
Online Regression Using Reproducing
Kernel Hilbert Spaces

A Thesis

submitted to

Indian Institute of Science Education and Research Pune

in partial fulfillment of the requirements for the

BS-MS Dual Degree Programme

by

Abhishek Ojha

Indian Institute of Science Education and Research Pune

Dr. Homi Bhabha Road,

Pashan, Pune 411008, INDIA.

April, 2019

Supervisor: Vivek S. Borkar

c© Abhishek Ojha 2019

All rights reserved

Certificate

This is to certify that this dissertation entitled Online Regression Using Reproducing

Kernel Hilbert Spaces towards the partial fulfilment of the BS-MS dual degree programme

at the Indian Institute of Science Education and Research, Pune represents study/work

carried out by Abhishek Ojha at Indian Institute of Science Education and Research under

the supervision of Vivek S. Borkar, Chair Professor, Department of Electrical Engineering,

IIT Bombay , during the academic year 2018-2019.

Vivek S. Borkar

Committee:

Vivek S. Borkar

Anup Biswas

This thesis is dedicated to my grandfather Shri Nagendra Nath Ojha, without whom this

journey would not have been possible.

Declaration

I hereby declare that the matter embodied in the report entitled Online Regression Using

Reproducing Kernel Hilbert Spaces are the results of the work carried out by me at the

Department of Mathematics, Indian Institute of Science Education and Research, Pune,

under the supervision of Prof. Vivek S. Borkar , Department of Electrical Engineering, IIT

Bombay and the same has not been submitted elsewhere for any other degree.

Abhishek Ojha

Acknowledgments

I am grateful to my supervisor Prof. Vivek Borkar for introducing me to this field of research

and his immense support throughout the project. I would like to thank Prof. Anup Biswas,

Prof. Uttara Naik-Nimbalkar, and Prof. Anindya Goswami for their invaluable discussions

whenever I needed clarifications. I would also like to thank Infosys Foundation for covering

my tuition fees for the FALL 2017, SPRING 2018, and SPRING 2019 semesters.

ix

x

Abstract

Suppose we have X ⊂ R2 and there exists an unknown function F (x) : X → R. We

will consider the Unnikrishnan -Vetterli problem [1] in which a vehicle moves on X making

observations (input-output pairs) (x1, y1), (x2, y2), (x3, y3), . . . (where yi is a noisy version of

F (xi)). The task is to maintain a running estimate for F using the observations. In learning

literature, such a task is referred to as regression. In this thesis, we have surveyed regression

methods suitable for this scenario when data arrive sequentially. The methods that have

been included in this thesis consider the Reproducing Kernel Hilbert Spaces (RKHS) as their

hypothesis space. Towards the end, we propose an improvement and present some results

without any mathematical proofs.

xi

xii

Contents

Abstract xi

1 Theory of Reproducing Kernel Hilbert Spaces (RKHS) 5

1.1 Kernel, Reproducing kernel and RKHS . 5

1.2 Gaussian RKHS . 9

1.3 Mercer Kernel and associated RKHS . 10

1.4 Regression using RKHS . 11

2 Survey of Existing Methods 13

2.1 Different Methods of Dictionary Learning . 13

2.2 Functional and Parametric approaches . 15

2.3 Naive Online Regularized Risk Minimization Algorithm (NORMA) 16

2.4 Kernel Least Mean Squares (KLMS) Algorithm 17

2.5 Quantised KLMS (QKLMS) . 20

2.6 Kernel Normalised Least Mean Squares (KNLMS) 25

2.7 Multi-Kernel Normalised Mean Squares Algorithm (MKNLMS) 29

2.8 KLMS algorithm with forward-backward splitting
(KLMS-L1) . 34

2.9 Functional Affine Projection Algorithms (APA) 40

xiii

3 Proposed Modification with Simulations and Results 45

3.1 KLMS-L1 with window approach (KLMS-L1w) 45

3.2 Experiments and Results . 47

3.3 MKNLMS with window approach and modified dictionary construction . . . 55

xiv

Introduction

The Estimation Problem

Let us consider a random field (assume stationary for now) F (x, ω), x ∈ X (X = [0, 1]2 ⊂
R2), sampled at x1, x2, . . . , xt (t ∈ N) with noisy observations given by

yi = F (xi, ω) + ξi,

where ξi, 1 ≤ i ≤ t are i.i.d zero mean random variables with |ξt| ≤ η < ∞, ∀ t. If we use

a Reproducing Kernel Hilbert Space (RKHS),HK (discussed in the second chapter) as our

hypothesis space and we solve the following optimisation problem:

min
f∈HK

1

t

t∑
i=1

(f(xi)− yi)2 + γ‖f‖2
Hk , for some γ > 0,

then from the representer theorem ([2], [3],[4]), we will have an estimate for F (x, ω) as:

F̂ (x, ω) =
t∑
i=1

αik(xi, x),where α = (γt It +Kt)
−1y. (1)

Next, we will consider the Unnikrishnan -Vetterli problem [1] in which a vehicle moves on X

making observations (input-output pairs) (x1, y1), (x2, y2), (x3, y3), We want to maintain

a running estimate of F̂ (x, ω). Note that α can be updated in online manner since the inverse

can be updated (O(t2)) at each step using matrix-inversion lemma [5]. Even quadratic time

complexity may turn out to be computationally heavy when t becomes quite large, so we

will visit some methods which avoid computing the inverse for α and use gradient descent

which results in linear time complexity (O(t)).

1

As time increases, the number of terms in expression (1) of the estimate increases and hence

we will visit some methods to control the number of terms which are being included in the

expression for the estimate. At each time, the estimate (F̂ (x, ω)) will be expressed in terms

of a few selected inputs which is referred to as dictionary. The growing and pruning strategies

for this dictionary will be discussed.

Notations

In this section the notations are introduced which will be followed in this report unless stated

otherwise.

{(xi, yi)}ti=1 is the sequence of input, observed output pair till time t. Dt denotes the dictio-

nary which contains mt (≤ t) elements at time t. Dt := {xω1 , . . . ,xωmt}.
Most of the methods in the literature work with the Gaussian kernel which we will denote

by k : X ×X → R and k(x1,x2) := exp(−‖x1−x2‖2
2σ2).

Kt is the kernel matrix on input points, i.e., [Kt]ij := k(xi,xj) whereas Kωt is the kernel

matrix on dictionary points, i.e., [Kωt]ij := k(xωi ,xωj).

Two vectors kωt(x) := [k(xω1 ,x), k(xω2 ,x), . . . , k(xωmt ,x)]T and

kt(x) := [k(x1,x), . . . , k(xt,x)]T will be helpful to make the equations concise. These two

vectors have been recalled wherever they are used to avoid any confusion.

Φ denotes the feature map (discussed in chapter 2) and Φ(x) is the feature vector for x ∈ X.

Φt := [Φ(x1), . . . ,Φ(xt)] and Φ̃t := [Φ(xω1), . . . ,Φ(xωmt)] are the matrices in which columns

are feature vectors of input points and dictionary elements respectively.

And finally, αt is the coefficient vector at time t (for example see 1) and It is the t×t identity

matrix.

The above-mentioned notations appear in nearly every method discussed below but a few

notations are algorithms specific and hence will be introduced in the description of those

particular algorithms.

2

Organization of this report

The problem and the notations has been introduced in the first and second section respec-

tively of Introduction.

Chapter 1 consists of a review of the theory of RKHS with an example of Mercer Kernel.

We will go through the definition of kernel, reproducing kernel, and RKHS and properties

of RKHS. We will also visit the non-linear regression using RKHS and will state the Rep-

resenter theorem and the Universal Approximation theorem to motivate the importance of

using RKHSs.

Chapter 2 consists of survey of a few existing methods to solve the online kernel regression

problem. Section 3.1 mentions the two approaches towards solving this problem. Section 3.2

talks about the different growing and pruning strategies for the dictionary. Section 3.3-3.9

are the algorithms with linear time complexity. Quadratic algorithms ([6], [7], [8], [9]) have

been omitted due to space constraints. We were trying to tackle this problem using concepts

from the theory of compressed sensing ([10], [11], [12], [13], [14],[15], [16]) but that turned

out to be computationally expensive. The compressed sensing theory has been omitted due

to space constraints.

Note that the problem of fitting a function based on sequential data (online kernel regres-

sion) has been studied extensively. Most of the methods developed were meant for studying

the time series data. In this report we are trying to use the same techniques to provide an

alternative approach to the Unnikrishnan-Vetterli problem [1]. In chapter 3, we present a

local approach for updating the coefficient vector and compare it with existing algorithms

(without mathematical proof).

3

4

Chapter 1

Theory of Reproducing Kernel

Hilbert Spaces (RKHS)

1.1 Kernel, Reproducing kernel and RKHS

In this section, we first go through the definition of a kernel and its equivalence to positive

semi-definite functions and then we visit the definitions related to a reproducing kernel, and

RKHS. This section closely follows the explanations provided in [17] and [18].

Definition 1.1.1. (Kernel) Let X be a non-empty set. A function k : X×X → R is called

kernel if ∃ a R- Hilbert space H (inner product has range R) and a map Φ : X → H such

that ∀x, y ∈ X, we have

k(x, y) = 〈Φ(x),Φ(y)〉H ,

Φ is called feature map and H is called feature space.

Note that a kernel can have multiple feature map and feature space pairs. For example,

take X = R and k(x, y) := xy ∀x, y ∈ R. Then this k is a kernel for H = R,Φ(x) = x as

well as for H = R2,Φ(x) =
(
x√
2
, x√

2

)
.

Given a function it maybe difficult to come up with its corresponding feature space and

feature map to check whether it is a kernel or not. So, an equivalence between definition

of kernels and definition of symmetric positive definite functions can be obtained. The

definition of positive semi-definite functions has been revisited below.

5

Definition 1.1.2. A function k : X × X → R is said to be positive semi-definite if, ∀n ∈
N, α1, . . . , αn ∈ R and all x1, . . . , xn ∈ X, we have

n∑
i=1

n∑
j=1

αiαjk(xi, xj) ≥ 0.

Finally, k is said to be symmetric if k(x, y) = k(y, x) ∀x, y ∈ X

To check whether a given function is positive-semi definite is relatively easy since one

has to check the positive semi-definiteness of gram matrix K (Kij = k(xi, xj)). Now, the

next theorem provides an equivalence between kernels and positive semi-definite symmetric

functions.

Theorem 1.1.1. A function k : X × X → R is a kernel if and only if k is a symmetric

positive semi-definite function.

After establishing an easier way of characterizing a kernel, we will move to the definitions

of reproducing kernel and reproducing kernel Hilbert spaces.

Definition 1.1.3. Let X be a non-empty set and H be Hilbert function space over X.

1. A function k : X ×X → R is called a reproducing kernel of H if

(a) k(·, x) ∈ H, ∀x ∈ X and

(b) f(x) = 〈f, k(·, x)〉H holds ∀f ∈ H and ∀x ∈ X

2. The space H is called RKHS over X if ∀x ∈ X, the Dirac functional δx : H → R
defined by

δx(f) := f(x)

is continuous.

The continuity of Dirac functionals imply that if a sequence of functions fn converges to

f in Hilbert norm then they converge pointwise to f as well.

lim
n→∞

fn(x) = lim
n→∞

δx(fn) = δx(f) = f(x).

6

The next lemma connects the definition of a reproducing kernel with that of a kernel and

RKHS. It shows that every reproducing kernel is in fact a kernel. The associated feature

space and the feature map will be mentioned in the lemma.

Lemma 1.1.1. Let H be a Hilbert function space over X that has a reproducing kernel k.

Then H is an RKHS and H is also a feature space of k where the feature map Φ : X → H

is given by

Φ(x) = k(·, x),∀x ∈ X.

This feature map is called canonical feature map.

Now, we have established that a Hilbert space with a reproducing kernel is a RKHS and

its reproducing kernel is a kernel. The next theorem shows that, conversely, every RKHS

has a unique reproducing kernel and hence a kernel associated with it. This theorem also

shows that this kernel can be written in terms of orthonormal basis (if it exists) of RKHS.

Theorem 1.1.2. (Every RKHS has a unique kernel) Let H be a RKHS over X. Then,

k : X ×X → R such that

k(x, y) := 〈δx, δy〉H , x, y ∈ X,

is the only reproducing kernel of H. If {ei}i∈I is orthonormal basis for H, then

k(x, y) =
∑
i∈I

ei(x)ei(y) ∀x, y ∈ X.

Thus, every RKHS has a unique reproducing kernel and hence kernel associated with it.

The next theorem states that given any kernel there exists unique RKHS.

Theorem 1.1.3. (Every kernel has a unique RKHS) Let X be a non-empty set and

k be kernel over X with feature space Ho and feature map Φo : X → Ho. Then

H :=
{
f : X → R

∣∣ ∃w ∈ Ho with f(x) = 〈w,Φo(x)〉Ho ∀x ∈ X
}
,

equipped with norm

‖f‖H := inf
w∈Ho
{‖w‖Ho : w ∈ Ho with f = 〈w,Φo(·)〉Ho}

is the only RKHS for which k is a reproducing kernel. Consequently, both the definitions are

7

independent of choice of Ho and Φo. Moreover, the operator V : Ho → H defined by

V (w) := 〈w,Φo(·)〉Ho w ∈ Ho

is a metric surjection, i.e. V (BHo) = BH , where BHo and BH are the open unit balls of Ho

and H respectively. Finally, the set

Hpre :=

{
n∑
i=1

αik(·, xi) : n ∈ N, α1, . . . , αn ∈ R, x1, . . . , xn ∈ X

}

is dense in H and for f :=
∑n

i=1 αik(·, xi) ∈ Hpre we have

‖f‖2
H =

n∑
i=1

n∑
j=1

αiαjk(xi, xj).

There are three main points worth noting due to Theorem 1.1.3.

• As already mentioned, a given kernel can have multiple feature space, feature map

pairs. But no matter which of these pairs is chosen, the RKHS remains same for this

given kernel.

• The map V in the above theorem is a metric surjection from any feature space of a

kernel to its RKHS which shows that the RKHS of a kernel is the smallest feature

space associated with it.

• Every function in the RKHS can be expressed as f = 〈w,Φ(·)〉Ho = wTΦ according

to the definition. So finding a function satisfying some property (such as minimising

some loss function) in RKHS reduces to finding the vector w that corresponds to that

property. We will refer to this w as weight vector in the feature space (which can be

infinite dimensional).

At this stage it is worth mentioning that such result was first introduced by Moore and

Aronszajn [18] who proved the uniqueness and existence of RKHS for a given symmetric-

positive semidefinite function (not kernel!) using constructive approach. They used the

set Hpre (defined above with k being symmetric positive semi-definite function) and showed

that its completion will lead us to the RKHS H. Theorem 1.1.3 also mentions that the

8

completion of Hpre is the RKHS H but the difference is that here Hpre is constructed when

k is a kernel. Since the equivalence between kernel and symmetric positive semi-definite

functions was already discussed in Theorem 1.1.1, we can conclude that the two approaches

are equivalent. Actually, the proof of Theorem 1.1.1 consists of the steps used in the proof

by Moore and Aronszajn. Next, a theorem has been stated upon which Moore-Aronszajn

theorem is based. Note that it talks about conditions in which the completion is possible.

Theorem 1.1.4. Let Ho be any subspace real-valued functions on X (RX), on which an

inner product <,>Ho is defined. In order that there exists a Hilbert space H such that

1. Ho ⊂ H ⊂ RX and the topology defined by the inner product <,>Ho coincides with the

topology induced on Ho by H,

2. H has a reproducing kernel k,

it is necessary and sufficient that

3. the evaluation functionals are continuous on Ho,

4. any Cauchy sequence in Ho converging pointwise to 0 converges also to 0 in the norm

sense.

In the next section, the RKHS related to the Gaussian kernel will be explained with a

few interesting properties.

1.2 Gaussian RKHS

In [19], few interesting results have been proved about the Gaussian RKHS using concepts

from complex analysis. Three most important points discussed in this work are:

1) Gaussian RKHS over a set in Rd which has non-empty interior is same as the Gaussian

RKHS over whole Rd.

2) Gaussian RKHS doesn’t contain non-trivial constant functions.

3) Gaussian RKHS corresponding to a smaller kernel-width is a strict superset of Gaussian

RKHS with a larger kernel-width.

The tools used and the proof techniques are interesting. For more details see [19] and [17].

9

Next, we will look at a special class of kernels known as Mercer kernels. In this case, we

can also characterize the RKHS with the help of eigenvectors of operator defined by these

kernels.

1.3 Mercer Kernel and associated RKHS

A Mercer kernel [2] (k : X ×X → R) is a symmetric, positive semi-definite and continuous

function i.e. a Mercer kernel is a continuous kernel. Let X be any compact metric space in

RN (in our case N = 2). Let ν be a Borel measure on X and L2
ν(X) be the Hilbert space

of square integrable functions. The operator defined by the kernel is Lk : L2
ν(X) → C(X)

which is given by the integral transform

Lkf(x) =

∫
k(x, y)f(y)dν(y).

We need to have the feature space and feature map for the Mercer kernel. We will construct

its feature space and feature map of its operator. Since Mercer kernel K is symmetric,

positive semi-definite and continuous, the operator Lk will be a self-adjoint, positive and

compact operator. Then, the spectral theorem will guarantee the existence of an orthonormal

basis of L2
ν(X) which consists of eigenvectors of Lk. Let (φn)n∈N be the set of eigenvectors

and (λn)n∈N be the corresponding eigenvalues. One should note that the eigenvectors with

non-zero eigenvalues are continuous since Lk maps into set of continuous functions on X and

φn = 1
λn
Lk(φn).

Next, we will visit Mercer’s theorem which will help us in defining the feature map for the

Mercer kernel.

Theorem 1.3.1. Let X, K, Lk, φn and λn be defined as above. Then for all x, y ∈ X,

k(x, y) =
∞∑
n=1

λnφn(x)φn(y),

where the convergence is absolute and uniform on X ×X.

Let us consider H = l2 and a map Φ : X → H given by

Φ(x) = (
√
λnφn(x))n∈N. (1.1)

10

With the help of Mercer’s theorem it can be shown that this map Φ is well-defined, continuous

and satisfies

k(x, y) = 〈Φ(x),Φ(y)〉l2 (Kernel Trick).

This shows that l2 is the feature space and Φ is the feature map of k. We already know

from Theorem 1.1.3 that k will have a unique RKHS (call it Hk) and since we have found a

feature space and feature map pair, we can also state that every f ∈ Hk can be expressed

as:

f = 〈w,Φ〉l2 , for some w ∈ l2. (1.2)

An example of Mercer kernel is Gaussian kernel which is given by:

kσ(x, y) = exp

(
− ‖x− y‖

2
2

2σ2

)
for x, y ∈ RN .

In the rest of this report, the Gaussian kernel will be used and its feature space will be l2 and

feature map will be Φ as defined in equation (1.1). The expression in (1.2) will be written

as f = wTΦ just for the sake of easier notation.

Now that we have established the properties of RKHS, let us see how these spaces are useful

in non-linear regression.

1.4 Regression using RKHS

In a regression problem, we have some input-output pairs (observations). The outputs

depend on the inputs via some unknown function. We assume that the unknown function

can be best approximated by a function from some set of functions which is called hypothesis

space, then we define a risk function and try to find the function from the hypothesis space

which minimizes the risk over observations. For example, in linear regression, we assume

that underlying unknown function can be well-approximated by a linear function and hence

our aim in such case is to find the best (one which minimizes the squared error risk) linear

approximator. The statistical learning theory [2] gives us probabilistic bounds over how

different the minimizer is from the best performing function from the hypothesis space. We

won’t discuss that aspect in this report.

We will choose RKHS as our hypothesis space. In the case of a Gaussian kernel it can be

shown that [2] its RKHS (Hk) is isomorphic to the subspace of L2
ν(X) which is spanned by

11

the eigenvectors of Lk with non-zero eigenvalues. This allows us to include many different

functions in our hypothesis. We will see that for the risk which we generally choose, its

minimizer (or the best function fitting through the observations) turns out to be of a form

which is easier to compute and has universal approximation property (stated below). Let us

introduce the risk function involved and hence the optimization problem that we will solve.

Given input-output pair {(xi, yi)}ti=1 (t ∈ N), our aim is to solve following optimization

problem (which is called regularized empirical error):

min
f∈Hk

1

t

t∑
i=1

(f(xi)− yi)2 + γ‖f‖2
Hk , for some γ > 0. (1.3)

The second term in the above expression is called regularisation term as it prevents the

overfitting through the observations. By the virtue of the representer theorem ([2],[3],[4]),

one can show that the minimiser of (1.3) is given by:

f̂(x) =
t∑
i=1

αik(xi,x),where αt = (γtIt +Kt)
−1yt, (1.4)

Kt is the t × t kernel gram matrix with (Kt)ij = k(xi,xj), αt = [α1, α2, . . . , αt]
T , and

yt = [y1, y2, · · · , yt]T

Note that even if the regularisation term is removed, a function of form (1.4) can be minimiser

but it may not be certain that every minimiser will be of this form. At this stage let us

see an interesting property that the expansion in (1.4) has. Since, the kernel which we will

consider (Gaussian kernel) is also a radial basis function, the following can be proved:

Theorem 1.4.1. (Universal Approximation Theorem [20]) Let Sk :=

{
q : Rr →

R
∣∣ q(x) =

∑M
i=1 αik(x−zi

σ
), M ∈ N, σ > 0, αi ∈ R, zi ∈ Rr, i = 1, . . . ,M

}
. Next, suppose

that k : Rr → R is an integrable, bounded function such that K is continuous a.e. and∫
Rr k(x)dx 6= 0. Then the family Sk is dense in Lp(Rr) ∀p ∈ [1,∞).

Thus, we see that choosing RKHS as our hypothesis space and a proper risk function

leads us to a form of minimiser which can approximate a very large set. This is also one of

the reasons why RKHS is so widely used. There is an interesting connection between the

regularisation (for example in (1.3) and the set SK in the Theorem 1.4.1. See [21] for details.

12

Chapter 2

Survey of Existing Methods

2.1 Different Methods of Dictionary Learning

As already mentioned, at time t, we want to express the estimate in terms of a few inputs

(dictionary) instead of every input observed till t. Following the notation that has been

introduced already, the estimate at time t will be:

F̂ (x) =
mt∑
i=1

αik(xωi , x) = (kωt(x))Tαt.

Now, when an observation is made at a new point xt+1, the growing strategy will decide

whether to include xt+1 in the dictionary. The pruning strategy decides which element(s) to

remove from the dictionary. But one should note that the coefficient vector (αt)mt×1 (which

corresponds to the dictionary elements) is updated at every time.

Following are some growing strategies (novelty criteria):

1. Coherence Criterion [22]: In this strategy one first measures the coherence i.e.,

µ = max
xωi∈Dt

k(xωi ,xt+1).

If the coherence is below some threshold (µo) then xt+1 is added to the dictionary.

Larger value of threshold allows more elements to be included in the dictionary. Com-

13

plexity of this criterion is O(mt).

2. ALD Criterion [6]: In this starategy, one checks whether the feature vector Φ(xt+1)

of xt+1 is approximately linearly dependent on the feature vectors of the dictionary

{Φ(xω1), . . .Φ(xωmt)}. For a given threshold νo (> 0), xt+1 is added to the dictionary

if following criterion is satisfied:

δt = min
w
‖

mt∑
i=1

wiΦ(xωi)− Φ(xt+1)‖2 ≤ νo.

Smaller value of νo allows fewer elements to be included in the dictionary. Complexity

of this criterion is O(m2
t).

Following are some pruning strategies:

1. Sliding Window: This is a naive way of removing the oldest element and hence we

get the picture of sliding window.

2. Least weight: In this method, xωi corresponding to least |αi| is removed. Complexity

of this criterion is O(mt).

3. Least a posteriori SE: In this method xωi corresponding to least
|αi|

[K̃−1
t]ii

, where

K̃t is kernel gram matrix corresponding to dictionary elements (already mentioned in

Section 1.2). This criterion is achieved when one tries to find the element which causes

the least squared error upon its removal from Dt [7]. Complexity of this criterion is

O(m2
t).

In some cases (Section 2.7-2.9, Chapter 3), we will see that an additional constraint (for

example, weighted l1-norm on the coefficient vector (αt)) can be introduced to the objective

function to make the small coefficients go to zero and then elements corresponding to such

zero coefficients are removed.

14

2.2 Functional and Parametric approaches

We get these two strands when we try to tackle this problem using gradient descent methods

(also see Section 2.6.3 for more information).

1. Functional Approach: We know from (1.2) that every f ∈ HK can be written as

f = wTΦ so the objective (1.3) can be rewritten as (without the regularisation term):

min
f∈HK

1

t

t∑
i=1

(f(xi)− yi)2 ∼ min
w∈l2

t∑
i=1

(wTΦ(xi)− yi)2. (2.1)

So, in this approach we find the optimal weight vector from the feature space. It will

be clear in the algorithms discussed below that when instantaneous gradient descent

(stochastic gradient descent with i=t) is used, only the recent coefficient (the last

component of αt) gets updated.

2. Parametric Approach: In this approach, the form of minimiser from the representer

theorem is directly used in the objective and the optimal coefficient vector is calculated.

The objective will be as follows:

min
α∈Rt

t∑
i=1

(αTkt(xi)− yi)2, (2.2)

where kt(xi) = [k(x1,xi), . . . , k(xt,xi)]
T .

It will be shown in the discussion below that if one performs instantaneous gradient

descent in this case, every coefficient (whole αt) gets updated.

This methods are like stochastic gradient descent methods in which i = t is always selected

i.e., to move according to the gradient of newest entry in the objective. Let us see few linear

methods and notice the effect of the choice of objective in different methods.

15

2.3 Naive Online Regularized Risk Minimization Al-

gorithm (NORMA)

It involves using gradient descent for solving the original regularised empirical error (1.3).

In this method, the gradient is calculated in the functional space Hk only. To that end, note

that [23] for f ∈ Hk,

∂f‖f‖2
Hk = 2f and ∂f (f(xi)) = ∂f (〈f, kxi〉) = kxi = k(xi, ·). (2.3)

As already mentioned, the objective considered will be the following (1.3):

Rreg[f] = min
f∈Hk

1

t

t∑
i=1

(f(xi)− yi)2 + γ‖f‖2
Hk , for some γ > 0,

which will be approximated by the virtue of stochastic gradient descent with i = t using

Rstoch[f] =
1

2
(f(xt)− yt)2 + γ‖f‖2

Hk .

Hence,

ft = ft−1 − η∂fRstoch[ft−1],

where η is the step size. After plugging in the gradient (evaluated using (2.3), we get:

ft = ft−1 − η(ft−1(xt)− yt)k(xt, ·)− ηγft−1.

Rearranging the terms, we get:

ft = (1− ηγ)ft−1 − η(ft−1(xt)− yt)k(xt, ·) = (1− ηγ)ft−1 + ηenk(xt, ·),

where, en = yt − ft−1(xt). Going back to the representer theorem,

if ft−1(·) =
∑t−1

i=1αt−1(i)k(xi, ·), then

ft(·) =
t−1∑
i=1

(1− ηγ)αt−1(i)k(xi, ·) + ηenk(xt, ·) =
t∑
i=1

αt(i)k(xi, ·). (2.4)

16

Here αt−1(i) and αt(i) are the ith components of αt−1 and αt respectively.

In terms of the coefficient vector,

αt =

[
(1− ηγ)αt−1

ηen

]
.

Note that this algorithm does not use any growing and pruning strategy, however the older

components of the coefficient vector are getting smaller as t grows. So, it is similar to having

a sliding window where the older coefficients are shrinking to zero.

2.4 Kernel Least Mean Squares (KLMS) Algorithm

It is similar to NORMA (with γ = 0) but is derived from the perspective of feature space

[9] (gradient is computed w.r.t. feature weight vector) and the derivation is motivated by

classical LMS algorithm [9]. In other words, the gradient is evaluated in the feature space

instead of the functional space Hk and the gradient step is taken in order to find best weight

vector from the feature space. The convergence analysis [24] has been done for this algorithm

which also gives a condition on step size required for convergence. It has been shown in the

analysis [24] that KLMS has self-regularising property too.

2.4.1 Objective and Updating Procedure

Here the functional form of the objective (2.1) w.r.t. feature weight vector is used. :

Jw =
1

2

t∑
i=1

(yi −wTΦ(xi))
2,

where w ∈ l2 (the feature space).

The instantaneous gradient (i = t in stochastic gradient descent) at t is:

(∇wJ)stoch(w) = −Φ(xt)(yi −wTΦ(xt)).

17

Now, the gradient step will be :

wt = wt−1 − η(∇wJ)stoch(wt−1)

= wt−1 + ηΦ(xt)(yt −wT
t−1Φ(xt)) (2.5)

= wt−1 + ηetΦ(xt)

where, et = yt −wT
t−1Φ(xt).

Recursively, we obtain:

wt = wt−1 + ηetΦ(xt)

= wt−2 + η[et−1Φ(xt−1) + ηetΦ(xt)]
...

= wo + η
[t∑
i=1

eiΦ(xi)
]

(2.6)

= η
[t∑
i=1

eiΦ(xi)
]
,

assuming wo = 0. Estimate at input x after time t will be:

f̂t(x) = wT
t Φ(x)

=
[
η

t∑
i=1

eiΦ(xi)
T
]
Φ(x) (2.7)

= η
t∑
i=1

ei[Φ(xi)
TΦ(x)]

kerneltrick
= η

t∑
i=1

eik(xi,x).

18

So, in terms of the estimate, one can write the updates as:

ft−1 = η

t−1∑
i=1

eik(xi, ·),

ft−1(xt) = η
t−1∑
i=1

eik(xi,xt),

et = yi − ft−1(xt), (2.8)

ft = ft−1 + ηetk(xt, ·).

Finally, in the notation of coefficients, we can write the updates as:

αt =

[
αt−1

ηet

]
. (2.9)

Again, note that like NORMA this method also doesn’t use any growing and pruning strat-

egy. If we add an extra quantisation condition [25] to control the growth of the dictionary,

we will get the next algorithm called Quantised KLMS (QKLMS).

At this stage, it is worth mentioning that this algorithm can also be derived from the para-

metric form of objective. In that case, the whole coefficient vector will be updated. This

derivation has been presented in section 10.1.

2.4.2 Step-Size parameter

As already mentioned, Φt = [Φ(x1), . . . ,Φ(xt)]. Next, define

Rφ =
1

N
ΦtΦ

T
t ,

and

Gφ = ΦT
t Φt.

Then the step size should satisfy following for the stability of the algorithm [9]:

η <
1

ρmax
,

19

where ρmax is the largest eigenvalue of Rφ To get an upper bound on ρmax following is used:

ρmax < tr[Rφ] < tr[Gφ]/t.

Hence a conservative upper bound on step size parameter is

η <
t

tr[Gφ]
=

t∑t
i=1 k(xi,xi)

(= 1 in our case).

2.4.3 Self-regularisation

Note that the objective in KLMS didn’t contain any regularisation term because it can be

shown that it has self-regularization ability [9]. The details related to this property have

been skipped in this report.

2.5 Quantised KLMS (QKLMS)

In KLMS algorithm, we have ever-growing dictionary but in QKLMS [25], the new input

will have to satisfy an additional condition (based on quantisation, see the ‘if condition’

in the second step of Algorithm 1 below) to get an entry into the dictionary. If the new

input satisfies this additional condition, then the update equation will be exactly same as

KLMS (a new component is added to the coefficient vector) but if the new input fails to

satisfy the additional condition, the update will be different (some existing component of the

coefficient vector will be updated). This algorithm will be better understood if we explain

the quantisation procedure first.

2.5.1 Quantisation Procedure

In the quantisation literature, the set termed codebook is same as what we have been calling

as dictionary.

The following pseudocode [25] explains the quantisation procedure nicely.

20

Input: {xt}, t = 1, 2, . . .
Initialisation: choose quantisation size = εq and initialize dictionary D1 = {x1}
Computation:
while xt available do:

1. Distance between new input and dictionary is computed: dis(xt, Dt−1) = min1≤j≤mt−1
‖xt − xωj ‖

2. if dis(xt, Dt−1) ≤ εq

• Dt = Dt−1, mt = mt−1

• xt will be quantized to the closest code vector (or dictionary element) i.e.,
xqt = xωj∗ where

j∗ = argmin
1≤j≤mt−1

‖xt − xωj ‖

3. if dis(xt, Dt−1) > εq

• update the codebook (or dictionary) i.e.,
Dt = Dt−1 ∪ {xt}, mt = mt−1 + 1

• quantize xt to itself
xqt = xt (= xωmt

)

Algorithm 1: Pseudo code for online quantisation

2.5.2 Update and sparsification

Let us denote the quantisation in input space (which was explained above) by Q and the

quantisation in feature space by Q. The quantisation is not performed in the feature space

since its dimension is very high so this notation has been introduced just for the purpose of

explaining the method. Revisit (2.6) update of KLMS. The new feature map will be replaced

by its quantised version:

wo = 0,

et = yt −wT
t−1Φ(xt), (2.10)

wt = wt−1 + ηetQ[Φ(xt)].

As mentioned above, since, quantisation is preferred in input space, so the last step will be

written as following:

wt = wt−1 + ηetΦ(Q[xt]). (2.11)

We have used xqt = Q[xt], let us denote Φq(xt) = Q[Φ(xt)] for the purpose of analysis of

this algorithm. Using these notations, the estimate will now look like (From (2.8), (2.10)

21

and (2.11)):

fo = 0,

et = yi − ft−1(xt),

ft = ft−1 + ηetk(xqt , ·). (2.12)

Following pseudocode (Algorithm 2) explains QKLMS nicely.

Input: {(xt, yt)}, t = 1, 2, . . .
Initialisation: choose step size= η, kernel width σ > 0, quantisation size = εq ≥ 0 and initialize dictionary D1 =
{x1}, m1 = 1 and coefficient vector α1 = [ηy1]

Computation:
while xt (t ≥ 2) available do:

1. compute the estimate:

ft−1(xt) =

mt−1∑
i=1

αt−1(i)k(xωi ,xt)

2. compute the error:
et = yt − ft−1(xt)

3. compute the distance between new input and dictionary: dis(xt, Dt−1) = min1≤j≤mt−1
‖xt − xωj ‖

4. if dis(xt, Dt−1) ≤ εq

• Dt = Dt−1, mt = mt−1

• xt will be quantized to the closest code vector (or dictionary element) i.e.,
xqt = xωj∗ where

j∗ = argmin
1≤j≤mt−1

‖xt − xωj ‖

• ft = ft−1 + ηetk(Dt−1(j∗), ·) from (6.3).

• αt(j∗) = αt−1(j∗) + ηet.

5. if dis(xt, Dt−1) > εq

• update the codebook (or dictionary) i.e.,
Dt = Dt−1 ∪ {xt}, mt = mt−1 + 1

• quantize xt to itself
xqt = xt

• ft = ft−1 + ηetk(xt, ·)

• αt =

[
αt−1

ηet

]

Algorithm 2: Pseudo code for QKLMS

22

2.5.3 Mean Square Convergence Analysis for QKLMS

Recall that xqt = Q[xt] and Φq(xt) = Q[Φ(xt)], where Q and Q are quantisations in input

and feature spaces respectively.

Let us assume the input-output pairs in the observations are related as:

yt = f ∗(xt) + ξt,

where ξt is some disturbance noise (iid N (0, σ2)) and f ∗ denotes the unknown non-linear

function that we need to estimate. Suppose that this unknown function can be written

as f ∗(·) = w∗TΦ(·) (by the virtue of universal approximation property [25]), then we can

rewrite above relation as:

yt = w∗TΦ(xt) + ξt.

Prediction error at time t is et = yt − wTt−1Φ(xt). Let us define w̃t = w∗ −wt. Using this

we can define ‘a-priori error’ (et(a)) and ‘a posteriori error’ et(p) as:

et(a) := w̃T
t−1Φ(xt),

and

et(p) := w̃T
t Φ(xt).

From the QKLMS update, we have following:

w̃T
t = w̃T

t−1 − ηetΦq(xt).

We can also arrive at following relation between et(a) and et(p):

et(p) = et(a) +
(
w̃T
t − w̃T

t−1

)
Φ(xt). (2.13)

Let F denotes the feature map (In first section it was l2 for example), then one can show

that

‖w̃t‖2
F +

et(a)2

k(xqt ,xt)
2

= ‖w̃t−1‖2
F +

et(p)
2

k(xqt ,xt)
2

+ βq , (2.14)

where

βq =
2(et(p)− et(a))

{
w̃T
t−1Φq(xt)k(xqt ,xt)− et(a)

}
k(xqt ,xt)

2
.

23

This equation is called energy conservation equation. Note that as quantisation radius

εq → 0, βq → 0 and this equation reduces to

‖w̃t‖2
F +

et(a)2

k(xqt ,xt)
2

= ‖w̃t−1‖2
F +

et(p)
2

k(xqt ,xt)
2
, where ‖z‖2

F = zTz.

Next, assuming that ξt is independent of et(a), substituting (2.13) in (2.14) and then taking

expectations on both sides, we get:

E

[
‖w̃t‖2

F

]
= E

[
‖w̃t−1‖2

F

]
+ η2

(
E

[
et(a)2

]
+ σ2

)
− 2ηE

[
et(a)w̃T

t−1Φq(xt)

]
, (2.15)

where E

[
‖w̃t‖2

F

]
is called weight-error power (WEP)[25]. Next, to ensure monotonic de-

crease of WEP, we find a condition on step size.

E

[
‖w̃t‖2

F

]
≤ E

[
‖w̃t−1‖2

F

]
⇐⇒ η2

(
E

[
et(a)2

]
+ σ2

)
− 2ηE

[
et(a)w̃T

t−1Φq(xt)

]
≤ 0 (2.16)

⇐⇒ η ≤
2E
[
et(a)w̃T

t−1Φq(xt)
]

E
[
et(a)2

]
+ σ2

.

Since, η > 0, we get following sufficient condition for monotonic decrease of WEP and hence

mean square convergence:

∀t,
2E
[
et(a)w̃T

t−1Φq(xt)
]
> 0, (2.17)

0 < η ≤
2E
[
et(a)w̃T

t−1Φq(xt)
]

E
[
et(a)2

]
+ σ2

. (2.18)

Condition (2.17) can be further replaced by

E
(
Φ(xt)Φq(xt)

)
> 0,

using an assumption that Φ(xt) and w̃t−1 are independent.

Next, assume that the sufficient conditions hold and take limit t→∞, on both sides of (2.15).

Now the algorithm reaches steady state, we have: limt→∞E

[
‖w̃t‖2

F

]
= limt→∞E

[
‖w̃t−1‖2

F

]
.

24

Therefore, following, must hold:

η2

(
lim
t→∞

E

[
et(a)2

]
+ σ2

)
− 2η lim

t→∞
E

[
et(a)w̃T

t−1Φq(xt)

]
= 0.

From here we get expression for the steady state excess MSE (apriori error is also referred

to as excess error) as (using the expression for et(a) in one of the steps):

lim
t→∞

E

[
et(a)2

]
=
ησ2 − 2 limt→∞E

[
w̃T
t−1Φ(xt)w̃

T
t−1(Φq(xt)− Φ(xt))

]
2− η

.

One can show that∣∣∣∣E[w̃T
t−1Φ(xt)w̃

T
t−1(Φq(xt)− Φ(xt))

]∣∣∣∣ ≤√2− 2exp(−γ
2

2
)E
[
‖w∗‖2

F
]
.

And hence using this in above expression we get upper and lower bounds on the steady-state

EMSE as:

max

{
ησ2 − 2ζ

2− η
, 0

}
≤ lim

t→∞
E

[
et(a)2

]
≤ ησ2 + 2ζ

2− η
,

where ζ =
√

2− 2exp(−γ
2

2
)E
[
‖w∗‖2

F
]
.

2.6 Kernel Normalised Least Mean Squares (KNLMS)

This algorithm is a special case of a class of algorithms called kernel affine projection algo-

rithms (KAPA)[9] combined with a growth control criteria for the dictionary. The reason

why such algorithms are called affine projection algorithms will be clear in the explanation

below. In this case we will use coherence based growth criterion. I will explain this proce-

dure again but one should note that it is equivalent to quantisation mentioned in QKLMS

for radial kernels (gaussian kernel for example).

Note that till now, NORMA, KLMS and QKLMS algorithms involved updating a single

component of the coefficient vector αt, but in this method the whole vector αt will be up-

dated as the parametric form of the objective is considered here.

Please note that KAPA is not linear algorithm but its special case KNLMS[22] is.

25

2.6.1 Objective and Updating Procedure

Here the parametric form of objective is used:

min
α∈Rt
‖yt −Kα‖2.

In order to avoid taking inverse at each step, till now we relied on gradient descent meth-

ods to move to the solution. But unlike previous descent methods, where movement was

along instantaneous direction (i = t), KAPA considers recent p observations and solves the

following problem at tth time:

min
α
‖α−αt−1‖2, s.t. yp = Kpα, (2.19)

where ith row of Kp is kpt−i+1
= [k(xt−i+1,xω1), . . . , k(xt−i+1,xωmt)]

T , and

yp = [yt, . . . , yt−p+1]T .

In other words, we are trying to project αt−1 onto the intersection of following manifolds:

Ai = {α : kTpt−i+1
α = yt−i+1}, for i = 1, . . . , p.

And this is the reason why such algorithms are called affine projection algorithms.

Next, let us visit the growth criterion that will control the entry of new element to the

dictionary. Dictionary at time t will be denoted by Dt and its element by {xωi}
mt
i=1 where

mt is size of Dt.

Let us revisit coherence criterion once again. At first threshold µo is chosen and define :

µ(x) = max
xωi∈Dt

k(xωi , x).

When (xt, yt) is observed, we calculate µ(x). If µ(x) > µo, element won’t be added to the

dictionary otherwise it will be. In both the cases, the update equations will be explained

below.

1. Case 1: µ(xt) > µo;

The new element won’t be added to the dictionary. The solution to (2.19) can be

obtained using method of lagrange multipliers by minimising following lagrangian func-

26

tion:

J (α,λ) = ‖α−αt−1‖2 + λT (yp −Kpα).

Upon differentiating w.r.t. α and λ separately and substituting together we get min-

imiser (α̂) must satisfy:

2(α̂−αt−1) = KT
p λ, (2.20)

Kpα̂ = yp. (2.21)

Substituting (2.21) in (2.20) and then eliminating λ we get:

α̂ = αt−1 +KT
p (KpK

T
p)−1(yp −Kpαt−1).

Next a step size parameter and regularisation factor is added and the update equation

will look like:

αt = αt−1 + ηKT
p

(
εI +KpK

T
p

)−1
(yp −Kpαt−1). (2.22)

2. Case 2: µ(xt) ≤ µo;

In this the new element will be added to the dictionary (mt+1 = mt) i.e., Dt =

Dt−1 ∪ {xωmt+1
}, where xt is denoted by xωmt+1

and hence Kp will be updated.

A new column [k(xt,xωmt+1
), . . . , k(xt−p+1,xωmt+1

),]T is added. Now, (2.19) will be

solved with updated mtarix and mt+1-dimensional α will be calculated. A zero will be

added to the previous coefficient vector and using same steps we get:

αt =

[
αt−1

0

]
+ ηKT

p

(
εI +KpK

T
p

)−1
(
yp −Kp

[
αt−1

0

])
. (2.23)

2.6.2 Special Case p = 1

When we use p = 1 in the above algorithm, we get KNLMS. At time t, we now have to solve:

min
α
‖α−αt−1‖2, s.t. yt = kTt α,

27

where kt = [k(xt,xω1), . . . , k(xt,xωmt)]
T . The solution will be obtained using same steps

as above with yp = yt and Kp = kTt .

The pseudocode (Algorithm 3) will be used to explain KNLMS.

Input: {(xt, yt)}, t = 1, 2, . . .
Initialisation: choose step size= η, kernel width σ > 0, Choose threshold =µo ≥ 0 and initialize dictionary D1 =
{x1} and coefficient vector α1 = 0, m1 = 1

Computation:
while xt available do:

1. if µ(xt) > µo
Dt = Dt−1, mt = mt−1

Compute kt = [k(xt,xω1), . . . , k(xt,xωmt
)]T

Update step:

αt = αt−1 +
η

ε+ ‖kt‖2
(yt − kTt αt−1)kt

2. if µ(xt) ≤ µo
Dt = Dt−1 ∪ {xωmt

} xt is denoted by xωmt
, mt = mt−1 + 1

Compute kt = [k(xt,xω1), . . . , k(xt,xωmt
), k(xt,xωmt

)]T

Update step:

αt =

[
αt−1

0

]
+

η

ε+ ‖kt‖2

(
yt − kTt

[
αt−1

0

])
kt

Algorithm 3: Pseudo code for KNLMS

2.6.3 Comment on the choice of space while affine projection

The choice of affine space also affects the updates just as the choice of objective affects the

updates. We will again see that if the functional space is chosen for the projection then only

one coefficient is updated but if the parametric space is chosen, then the whole coefficient

vector is updated (as explained in the algorithm above). I am following the explanation from

(Appendix A, [26]). Let

Πt := {z ∈ Rm : kTt z = yt},

and

Π̂t := {f ∈ HK : f(xt) = 〈f, k(xt, ·)〉HK = yt}.

Now, for a complete metric space X consider C ⊂ X. For any x ∈ X, we define operator

PC as:

PC(x) = argmin
y∈C

‖y − x‖X .

28

Now, observe that the updates in KNLMS can be written as (let ε = 0):

αt := αt−1 + η(PΠt −αt−1).

When new element is added to the dictionary, m = mt + 1 and when it is not added,

m = mt In other words, this updating procedure relies on projecting in parameter space

with corresponding Euclidean norm. Let us call it parametric approach.

Now, consider the following updating procedure:

ft := ft−1 + η(PΠ̂t
− ft−1).

This is the projection in RKHS using corresponding norm. Let us call it functional approach.

Actually, this was the original formulation of KAP algorithms.

In the functional approach, the solution moves according to the vector k(xt, ·) (either in

its positive direction or negative direction depending on prediction error) and reaches Π̂t.

Notice that it is similar to KLMS (2.8) and that is the same reason why those methods

concentrated their updates along one coefficient only.

On the other hand in paramatric approach, the next vector moves according to the whole

kernel vector of the dictionary [k(xω1 , ·), . . . , k(xωmt , ·)]
T , and that is the reason why every

component was getting updated at each time.

But in both the cases, it can be shown that they satisfy monotonic decreasing property [27]

i.e.,

‖ft − f ∗‖HK ≤ ‖ft−1 − f ∗‖HK ,

‖αt −α∗‖ ≤ ‖αt−1 −α∗‖

where superscript * denotes the true function or coefficient which we are trying to find.

2.7 Multi-Kernel Normalised Mean Squares Algorithm

(MKNLMS)

In [26], the use of multi-kernels is suggested. The motivation behind this was the lack of

knowledge about choice of optimal kernel. The parametric form of the KAP algorithms will

be followed here just like KNLMS. Update equations will be similar to (2.22) and (2.23) (with

29

coherence criterion as before) but now instead of coefficient vector, coefficient matrix will be

updated. Next, an additional penalty (block soft-thresholding) will be used on coefficient

matrix which ensures further sparsification.

2.7.1 Notations

For A,B ∈ Rp×q, define inner product as 〈A,B〉 = tr(ATB) and ‖A‖ =
√
〈A,A〉. For a

closed convex set C ⊂ Rp×q, we define:PC(X) = argmin
Y ∈C

‖X − Y ‖.

The set of indices of kernel will be denoted byM (M = {1, 2, . . . ,m} in this case), dictionary

at time t will as usual be denoted by Dt and the indices of the dictionary will be denoted by

the index set Jt . So Dt = {xωj}ωj∈Jt and |Dt| = mt, Jt = {ωj1 , . . . ωjmt}.
The ωj-th (j ∈ Jt) component of the coefficient vector of m-th (m ∈ M) kernel at time t

will be denoted by h
(m)
ωj ,t and m-th kernel will be denoted by km : X ×X → R.

2.7.2 Updating Procedure with Coherence Criterion (MLKNLMS-

CS)

In this method, coherence criterion is used to control the entry of recent input into the

dictionary and then update is performed similar to KNLMS. Using the notation above, the

estimating function at time t+ 1 will be:

f̂(x) =
∑
m∈M

∑
ωj∈Jt

h
(m)
ωj ,tkm(x,xωj)

For input xt+1., the estimate ŷt+1 will be:

ŷt+1 =
∑
ωj∈Jt

hTωj ,tkωj ,t,

where,

hωj ,t = [h
(1)
ωj ,t, . . . , h

(M)
ωj ,t]

T ∈ RM ,

kωj ,t = [k1(xt+1,xωj), . . . , kM(xt+1,xωj)]
T ∈ RM .

30

This estimate can also be written as:

ŷt+1 = tr(HT
t Kt) = 〈Ht,Kt〉,

where

Ht = [hωj1 ,t, . . . ,hωjmt ,t] ∈ RM×mt ,

Kt = [kωj1 ,t, . . . ,kωjmt ,t] ∈ RM×mt .

We have to improve the definition of coherence since many kernels are involved. We define

coherence criterion in this case as:

‖Kt+1‖max := max
m∈M

max
ωj∈Jt

|km(xt+1,xωj)| ≤ µo. (2.24)

Following the method in KNLMS (p = 1, Algorithm 3) with αt replaced with Ht and kt

replaced withKt and finally replacing µ in coherence criterion with ‖Kt‖max, we get updates

as:

1. Case 1: When (2.24) is not satisfied.

The new element won’t be added to the dictionary and we obtain the update:

Ht+1 = Ht + η
yt+1 − 〈Ht,Kt〉
ε+ ‖Kt‖2

Kt. (2.25)

2. Case 2: When (2.24) is satisfied.

The new element will be added to the dictionary and after few modifications in coeffi-

cient and kernel matrices we obtain the update:

Ht+1 = H̄t + η
yt+1 − 〈H̄t, K̄t〉
ε+ ‖K̄t‖2

K̄t, (2.26)

where H̄t = [Ht 0] (∈ RM×(mt+1)) and K̄t = [Kt k̄t+1] (∈ RM×(mt+1)),

k̄t+1 = [k1(xt+1,xt+1), . . . , kM(xt+1,xt+1)]T .

31

2.7.3 Updating Procedure using Block-Soft Thresholding (MKNLMS-

BT)

In this method, there is no growth criterion. At each time, the recent input is added to the

dictionary and then a constrained optimisation problem is solved which ensures removal of

irrelevant elements from the dictionary. The regularised problem consists a part which is

differentiable and a part which is not (see below). Forward-Backward splitting is used to

solve this problem. The proximity operator is used which attracts small coefficient column

vectors to zero. In the end, whichever coefficient column is zero, the corresponding element

is excluded from the dictionary.

When a new input xt+1 arrives, it is added to the dictionary and following updates are

performed before solving any objective:

Jt = Jt ∪ {t+ 1}and mt = mt + 1,

Ht =
[
Ht 0

]
∈ RM×(mt+1),

Kt =
[
Kt k̄t+1

]
∈ RM×(mt+1),

where, k̄t+1 = [k1(xt+1,xt+1), . . . , kM(xt+1,xt+1)]T .

Next, following cost function is considered:

Ct(X) :=
1

2
d2(X, Dt)︸ ︷︷ ︸

C
(1)
t

+λ
mt∑
i=1

wi,t‖xi‖1︸ ︷︷ ︸
C

(2)
t

,X := [x1, . . . ,xmt] ∈ RM×mt , (2.27)

where

d(X, Dt) := min
Y ∈Dt

‖X − Y ‖,

and Dt is closed convex set:

Dt := {X ∈ RM×mt : |εt(X)| ≤ ε}, where εt(X) := 〈X,Kt〉 − yt+1.

Here ε ≥ 0 is small constant.

Since, C
(2)
t is non-differentiable, proximal-forward backward splitting method [28] is used:

H̃t+1 := prox
µC

(2)
t

(
Ht − µ∇C(1)

t (Ht)
)
. (2.28)

32

It can be shown that:

∇C(1)
t (Ht) = Ht − PDt(Ht),

and

PDt(Ht) =

Ht −
εt(Ht)− ε
‖Kt‖2

Kt if εt(Ht) > 0

Ht −
εt(Ht) + ε

‖Kt‖2
Kt if εt(Ht) > 0

Ht otherwise

.

The operator prox
µC

(2)
t

: RM×mt → RM×mt is the proximal operator of index µ. It can be

shown ([28], (Appendix, [26])) that :

prox
µC

(2)
t

(X) := argmin
Y ∈RM×mt

C2
t +

1

2µ
‖X − Y ‖

=
mt∑
i=1

max

{
1− λµwi,t

‖xi‖
, 0

}
xie

T
i,t. (2.29)

xi’s are rows of X in 2.27 and ei,t ∈ Rmt is the unit vector (non-zero at i-th place). Using

(2.29) in (2.28), we understand that the columns of H̄t+1 are attracted to zero. Next,

whichever columns become zero, the corresponding indices are removed from the dictionary.

Algorithm 4 and Algorithm 5 contain pseudocode for both the approaches MKNLMS-CS

and MKNLMS-BT respectively.

Input: {(xt, yt)}, t = 1, 2, . . .
Initialisation: choose step size= η, set of kernels = {k1, . . . , kM}, Choose threshold =µo ≥ 0 and initialize dictionary
D1 = {x1} and coefficient matrix H1 = 0, m1 = 1

Computation:
while xt+1 available do:

1. if (2.24) holds:
Dt+1 = Dt, mt+1 = mt
Update according to (2.25).

2. if (2.24) doesn’t hold:
Dt+1 = Dt ∪ {xt}, mt+1 = mt + 1
Compute H̄t = [Ht 0] (∈ RM×(mt+1)) and K̄t = [Kt k̄t+1] (∈ RM×(mt+1)),
k̄t+1 = [k1(xt+1,xt+1), . . . , kM (xt+1,xt+1)]T .
Update according to (2.26).

Algorithm 4: Pseudo code for MKNLMS-CS

33

Input: {(xt, yt)}, t = 1, 2, . . .
Initialisation: choose proximity index= µ, set of kernels = {k1, . . . , kM}, regularising parameter λ ≥ 0 and initialize

dictionary D1 = {x1}, coefficient matrix H1 = 0, m1 = 1 and weight vector (can be adaptive).
Computation:
while xt+1 available do:

Jt = Jt ∪ {t+ 1}and rt = rt + 1

Ht =
[
Ht 0

]
∈ RM×(mt+1)

Kt =
[
Kt kt+1

]
∈ RM×(mt+1)

where, kt+1 = [k1(xt+1,xt+1), . . . , kM (xt+1,xt+1)]T .

Using (2.29), compute: H̄t+1 := prox
µC

(2)
t

(
Ht − µ∇C(1)

t (Ht)
)

It =indices corresponding to zero columns on H̄t+1

Ht+1 = H̄t+1|Jt−It , where A|J denotes matrix A with all columns removed except those with indices J
Jt+1 = Jt − It

Algorithm 5: Pseudo code for MKNLMS-BT

2.8 KLMS algorithm with forward-backward splitting

(KLMS-L1)

The parametric perspective of KLMS has been used in this algorithm so its description has

been provided first.

2.8.1 KLMS in parametric approach

In the original paper of KLMS [29], following objective has been considered (t ∈ N):

J(w) = min
w∈l2

1

2

t∑
i=1

(yi −wTΦ(xi))
2,

where the fact that every function (f) of RKHS can be written as f(·) = wTΦ(·) has been

used. In this objective w ∈ l2 is the feature space and the map Φ is the feature map and both

are defined in Chapter 2. KLMS with its original formulation has already been discussed in

Section 3.6.

Using the representer theorem, a new formulation can be introduced for the same objective.

The representer theorem states that the function represented as f(·) = kTt α where kt(·) =

34

[k(x1, ·), . . . , k(xt, ·)]T and α ∈ Rt can act as a minimiser of

min
f∈HK

t∑
i=1

(yi − f(xi))
2,

where, HK is the RKHS being considered. Thus, the objective can be rewritten as (input

domain is X ⊂ Rd):

min
α∈Rt

1

2

t∑
i=1

(yi − kt(xi)Tα)2.

As usual, one doesn’t want to express the minimiser in terms of every input observed till t

so instead a dictionary is maintained at each time and the minimiser is expressed in terms of

elements of the dictionary. Let the Dt−1 denote the dictionary at time t−1 and mt−1 denote

its size. We will denote the elements of the dictionary using xωi i.e, Dt−1 = {xωi}
mt−1

i=1 . Thus,

the objective now will be to find the optimal coefficient vector in terms of the elements of

the dictionary. And thus, the objective can be rewritten as

J(α) = min
α

1

2

t∑
i=1

(yi − kωt(xi)Tα)2,

where kωt(·) = [k(xω1 , ·), . . . , k(xωmt−1
, ·)]T . Note that in this objective, the dimension of

α has not been mentioned because it depends on whether the new element enters into the

dictionary or not.

First, let us see the criteria which controls the entry of the new elements to the dictionary.

Out of the growing strategies mentioned in Section 3.1, coherence based growth has been

utilised here which provides a quantitative value for the similarity between an element and

the dictionary. Let us revisit the coherence based rule. We define coherence for the input xt

at time t (µt) as:

µt(xt) := max
xωi∈Dt−1

k(xωi ,xt).

Next, fix some threshold parameter (µo) which decides the level of similarity that we want.

According to the coherence-based growth:

• if µt(xt) > µo: The new element (xt) is similar to at least one of the dictionary ele-

ments. So, it is not added to the dictionary and thus Dt = Dt−1, mt = mt−1 and we

search α in Rmt = Rmt−1

35

• if µt(xt) ≤ µo: The new element (xt) is not similar to any of the dictionary elements.

So, it is added to the dictionary (kωt is updated as will be shown below in 2.31), thus

Dt = Dt−1 ∪ {xt}, mt = mt−1 + 1 and we search α in Rmt = Rmt−1+1.

It is clear from the definition of coherence that the smaller value of µo will allow more

elements to be included in the dictionary.

In order to minimise J(α), the instantaneous gradient descent method is used (case of

stochastic gradient descent in which i = t is always chosen). Thus,

∇tJ(α) = −(yt − kωt(xt)Tα)kωt(xt).

Next, the updates for KLMS in paramteric form with coherence criterion are performed as

(which is movement opposite to the gradient evaluated at coefficient vector at previous time):

1. Case 1: µt > µo:

The new element xt+1 won’t be added to the dictionary. Dt = Dt−1 and mt = mt−1,

αt = αt−1 + ηetkωt , (2.30)

where et = yt − kTωtαt−1 and kωt = [k(xω1 ,xt), . . . , k(xωmt ,xt)]
T .

2. Case 2: µt ≤ µo:

The new element xt will be added to the dictionary and the corresponding coefficient

will be initialised as 0 i.e. coefficient vector becomes

[
αt−1

0

]
, mt = mt−1 + 1 and

Dt = Dt−1 ∪ {xωmt} (xt is denoted by xωmt).

αt =

[
αt−1

0

]
+ ηetk̄ωt , (2.31)

where et = yt −αTt−1k̄ωt and k̄ωt = [k(xω1 ,xt), . . . , k(xωmt−1
,xt), k(xωmt ,xt)]

T .

The convergence analysis of this algorithm has been provided in [24].

Note that in this algorithm, the extra growth condition only decides whether to add a new

element to the dictionary or not. There is no privilege of removing elements which are

added to the dictionary. And that’s why the use of an extra penalty function along with

36

J(α) has been proposed in [30]. The use of penalty attracts the smaller coefficients of the

dictionary to zero and hence the corresponding elements are removed from the dictionary.

In the convergence analysis of this algorithm, it has been shown that its solution converges

in mean to the solution of KLMS in parametric form. Let us visit the updating procedure

of the KLMS-L1 algorithm. Since, the penalty function being used is non-differentiable, the

theory of proximal gradient descent has been used.

2.8.2 Objective and updating procedure

Here the cost function being considered is as follows(following the notation in [30]) (λ ≥ 0):

Q(α) = J(α) + λΩ(α),

here Ω(α) is a convex function and J(·) is convex with ∇J(·) being lipschitz (constant 1
µ
).

At a given point αn ∈ Rd, the proximal operator of index µ for above cost will be defined

as:

proxλµΩ(·) : Rd → Rd

proxλµΩ(·)(α̂n) = argmin
α∈Rd

{
λΩ(α) +

1

2
‖α− α̂n‖2

}
,where α̂n = αn − η∇J(αn).

The term inside argmin is obtained using quadratic approximation of J(α) at αn(theory of

proximal gradient descent) [30].

Two choices of Ω(α) have been suggested in [30]. One is l1 norm of α and other is its

weighted l1 norm in which larger coefficients get smaller weights and smaller coefficients get

larger weights. The second penalty is better since it attracts smaller coefficients more to

zero and its effect on larger coefficients is less. From now on, the weighted l1 norm will

be considered in this report. The adaptive weights will be considered as explained in the

pseudocode (Algorithm 6).

So, Ω(α) =
∑

j wj|αj|, where α = [α1, . . . , αd]
T . One can show that (in our case µ = 1):

proxλΩ(·)(α̂)(j) = sign{α̂j}max
{
|α̂j| − λwj, 0

}
., (2.32)

So, the coefficients satisfying |α̂j| ≤ λwj will become zero once proximal operator is applied.

The algorithm consists of two steps:

37

• Update coefficient vector according to parametric KLMS using coherence based growth

criterion,

• Apply proximal operator to the solution obtained in previous step and then remove

those elements which corresponding coefficients become zero.

Suppose (xt+1, yt+1) has been observed at t + 1. Let us revisit KLMS updates in

paramteric form with coherence criterion. As before define coherence at time t + 1 as

µt+1 = maxxωi∈Dt k(xωi ,xt+1). Choose some threshold coherence µo. Dictionary at time

t is Dt, its size is mt and its elements are denoted by xωi . Then KLMS updates will be as :

1. Case 1: µt+1 > µo:

The new element xt+1 won’t be added to the dictionary. Dt+1 = Dt and mt+1 = mt

αt+1 = αt + ηet+1kωt+1
, (2.33)

where et+1 = yt+1 −αTt kωt+1
and kωt+1

= [k(xω1 ,xt+1), . . . , k(xωmt ,xt+1)]T .

2. Case 2: µt+1 ≤ µo:

The new element xt+1 will be added to the dictionary, mt+1 = mt + 1 and Dt =

Dt ∪ {xωmt+1
} (xt+1 is denoted by xωmt+1

).

αt+1 =

[
αt

0

]
+ ηet+1k̄ωt+1 , (2.34)

where et+1 = yt+1 −αTt k̄ωt+1 , and

k̄ωt+1 = [k(xω1 ,xt+1), . . . , k(xωmt ,xt+1), k(xωmt+1
,xt+1)]T .

Next, according to the algorithm defined in [30] prox operator (2.32) will be applied to

αt+1. Then those indices for which coefficients become zero, the corresponding elements are

removed from the dictionary. Algorithm 6 presents the pseudo-code for this algorithm. We

use adaptive weights at each time.

38

Input: {(xt, yt)}, t = 1, 2, . . .
Initialisation: choose step size= η, kernel width σ > 0, Choose threshold =µo ≥ 0 and initialize dictionary D1 =
{x1} and coefficient vector α1 = 0, m1 = 1

Computation:
while xt+1 available do: Compute µt+1(xt+1) = maxxωi

∈Dt k(xωi ,xt+1)

• item if µt+1(xt+1) > µo
Dt+1 = Dt, mt+1 = mt
Update αt+1 according to (2.33).

• if µt+1(xt) ≤ µo
Dt+1 = Dt ∪ {xωmt+1

}, xt is denoted by xωmt+1
, mt+1 = mt + 1

Update αt+1 according to (2.34).

1. Using (9.1) with wj = 1
|αt(j)|+εa

, (where εa is small positive number) compute:

αt+1 = proxλΩ(·)(αt+1) = [αt+1(1), . . . ,αt+1(mt+1)]T

2. It+1 = {j : αt+1(j) = 0}

3. Dt+1 = Dt+1 \ {xωj }ωj∈It+1
and mt+1 = mt+1 − |It+1|

Algorithm 6: Pseudo code for KLMS with forward-backward splitting (KLMS-L1)

2.8.3 Convergence Analysis

Overall update after applying proximal operator at time t+ 1 can be written as:

αt+1 = αt + ηet+1kωt+1
− ft, (2.35)

where αt and kωt+1
correspond to the modifications in 2.34 when required and

ft(j) =

λt(sign(α̂(j)) if |α̂(j)| ≥ λt

α̂(j) otherwise

where α̂ = αt + ηet+1kωt+1
. Let vt = α0

t − αt where α0
t is the solution to non-regularised

problem (KLMS solution). Next, one can prove theorem 2.8.1.

Theorem 2.8.1. Assuming kωtk
T
ωt is independent of vt, the regularised KLMS asymptoti-

cally converges in mean for any intial condition αo given step size η is chosen such that

0 < η <
2

λmax(Rkk)
,

where Rkk = E[kωtk
T
ωt].

39

2.9 Functional Affine Projection Algorithms (APA)

In section 2.8, KAPA (Kernel APA) algorithms were presented. In that section, the pro-

jections were taken along the parametric space and in section 2.8.3, the effect of choice of

space on the coefficients update was discussed. In this section, improvements along the line

of functional approach ([31], [32]) will be presented along with an interesting result that this

functional projection is faster than the parametric one ([33]). This comparison will be dis-

cussed using an equivalence between the paramteric and functional approaches ([33], [32]).

The explanation will be brief and concise and for detailed version, one should visit the cited

references. These algorithms use proof techniques from Projection On Convex Sets (POCS)

([34]) theory to provide theoretical guarantees. First, the PHYPASS algorithm (in papers

[31] it has been called Φ−PASS) is presented.

2.9.1 PHYPASS Algorithm

From the discussion in section 2.8.3, in case of functional approaches, only the most recent

coefficient gets updated or in other words we move along k(·,xt+1) if xt+1 is the most recent

input. That means if we want to include dictionary growth criterion such as coherence

criterion then we will face an inconsistency problem. Because if it excludes the most recent

input from the dictionary and we are still following the same update rules then we will

move out of the span of dictionary elements as k(·,xt+1) is no longer part of the dictionary.

This algorithm was developed to account for this problem and later it added a few more

improvements. At this point recall a notation used for set of all the functions in our RKHS

which output the observed output at t in section 2.8.3:

Π̂t := {f ∈ HK : f(xt) = 〈f, k(xt, ·)〉HK = yt}.

PHYPASS is based on following three considerations (suppose (xt+1, yt+1) is the most recent

observation pair):

1. Projection Along Hyperplanes: Instead of moving along k(·,xt+1) (equivalent to

moving to Π̂t since k(·,xt+1) is its normal), it suggests that we should take projection

of k(·,xt+1) along the span of the dictionary (denote by Sp(Dt)) and then move along

this projection (equivalent to moving to Π̂t ∩ Sp(Dt)).

40

2. Data Reusing (parallel projections): This is functional analog of KAPA with

p > 1 in section 2.8, i.e, instead of just satisfying the most recent output, we also want

to consider recent p outputs. In other words, instead of just moving to Π̂t+1, we want

to move to {Π̂i}t+1
i=t+2−p in parallel and then take a convex combination of all the p

movements to decide the net movement.

3. Selective Updates: While taking the projection along the span of dictionary in point

1, we will have to find inverse of a mt×mt matrix (mt is size of dictionary at t) which

is computationally expensive as dictionary grows. So, a few elements (number is fixed

and small) are selected from the dictionary which are close to xt+1 and the projection

is taken along only those bases.

Suppose we want to consider recent p outputs to be satisfied and have decided to project only

along s bases from the dictionary. Then at each iteration we do: 1) For each {xi}t+1
i=t+2−p,

find s elements from the dictionary closest to them. Denote each set by Si which is set of

s dictionary elements closest to xi. 2) Find projection of k(·,xt+1) along the {Si}t+1
i=t+2−p

separately and move along the projections in parallel to {Π̂i}t+1
i=t+2−p. 3) Take convex com-

bination of the movements and decide the next step. Note that step 2 is same as projecting

the current estimate onto intersection of Sp(Si) and Π̂i. See [31] regarding how to evaluate

these projections. Finally, the update equation looks like (ft is the estimate at iteration t):

ft+1 = ft + λt

(t+1∑
i=t+2−p

wiPSp(Si)∩Π̂i
(ft)− ft

)
, P is the projection operator. (2.36)

There are convergence results (with assumptions on step sizes) for this algorithm using

Adaptive Projected Subgradient Method (APSM) (see [31] for details) without the selective

strategy. But once the selective strategy is used, the results don’t hold.

2.9.2 Equivalence and comparison between functional KAPA and

parametric KAPA

First an equivalence between the two approaches will be presented. For both the APA

algorithms we will consider the case p = 1 (when we only care about the most recent

observation pair). For now, the dictionary growth criterion won’t be considered which means

41

the issue of consistency mentioned above won’t arise and in this case we will just need to

move to the subspace of functions which satisfy the most recent observation. Let us recall

the notations for these subspaces again:

Πt := {z ∈ Rmt : kTωtz = yt},

and

Π̂t := {f ∈ HK : f(xt) = 〈f, k(xt, ·)〉HK = yt}.

The parametric update reads as:

αt+1 = αt + λt

(
PΠt+1(αt)−αt

)
. (2.37)

The functional update reads as:

ft+1 = ft + λt

(
PΠ̂t+1

(ft)− ft
)
. (2.38)

Equation 2.37 is the KNLMS algorithm (note that αt contains appended zero to match the

dimensions, see KNLMS for more details) and its convergence rate is governed by the spread

of the eigenvalues of the auto-correlation matrix of its kernelised inputs. Let’s denote this

auto-correlation matrix by R, then at iteration t + 1, one can show ([33]) that (recall the

notations about dictionary and kernel gram matrix)

R = E[kωt+1
kTωt+1

] ≈ 1

mt+1

K2
ωt+1

. (2.39)

Since, the span of dictionary at each stage is finite dimensional, one can arrive at the following

lemma ([32]):

Lemma 2.9.1.

(
Sp(Dt), 〈·, ·〉HK

)
and

(
Rmt , 〈·, ·〉Kωt

)
are isomorphic Hilbert spaces under

the correspondence:

Sp(Dt) 3 f :=
mt∑
i=1

αik(·,xi)↔ [α1, . . . αmt]
T =: α ∈ Rmt ,

where, 〈x,y〉Kωt = xTKωty (Kωt is the kernel gram matrix on dictionary elements)

42

Using Lemma 2.9.1, we can write equation 2.38 as (at iteration t+ 1):

α̃t+1 = α̃t + λt

(
PΠnewt+1

(α̃t)− α̃t
)
, (2.40)

where α̃t = K
1/2
t+1α̃t, Πnew

t+1 := {α̃ ∈ Rmt+1 : k̃Tωt+1
α̃ = yt+1} and k̃ωt+1

= K
1/2
ωt+1kωt+1

. Thus,

the convergence rate of functional approach will be governed by the eigenvalue spread of its

corresponding auto-correlation matrix. Let us denote by R̃, then as before,

R = E[k̃ωt+1
k̃Tωt+1

] = K−1/2
ωt+1

RK−1/2
ωt+1

≈ 1

mt+1

Kωt+1
. (2.41)

Comparing equation 2.39 and 2.41, it can be concluded that:

condition-number(R̃) ≈ (condition-number(R))1/2.

It has been shown ([35]) that larger condition number (more eigenvalue spread) leads to

slower convergence.

2.9.3 DR-PHYPASS Algorithm

As the name suggests it is Dictionary-Refinement PHYPASS algorithm ([32]). The coeffi-

cients are updated according to the parametric version (equation 2.40) with an extra penalty

term like the one used in section 2.10 (KLMS-L1). This penalty forces the small coefficients

to go to zero.

43

44

Chapter 3

Proposed Modification with

Simulations and Results

3.1 KLMS-L1 with window approach (KLMS-L1w)

Note that in the KLMS-L1 algorithm every component of coefficient vector is updated at

each time (c.f. (2.33) and (2.34)). Our idea is to update only those components for which

the corresponding dictionary elements are close to the new input i.e., to consider a window

around xt+1 and update only those coefficients which corresponding elements lie in this

window. Let us denote window at time t+ 1 by wt+1. This window is defined as (for εtw ≥ 0

training window size):

wt+1(xt+1) = {xωi ∈ Dt : dist(xt+1,xωi) ≤ εtw} (3.1)

=
{
xωi ∈ Dt : k(xωi ,xt+1) ≥ exp

(
−ε2tw
2σ2

)
= εt

}
. (3.2)

Since, we are already calculating the kernel vector at each time (for coherence), so, we will

use (3.2) in our algorithm.

We can also apply penalty in a window only. Let us denote this window by wp. It is defined

45

in similar manner as before for (penalty window size εpw ≥ 0):

wp(xt+1) = {xωi ∈ Dt : dist(xt+1,xωi) ≤ εpw} (3.3)

=
{
xωi ∈ Dt : k(xωi ,xt+1) ≥ exp

(−ε2pw
2σ2

)
= εp

}
. (3.4)

Again due to same reason as mentioned above, we will use (3.4) in our algorithm.

Please note the difference between εtw and εt, and the difference between εpw and εp. For the

explanation of the algorithm, εt and εp have been used whereas for the plotting purposes,

εtw and εpw have been used.

3.1.1 Updating Procedure

The objective is same as KLMS-L1. We will just modify the update step (2.33) and (2.34).

For a vector v and an index set I, v|I stands for a vector of all the components

of v marked by I.

A \B = A− A ∩B.

After time t, let the dictionary be Dt and its index set be Jt(= {ω1, . . . , ωmt}). εt and εp

correspond to training and penalty window sizes respectively (see (3.2) and (3.4)).

1. Case 1: µ > µo:

The new element xt+1 won’t be added to the dictionary.

et+1 = yt+1 −αTt kωt+1
and kωt+1

= [k(xω1 ,xt+1), . . . , k(xωmt ,xt+1)]T

Tt+1 = {ωi ∈ Jt : k(xωi ,xt+1) ≥ εt} (Training window).

Pt+1 = {ωi ∈ Jt : k(xωi ,xt+1) ≥ εp} (Penalty window).

α̂t+1

∣∣
Tt+1

= αt|Tt+1 + ηet+1kωt+1

∣∣
Tt+1

(components in nbd are updated),

α̂t+1

∣∣
Jt\Tt+1

= αt
∣∣
Jt\Tt+1

(remaining components remain same). (3.5)

2. Case 2: µ ≤ µo:

The new element xt+1 will be added to the dictionary, m̄t = mt + 1 (temporary index

included) and

Jt = Jt ∪ {t+ 1 = ωm̄t}, Dt = Dt ∪ {xωm̄t} (xt+1 is denoted by xωm̄t).

46

et+1 = yt+1 −αTt kωt+1 and kωt+1 = [k(xω1 ,xt+1), . . . , k(xωmt ,xt+1), k(xωm̄t ,xt+1)]T .

Tt+1 = {ωi ∈ Jt : k(xωi ,xt+1) ≥ εt} (Training window),

Pt+1 = {ωi ∈ Jt : k(xωi ,xt+1) ≥ εp} (Penalty window), αt =

[
αt

0

]

α̂t+1

∣∣
Tt+1

= αtTt+1
+ ηet+1kωt+1

∣∣
Tt+1

(components in nbd are updated),

α̂|t+1

∣∣
Jt\Tt+1

= αt
∣∣
Jt\Tt+1

(remaining components remain same). (3.6)

3. Proximal operator is now applied in window wp and finally we get (prox can be calcu-

lated using 2.32):

α̃t+1|Pt+1 = proxλΩ(·)(α̂t+1|Pt+1) (prox operator in the nbd only),

α̃t+1

∣∣
Jt\Pt+1

= α̂t+1

∣∣
Jt\Pt+1

. (3.7)

4. Next find the components which are zero and remove the corresponding elements:

Zt+1 = {ωi ∈ Pt+1 : α̃i = 0},
Jt+1 = Jt \ Zt+1, Dt+1 = Dt \ {xωi}ωi∈Zt+1 , and mt+1 = |Jt+1|

αt+1 = α̃t+1|Jt+1 vector at only non-zero positions.

3.2 Experiments and Results

A comparison between following algorithms (approaches) will be reported in this section:

1. Approach 1: KLMS-L1-(org) : This the original method [30] in which training and

penalty is performed overall i.e., εt = εp = 0. We will refer to it as approach 1. In the

plots, it has been depicted as ‘org’.

2. Approach 2: KLMS-L1w-(tt-pw): In this approach, update is performed overall i.e.,

εt = 0 and penalty is applied in a window i.e., εp > 0. We will refer to it as approach

2. In the plots, it has been depicted as ‘tt-pw’.

47

Figure 3.1: Training Grid

3. Approach 3: KLMS-L1w-(tw-po): In this approach, update is performed in a window

i.e., εt > 0 and penalty is applied overall i.e., εp = 0. We will refer to it as approach 3.

In the plots, it has been depicted as ‘tw-po’.

4. Approach 4: KLMS-L1w-(ww): In this approach both training and penalty are ap-

plied within a window i.e., εt > 0 and εp > 0. We will refer to it as approach 4. In the

plots, it has been depicted as ‘ww’.

3.2.1 Simulation

The true function being used is f(x, y) = 10sin(x) + 5cos(y). The input space cosidered

here is [0, 10]× [0, 10] ⊂ R2. This domain has been divided into grids. The sensor starts at

origin and moves along the path indicated in the Figure 3.1, taking observations at every

0.5 units. This grid has total 441 points.

After the sensor reached (10,10), we obtained the estimate (f̂) for the whole region and

then we found the Total mean squares error(TMSE) on a finer grids(FGD) which has 0.25

units separation between nodes. This finer grid has total 1681 points.

TMSE = log10

(1

1681

1681∑
i=1

(f̂
(
xi)− yi

)2
)
.

I have compared TMSE for different approaches for three different values of kernel width

(0.5, 0.8 and 1.8). Every method will return f̂(·) which is expansion in terms of dictionary

elements. We have compared dictionary sizes for different approaches also for different values

48

of kernel width (0.5, 0.8 and 1.8). In subsequent subsections, I have plotted the comparisons

for different kernel widths separately.

3.2.2 Results for σ = 0.5

In this subsection Fig 3.2 - Fig 3.7 represent the training comparisons have been plotted for

kernel width 0.5 units.

TMSE for approach 1 and approach 3 vs the training window size (εtw) has been plotted in

Fig 3.2.

TMSE for approach 2 for different training (εtw) and penalty window (εtp) sizes have been

plotted in Fig 3.3. Note that this approach is independent of εtw because the training is done

using the entire data and only penalty is applied within a window.

TMSE for approach 4 for different training and penalty window sizes have been plotted in

Fig 3.4.

Dictionary sizes for approach 1 and approach 3 vs the training window size (εtw) has been

plotted in Fig 3.5.

Dictionary sizes for approach 2 for different training (εtw) and penalty window (εtp) sizes

have been plotted in Fig 3.6. Note that this approach is independent of εtw because the

training is done using the entire data and only penalty is applied within a window.

Dictionary sizes for approach 4 for different training and penalty window sizes have been

plotted in Fig 3.7.

3.2.3 Results for σ = 0.8

In this subsection Fig 3.8 - Fig 3.13 represent the training comparisons have been plotted

for kernel width 0.8 units.

TMSE for approach 1 and approach 3 vs the training window size (εtw) has been plotted in

Fig 3.8.

TMSE for approach 2 for different training (εtw) and penalty window (εtp) sizes have been

plotted in Fig 3.9. Note that this approach is independent of εtw because the training is

performed overall and only penalty is applied within a window.

TMSE for approach 4 for different training and penalty window sizes have been plotted in

49

Figure 3.2: TMSE vs training window size
for original and approach 3 and original Figure 3.3: TMSE vs training and penalty

window sizes for approach 2

Figure 3.4: TMSE vs training and penalty
window sizes for approach 4

Figure 3.5: dictionary size vs training win-
dow size for approach 3 and original

Fig 3.10.

Dictionary sizes for approach 1 and approach 3 vs the training window size (εtw) has been

plotted in Fig 3.11.

Dictionary sizes for approach 2 for different training (εtw) and penalty window (εtp) sizes

have been plotted in Fig 3.12. Note that this approach is independent of εtw because the

training is performed overall and only penalty is applied within a window.

Dictionary sizes for approach 4 for different training and penalty window sizes have been

50

Figure 3.6: Dictionary size vs training and
penalty window sizes in approach 2 Figure 3.7: Dictionary size vs training and

penalty window sizes in approach 4

plotted in Fig 3.13.

Figure 3.8: TMSE vs training window size
for original and approach 3 and original Figure 3.9: TMSE vs training and penalty

window sizes for approach 2

51

Figure 3.10: TMSE vs training and penalty
window sizes for approach 4

Figure 3.11: Dictionary size vs training win-
dow size in approach 3 and original

Figure 3.12: Dictionary size vs training and
penalty window sizes in approach 2

Figure 3.13: Dictionary size vs training and
penalty window sizes in approach 4

3.2.4 Results for σ = 1.8

In this subsection Fig 3.14 - Fig 3.19 represent the training comparisons have been plotted

for kernel width 1.8 units.

TMSE for approach 1 and approach 3 vs the training window size (εtw) has been plotted in

Fig 3.14.

TMSE for approach 2 for different training (εtw) and penalty window (εtp) sizes have been

plotted in Fig 3.15. Note that this approach is independent of εtw because the training is

52

performed overall and only penalty is applied within a window.

TMSE for approach 4 for different training and penalty window sizes have been plotted in

Fig 3.16.

Dictionary sizes for approach 1 and approach 3 vs the training window size (εtw) has been

plotted in Fig 3.17.

Dictionary sizes for approach 2 for different training (εtw) and penalty window (εtp) sizes

have been plotted in Fig 3.18. Note that this approach is independent of εtw because the

training is performed overall and only penalty is applied within a window.

Dictionary sizes for approach 4 for different training and penalty window sizes have been

plotted in Fig 3.19.

Figure 3.14: TMSE vs training window size
for original and approach 3 and original Figure 3.15: TMSE vs training and penalty

window sizes for approach 2

53

Figure 3.16: TMSE vs training and penalty
window sizes for approach 4

Figure 3.17: Dictionary size vs training win-
dow size in approach 3 and original

Figure 3.18: Dictionary size vs training and
penalty window sizes in approach 2

Figure 3.19: Dictionary size vs training and
penalty window sizes in approach 4

3.2.5 Conclusion

• For each of the kernel widths, approach 3 (training in window and applying penalty

overall) is working better than original approach both in terms of attaining minimum

TMSE and minimum dictionary size for some values of training window size.

• Approach 4 (training and penalty both in windows) is attaining better TMSE than

approach 3 and the original method but the sparsification is worse.

• Since, approach 3 and approach 4 are attaining TMSE better than original approach,

it may be attributed to the training within a window strategy.

54

• More sparsification in 3 than 4 is can be explained by the fact that in every time, in

approach 3 we are allowing the small coefficients throughout the dictionary to go to

zero and hence removing them but in approach 4, we are allowing only those small

coefficients which are within a window to go to zero and hence some small coefficients

still remain in the dictionary.

• For every kernel width, the performances of original (approach 1) and approach 2 are

same after a while. The reason behind such similarity is that the kernel itself acts like

a window. The lesser the kernel width, lesser will be the affect a dictionary element

on its neighboring elements as gaussian kernel decays with distance. So note that for

smaller kernel width the similarity is attained quickly but for larger kernel widths, the

similarity is attained after a while.

3.3 MKNLMS with window approach and modified

dictionary construction

In the previous section, we observed that the window approach works better. But in the

case of single kernel methods, it was not clear how to select proper kernel width. The

multi-kernel approach (section 2.9) provides a way to accommodate multiple kernels. The

growing step of the dictionary construction in every algorithm discussed so far takes only the

input observations into consideration. Since output values are prone to error, they had no

role in the growth of the dictionary. The coherence criterion used in multi-kernel approach

(equation 2.24) is always dominated by the largest kernel width and this results in poor

dictionary construction. Suppose the coherence of the new input w.r.t. an element from the

current dictionary is greater than the threshold using the largest kernel i.e, the new input

is close to the corresponding element w.r.t. the largest kernel then it is not added to the

dictionary. Next, consider a case in which the output at the new input varied significantly

from the output at the corresponding closest element from the dictionary, then discarding

the new entry will lead to loss of significant information. So, in the case when fluctuation

is more, we should decide coherence using a smaller kernel width. In this section, this idea

has been exploited i.e, instead of taking maximum over all the kernels in equation (2.24), we

choose a kernel width according to the level of fluctuation and evaluate coherence using that

particular choice of kernel only. Along with this modified version of coherence criterion, we

55

use window approach to update coefficients within a window only. In section 3.3, the two

methods of multi-kernel methods were mentioned which are MKNLMS-CS and MKNLMS-

BT. MKNLMS-CS uses the coherence criterion to control the growth of dictionary without

any pruning strategy. On the other hand, MKNLMS-BT doesn’t have any growth control

condition but it does pruning of existing dictionary using extra penalty function. In this

section, we have combined the three ideas: to have control over growth using modified

coherence, control over pruning using same penalty function and update coefficients only

within a window. In the subsequent subsections, explanation for the algorithm and the

results have been provided along with the discussion.

3.3.1 Updating Procedure

The cost function which is needed to be minimised is same as the one used in MKNLMS-

BT (see equation 2.27). At every iteration the algorithm follows three steps: 1) Control

the entry of new input into the dictionary via the modified coherence criterion. 2) Update

the coefficients locally around the new input using gradient descent. 3) Apply prox operator

(2.29) to make the insignificant coefficients zero and remove the corresponding elements from

the dictionary.

At first, the modified coherence criterion will be explained. Our target at iteration t + 1 is

to consider a small (or large) kernel-width when the fluctuation is more (or less). In order

to carry out such a selection, we have absolute value of slope (denoted by |st+1|) evaluated

between the observation pairs (xt+1, yt+1) and (xt, yt) which is given by

|st| =
∣∣∣∣ yt+1 − yt
‖xt+1 − xt‖2

∣∣∣∣. (3.8)

So, the basic idea is that a large (or small) value of slope which corresponds to a large (or

small) fluctuation should lead to the selection of a smaller (or larger) kernel-width. We

considered the Gaussian function centred around origin given by:

f(x) = exp

(
− ‖x‖

2

2σ2

)
, where x ∈ R2.

Then the absolute value of the gradient at ‖x‖ = σ, is exp(−1/2)
σ

.

If we place the Gaussian kernel (with kernel-width σ) centered at the new input then we

56

will get the same expression for the absolute value of gradient at distance σ away from

the new input. We will find the value of σ for which the absolute value of the slope m

evaluated between the observation pairs (xt+1, yt+1) and (xt, yt) becomes same as exp(−1/2)
σ

.

This desired equality leads to a value of kernel-with which is given by

σ =
exp(−1/2)

|st+1|
. (3.9)

At the same time, we wanted to accommodate very few kernels (which is similar to saying

very few kernel-widths) in our list of kernels and that’s why we divided slopes into a few

intervals and assigned a kernel-width for each interval of slope values. Using equation 3.9,

we have following table:

values of |st+1| 2.02 1.01 0.36 0.17 0.09

choice of σ 0.3 0.6 1.7 3.5 7

rounded off θt+1 in degrees 65 45 20 10 5

Note that larger θt+1 is equivalent to large fluctuation at t+1 iteration. Our kernel-width

selection criteria is as follows:

Calculate the absolute value of slope |st+1| using equation 3.8 and find the corresponding

θt+1 in degrees. Let us denote the chosen kernel-width by σ∗. Then,

σ∗t+1 =

0.3, if θt+1 ≥ 65

0.6, if 65 > θt+1 ≥ 45

1.7, if 45 > θt+1 ≥ 20

3.5, if 20 > θt+1 ≥ 10

7, if θt+1 < 10

(3.10)

So far in this section we have used three new notations namely |st+1|, θt+1 and σ∗t+1 for slope,

for corresponding angle in degrees and chosen kernel width respectively at iteration t+ 1.

For the remaining part, we will use the notations used in section 2.9. At iteration t+1, after

finding σ∗t+1, we define the modified coherence condition (for a user-defined threshold µo) as:

‖Kt+1‖max := max
ωj∈Jt

|kσ∗t+1
(xt+1,xωj)| ≤ µo. (3.11)

Thus, if the modified coherence criterion is satisfied, the most recent input is not added to the

dictionary and the coefficient matrix doesn’t change at this stage. But when this criterion

57

is not satisfied, the new element is added to the dictionary and a column of zeros is added

to the coefficient matrix. Then the gradient step will be taken. As already mentioned, we

will define a local neighborhood around the most recent input and update coefficients of the

dictionary which correspond to the chosen kernel and lie within the defined neighborhood.

Note that in the case of multi-kernel approaches we have a coefficient matrix instead of a

coefficient vector and each column corresponds to each kernel (or kernel-width in our case)

in the list. So, we will update the column corresponding to chosen kernel only i.e, only a few

(see below) elements of (σ∗t+1)th column of coefficient matrix Ht will be updated. Next, we

will define the window i.e, a local neighborhood around xt+1 similarly as we did it in section

3.1 (see equation 3.2). So, the window at xt+1 for a window size ε is given by:

wt+1(xt+1) = {xωi ∈ Dt : dist(xt+1,xωi) ≤ ε} (3.12)

=
{
xωi ∈ Dt : kσ∗t+1

(xωi ,xt+1) ≥ exp

(
−ε2

2σ2

)}
. (3.13)

As already mentioned in the section 3.1, note that we don’t have to do any extra computation

to find out wt+1 since we have already computed the elements of kσ∗t+1
while evaluating the

modified coherence criterion in equation 3.11. So, at every iteration we find the elements from

the dictionary which lie in the window that we defined in equation 3.13 and the corresponding

coefficients from the (σ∗t+1)th column of coefficient matrix will be updated. Next, the prox

operator is applied to the updated coefficient matrix which forces the rows with small l1-norm

to become zero and eventually the corresponding elements are discarded from the dictionary.

A pseudo-code with relevant equations is presented in remaining of this subsection. It will

closely follow the terms and notations used in section 2.9.

In the initialization, choose step size η which will be used as proximity index (µ in equation

2.29), set of kernels (kernels-widths)M = {k1, . . . , kM}(∼ {0.3, 0.6, 1.7, 3.5, 7}), regularising

parameter λ ≥ 0, a small coefficient ρ > 0 (this prevents the denominator from vanishing in

the gradient step), a window size ε ≥ 0, a threshold µo ≥ 0, weight vector for prox operator

w−1 = [] (empty vector at the beginning which will be adaptively updated).

For t = 0, 1, 2, ..., when (xt+1, yt+1) is observed (please see the comment after step 3 for t = 0

case), we calculate the slope |st+1| using equation 3.8 and we select the kernel width σ∗t+1

using equation 3.10. We also need the weight vector for prox operator which will define at

each iteration as: wt ∈ R1×mt given by

wt(i) =
1

ρ+ ‖Ht(ith column)‖1

.

58

Next, we check the modified coherence condition (rewriting equation 3.11):

‖Kt+1‖max := max
ωj∈Jt

|kσ∗t+1
(xt+1,xωj)| ≤ µo.

1. At this stage one of the two cases will happen:

• Case 1: If the above inequality holds (the modified coherence condition holds),

xt+1 is not added to the dictionary. Next, we find the indices of elements from

the dictionary which lie in the ε window (see 3.13).

Tt+1 =

{
i ∈ Jt : kσ∗t+1

(xωi ,xt+1) ≥ exp

(
−ε2
2σ2

)}
. For a matrix A, let A(I, J)

denote the submatrix with all the rows indexed by I of all the columns

indexed by J. With a little abuse of notations, assume that σ∗ also denotes its

corresponding index in set of kernel widths M . Then,

H̄t(Tt+1, σ
∗
t+1) = Ht(Tt+1, σ

∗
t+1) + η

yt − 〈Ht,Kt〉
ρ+ ‖Kt‖2

Kt(Tt+1, σ
∗
t+1),

H̄t(Jt \ Tt+1,M \ σ∗t+1) = Ht(Jt \ Tt+1,M \ σ∗t+1).

• Case 2: The modified coherence criterion doesn’t hold. Then, xt+1 is added to

the dictionary for now. Note that in algorithmic notations a = achanged means a

will be replaced with achanged.

Jt = Jt ∪ {t+ 1} and mt = mt + 1,

Ht =
[
Ht 0

]
∈ RM×(mt+1),

Kt =
[
Kt kt+1

]
∈ RM×(mt+1),

wt =
[
wt 1

]
∈ R1×(mt+1),

where, kt+1 = [k1(xt+1,xt+1), . . . , kM(xt+1,xt+1)]T .

Then, we again find the elements within the ε window and in this case xt+1 will

also be considered.

Tt+1 =

{
i ∈ Jt : kσ∗t+1

(xωi ,xt+1) ≥ exp

(
−ε2
2σ2

)}
.

H̄t(Tt+1, σ
∗
t+1) = Ht(Tt+1, σ

∗
t+1) + η

yt − 〈Ht,Kt〉
ρ+ ‖Kt‖2

Kt(Tt+1, σ
∗
t+1),

59

H̄t(Jt \ Tt+1,M \ σ∗t+1) = Ht(Jt \ Tt+1,M \ σ∗t+1).

2. Next, we apply prox operator to H̄t (see 2.29 for definition). The parameters required

for this operator are λ, µ(= η) and wt which have already been defined. So,

Ĥt+1 = prox(H̄t).

3. Next, we remove those elements from the dictionary which corresponding column in

the coefficient matrix (Ĥt+1) have l1-norm zero.

Zt+1 =

{
i ∈ Jt : ‖Ĥt+1(ithcolumn)‖1 = 0

}
,

Jt+1 = Jt \ Zt+1, Dt+1 = Dt \ {xωi}ωi∈Zt+1 , and mt+1 = |Jt+1| And finally,

Ht+1 = Ĥt+1(M,Jt+1) ∈ RM×mt+1 .

Remark 1: One should note that when the first observation pair arrives, we directly go to

Case 2 and select first kernel-width and the corresponding weight for prox operator is just

1.

Remark 2: The effect of coherence threshold µo on the dictionary size has been discussed

multiple times in earlier chapter.

Remark 3: If the regularizing parameter λ is increased, the dictionary size will decrease.

The value of this parameter is based on prior knowledge and was taken to be very small in

our experiment.

Remark 4: The step size η must lie in (0, 2] for single kernel least mean squares algorithm to

ensure the convergence. For the multi-kernel approach, we are not aware of such a guarantee.

However, we have studied the effect of its different values which will provide insight into the

observation that the window approach works better than MKNLMS-CS and MKNLMS-BT.

3.3.2 Simulations and Results

The input domain and the vehicle movement will be same as described in section 3.2.1. For

completion purposes the description will be repeated here.

The input space cosidered here is [0, 10] × [0, 10] ⊂ R2. This domain has been divided into

grids. The sensor starts at origin and moves along the path indicated in the Figure 3.20,

taking observations at every 0.5 units. This grid has total 441 points. After the sensor

60

Figure 3.20: Training Grid

reached (10,10), we obtained the estimate (f̂) for the whole region and then we found the

Total Mean Squares Error (TMSE) on a finer grids (FGD) which has 0.25 units separation

between nodes. This finer grid has total 1681 points.

TMSE = log10

(1

1681

1681∑
i=1

(f̂
(
xi)− yi

)2
)

We will compare the window approach which we call MKNLMS-new with the existing multi-

kernel approaches MKNLMS-CS and MKNLMS-BT. We have compared both the TMSE

(defined above) and the dictionary sizes. The results related to three functions will be

presented next. In case of each function, the results will be divided into three stages:

• In the first stage we keep the same parameters in the algorithm for each of the three

methods. We present the comparison of TMSE and Dictionary sizes w.r.t. to different

window sizes.

• Step size plays a major role in the way we have explained the results. So, in the second

stage we will present results w.r.t. step sizes. For each step-size, minimum TMSE and

the corresponding dictionary size and the window size will be compared.

• From the second stage, we will choose a good value for the step-size for MKNLMS-

new and the best value for the step-size for MKNLMS-CS and MKNLMS-BT. Then,

again TMSE and dictionary sizes will be compared for different window sizes using the

chosen values of step size.

61

Algorithm step-size (η) regularisation
parameter(λ)

coherence threshold (µo) ρ

MKNLMS-CS 0.1 5× 10−4 0.95 10−5

MKNLMS-BT 0.1 5× 10−4 0.95 10−5

MKNLMS-new 0.1 5× 10−4 0.95 10−5

Table 3.1: Values of the parameters for Fig 3.21 and Fig 3.22

At each stage, a table containing values of the parameters used will be presented. At all

the stages, we have kept the kernel set same as described in the updating procedure above.

The discussion section will contain the reason for the above-mentioned three stages and the

explanation of the results.

Results for Function 1:

The first function we consider is a Gaussian type function. This is inspired by the example

of function used in [32].

Let x ∈ [0, 10] × [0, 10] be the input. Let c1 = [4, 8.5]T , c2 = [6, 3.5]T , c3 = [8, 6]T ,

c4 = [3.5, 1]T be vectors which lie in our domain. The function is defined as:

f1(x) = 10+exp

(
− ‖x− c1‖2

2

2 ∗ 32

)
+ 1.5exp

(
− ‖x− c2‖2

2

2 ∗ 32

)
−0.5exp

(
− ‖x− c3‖2

2

2 ∗ 32

)
− 1.25exp

(
− ‖x− c4‖2

2

2 ∗ 32

). (3.14)

As mentioned earlier, in the first stage we will use same value of the parameters for all three

methods. The values of the parameters at this stage have been picked up from the previous

papers i.e., the values which are considered standard in this field. At the same time, one

should note that these values correspond to the prior belief/knowledge about the system

in some sense. Table 3.1 depicts the chosen values. Fig 3.21 and Fig 3.22 are the plots

corresponding to the values from Table 3.1. The title of each plot depicts the amount of

error involved in measurement of the outputs. In all the cases max(f1) and min(f1) are

evaluated only over the input domain which we have considered. Fig 3.21 is the comparison

of dictionary sizes. Fig 3.22 is the comparison of TMSEs. In Fig 3.22, the line graph

corresponding to ‘max’ corresponds to the case when our estimate is a zero function (which

should be viewed as case when nothing has been learned from the data).

62

0 1 2 3 4 5 6 7

window size

10

20

30

40

50

60

70

80

90

100
D

ic
ti
o

n
a

ry
 s

iz
e

Comparison for noise 2 percent of |max-min|

mknlms-cs

mknlms-bt

mknlms-new

0 1 2 3 4 5 6 7

window size

20

30

40

50

60

70

80

90

100

D
ic

ti
o

n
a

ry
 s

iz
e

Comparison for noise 5 percent of |max-min|

mknlms-cs

mknlms-bt

mknlms-new

0 1 2 3 4 5 6 7

window size

20

30

40

50

60

70

80

90

100

D
ic

ti
o

n
a

ry
 s

iz
e

Comparison for noise 10 percent of |max-min|

mknlms-cs

mknlms-bt

mknlms-new

Figure 3.21: Comparisons of Dictionary Sizes with same values of parameters

0 1 2 3 4 5 6 7

window size

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

T
M

S
E

Comparison for noise 2 percent of |max-min|

mknlms-cs

mknlms-bt

mknlms-new

max

0 1 2 3 4 5 6 7

window size

0

1

2

3

4

5

6

T
M

S
E

Comparison for noise 5 percent of |max-min|

mknlms-cs

mknlms-bt

mknlms-new

max

0 1 2 3 4 5 6 7

window size

0

1

2

3

4

5

6

T
M

S
E

Comparison for noise 10 percent of |max-min|

mknlms-cs

mknlms-bt

mknlms-new

max

Figure 3.22: Comparisons of TMSE with same values of parameters

From the results of stage 1 (Fig 3.21 and Fig 3.22), it appears that for a few window

sizes MKNLMS-new outperforms the previous approaches in terms of TMSE with nearly

same dictionary sizes. In the discussion, we will present a plausible explanation for this

observation. Since the step-size value plays an important role in our explanation, we wanted

to see its effect on TMSE, dictionary sizes. We also wanted to see its affect on the values

of window sizes which provide improved TMSE and dictionary sizes for MKNLMS-new (for

example, in Fig 3.21 and Fig 3.22, this region was centred around window size of 2 units).

So, we wanted to see how this outperforming region (of window sizes) changes with respect

to the step-sizes.

Thus, in the stage 2 (Fig 3.23 - Fig 3.25) we have compared the three methods against

different step sizes. In case of MKNLMS-CS and MKNLMS-BT, we found out the TMSE

and the dictionary size for multiple step-size values. In case of MKNLMS-new, for every

step-size value, we have considered multiple window sizes (from 0.01 to 7 units with gap of

0.1 units) and found out the minimum TMSE out of TMSEs of all the window sizes and

the corresponding dictionary size. At the same time, we also kept track of the window size

which yielded the minimum TMSE for every step-size value. Each plot in Fig 3.23- 3.25

has two axes. The axes on the right in each plot corresponds to the window size and the

63

0 0.5 1 1.5 2

step size

-1

0

1

2

3

4

5

6
m

in
 T

M
S

E
Comparison for noise 2 percent of |max-min|

0

1

2

3

4

5

6

7

w
in

d
o
w

 s
iz

e

mknlms-new

mknlms-cs

mknlms-bt

max

best window

0 0.5 1 1.5 2

step size

-1

0

1

2

3

4

5

6

m
in

 T
M

S
E

Comparison for noise 5 percent of |max-min|

0

1

2

3

4

5

6

7

w
in

d
o

w
 s

iz
e

mknlms-new

mknlms-cs

mknlms-bt

max

best window

0 0.5 1 1.5 2

step size

-1

0

1

2

3

4

5

6

m
in

 T
M

S
E

Comparison for noise 10 percent of |max-min|

0

1

2

3

4

5

6

7

w
in

d
o

w
 s

iz
e

mknlms-new

mknlms-cs

mknlms-bt

max

best window

Figure 3.23: Comparisons of min TMSE attained (left y-axis) and best window sizes for
MKNLMS-new (right y-axis) against step-size values (x-axis) till 2 units

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

step size

-2

0

2

4

6

m
in

 T
M

S
E

Comparison for noise 2 percent of |max-min|

0

2

4

6

8

w
in

d
o

w
 s

iz
e

mknlms-new

mknlms-cs

mknlms-bt

max

best window

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

step size

-1

0

1

2

3

4

5

m
in

 T
M

S
E

Comparison for noise 5 percent of |max-min|

1

2

3

4

5

6

7

w
in

d
o
w

 s
iz

e

mknlms-new

mknlms-cs

mknlms-bt

max

best window

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

step size

0

5

m
in

 T
M

S
E

Comparison for noise 10 percent of |max-min|

0

10

w
in

d
o
w

 s
iz

e

mknlms-new

mknlms-cs

mknlms-bt

max

best window

Figure 3.24: Copy of Fig 3.23 reported till 0.2 units on x-axis for better clarification

black line-graph in each plot depicts the behavior of best window size which yielded minimum

TMSE for MKNLMS-new against step-size values. Fig 3.23 and Fig 3.24 are comparisons for

TMSE while Fig 3.25 is comparison for dictionary size. Note that Fig 3.24 is just a zoomed

in version of Fig 3.23 because we wanted to find the step-size value for which MKNLMS-CS

and MKNLMS-BT yield the minimum TMSE. In Fig 3.24, one should note that MKNLMS-

new outperforms the previous algorithms even at the step-size values where they yield their

best result (around 0.01 units). The title of each plot depicts the error involved in observing

the output values.

0 0.5 1 1.5 2

step size

0

20

40

60

80

100

120

140

D
ic

ti
o

n
a

ry
 s

iz
e

Comparison for noise 2 percent of |max-min|

0

1

2

3

4

5

6

7

w
in

d
o

w
 s

iz
e

mknlms-new

mknlms-cs

mknlms-bt

best window

0 0.5 1 1.5 2

step size

0

100

200

D
ic

ti
o

n
a

ry
 s

iz
e

Comparison for noise 5 percent of |max-min|

0

5

10

w
in

d
o

w
 s

iz
e

mknlms-new

mknlms-cs

mknlms-bt

best window

0 0.5 1 1.5 2

step size

20

40

60

80

100

120

140

160

D
ic

ti
o

n
a

ry
 s

iz
e

Comparison for noise 10 percent of |max-min|

0

1

2

3

4

5

6

7

w
in

d
o

w
 s

iz
e

mknlms-new

mknlms-cs

mknlms-bt

best window

Figure 3.25: Comparisons of dictionary sizes corresponding to min TMSE attained (left y-
axis) and best window sizes for MKNLMS-new (right y-axis)against step-size values (x-axis)

64

Algorithm step-size (η) regularisation
parameter(λ)

coherence threshold (µo) ρ

MKNLMS-CS 0.01 5× 10−4 0.95 10−5

MKNLMS-BT 0.01 5× 10−4 0.95 10−5

MKNLMS-new 0.5 5× 10−4 0.95 10−5

Table 3.2: Values of the parameters for Fig 3.26 and Fig 3.27

0 1 2 3 4 5 6 7

window size

0

50

100

150

D
ic

ti
o

n
a

ry
 s

iz
e

Comparison for noise 2 percent of |max-min|

mknlms-cs

mknlms-bt

mknlms-new

0 1 2 3 4 5 6 7

window size

20

40

60

80

100

120

140

160

D
ic

ti
o
n
a
ry

 s
iz

e

Comparison for noise 5 percent of |max-min|

mknlms-cs

mknlms-bt

mknlms-new

0 1 2 3 4 5 6 7

window size

20

40

60

80

100

120

140

160

D
ic

ti
o
n
a
ry

 s
iz

e

Comparison for noise 10 percent of |max-min|

mknlms-cs

mknlms-bt

mknlms-new

Figure 3.26: Comparisons of Dictionary Sizes with chosen values of parameters (Table 3.2)

In Fig 3.23, one should observe that the best window size (the window size which yields

minimum TMSE at each step-size) tends to decrease (more or less) with increase in step-size

value. From Fig 3.23 and Fig 3.24, one can deduce that MKNLMS-CS and MKNLMS-BT

attain their best TMSE around step-size of 0.01 units. But even at that point, MKNLMS-

new outperforms them. In case of MKNLMS-new, step-size of 0.5 units seems to be a good

value for attaining small TMSE according to Fig 3.23.

In next stage, we will compare the three approaches as we did at the first stage but now

the step sizes used for them will different. We will select step-sizes which yielded more or

less minimum TMSE (these values have already been mentioned above). For completion

purposes, Table 3.2 depicts the values of parameters used to plot Fig 3.26 and Fig 3.27. The

title of each plot depicts the error involved in observing the output values.

For other functions, we will just present the results of stage 2 i.e., the effect of step-size

on the minimum TMSE, dictionary size and best window size. Results at stage 1 and stage

3 for other functions are may have different values of TMSE and dictionary sizes but the

behavior is same as that of f1. So, we will omit those graphs (from stage 1 and stage 3) due

to space constraints. From now on (starting from Fig 3.28), every graph will be based on

Table 3.1 apart from the step-size value.

65

0 1 2 3 4 5 6 7

window size

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
T

M
S

E
Comparison for noise 2 percent of |max-min|

mknlms-cs

mknlms-bt

mknlms-new

max

0 1 2 3 4 5 6 7

window size

0

1

2

3

4

5

6

T
M

S
E

Comparison for noise 5 percent of |max-min|

mknlms-cs

mknlms-bt

mknlms-new

max

0 1 2 3 4 5 6 7

window size

0

1

2

3

4

5

6

T
M

S
E

Comparison for noise 10 percent of |max-min|

mknlms-cs

mknlms-bt

mknlms-new

max

Figure 3.27: Comparisons of TMSE with chosen values of parameters (Table 3.2)

0 0.5 1 1.5 2

step size

-1

0

1

2

3

4

5

6

m
in

 T
M

S
E

Comparison for noise 2 percent of |max-min|

0

1

2

3

4

5

6

7

w
in

d
o
w

 s
iz

e

mknlms-new

mknlms-cs

mknlms-bt

max

best window

0 0.5 1 1.5 2

step size

-1

0

1

2

3

4

5

6

m
in

 T
M

S
E

Comparison for noise 5 percent of |max-min|

0

1

2

3

4

5

6

7

w
in

d
o

w
 s

iz
e

mknlms-new

mknlms-cs

mknlms-bt

max

best window

0 0.5 1 1.5 2

step size

-1

0

1

2

3

4

5

6

m
in

 T
M

S
E

Comparison for noise 10 percent of |max-min|

0

1

2

3

4

5

6

7

w
in

d
o

w
 s

iz
e

mknlms-new

mknlms-cs

mknlms-bt

max

best window

Figure 3.28: Comparisons of min TMSE attained (left y-axis) and best window sizes for
MKNLMS-new (right y-axis) against step-size values (x-axis) till 2 units

Results for Function 2

Next, we changed the kernel-width of the bases from function 1 (equation 3.14). Let x ∈
[0, 10]× [0, 10] be the input. Let c1 = [4, 8.5]T , c2 = [6, 3.5]T , c3 = [8, 6]T , c4 = [3.5, 1]T be

vectors which lie in our domain. The function is defined as:

f2(x) = 10+exp

(
− ‖x− c1‖2

2

2 ∗ 32

)
+ 1.5exp

(
− ‖x− c2‖2

2

2 ∗ 52

)
−0.5exp

(
− ‖x− c3‖2

2

2 ∗ 22

)
− 1.25exp

(
− ‖x− c4‖2

2

2 ∗ 72

). (3.15)

Fig 3.28 - Fig 3.30 show the effect of step size on minimum TMSE, dictionary size and best

window size for function 2 (f2).

66

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

step size

0

5
m

in
 T

M
S

E
Comparison for noise 2 percent of |max-min|

0

10

w
in

d
o

w
 s

iz
e

mknlms-new

mknlms-cs

mknlms-bt

max

best window

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

step size

-1

0

1

2

3

4

5

m
in

 T
M

S
E

Comparison for noise 5 percent of |max-min|

1

2

3

4

5

6

7

w
in

d
o

w
 s

iz
e

mknlms-new

mknlms-cs

mknlms-bt

max

best window

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

step size

-2

0

2

4

6

m
in

 T
M

S
E

Comparison for noise 10 percent of |max-min|

0

2

4

6

8

w
in

d
o

w
 s

iz
e

mknlms-new

mknlms-cs

mknlms-bt

max

best window

Figure 3.29: Copy of Fig 3.28 reported till 0.2 units on x-axis for better clarification

0 0.5 1 1.5 2

step size

0

100

200

D
ic

ti
o

n
a

ry
 s

iz
e

Comparison for noise 2 percent of |max-min|

0

5

10

w
in

d
o

w
 s

iz
e

mknlms-new

mknlms-cs

mknlms-bt

best window

0 0.5 1 1.5 2

step size

20

40

60

80

100

120

140

160

D
ic

ti
o

n
a

ry
 s

iz
e

Comparison for noise 5 percent of |max-min|

0

1

2

3

4

5

6

7

w
in

d
o

w
 s

iz
e

mknlms-new

mknlms-cs

mknlms-bt

best window

0 0.5 1 1.5 2

step size

20

40

60

80

100

120

140

160

D
ic

ti
o

n
a

ry
 s

iz
e

Comparison for noise 10 percent of |max-min|

0

1

2

3

4

5

6

7

w
in

d
o

w
 s

iz
e

mknlms-new

mknlms-cs

mknlms-bt

best window

Figure 3.30: Comparisons of dictionary sizes corresponding to min TMSE attained (left y-
axis) and best window sizes for MKNLMS-new (right y-axis)against step-size values (x-axis)

Results for Function 3

Next, we changed the max value attained by function 2 (equation 3.15) by removing the

extra constant term (see 3.15, an extra 10 is present). Let x ∈ [0, 10]× [0, 10] be the input.

Let c1 = [4, 8.5]T , c2 = [6, 3.5]T , c3 = [8, 6]T , c4 = [3.5, 1]T be vectors which lie in our

domain. The function is defined as:

f3(x) =exp

(
− ‖x− c1‖2

2

2 ∗ 32

)
+ 1.5exp

(
− ‖x− c2‖2

2

2 ∗ 52

)
−0.5exp

(
− ‖x− c3‖2

2

2 ∗ 22

)
− 1.25exp

(
− ‖x− c4‖2

2

2 ∗ 72

). (3.16)

Fig 3.31 - Fig 3.32 show the effect of step size on minimum TMSE, dictionary size and best

window size for function 3 (f3).

Results for Function 4

Next, we consider a non-Gaussian function. This is quite fluctuating function and in real

life we generally don’t encounter such a function but we still present the results related to

67

0 0.2 0.4 0.6 0.8 1

step size

-3

-2.5

-2

-1.5

-1
m

in
 T

M
S

E
Comparison for noise 2 percent of |max-min|

0

2

4

6

8

w
in

d
o

w
 s

iz
e

mknlms-new

mknlms-cs

mknlms-bt

max

best window

0 0.2 0.4 0.6 0.8 1

step size

-3

-2.5

-2

-1.5

-1

m
in

 T
M

S
E

Comparison for noise 5 percent of |max-min|

0

2

4

6

8

w
in

d
o

w
 s

iz
e

mknlms-new

mknlms-cs

mknlms-bt

max

best window

0 0.2 0.4 0.6 0.8 1

step size

-4

-2

0

m
in

 T
M

S
E

Comparison for noise 10 percent of |max-min|

0

5

10

w
in

d
o

w
 s

iz
e

mknlms-new

mknlms-cs

mknlms-bt

max

best window

Figure 3.31: Comparisons of min TMSE attained (left y-axis) and best window sizes for
MKNLMS-new (right y-axis) against step-size values (x-axis) till 2 units

0 0.2 0.4 0.6 0.8 1

step size

0

20

40

D
ic

ti
o

n
a

ry
 s

iz
e

Comparison for noise 2 percent of |max-min|

0

5

10

w
in

d
o

w
 s

iz
e

mknlms-new

mknlms-cs

mknlms-bt

best window

0 0.2 0.4 0.6 0.8 1

step size

0

20

40

D
ic

ti
o

n
a

ry
 s

iz
e

Comparison for noise 5 percent of |max-min|

0

5

10

w
in

d
o

w
 s

iz
e

mknlms-new

mknlms-cs

mknlms-bt

best window

0 0.2 0.4 0.6 0.8 1

step size

0

20

40

D
ic

ti
o

n
a

ry
 s

iz
e

Comparison for noise 10 percent of |max-min|

0

5

10

w
in

d
o

w
 s

iz
e

mknlms-new

mknlms-cs

mknlms-bt

best window

Figure 3.32: Comparisons of dictionary sizes corresponding to min TMSE attained (left y-
axis) and best window sizes for MKNLMS-new (right y-axis)against step-size values (x-axis)

this function. Let x = [x1, x2]T be the input vector. The function is defined as:

f4(x) = sin((x1 + x2)/1.5) + cos((x1 − x2)/2). (3.17)

Fig 3.33 - Fig 3.34 show the effect of step size on minimum TMSE, dictionary size and best

window size for function 4 (f4).

3.3.3 Discussion

In order to explain why the MKNLMS-new is yielding better results, we need to revisit the

update equation in its generic form. At each step, MKNLMS-CS and MKNLMS-BT update

their coefficient matrix via (ignoring the small details of dictionary growth and pruning):

Ht+1 = Ht + η
yt+1 − 〈Ht,Kt〉
ρ+ ‖Kt‖2

Kt.

68

0 0.5 1 1.5 2

step size

-1

-0.5

0

0.5

1

1.5
m

in
 T

M
S

E
Comparison for noise 2 percent of |max-min|

0

1

2

3

4

5

w
in

d
o
w

 s
iz

e

mknlms-new

mknlms-cs

mknlms-bt

max

best window

0 0.5 1 1.5 2

step size

-1

-0.5

0

0.5

1

1.5

m
in

 T
M

S
E

Comparison for noise 5 percent of |max-min|

0

1

2

3

4

5

w
in

d
o

w
 s

iz
e

mknlms-new

mknlms-cs

mknlms-bt

max

best window

0 0.5 1 1.5 2

step size

-2

0

2

m
in

 T
M

S
E

Comparison for noise 10 percent of |max-min|

0

5

10

w
in

d
o

w
 s

iz
e

mknlms-new

mknlms-cs

mknlms-bt

max

best window

Figure 3.33: Comparisons of min TMSE attained (left y-axis) and best window sizes for
MKNLMS-new (right y-axis) against step-size values (x-axis) till 2 units

0 0.5 1 1.5 2

step size

0

5

10

15

20

25

D
ic

ti
o

n
a

ry
 s

iz
e

Comparison for noise 2 percent of |max-min|

0

1

2

3

4

5

w
in

d
o

w
 s

iz
emknlms-new

mknlms-cs

mknlms-bt

best window

0 0.5 1 1.5 2

step size

0

5

10

15

20

25

D
ic

ti
o

n
a

ry
 s

iz
e

Comparison for noise 5 percent of |max-min|

0

1

2

3

4

5

w
in

d
o

w
 s

iz
e

mknlms-new

mknlms-cs

mknlms-bt

best window

0 0.5 1 1.5 2

step size

0

5

10

15

20

25

30

35

D
ic

ti
o

n
a

ry
 s

iz
e

Comparison for noise 10 percent of |max-min|

0

1

2

3

4

5

6

7

w
in

d
o

w
 s

iz
e

mknlms-new

mknlms-cs

mknlms-bt

best window

Figure 3.34: Comparisons of dictionary sizes corresponding to min TMSE attained (left y-
axis) and best window sizes for MKNLMS-new (right y-axis)against step-size values (x-axis)

At each iteration, we are trying to update our coefficients in such a way that we move our

estimate to its original value (notice the difference term between yt+1 which is original value

and 〈Ht,Kt〉 which is its estimate). For preventing over-fitting, we don’t commit fully to the

original value, rather we take a fraction of step to it which is governed by the step-size pa-

rameter η. While doing so, one can note that every element of the coefficient matrix changes

at each iteration. The extent of change in coefficients at other places (which correspond in

some sense to the movement to their corresponding original output values) is controlled by

the kernel matrix. So, larger the kernel-width, it will change more coefficients every time.

This results in the movement of the estimates at those other bases away from their original

output values because of the fact that at each iteration we only care about balancing out

estimate at the most recent input with its original output and thus it suffers larger TMSE.

By the same token, please note that in fact, we do need the new bases to push the estimates

of previous bases to their corresponding previous outputs because we had only committed

a fraction (η to be precise) to those original values. So, without any push from the recent

bases, they will suffer large error as well. But when we have considered larger kernel-widths,

69

they end up over-pushing the coefficients and that leads to bad performance. By consid-

ering small values of kernel-widths we could have improved results for MKNLMS-CS and

MKNLMS-BT but our dictionary size will increase (which should be clear from the defi-

nition of coherence criterion). The MKNLMS-new can accommodate larger kernel-widths,

can update the previous coefficients in a proper manner and can have small dictionary size

as well. But note that MKNLMS-new outperforms the previous algorithms (attaining less

TMSE with similar dictionary sizes) for only few values of window sizes because of the same

reason that is mentioned above. For very small windows, the other coefficients don’t receive

enough push to move to their original output value at each iteration (under-pushing) and on

the other hand for large windows, the problem becomes similar to the case of MKNLMS-CS

and MKNLMS-BT (over-pushing). In the stage 1, we compared the three methods with

same values of every parameter and the explanation presented above can be accounted for

better performance of MKNLMS-new for a few window sizes. It is still not clear how one

can prescribe the value for window-size apriori. But some insights into this will be presented

later. Following the arguments mentioned above, one can argue that if the step-size is re-

duced, then the problem of over-pushing can be avoided but if at the same time step-size

is very small then it can lead to under-pushing. Thus, in order to understand the behavior

of TMSE with changing step sizes, we plotted TMSEs of MKNLMS-CS, MKNLMS-BT and

MKNLMS-new against step-size parameter. We have described earlier multiple times that in

case of MKNLMS-new we consider many window sizes for each step-size value and report the

minimum out of them. In other words, for every step-size we focus on the better performing

window size for MKNLMS-new. In every plot of stage 2, we observe that indeed there is

a smaller value of step-size (smaller than the one taken in stage 1) at which MKNLMS-CS

and MKNLMS-BT achieve their best error or we should say better than the stage 1. But

even at those step-sizes, MKNLMS-new outperforms them possibly because of the modified

coherence criterion (which considers the fluctuations while building the dictionary).

Comment on the Relation between step-size and proper window size:

Based on the results from stage 2 (see Fig 3.23, Fig 3.28 and Fig 3.33), one can observe that

the value of proper window-size more or less decreases as the step-size increases (except in

case of Fig 3.31 where it more or less remains same). Again, this can be explained using

the argument of under-pushing and over-pushing mentioned above. If the step-size is larger,

our estimates have already moved more to the original value and so, a very little push is

required which can be provided by fewer neighboring bases which leads to smaller size of

proper window size. On the other hand, if the step-size is smaller, our estimates have moved

70

lesser to the original value and so, more little push is required which need to be provided by

more neighboring bases which leads to larger size of proper window size.

Comment on the modified coherence criterion:

Since modified coherence criterion grows dictionary based on fluctuations in output as well,

it gets affected by noise involved in observing output values. When there is more noise, the

fluctuation is more and hence the modified coherence criterion chooses smaller kernel-width

to evaluate the coherence of the new input w.r.t the dictionary which leads to more addition

of elements to the dictionary. That’s why with increase in noise, one can observe that the

dictionary size tends to increase (see Fig 3.21, Fig 3.26, Fig 3.25, Fig 3.30, Fig 3.32, Fig

3.34).

Remark on the definition of TMSE:

We would like to clarify that the way we have defined TMSE is just for comparison purposes.

It doesn’t provide how good a method is while fitting. We have considered too many test

points which is not generally the case in reporting the performance of learning algorithms.

However, it serves well for comparing performances among different algorithms.

Remark on large fluctuation in graph of best window size

Because error is involved, the best window (where min TMSE is attained) may vary fre-

quently. One should look at the behavior as whole. Instead of taking just the minimum

TMSE, if we allow least 6 (can be any small positive integer) TMSE and take median of

corresponding window sizes and plot that median, then the behavior might be captured

without too much fluctuation.

Remark on the choice of path followed by the sensor

Since the modified coherence criterion takes in to account the output values as well, the path

followed by the sensor becomes important. The path on which there is more noise will lead

to construction of larger dictionary. How one can find an optimal path is still unclear.

3.3.4 Future Works

It is still not clear how to construct the kernel set, and how to select an optimal step-size

and window-size apriori. The relation between these quantities can be exploited and some

bounds can be presented based on some assumptions about the original function. In the

window strategy we haven’t provided any mathematical proof for its convergence or even its

stability. There have been improvements regarding selection of kernels in [36] where an extra

71

penalty function is considered in the cost function which makes those elements of coefficient

matrix go to zero which corresponding kernels are insignificant (see the reference for more

details). We haven’t presented a comparison between this method and our method because

it involves lots of unknown parameters which make the comparison difficult.

72

Bibliography

[1] J. Unnikrishnan and M. Vetterli. Sampling and reconstruction of spatial fields using

mobile sensors. IEEE Transactions on Signal Processing, 61(9):2328–2340, May 2013.

[2] Felipe Cucker and Steve Smale. On the mathematical foundations of learning. Bulletin

of the American Mathematical Society, 39:1–49, 2002.

[3] Bernhard Schölkopf, Ralf Herbrich, and Alex J. Smola. A generalized representer theo-

rem. In Proceedings of the 14th Annual Conference on Computational Learning Theory

and and 5th European Conference on Computational Learning Theory, COLT ’01/Eu-

roCOLT ’01, pages 416–426, London, UK, UK, 2001. Springer-Verlag.

[4] Bernhard Scholkopf and Alexander J. Smola. Learning with Kernels: Support Vector

Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge, MA,

USA, 2001.

[5] Matthew J. Beal. Variational Algorithms for Approximate Bayesian Inference. PhD

thesis, Gatsby Computational Neuroscience Unit, University College London, 2003.

[6] Yaakov Engel, Shie Mannor, and Ron Meir. The kernel recursive least squares algorithm.

IEEE Transactions on Signal Processing, 52:2275–2285, 2003.

[7] B. J. de Kruif and T. J. A. de Vries. Pruning error minimization in least squares support

vector machines. IEEE Transactions on Neural Networks, 14(3):696–702, May 2003.

[8] S. Van Vaerenbergh, M. Lazaro-Gredilla, and I. Santamaria. Kernel recursive least-

squares tracker for time-varying regression. IEEE Transactions on Neural Networks

and Learning Systems, 23(8):1313–1326, Aug 2012.

[9] Weifeng Liu, Jose C. Principe, and Simon Haykin. Kernel Adaptive Filtering: A Com-

prehensive Introduction. Wiley Publishing, 1st edition, 2010.

73

[10] Simon Foucart and Holger Rauhut. A Mathematical Introduction to Compressive Sens-

ing. Birkhäuser Basel, 2013.

[11] Massimo Fornasier and Holger Rauhut. Compressive sensing, 2010.

[12] A. Y. Yang, Z. Zhou, A. G. Balasubramanian, S. S. Sastry, and Y. Ma. Fast `1-

minimization algorithms for robust face recognition. IEEE Transactions on Image Pro-

cessing, 22(8):3234–3246, Aug 2013.

[13] Ingrid Daubechies, Ronald Devore, Massimo Fornasier, and C. Sinan Gntrk. Iteratively

reweighted least squares minimization for sparse recovery. Comm. Pure Appl. Math.

[14] D. M. Malioutov, S. R. Sanghavi, and A. S. Willsky. Sequential compressed sensing,

April 2010.

[15] Pierre J. Garrigues and Laurent El Ghaoui. Ghaoui, an homotopy algorithm for the

lasso with online observations. In in Neural Information Processing Systems (NIPS,

2008.

[16] M. S. Asif and J. Romberg. Streaming measurements in compressive sensing: 1filtering.

In 2008 42nd Asilomar Conference on Signals, Systems and Computers, pages 1051–

1058, Oct 2008.

[17] Andreas Christmann and Ingo Steinwart. Support Vector Machines. 01 2008.

[18] A Berlinet and Christine Thomas-Agnan. Reproducing kernel Hilbert spaces in proba-

bility and statistics. Boston, Mass. : Kluwer Academic, 2004. Includes bibliographical

references (p. 327-343) and index.

[19] I. Steinwart, D. Hush, and C. Scovel. An explicit description of the reproducing ker-

nel hilbert spaces of gaussian rbf kernels. IEEE Transactions on Information Theory,

52(10):4635–4643, Oct 2006.

[20] J. Park and I. W. Sandberg. Universal approximation using radial-basis-function net-

works. Neural Computation, 3(2):246–257, June 1991.

[21] Simon Haykin. Neural Networks: A Comprehensive Foundation (3rd Edition). Prentice-

Hall, Inc., Upper Saddle River, NJ, USA, 2007.

74

[22] Cdric Richard, Jos Carlos M. Bermudez, and Paul Honeine. Online prediction of time

series data with kernels. IEEE TRANS. SIGNAL PROCESSING, 57(3), 2009.

[23] Jyrki Kivinen, Alex J. Smola, and Robert C. Williamson. Online learning with kernels.

In Proceedings of the 14th International Conference on Neural Information Processing

Systems: Natural and Synthetic, NIPS’01, pages 785–792, Cambridge, MA, USA, 2001.

MIT Press.

[24] W. D. Parreira, J. C. M. Bermudez, C. Richard, and J. Tourneret. Stochastic behavior

analysis of the gaussian kernel least-mean-square algorithm. IEEE Transactions on

Signal Processing, 60(5):2208–2222, May 2012.

[25] B. Chen, S. Zhao, P. Zhu, and J. C. Principe. Quantized kernel least mean square

algorithm. IEEE Transactions on Neural Networks and Learning Systems, 23(1):22–32,

Jan 2012.

[26] M. Yukawa. Multikernel adaptive filtering. IEEE Transactions on Signal Processing,

60(9):4672–4682, Sept 2012.

[27] I. Yamada, K. Slavakis, and K. Yamada. An efficient robust adaptive filtering algorithm

based on parallel subgradient projection techniques. IEEE Transactions on Signal Pro-

cessing, 50(5):1091–1101, May 2002.

[28] P. Combettes and V. Wajs. Signal recovery by proximal forward-backward splitting.

Multiscale Modeling & Simulation, 4(4):1168–1200, 2005.

[29] Weifeng Liu, P.P. Pokharel, and J.C. Principe. The kernel least-mean-square algorithm.

Trans. Sig. Proc., 56(2):543–554, February 2008.

[30] W. Gao, J. Chen, C. Richard, J. Huang, and R. Flamary. Kernel lms algorithm with

forward-backward splitting for dictionary learning. In 2013 IEEE International Con-

ference on Acoustics, Speech and Signal Processing, pages 5735–5739, May 2013.

[31] M. Takizawa and M. Yukawa. Adaptive nonlinear estimation based on parallel projection

along affine subspaces in reproducing kernel hilbert space. IEEE Transactions on Signal

Processing, 63(16):4257–4269, Aug 2015.

[32] M. Takizawa and M. Yukawa. Efficient dictionary-refining kernel adaptive filter with

fundamental insights. IEEE Transactions on Signal Processing, 64(16):4337–4350, Aug

2016.

75

[33] M. Yukawa and K. Mller. Why does a hilbertian metric work efficiently in online learning

with kernels? IEEE Signal Processing Letters, 23(10):1424–1428, Oct 2016.

[34] S. Theodoridis, K. Slavakis, and I. Yamada. Adaptive learning in a world of projections.

IEEE Signal Processing Magazine, 28(1):97–123, Jan 2011.

[35] Simon Haykin. Adaptive Filter Theory (3rd Ed.). Prentice-Hall, Inc., Upper Saddle

River, NJ, USA, 1996.

[36] Osamu Toda and Masahiro Yukawa. Online model-selection and learning for nonlinear

estimation based on multikernel adaptive filtering. IEICE Transactions on Fundamen-

tals of Electronics, Communications and Computer Sciences, E100A(1):236–250, 1 2017.

[37] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Ma-

chine Learning (Adaptive Computation and Machine Learning). The MIT Press, 2005.

[38] Badong Chen, Junli Liang, Nanning Zheng, and Jos C. Prncipe. Kernel least mean

square with adaptive kernel size. Neurocomput., 191(C):95–106, May 2016.

76

	Abstract
	Theory of Reproducing Kernel Hilbert Spaces (RKHS)
	Kernel, Reproducing kernel and RKHS
	Gaussian RKHS
	Mercer Kernel and associated RKHS
	Regression using RKHS

	Survey of Existing Methods
	Different Methods of Dictionary Learning
	Functional and Parametric approaches
	Naive Online Regularized Risk Minimization Algorithm (NORMA)
	Kernel Least Mean Squares (KLMS) Algorithm
	Quantised KLMS (QKLMS)
	Kernel Normalised Least Mean Squares (KNLMS)
	Multi-Kernel Normalised Mean Squares Algorithm (MKNLMS)
	KLMS algorithm with forward-backward splitting (KLMS-L1)
	Functional Affine Projection Algorithms (APA)

	Proposed Modification with Simulations and Results
	KLMS-L1 with window approach (KLMS-L1w)
	Experiments and Results
	MKNLMS with window approach and modified dictionary construction

