file

format.  The ‘-f  0.99’ indicates that minimum overlap of 0.99 as a fraction of a is

required. The ‘-s’ option is to force ‘strandedness’, i.e. only those hits in the ‘b’ file

that overlap with the ‘a’ file on the same strand are reported. The ‘-wo’ option writes

the original entries of both ‘a’ and ‘b’ files along with the number of base pairs that

overlap between the two files. Only features of A with overlap are reported. Figure 5

shows  the  gencode.v19.transcripts.patched_contigs_transcript_chr_fixed.gtf  as  file

‘a’ and the sORFs file as file ‘b’ and the resulting file gives us the sORF transcripts

i.e.  those genomic  coordinates  in  the  GTEx transcripts  that  lie  within  the  sORF

genomic coordinates.
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Figure 5: The diagram shows the GTEx transcripts as file ‘a’ and the sORFs file as

file  ‘b’  and  the  resulting  file  gives  us  the  sORF transcripts  i.e.  those  genomic

coordinates in the GTEx transcripts that lie within the sORF genomic coordinates.

The ‘-f 0.99’ indicates that minimum overlap of 0.99 as a fraction of a is required. The

‘-s’ option is to force ‘strandedness’, i.e. only those hits in the ‘b’ file that overlap with

the  ‘a’ file  on the same strand are reported.  The ‘-wo’ option  writes the  original

entries of both ‘a’ and ‘b’ files along with  the number of  base pairs  that overlap

between the two files. Only features of A with overlap are reported.



To get the transcripts for the altORFs, pseudogenes and de novo genes databases,

the  previously  mentioned  bedtools  intersect  command  (“bedtools  intersect  -a

gencode.v19.transcripts.patched_contigs_transcript_chr_fixed.gtf  -b xxxx.gtf  -f  0.99

-s -wo”) was executed for altORFs, pseudogenes and de novo genes by replacing

the file ‘b’ xxxx.gtf  in the bedtools intersect.  The sORF transcripts  database had

7,361 entries with 4,255 unique sORFs mapping to 2,246 unique GTEx transcripts.

The altORF transcripts database had 2,304 entries with altORFs mapping to 1,858

unique GTEx transcripts. The pseudogenes transcripts database had 17,668 entries

with pseudogenes mapping to 17,521 unique GTEx transcripts. The de novo genes

transcripts database had 193 entries with pseudogenes mapping to all unique GTEx

transcripts.

2.2.5 Mapping expression of sORFs and Novel ORFs

transcripts in the GTEx dataset:

After the genomic location and and the transcript IDs of the sORFs and other

Novel ORFs transcripts were obtained, they were mapped to their TPM expression

level using multiple Python codes. A list of all samples was segregated according to

their tissues types from the file GTEx_v7_Annotations_SampleAttributesDS.txt. The

first Python code selects the TPM expression value of only the sORFs and other

Novel ORFs transcripts from the large dataset of all TPM expression values for all

transcripts.  The  second  Python  code  find  out  the  column  number  of  the  GTEx

samples that map for a particular tissue and write the output into a separate file each

for the 53 tissue types. The third Python code finally takes the input of the selected

transcript expression from the first code and the column number of the particular

samples and give the expression level for each of the 53 human tissues. For each of

the tissues, only the mean and standard deviation over all the samples is reported

for every sORFs and other Novel ORFs transcript.
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3. Results and Discussion

3.1 Analysis of the mouse Nascent RNA-seq data:

3.1.1 HISAT2 overall alignment rate:

When the trimmed reads were aligned to a indexed reference genome using

HISAT2, a very high overall alignment rate (96%) was achieved when compared to

generally reported alignment rate in the field (70% - 80%). This can be explained in

the Table 5 which shows the percentage of reads remaining,  the HISAT2 overall

alignment rates and the effective alignment rate after various pre-processing steps

using Trimmomatic at different parameters and settings. The effective alignment rate

is defined as the multiplication of the percentage of the remaining preprocessing

reads with the HISAT2 overall alignment rate. The effective alignment rate is very

similar to what is generally reported alignment rate in the RNA-Seq field.
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Table  5:  This  table  shows  the  percentage  of  reads  remaining  after

various pre-processing  steps using Trimmomatic  at  different  settings,

the HISAT2 overall alignment rates and the effective alignment rate.



3.1.2 Clustering the two conditions:

Although, it is difficult to perform clustering based on just four samples, the

Cluster  dendogram  of  the  DE analysis  gave  a  unique  observation.  The  Cluster

dendogram tells how ‘close’ or ‘distant’ two samples. All the samples are clustered

using the Euclidean distance between log(FPKM+1) values on the gene level (FPKM

is Fragments Per Kilobase Million). Only those genes that pass the filtering step are

included in the diagram. The input grouping for Ballgown was on the samples being

replicates i.e. NEBNext02 and NEBNext04 (+TAM samples) were in the group 1 and

the NEBNext06 and NEBNext12 (-TAM samples)  were  in  the  group 0.  Figure  6

shows the Cluster dendogram for one of the DE analysis. It shows that the replicates

are not clustered together based on their expression values. It indicates that there is

more  variance  between  the  replicates  than  in  between  the  groups.  The  similar

Cluster dendogram is observed across all the various differential expression analysis

methods that were out.
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Figure 6: The figure shows the Cluster dendogram for one of the DE analysis methods. All the 

samples in the Cluster dendogram are clustered using the Euclidean distance between log(FPKM+1) 

values on the gene level. The diagram shows that the replicates are not clustered together based on 

their expression values. It indicates that there is more variance between the replicates than in 

between the groups. This Cluster dendogram is observed across all the various differential 

expression analysis methods that were out.



3.1.2 Expression values of H2afz and H2afv genes:

When the expression values in the data were searched for H2afz and H2afv

genes, it was observed that there was difference in the expression in between the

two conditions. It  appears that  the Knock-out  had worked but  not  completely.  As

observed earlier,  the variance between the replicates was also significantly  high.

Figure 7 shows the expression values in TPM (Transcripts Per Kilobase Million) for

the H2afz and H2afv genes. The -TAM samples which are the wild type have a

higher expression values when compared to the +TAM samples which are knock-

outs. The knock-outs still have a large amount of expression levels for H2afz gene.

+TA
M

 s
am

pl
e 

1

+TA
M

 s
am

pl
e 

2

-T
A
M

 s
am

pl
e 

1

-T
A
M

 s
am

pl
e 

2

+TA
M

 s
am

pl
e 

1

+TA
M

 s
am

pl
e 

2

-T
A
M

 s
am

pl
e 

1

-T
A
M

 s
am

pl
e 

2

0

5

10

15

20

25

30

35

40

13.74

6.74

27.18

38.06

1.06 1.38

10.99

18.16

T
P

M
 v

a
lu

e
s

Figure 7: The figure shows the expression values in TPM (Transcripts Per Kilobase

Million) for the H2afz and H2afv genes. The -TAM samples which are the wild type

which have a higher expression values when compared to the +TAM samples which

are knock-outs. The knock-outs still  have a large amount of expression levels for

H2afz gene.
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3.1.3 Analysis of transcript FPKM expression values:

Further,  the transcript  FPKM expression values for  the four  samples were

analyzed using R. Figure 8(a) shows the plot for log(FPKM+0.0000001) of NEB06 (-

TAM) against NEB02 (+TAM) for the first replicate or time point 1 and Figure 8(b)

shows the plot for log(FPKM+0.0000001) of NEB12 (-TAM) against NEB04 (+TAM)

for the second replicate or time point 2. The black data points are the expression

values of 146513 transcripts which were generated by the RNA-Seq Quantification

(HISAT2, StringTie) workflow for DE analysis. The yellow and green data points are

the expression values of H2afz and H2afv respectively. The red line is the mean

regression line and the blue lines are the 95% confidence interval lines. The red data

points are the points that lie outside the 95% confidence interval. The points on the

extreme left & bottom are those points, whose FPKM = 0 and since this is a log plot

and  0.0000001  has  been  added  to  the  FPKM  and  ln(0.0000001)  equals

−16.118095651. Hence the points are on the extremes. The region outside the 95%

confidence interval (blue lines) represents the transcripts that are more likely to be

differentially expressed between the two conditions as they will have larger variance.

As  seen,  all  the  transcripts  for  the  H2afz  and  H2afv  genes  lie  within  the  95%

confidence interval region and hence are less likely to be differentially expressed.

There are only 10 transcripts corresponding to 9 genes which lie outside the 95%

interval and are common in the two graphs which could be potentially differentially

expressed.

The significant overlapping of the sORF database with the merged transcript

comprising of  all  the four  sample done by BEDTools intersect  is  an evidence of

transcription  from  'noncoding  regions'  but  these  regions  are  not  differentially

expressed.  Previous  studies  may  not  have  found  these  'novel'  transcriptional

products because most of the RNA-Seq studies are based on polyA enriched RNAs

and this study is based on total RNA.
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Various  noncoding  transcriptional  events  have  been  claimed  to  be

‘transcriptional  noise’.  It  is  our  claim  that  a  mutant  histone  protein  leaves  the

enhancers and chromatin open for non-specific transcriptions to happen and hence

one should find random ORFs transcribed which we do not find in this case. We

have found no evidence of any differential expression, which supports our claim that

these events are not ‘biological noise’.
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Figure 8(a): shows the plot for log(FPKM+0.0000001) of NEB06 (-TAM) against NEB02 (+TAM) 

for the first replicate or time point 1.

Figure 8(b) shows the plot for log(FPKM+0.0000001) of NEB12 (-TAM) against NEB04 (+TAM) 

for the second replicate or time point 2. 

The black data points are the expression values of 146513 transcripts which were generated 

by the RNA-Seq Quantification (HISAT2, StringTie) workflow for DE analysis. The yellow and 

green data points are the expression values of H2afz and H2afv respectively. The red line is 

the mean regression line and the blue lines are the 95% confidence interval lines. The red data 

points are the points that lie outside the 95% confidence interval. The points on the extreme 

left & bottom are those points, whose FPKM = 0 and since this is a log plot and 0.0000001 has 

been added to the FPKM and ln(0.0000001) equals −16.118095651. Hence the points are on 

the extremes. 

As seen, all the transcripts for the H2afz and H2afv genes lie within the 95% confidence 

interval which mean they don’t have a high deviation from the mean.



3.2 Analysis of expression levels of Novel ORFs in 

normal human tissues:

3.2.1 Analysis of the sORF database:

The  unfiltered  sORF  database  when  download  from  sorfs.org  had  about

2182379  entries.  A  lot  of  those  entries  were  duplicates  and  when  they  were

removed,  about  502,056  sORF were  left  in  the  final  database  that  we  used  for

downstream  analysis.  Figure  9(a)  shows  a  plot  of  the  length  distribution  of  the

sORFs in the sORF database. The length of sORFs in the database various from 10

to 100 amino acids, as expected. Figure 9(b) shows the distribution of the various

sORF annotations.  The three most  abundant  annotations are exonic sORFs,  i.e.

those sORFs which are located in the exonic part of a gene comprising about 45% of

the total sORFs, followed by about 40% sORFs located in lncRNAs and about 12%

located in 5’UTRs of a gene.
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(clockwise from top) Figure 9(a) 

shows a plot for distribution of the 

length of amino acids of the sORFs 

in the curated sORF database. The 

length of sORFs in the database 

various from 10 to 100 amino acids.

Figure 9(b) shows the distribution of 

the various sORF annotations 

showing exonic sORFs (45%), 

lncRNA (40%) and 5’UTR (12%).



3.2.2 Analysis of the sORF data and GTEx transcripts:

Figure 10 shows the distribution of the lengths of sORF transcripts that were

overlapped  with  the  GTEx  transcripts.  This  distribution  is  not  similar  to  the

distribution as shown in Figure 9(a). This indicates that although there are a higher

number of sORFs with amino acid length less than 30, there are significant number

of sORFs that are even larger in length i.e. greater than 80 amino acid as well.

3.2.3 Analysis of expression levels of the sORF and 

Novel ORFs data and GTEx transcripts for human tissues:

The expression levels for each of the 53 human tissues were generated by

using multiple Python scripts as mentioned previously. For each of the tissues, only
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Figure 10: The plot shows the distribution of the lengths of sORF transcripts that

were overlapped with the GTEx transcripts. This indicates that although there are a

higher number of sORFs with amino acid length less than 30, there are significant

number of sORFs that are even larger in length i.e. greater than 80 amino acid as

well.



the mean and standard deviation over all the samples was reported for every sORFs

and other Novel ORFs transcripts. The mean value of these sORFs and other Novel

ORFs transcripts was taken and added a small value of 0.001 to this mean. Then the

natural log of this value was taken and was plotted as a box plot. Next, we wanted to

compare the expression of these Novel ORFs to the expression levels of rest of the

protein  coding  transcripts.  For  this,  all  the  protein  coding  transcripts  were  sub

selected from the the GTEx database for all the tissue and their expression levels

were found following the same steps as to get the expression levels of the novel

ORFs using the Python codes. Then, for each tissue, mean expression values were

taken for every transcripts of these novel ORFs and after adding a small value of

0.001, natural log was taken of these mean values. Then the first quartile, second

quartile (median) and the third quartile of these log values of  the protein coding

transcripts  were  overlaid  with  the  expression  levels  of  the  sORFs,  altORFs,

pseudogenes and the de novo genes transcripts. Figure 11(a) shows the natural log

of  mean  over  every  sample  for  each  of  the  tissue  expression  levels  of  sORFs

transcripts and the natural log of mean over every sample for each of the tissue

expression levels of all protein coding transcripts for each of the 53 tissues. Figure

11(b) shows the same plot for altORFs, Figure 11(c) for pseudogenes and Figure

11(d) for de novo genes.
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Figure 11(a): The figure shows the natural log of mean over every sample for each of the tissue expression 
levels of sORF transcripts and the natural log of mean over every sample for each of the tissue expression 
levels of all protein coding transcripts for each of the 53 tissues.
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Figure 11(b): The figure shows the natural log of mean over every sample for each of the tissue expression 
levels of altORF transcripts and the natural log of mean over every sample for each of the tissue expression 
levels of all protein coding transcripts for each of the 53 tissues.

Figure 11(c): The figure shows the natural log of mean over every sample for each of the tissue expression 
levels of pseudogene transcripts and the natural log of mean over every sample for each of the tissue 
expression levels of all protein coding transcripts for each of the 53 tissues.



All  the  above  figures  show  the  expression  levels  of  various  non  coding

regions like sORFs, altORFs, pseudogenes and de novo genes in all the 53 healthy

tissue types. The transcripts of these novel ORFs in the GTEx database for healthy

human tissues show a relatively lower mean amount of expression in terms of TPM

(transcripts per kilobase million) when compared to transcripts to all  the possible

81,575 coding transcripts in the entire GTEx database for all the 53 tissue types.
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Figure 11(d): The figure shows the natural log of mean over every sample for each of the tissue expression 
levels of de novo gene transcripts and the natural log of mean over every sample for each of the tissue 
expression levels of all protein coding transcripts for each of the 53 tissues.



3.2.4 Analysis of the tissue-wise expression of the 

Novel ORF transcripts in the GTEx dataset:

Out of the total detected 7,361 sORF transcripts, 2,304 altORF transcripts,

17,668  pseudogene  transcripts  and  193  de  novo  gene  transcripts,  not  all  are

expressed evenly in every tissue. Here in Figure 12(a)-(d), we look at the number of

sORF transcripts and other Novel ORF transcripts that are expressed in each of the

53 tissue types present in the GTEx dataset. 

The  sum  of  the  number  of  sORF  transcripts  that  had  a  non-zero  mean

expression, and hence were expressed in all the GTEx human tissues was 301,943

which  have been distributed by  the  tissue type in  Figure 12(a).  The sum of  the

number  of  altORF transcripts  that  had a  non-zero mean expression  was 96,138

which have been distributed by the tissue type in Figure 12(b). 

35Figure 12(b): The figure shows the number of altORF

transcripts expressed for each of the 53 tissues.

Figure 12(a): The figure shows the number of sORF

transcripts expressed for each of the 53 tissues.



The  sum  of  the  number  of  pseudogene  transcripts  and  de  novo  gene

transcripts that had a non-zero mean expression, and hence were expressed in all

the  GTEx human tissues was 713,464 and 9,161 respectively  which  have been

distributed by the tissue type in Figure 12(c) and Figure 12(d) respectively.

The above graphs in Figures 12(a) - (d) show the distribution of number of

various Novel ORF transcripts like sORF, altORF, pseudogene and de novo gene

transcripts in all the 53 tissue types present in the GTEx datasets. We observe that

the Novel  ORF transcripts  are expressed lower in  Bladder,  Cervix  and Fallopian

Tube tissue samples.  This  could  be due to  the  fact  that  these tissue have less

number of samples in the GTEx data itself.
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Figure  12(c):  The  figure  shows  the  number  of

pseudogene transcripts expressed for each of the 53

tissues.

Figure  12(d):  The  figure  shows  the  number  of  de

novo gene  transcripts expressed for each of the 53

tissues.



3.2.5 Analysis of the tissue-wise expression of unique 

Novel ORF transcripts in the GTEx dataset in the human 

genome:

We also looked at the number of unique sORF transcripts and other Novel

ORF transcripts that are expressed in each of the 53 tissue types present in the

GTEx dataset. A unique Novel ORF transcript is an ORF transcript that is expressed

only in one tissue types and not expressed in any other tissue. There are a various

Novel  ORF transcripts  that  are expressed in two or three tissues only but those

haven't considered here. 
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Figure  13(a):  The  figure  shows  the  number  of

uniquely expressed sORF transcripts for each of the

53 tissues.

Figure 13(b): The figure shows the number of uniquely

expressed  altORF  transcripts for  each  of  the  53

tissues.



The  total  number  of

unique  sORF  transcripts

that were expressed in all

the  tissue  types  present

in the GTEx dataset was

73  which  have  been

distributed  by  the  tissue

type in Figure 13(a). The

total  number  of  unique

altORF  transcripts  that

were expressed in all the

tissue types was 18 which

have been distributed by

the  tissue  type  in  Figure

13(b). The total number of

unique  pseudogene

transcripts  that  were

expressed in all the tissue

types present in the GTEx

dataset  was  198 which

have been distributed by

the  tissue  type  in  Figure

13(c).

There were  no uniquely expressed de novo gene transcripts in any of the

tissue types.The tissue type with the highest number of uniquely expressed sORFs

was ‘Lung’ followed by ‘Testis’. The tissue type with the highest number of uniquely

expressed altORFs was ‘Brain  Cerebellum’ followed by ‘Heart  Left  Ventricle’ and

‘Testis’. The tissue type with the highest number of uniquely expressed pseudogenes

was ‘Testis’ followed by ‘Lung’.
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Figure 13(c): The figure shows the number of uniquely

expressed pseudogene  transcripts for  each of  the 53

tissues.



4. Conclusion and Future Directions:

Various  noncoding  transcriptional  events  have  been  claimed  to  be

‘transcriptional noise’ but to show otherwise, we investigate differential expression

between mutant histone variant and wild type samples with two replicate each. The

mutant  samples  were  NEBNext02,  NEBNext04  (denoted  by  +TAM)  which  were

treated with Tamoxifen, a drug which leads to the deletion of H2afz and H2afv genes

and the wild type samples were NEBNext06, NEBNext12 (denoted by -TAM). These

were nuclear RNA samples from Mus musculus Embryonic Fibroblasts (MEFs) which

had  sequenced  using  the  Illumina  HiSeq  4000.  We  do  not  find  any  significant

differential expression levels of genes or transcripts in between the two conditions. It

was our claim that a mutant histone protein leaves the enhancers and chromatin

open  for  non-specific  transcriptions  to  happen,  therefore  increasing  noisy

transcription, and hence one should find random ORFs transcribed which we do not

find in this case. We found no evidence of any differential expression in the known

and sORF transcripts  between the two conditions,  which supports  our  claim that

these events are not ‘biological noise’. We also found that there was no differentially

expressed 

After showing in Mus musculus that transcription of sORFs is not due to noisy

transcriptional events, we further strengthen this argument by finding the expression

of sORFs and other novel ORFs in various tissues types. The GTEx dataset, being a

huge collection of mRNA data from normal human tissues, helped us understand

and quantify the expression of sORFs and other Novel ORFs at a large scale.  We

also  look at  the  expression  levels  of  multiple  novel  ORFs like  sORFs,  altORFs,

pseudogenes and de novo genes in 53 healthy tissue types. We find transcripts of

novel ORFs in the GTEx database and then compared these transcripts to all the

possible 81,575 coding transcripts in the entire database for all the 53 tissue types.

The  transcripts  of  these  novel  ORFs  in  the  GTEx  database  for  healthy  human

tissues  show  a  relatively  lower  mean  amount  of  expression  in  terms  of  TPM

(transcripts per kilobase million) when compared to transcripts to all  the possible

81,575 coding transcripts in the entire GTEx database for all the 53 tissue types. We
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also find the total number of novel ORFs that are expressed in various GTEx tissue

types and also find the uniquely expressed novel ORFs in each tissue type.

To find functional significance of sORFs and other Novel ORFs, we are also

looking  whether  there  are  any  mutations  that  map  to  the  novel  ORFs  that  are

expressed in various tissue types. We will use the HGMD (Human Gene Mutation

Database) (Stenson et al., 2009) and the COSMIC (Catalogue Of Somatic Mutations

In Cancer)  (Tate et al.,  2019) databases for characterizing mutations in the novel

ORFs. We are also looking whether these Novel ORF transcripts have a differential

expression in cancer data using the TCGA (The Cancer Genome Atlas) (Weinstein et

al., 2013) dataset.

In the future, we also want to look into the Transcription Factor Binding Site

and promoter regions in various novel transcripts which are uniquely expressed in

the GTEx tissues and try to figure out a reason for their selective expression. We

also want to predict structure for the various sORFs and other Novel ORFs that have

a selective expression using their amino acid sequences.
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