
Work fluctuations in periodically

driven chaotic systems

A Thesis

submitted to

Indian Institute of Science Education and Research Pune

in partial fulfillment of the requirements for the

BS-MS Dual Degree Programme

by

P Sravya

Indian Institute of Science Education and Research Pune

Dr. Homi Bhabha Road,

Pashan, Pune 411008, INDIA.

May, 2019

Supervisor: Dr. Bijay Kumar Agarwalla

c� P Sravya 2019

All rights reserved





Certificate

This is to certify that this dissertation entitle Work fluctuations in periodically

driven chaotic systems towards the partial fulfilment of the BS-MS dual degree

programme at the Indian Institute of Science Education and Research, Pune represents

study/work carried out by P Sravya at Indian Institute of Science Education and Research

under my supervision, during the academic year 2018-2019.

Dr. Bijay Kumar Agarwalla

Assistant Professor

Department of Physics

IISER Pune

Committee:

Dr. Bijay Kumar Agarwalla

Dr. Sreejith GJ

Bitar hmm Smile





This thesis is dedicated to my dear parents.





Declaration

I hereby declare that the matter embodied in the report entitled Work fluctuations in

periodically driven chaotic systems are the results of the work carried out by me at

the Department of Physics, Indian Institute of Science Education and Research, Pune,

under the supervision of Dr. Bijay Kumar Agarwalla and the same has not been

submitted elsewhere for any other degree.

P Sravya

P - Shay
.





Acknowledgments

I am grateful to my supervisor Dr.Bijay Kumar Agarwalla for giving me this opportunity and

for his constant support and guidance throughout this year. His interest towards his field of

work has inspired me so much. I also want to thank my co-supervisor Dr. MS Santhanam for

his time and all the valuable discussions we have had with him. I also take this opportunity

to thank all my friends for making life happy when things were stressful. I want to thank

Sandeep, Sruthy, Aanjaneya and Sushant for discussions that helped me understand many

concepts better. Lastly, I want to thank my parents and my dear sister for bearing with me

as well as being a constant support which has made me reach this point of my life.

ix



x



Abstract

Fluctuation relations have been one of the recent discoveries that has helped us take a

step in understanding how thermodynamics can be applied to small systems in the quantum

regime. In this study we investigate the work distributions of a particular type of periodically

driven chaotic system namely the kicked rotor system and the signatures of the system

dynamics that are captured in these work distributions. We then verify the Crooks relation

for this system. Finally, we examine the quantum-classical correspondence through numerical

simulations at the level of work distributions and its moments for the chosen system which

exhibits drastically di↵erent classical and quantum behaviour.
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Chapter 1

Introduction

Any system at the microscopic level is made of matter that is in constant motion. Due

to this the physical quantities associated with the system undergo fluctuations. These are

thermal fluctuations which arise due to the temperature of the system. For quantum systems,

quantum fluctuations also occur due to inherent quantum uncertainty of physical quantities.

These fluctuations (relative) grow as 1p
N

with the system size N . For large systems (in the

thermodynamic limit), the mean of various physical quantities give a good enough description

of the system. But as the system size decreases, these fluctuations become more and more

significant. Therefore, it becomes prudent to study the distribution of the physical quantities

of interest.

The Maxwell distribution of velocities for a gaseous system at equilibrium is a good

example. For systems at equilibrium or weakly driven near equilibrium, the response of the

system to any external perturbation is related to its small fluctuations. This is given by

the universal fluctuation-dissipation theorem. Similar relations for systems driven far from

equilibrium were not known until the end of last century when the exact fluctuation relations

for classical systems far away from equilibrium were discovered [1],[2],[3],[5]. These focus on

distributions of fluctuating quantities such as heat or work that characterize non-equilibrium

transformations. Fluctuation relations put restrictions on the form of the probability density

functions of these non-equilibrium fluctuating quantities and also explains the macroscopic

irreversibility that is seen often in nature. They generally take the form
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PF (x) = PR(�x) exp[a(x� b)] (1.1)

where PF (x) is the probability density function of the quantity x during the forward

driving process and PB(x) is that of the reverse driving process. The constants a and b are

dependent on the initial and final states of the system [5]. A good example is the work

fluctuation relation which we will look at in the next chapter.The definitions of forward and

reverse driving processes will be clarified in the next chapter.

These relations hold under conditions which are as follows.

1. The initial equilibrium state is described by the Gibbs canonical distribution,

⇢ =
e
��H

Z

where Z = Tre��H is the partition function, with � = 1
kBT

being the inverse tempera-

ture.

2. The underlying microscopic dynamics of the system should be time-reversal invariant.

The exponential term that is in equation(1.1) emerges due to the e��H term in the initial

canonical distribution. Also, since there is a distribution of initial states, we get a distribution

of work values each corresponding to the driving process starting from each initial state. The

fluctuation relations hold true for an isolated system, a closed system (which can exchange

energy with the bath when driving is happening) and an open system (can exchange both

energy and particles). They also hold true for any system size.

In this work, we will be studying the work fluctuation relations. The chosen system of

study is a chaotic system - the kicked rotor. A chaotic system shows varied and rich dy-

namics in di↵erent parameter regimes. We want to study the signature of these dynamics in

work distributions in these di↵erent parameter regimes and also verify the work fluctuation

relations. These work distributions depend on the type of driving. In the kicked rotor sys-

tem the driving is periodic which simplifies both the analytical and the numerical aspects

of the project. Another main focus would be on verification of the classical-quantum corre-

spondence at the level of work distributions as the considered system shows very di↵erent

classical and quantum behaviours for di↵erent kick strengths.
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The outline for this thesis is as follows. In chapter 2, I will explain in detail about the

work fluctuation relations in the classical and quantum case. In chapter 3, I will introduce

the kicked rotor system and also talk about the floquet theory that will be used to study the

quantum kicked rotor system. Chapter 4 consists of work distribution expressions for the

quantum kicked rotor and in the final chapter 5, I will present the results and discussion.
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Chapter 2

Work fluctuation theorem and

Jarzynski equality

In this work we will particularly be studying the work fluctuation relations. Even long after

the discovery of classical work fluctuation relations, there are some ambiguities regarding

the definition of quantum work. I will present the current understanding of the classical

and quantum work and also explain how the work fluctuation relation can be obtained from

these definitions.

Consider a system in an initial equilibrium state A with the Hamiltonian HA. Some driving

is done to take the system out of equilibrium to some other state B with Hamiltonian HB.

This is referred to as the forward process. Let the system be an isolated driven system which

does not remain in contact with the bath during the driving. The reverse process comprises

of driving the system in the reverse manner starting from the equilibrium state at the same

� described by the Hamiltonian HB.

Similar to the general expression of fluctuation relations (1.1), the work fluctuation rela-

tion can be written as

PF (W ) = PR(�W ) e�(W��F ) (2.1)

This is known as the Crooks relation [5].The � corresponds to the temperature of the initial

states in both the forward and the reverse processes. The W � �F term is called the
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dissipated work (entropy production) which would be zero for a reversible process. This

equation can be simplified by integrating over all W values.

Z
PF (W )e��W

dW =

Z
PR(�W )e���F

dW = e
���F

Therefore,

he��W i = e
���F (2.2)

where the average is over the probability distribution of work. This equation is known as

the Jarzynski equality(JE) [3],[4]. This equation implies that though we drive the system in

an irreversible manner to a non-equilibrium final state starting from an equilibrium initial

state, we can get the equilibrium free energy di↵erence by driving it multiple times and then

take an average. On applying the Jensen inequality i.e hexi � e
hxi to JE, we get hW i � �F

which is an implication of the second law of thermodynamics. Therefore, the JE is often

referred to as the microscopic representation of the second law. This implies that for any

system under consideration, the average value of work done hW i is greater than the change in

equilibrium free energy but the value of work in any single realisation can be lesser than �F .

The possibility of this happening is more for smaller systems due to increased fluctuations.

Now we will discuss about the work fluctuation relations in classical and quantum de-

scriptions.

2.1 Classical work fluctuation relation

Consider a classical system characterized by a Hamiltonian with H0(z) as the unperturbed

part and the perturbation ��Q(z) due to the external force �t that couples to the coordinate

Q(z). Therefore, the Hamiltonian will be

H(z,�t) = H0(z)� �tQ(z) (2.3)

6



where z = (q, p) corresponds to a point in phase space. The initial state is taken from the

probability density, ⇢0 = e
��H0(z)

Z0
. We can understand the principle of microreversibility in

the following way. For every initial point in the phase space z0 = (q0, p0), the system evolves

to a point zt at any time t 2 [0, ⌧ ] which is determined by the force protocol. We can write

zt =  t,0[z0;�] (2.4)

at time t, as a trajectory  t,0[z0;�] in the phase space which is a function of the initial

point z0 and a functional of the force protocol � [6]. This trajectory represents the forward

protocol. Now, provided the Hamiltonian H0 is time reversal invariant, we can define the

backward protocol �̃ as

�̃t = �⌧�t (2.5)

and the backward trajectory can be related to the forward trajectory as follows,

zt =  t,0[z0;�] = ✏ ⌧�t,0[✏z⌧ ; �̃] (2.6)

where ✏z = ✏(q, p) = (q,�p). This is expressed in a schematic in the figure (2.1).

Now after understanding of the system and the driving, we can think about the form of work

to obtain the Crook’s relation or the Jarzynski equality. We know from thermodynamics

that,

�E = W +Q

For an isolated driven system, Q is zero and hence we can write W as the change in energies

of the final and the initial states. Therefore, we can define work [3] as

W [z0;�] = H(z⌧ ,�⌧ )�H(z0,�0) (2.7)
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Figure 2.1: Microscopic reversibility in a classical Hamiltonian system. The state z0 in the
forward process evolves from t = 0 to t to the state zt =  t(z0,�t) upto t = ⌧ . In the reverse
process, the initial state ✏z⌧ evolves from t = 0 to t = ⌧ � t to the state ✏z⌧�t =  ⌧�t(✏z⌧ , �̃t)
upto t = ⌧ [6].

In terms of the force protocol, we can write work [4] as

W [z0,�] =

Z
⌧

0

dt �̇
@H(zt,�t)

@�t
(2.8)

Now consider,

he��W i =
Z

dz0 ⇢0 e
��W

=
1

Z�0

Z
dz⌧

���
@z0

@z⌧

��� e��(H(z0,�0)+W )

=
Z�⌧

Z�0

Due to Liouville’s theorem,
��� @z0
@z⌧

��� = 1. The free energy(F ) of an equilibrium state in terms

of the partition function(Z) is F = �kBT ln(Z). Therefore we get the Jarzynski equality,

he��W i = e
��(F⌧�F0) = e

���F

8



where � = 1
kBT

.

For the case of closed system, the driving force is applied only to the system and hence

the bath Hamiltonian and the interaction Hamiltonian remains unchanged and the definition

of work given by the equation(2.7) still holds and Jarzynski equality can be derived in the

same manner. Therefore, this proof can be extended to the closed and open systems as well

[8],[9].

2.2 Quantum work fluctuation relation

The previous section dealt with the work fluctuations for a classical system. In this section

we will look at work fluctuations for the quantum case. Now, the Hamiltonian H(z,�t) will

be replaced by operator H(�t) and the probability density by the density matrix ⇢(�t),

⇢(�t) =
e
��H(�t)

Z(�t)

where Z(�t) = Tr e��H(�t).

The principle of microreversibility can be understood in terms of the unitary operator

which describes the driving process. If Ut[�] describes the forward process, then the reverse

process can be described by U⌧�t[�̃] [6]. These are related as,

Ut,⌧ [�] = ✓
†
U⌧�t,0[�̃] ✓ (2.9)

where ✓ is the quantum- mechanical time-reversal operator. So if U⌧,0[�] takes an initial

state |ii to a final state |fi in time t = 0 to ⌧ then the reverse driving U⌧�t,0[�̃] takes the

time-reversed initial state ✓|fi to the final state ✓|ii. It is important to note that to achieve

time reversal, we need to change the sign of the momenta (this corresponds to applying ✓)

as well as reverse the sequence of Hamiltonians in time(it is a nonautonomous system).

Now we can look at the definition of quantum work which is challenging for the following

reasons:

9



• The definition of work similar to equation(2.8) is not possible because the notion of

trajectories breaks down in the case of quantum mechanics because of the inherent

uncertainty in the position or momentum at each time step.

• The definition of work operator as W = H(�t) �H(�0) is not possible as one cannot

operate this on a single state to get a value of work. The two observables cannot be

simultaneously observed as the Hamiltonians at di↵erent times don’t commute.

• Also, we know from thermodynamics that work is not a state variable. Therefore, we

cannot get the value by doing a single measurement on a single state.

Due to the above reasons, a method called two-time measurement is used to define

quantum work. In the next section we discuss the two-time measurement and how to derive

the fluctuation relations from the defined work for a quantum system.

2.2.1 Two-time measurement

In the two-time measurement method, the systems initial energy is measured at time t = 0,

then the system is evolved through a unitary transformation upto some time t and the final

energy of the system is again measured. Work is defined as the di↵erence of the eigenvalues

obtained in the initial and the final measurements.

W = Ef � Ei

where Ei and Ef are eigenvalues of initial and final Hamiltonians.

Now the work probability distribution can be defined as,

P (W ) =
X

i,f

�(W � (Ef � Ei)) P (Ef , Ei) (2.10)

where P (Ef , Ei) is the joint probability to measure Ei at time 0 and Ef at time t which can

be expanded as follows,

P (Ef , Ei) = Tr [P̂Ef
Û(t, 0) P̂E0 ⇢̂0 P̂E0 Û †(t, 0) P̂Ef

] (2.11)

10



where P̂ai
= |aiihai| is the projection operator. P̂E0 ⇢̂0 P̂E0 corresponds to the density matrix

after the measurement is done at t = 0. The term Û(t, 0) P̂E0 ⇢̂0 P̂E0 Û †(t, 0) refers to the

unitary evolution of the density matrix after the first measurement. And the projection

operators at the ends represent the final measurement done on the evolved density matrix

at time t. Now we consider two Hilbert space basis sets |i, Eii and |j, Efi (corresponding to

di↵erent times) where i and j represent degenerate eigenstates [7].

P (Ef , Ei) =
X

i,f

P [j, Ef ; i, Ei] =
X

i,f

P (j, Ef/i, Ei) P (i, Ei) (2.12)

where,

P (j, Ef/i, Ei) = |hj, Ef |Û(t, 0)|i, Eii|2 (2.13)

P (i, Ei) = hi, Ei|⇢̂0|i, Eii (2.14)

The probability distribution for W is given by the di↵erence in the values Ef and Ei and

is given by equation(2.10). In order to show the Jarzynski equality, it is convenient to work

with the generating function associated with this distribution. The generating function can

be written as

G(u) =

Z 1

�1
dWe

�iuW
P (W ) =

X

Ei,Ef

e
�iu(Ef�Ei) P (Ef , Ei) (2.15)

The n
th derivative of generating function with respect to u evaluated at u = 0 gives the n

th

moment i.e

hW ni = (�i)n
@
n

@un
G(u)

�����
u=0

Now we put equation(2.11) into the equation(2.15) to simplify the expression for generating

function.

G(u) =
X

Ei,Ef

e
iu(Ef�Ei) Tr [P̂Ef

Û(t, 0) P̂E0 ⇢̂0 P̂E0 Û †(t, 0) P̂Ef
] (2.16)

G(u) = Tr [P̂E0 ⇢̂0 P̂E0

X

Ei

e
�iuEi P̂E0 Û †(t, 0)

X

Ef

e
iuEf P̂Ef

Û(t, 0)] (2.17)

11



using the properties,

P̂
2
ai
= P̂ai

X

ai

aiP̂ai
= Ã

where Ã is the operator whose eigenvalues are ai, G(�) can further be simplified as

follows.

G(u) = Tr [ ¯̂⇢0e
�iuH(0)

Û †(t, 0) eiuH(t)
Û(t, 0)] (2.18)

¯̂⇢0 =
X

E0

P̂E0 ⇢̂0 P̂E0

Now, if the initial density matrix doesn’t have any coherences i.e if [H(0), ⇢̂0] = 0, then

[P̂E0 , ⇢̂0] = 0 as H0 =
P

E0
E0P̂E0 . This implies that the projection operator and the density

matrix can be flipped inside the trace. Therefore,

¯̂⇢0 =
X

E0

P̂E0 ⇢̂0 P̂E0 =
X

E0

⇢̂0P̂
2
E0

= ⇢̂0 (2.19)

Therefore, the simplified expression of the generating function that will help us obtain the

Jarzynski equality is

G(u) =
D
e
�iuH(0)

Û †(t, 0) eiuH(t)
Û(t, 0)

E

⇢̂0

(2.20)

If we choose the initial density matrix as ⇢0 =
e
��H(0)

Z0
then we have,

G(u) =
1

Z0
Tr [e��H(0)

e
�iuH(0)

e
+iuH

H(t)] (2.21)

Now consider � = i� and Zt = Tr [e��H(t)] then

G(i�) =
1

Z0
Tr[e��H(t)] =

Zt

Z0
(2.22)

And as the partition function can be related to the free energy as F = �(lnZ)/�, we get

12



he��W i = G(i�) = e
���F

Therefore, we obtain the Jarzynski equality by using the definition of work given by the

two-time measurement. Although the quantum Jarzynski equality can be proven analytically,

there have been many challenges to experimentally verify this due to the limitations of the

projective measurements done on a quantum system.

The Crooks relation can be proven in a similar manner. The following equation is a

symmetry relation of the generating function which can be derived using the principle of

microreversibility [6].

Z0 G(u,�) = Z⌧ G(�u+ i�, �̃) (2.23)

where G(u,�) corresponds to the forward process and G(�u + i�, �̃) correspond to the

reverse process. Upon taking the inverse fourier transform on both sides, and using the

properties of the fourier transform, if f(⌘) is the fourier transform of f(x) and if h(x) =

f(x� x0) then the fourier transform of h(x) is e�ix0⌘ f(⌘), we get

Z0 P (W,�) = Z⌧ e
�W

P (�W, �̃) (2.24)

P (W,�)

P (�W, �̃)
= e

�(W��F ) (2.25)

This is the Crooks relation. The following chapters will talk about the system we chose

for this study and also how we can understand the properties of work for this system.
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Chapter 3

Kicked rotor and the Floquet theory

In this chapter I will introduce the system that we study in this work which is the kicked

rotor. It is a periodically driven system which shows chaotic dynamics in di↵erent regimes

determined by a driving parameter. Another interesting point to note is that chaotic be-

haviour of the classical kicked rotor system vanishes in its quantum analogue. Instead the

system exhibits dynamical localization which can also be connected to the Anderson local-

ization studied in the field of condensed matter physics [15]. Here I will only be talking

about the kicked rotor system and dynamical localization.

3.1 Kicked rotor system

The kicked rotor system is characterized by the Hamiltonian,

H(t) =
L
2

2
+ k cos(✓)

X

n

�(t� n) (3.1)

and it describes the free rotation of a pendulum with angular momentum L and is periodically

kicked by applying a potential whose strength is given by k. The moment of inertia I and

the time period of the kicking ⌧ is normalized to 1.
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3.1.1 Classical description

This system can be studied classically by discretizing the time of evolution of the system and

solving the Hamilton’s equations in this discrete time intervals. Therefore, the equations of

motion take the form of a discrete map which in this case is the Standard map [10] ,[11].

✓n+1 = ✓n + Ln+1 (3.2)

Ln+1 = Ln + k sin ✓n (3.3)

This simple system can show complex behaviour which is studied using the Kolmogorov-

Arnold-Moser theory which represents the regular ballistic flow with tori. For small values

of k, the system shows regular ballistic behaviour for any initial condition. There is a critical

value of k ⇡ 1.97 where chaos starts to set in. As k is increased, the system becomes more

and more chaotic and for k > 5 most of the regular parts disappear [12]. This can be shown

in the phase space plots shown in the figure (3.1).Therefore, as k is increased the system

becomes di↵usive. When |Ln| becomes greater that 2⇡, then the consecutive ✓n become

uncorrelated and the sign of sin ✓ becomes random. This implies that the evolution of Ln is

like a random walk. A more quantitative description is given by the function fN(�L) which

is the probability that after N kicks, Ln � L0 takes the value �L i.e

fN(�L) = h�(�L� Ln + L0)i (3.4)

where the averaging is over all the initial conditions. We can write the delta function in

terms of its Fourier integral so as to evaluate the average in the above equation [10].

fN(�L) =
D 1

2⇡

Z 1

�1
dt e

i(�L�Ln+L0)t
E

(3.5)

=
D 1

2⇡

Z 1

�1
dt e

i(�Lt ⇧n�1
n=0 e

�i(Ln�L0)t
E

(3.6)

=
D 1

2⇡

Z 1

�1
dt e

i(�Lt ⇧n�1
n=0 e

�ikt sin ✓n

E
(3.7)
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Figure 3.1: Phase space plots for the classical kicked rotor showing di↵erent behaviour for
di↵erent kick strengths k = 0.5, 0.9716 and 5 respectively [13].

Now we take the k large limit where the successive ✓n become uncorrelated and therefore

the averages on the right hand side can be calculated independently as,

he�ikt sin ✓i = 1

2⇡

Z 2⇡

0

e
�ikt sin ✓

d✓ = J0(kt) (3.8)

where J0(kt) is the Bessel function. Putting this in the fN(�L) equation, we get

fN(�L) =
1

2⇡

Z 1

�1
dt e

i�Lt [J0(kt)]
N (3.9)

For large N,

[J0(kt)]
N = e

N ln J0(kt) = exp
�
� N

4
(kt)2 + ...

�
(3.10)

Therefore, in the N ! 1 the equation (3.9) can be written as,

fN(�L) =
1

k
p
⇡N

exp(�(�L)2

k2 N
) (3.11)

Then the average h(�L)2i is given by the following form and increases linearly with N .

h(�L)2i = k
2

2
N (3.12)
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The Gaussian form of fN(�L) and the linear increase of the quadratic average indicates

that this is a di↵usive process with di↵usion constant

D =
k
2

2⌧
(3.13)

in our case ⌧ = 1.

This is only for the large k limit and when the di↵usion constant is plotted as a function

of time, we observe oscillations about the k
2
/2 form which occurs due to the residual corre-

lations between the successive kicks [14]. An improved expression for the di↵usion constant

is given by,

D =
k
2

4⌧
(1� 2J2(k) + 2J2

2 (k)) (3.14)

where J2 is an ordinary Bessel function. This was simulated and observed as shown in the

figure (3.2). The points that are out of the improved expression trend are due to the remnant

ballistic behaviour areas in the phase space which are referred to as the accelerator modes.
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k

0

100

200

300

400

500

600

700

800

900

1000

D
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k2/2
Bessel form

Figure 3.2: Di↵usion constant as a function of kick strength k.
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3.2 Floquet theory

We will look at the general idea of the Floquet theory that can be used to study the quantum

kicked rotor system. Consider a Hamiltonian which had a periodic dependence on time given

by,

H(t) = H0 + V (t) (3.15)

where V (t+⌧) = V (t) and H0 corresponds to the time independent part of the Hamiltonian.

As the Hamiltonian has an explicit time dependence, we cannot solve the time-dependent

Schrodinger equation using the ansartz,

 n(x, t) = exp
�
� i

~En t
�
 n(x) (3.16)

We know that E is no longer time independent but H is still invariant for discrete time

steps of ⌧ interval each. Therefore, we can find solutions  n(x, t) of the time independent

Schrodinger equation that is also the common eigenbasis of the time translation shift operator

T⌧ [10] i.e

T⌧  n(x, t) =  n(x, t+ ⌧) = �n  n(x, t) (3.17)

For these wavefunctions to be stationary, �n must be a phase factor, therefore

 n(x, t+ ⌧) = e
�i�n n(x, t) (3.18)

which implies that  n(x, t) can take the form

 n(x, t) = e
�i!ntun(x, t) (3.19)

where un(x, t + ⌧) = un(x, t) and e
�!nt = e

�i�n . The un(x, t) are called the floquet modes

and !n are called the quasi-energies as they form the eigenvalues of an e↵ective Hamiltonian

referred to as the Floquet Hamiltonian. We can write the total wavefunction as,

| (t)i =
X

n

e
�i!nt an |un(t)i (3.20)

where an = hun(t)| (0)i which will give the above equation a form of evolved state due to

the Floquet Hamiltonian. Substituting this form of an in the above equation, we get an

19



e↵ective form of unitary time evolution operator as shown below.

| (t)i =
X

n

e
�i!nthun(t)| (0)|un(t)i (3.21)

=
X

n

e
�i!nt|un(t)ihun(t)| (0)i (3.22)

This implies the unitary time evolution operator can be written as

U(t, 0) =
X

n

e
�i!nt |un(t)ihun(t)| (3.23)

For t = ⌧ , we can write simplify the equation by using the periodic property of the floquet

modes un(t+ ⌧) = un(t) to

U(⌧, 0) =
X

n

e
�i!n⌧ |un(0)ihun(0)| (3.24)

This is like an eigenvalue equation for the unitary time evolution operator with eigenvalues

e
�i!n⌧ and the floquet modes un(0) being the eigenvectors. U(⌧, 0) is called the Floquet

operator.

The unitary time evolution operator for various times can be written as U(t +N⌧, 0) =

U(t, 0)U(N⌧, 0) and U(N⌧, 0) = [U(⌧, 0)]N []. Therefore, we can study the system strobo-

scopically, i.e, see how the system has changed after every time period just by knowing the

Floquet operator for the system.

3.2.1 Floquet operator for a periodically kicked system

We will derive a general form of the floquet operator for a delta kicked system in this section.

Lets begin with the Hamiltonian that describes such a system.

H(t) = H0 + V0

X

N

�(t�N⌧) (3.25)

To proceed lets replace for time being the delta function with a pulse having a finite width

�⌧ and height (�⌧)�1 [5]. And the Hamiltonian can be written as
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H(t) =

8
<

:
H0 n⌧ < t < (n+ 1)⌧ ��⌧

H0 +
1
�⌧

V0 (n+ 1)⌧ ��⌧ < t < (n+ 1)⌧

The time evolution operator U(t) can be obtained directly as the Hamiltonian is piecewise

constant. For 0 < t < ⌧ ��⌧ ,

U(t) = exp (� i

~H0t) (3.26)

and for ⌧ ��⌧ < t < ⌧ ,

U(t) = exp
h
� i

~(H0 +
1

�⌧
V0)(t� ⌧ +�⌧)

i
U(⌧ ��⌧) (3.27)

As the Floquet operator is U(⌧), we get

F = exp
h
� i

~(H0 +
1

�⌧
V0)�⌧

i
exp

⇣
� i

~H0(⌧ ��⌧)
⌘

(3.28)

In the limit �⌧ ! 0, we can separate the first term into two exponentials and we get the

following form.

F = exp
⇣
� i

~V0

⌘
exp

⇣
� i

~H0⌧

⌘
(3.29)

In the next section this general form is used to get a form for the floquet operator of the

quantum kicked rotor system.

3.2.2 Quantum kicked rotor system

The kicked rotor is described by the Hamiltonian,

H(t) =
L
2

2
+ k cos ✓

X

n

�(t� n) (3.30)

where the moment of inertia I and the time period ⌧ are taken to be 1.
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From equation (3.29), the floquet operator for this system can be written as,

F = exp(� i

~k cos ✓) exp(�
i

~
L
2

2
⌧) (3.31)

Floquet modes corresponding to this floquet operator can be written in terms of the

eigenbasis of the operator L2 = �~2 @
2

@✓2
. The eigenbasis of L2 operator is given by,

 n = h✓|ni = 1p
2⇡

exp(in✓)

Therefore, Fmn = hm|F |ni takes the form,

Fmn =
1

2⇡

Z 2⇡

0

exp(�im✓) exp(� i

~k cos ✓) exp(� i

~
L
2

2
⌧) exp(in✓) d✓

Fmn = exp(� i

~
n
2~2
2

⌧) in�m
Jn�m(

k

~) (3.32)

where Jn�m(
k

~) is the bessel function. This expression will be used to construct the

Floquet operator numerically.

The evolution of the system can be directly calculated using this form of the floquet

operator starting from any given initial state. Lets assume a(✓) to be the probability of the

rotor being at an initial angle ✓, then the initial state in the angular momentum basis is

given by,

A0 =

0

BBBBBB@

a1

a2

.

.

.

1

CCCCCCA
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where an is the fourier transform of the a(✓) i.e

an =
1

2⇡

Z 2⇡

0

a(✓)e�in✓
d✓ (3.33)

Now an evolved state can be written as,

AN = F
N
A0 (3.34)

We saw in the earlier section that the hL2i for the classical system increases linearly with

N . Here we get the quantum mechanical hL2i so as to compare it with the classical one.

hL2i = A
†
N

L
2
AN (3.35)

where we can use the expression of AN in terms of A0 to simplify. When hL2i is plotted
as a function of number of kicks, we get a trend that is very di↵erent from the classical one.

The region where the classical system shows chaotic behaviour, the quantum system exhibits

localization as shown in the figure (3.3). To understand this, we first consider the expression

of hL2i in terms of the floquet modes and eigenvalues [10] i.e

hL2i =
X

i,j,q

e
+(!j�!i)N⌧

~2q2
2⇡

hn|uii hui|qi hq|uji huj|ni (3.36)

This is obtained for ground state initial condition i.e starting with l = 0 state. From

the expression, it is evident that the N dependence is in the exponential term which keeps

oscillating. When ln(fN(L)) is plotted, a distribution occurs which suggests an exponential

localization,

fN(L) =
1

ls
exp (�2|L|

ls
) (3.37)

where ls is known as the localization length. For kick number N < ls, the system fails

to recognise the discrete spectrum and hence exhibits classical di↵usive behaviour. But for

the case N > ls, the exponential term in the hL2i expression oscillates very rapidly and
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Figure 3.3: Dynamical localization in a quantum kicked rotor for k = 5 [10].

therefore cancels out to give an expression that is independent of N . We look for signatures

of dynamical localization in the work distribution and its moments. These will be discussed

in the chapter (5), on numerical results and discussion.
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Chapter 4

Work distributions for the quantum

kicked rotor

In the last chapter, we looked at the classical and quantum versions of kicked rotor and how

di↵erent the behaviour is after large number of kicks for large kick strengths. We also got an

idea of the floquet theory which will help us study the quantum version of the kicked rotor.

In this chapter, we will get the quantum work distribution forms with the help of the floquet

theory.

Using the two-time measurement method, we can write work to be W = Ef �Ei and the

work distribution can be written as,

P (W ) =
X

i,f

�(W � (Ef � Ei))
��hf |U(t, 0)|ii

��2 P (i) (4.1)

where U(t, 0) is the unitary time evolution operator that captures the driving. In the

case of kicked rotor U(⌧, 0) = F .

For the single kick case, we can write

PF (W, ⌧) =
X

m,n

�(W � (Em � En))
��hm|U(⌧, 0)|ni

��2 P
0(n) (4.2)
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=
X

m,n

�(W � (Em � En))
��hm|F |ni

��2 P
0(n) (4.3)

=
X

m,n

�(W � (Em � En)) hm|F |ni hn|F †|mi P 0(n) (4.4)

where m,n corresponds to the angular momentum basis states. Both hm|F |ni = Fmn

and hn|F †|mi = F
†
nm

can be calculated as shown in the previous section.

Fmn = hm| exp(�k

~ cos(✓)) exp(�i
L
2

2
⌧)|ni

= exp(� i

~
n
2~2
2

⌧) in�m
Jn�m(

k

~) (4.5)

Similarly,

F
†
nm

= hn| exp(+i
L
2

2
⌧) exp(+

k

~ cos(✓))|mi

= exp(+
i

~
n
2~2
2

⌧) im�n
Jm�n(�

k

~) (4.6)

Therefore,

F
†
nm

= (Fmn)
⇤ (4.7)

Hence we can write the work distribution for single kick as,

PF (W, ⌧) =
X

m,n

�(W � (Em � En))
��Fmn

��2 P
0(n) (4.8)

The
��Fmn

��2 term is equal to J
2
n�m

(k~) and therefore PF (W, ⌧) can be simplified to

PF (W, ⌧) =
X

n

�(W ) J2
0 (
k

~) P
0(n) +

X

m,n

�(W � (Em � En)) J
2
n�m

(
k

~) P
0(n) (4.9)
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PF (W, ⌧) = �(W ) J2
0 (
k

~) +
X

m,n

�(W � (Em � En)) J
2
n�m

(
k

~) P
0(n) (4.10)

The floquet operator elements are created using the equation (4.5), and the equation(4.8)

is used to obtain the work distributions. From equation (4.10) it is clear that the probability

of any work value is given by a bessel function of order equal to the di↵erence in the momen-

tum levels. As the value of bessel function decreases as the order increases, the probability

of remaining in the same state is more probable when only 1 kick is applied to the system.

This is also observed in the numerical simulation of work distribution shown in the figure

(4.1 and 4.2). From figure (4.2) it can also be inferred that the work distribution seems

to follow the Crooks relation i.e the probability of occurrence of a negative work value is

less than that of the corresponding positive work and this decreases as the value of work is

increased. To quantify this, we tried to plot ln[ PF (W )
PB(�W ) ] versus W and check for the slope

which is expected to be 1/T value considered in the simulation.

Figure 4.1: Work distributions after 1 kick, with ground state initial conditions i.e T = 0 for
k values 1,3,5 and 6.

Now lets move to the case of N kicks. Similar to equation (4.1) we can write for the form
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Figure 4.2: Work distributions after 1 kick, with canonical initial state with T = 1 for k

values 1,3,5 and 6.

of work distribution after N kicks as,

PF (W,N⌧) =
X

m,n

�(W � (Em � En))
��hm|U(⌧, 0)N |ni

��2 P
0(n) (4.11)

PF (W,N⌧) =
X

m,n

�(W � (Em � En))
��hm|FN |ni

��2 P
0(n) (4.12)

We can express the floquet operator in terms of the floquet modes and its eigenvalues.

F =
X

i

exp(�i✏i⌧)|�(0)ih�(0)| (4.13)

Using the orthonormality property of the floquet modes, we get

F
N =

X

i

exp(�i✏iN⌧)|�(0)ih�(0)| (4.14)
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Putting this in the work distribution,

PF (W,N⌧) =
X

n,m

�(W � (Em � En)) hm|FN |ni hn|(F †)N |miP 0(n) (4.15)

PF (W,N⌧) =
X

n,m,i,j

�(W � (Em � En)) hm| exp(�i✏iN⌧)|�(0)ih�(0)||ni

hn| exp(+i✏iN⌧) |�(0)ih�(0)|mi P 0(n) (4.16)

Therefore, the work distribution for N kick case can be written as follows,

PF (W,N⌧) =
X

n,m,i,j

�(W � (Em � En)) exp(�i(✏i � ✏j)N⌧) hm|�i(0)i h�i(0)|ni

hn|�j(0)i h�j(0)|mi P 0(n) (4.17)

In the asymptotic limit, i.e when N ! 1, only the ✏i = ✏j terms will contribute and

hence we get the following simplified form.

PF (W,N⌧) =
X

n,m,i

�(W � (Em � En)) |hm|�i(0)i|2 |h�i(0)|ni|2 P
0(n) (4.18)

We cannot simplify equation (4.17) further without having the knowledge about the floquet

modes. Hence we will have to use numerical simulations to obtain work distribution. Once

we get the floquet modes and the eigenvalues in terms of the angular momentum basis, we

can use the equation (4.17) to obtain the work distributions numerically. Before trying to

plot the work distributions for large number of kicks, we were interested in looking at the

trends of the average and the variance of these work distributions as a function of number

of kicks. In the next chapter, I will show the numerical simulations done to examine these

trends. And then I will also discuss about the simulated work distributions for the N kick

case.
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Chapter 5

Numerical results and discussion

The analytical expression for work distributions for N > 1 kicks is limited to equation(4.17)

as mentioned in the previous chapter. Therefore, we have to resort to numerical methods

to obtain the work distributions after large number of kicks. Numerical simulation for large

number of kicks comes with complications. As we approximate the number of momentum

states available for the system, this has to be large enough when large number of kicks are

given to the system or when the temperature is high. To handle large system sizes we need

more computational power and time. Hence to get an idea of the work distributions before

actually simulating them, we looked at the trends of the average and the variance of these

work distributions and verified if they match with the expected trends. We also looked at

the Quantum-Classical correspondence at the level of average and variance of work about

which I will discuss. Finally, I will talk about the work distributions after N kicks.

5.1 Some important numerical details

5.1.1 Classical simulation

For simulating the classical system, we start with some initial ✓ and L value from a random

uniform distrbution. We then evolve these values using the standard map. This is done

multiple times (100,000 realisations were used in our study) so as to get the required average
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values. For the case of work distributions we plot a histogram with all the work values from

di↵erent realisations. For T = 0 case, we take the initial L = 0 for all the realisations. For

T 6= 0, so as to incorporate the temperature into the initial state, we take L values from the

distrbution,

⇢(L) =
1p

2⇡hL2i
exp

�
� L

2

2hL2i
�

which is nothing but a normal distrubtion with mean zero and variance equal to
p
kBT

(kB is the Boltzmann constant).This is using the fact that hL2i
2 = kBT

2 following from the

equipartition theorem.

5.1.2 Quantum simulation and Hilbert space truncation

For the quantum case, we primarily work in the angular momentum basis. System is dec-

sribed by the angular momentum eigenstates and the floquet operator which is used to evolve

the system is also written in the angular momentum basis.We consider some ’2m+1’ (-m to

+m) angular momentum states to represent the system. For any particular value of k or N ,

the converge of the required trends is used to decide where to truncate. However, this varies

for di↵erent cases. When the temperature of the system is increased, it is expected that the

number of states accessed will increase. Also, when trying to verify the quantum-classical

correspondence i.e when we take the limit ~ ! 0, the number of states of the system should

increase. This can crudely be understood as follows. We know that the eigenvalues of the

L operator are of the form ~m. Therefore, to attain a particluar L value the system has to

attain a larger m value as ~ becomes smaller. Also, one would expect that as ~ ! 0 the

system would go from a discrete energy system to a more continuous system.

For T = 0, the initial state of the system is considered to be the zero momentum state.

For T 6= 0, the initial state is taken from the canonical distribution given by the density

operator,

⇢0 =
e
��H0

Z

=
X

m

e
��

(~m)2

2

P
e
��

(~m)2

2

|mihm|

The average work values are calculated from the trace Tr[(HN � H0)⇢0] where HN is the
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hamiltonian after N kicks and H0 is the initial hamiltonian.The work distribution is given

by the form,

P (W ) =
X

m,n

�(W � (Em � En))
��hm|FN |ni

��2 P
0(n)

where the transition probability term
��hm|FN |ni

��2 is the product of Fmn and its complex

comjugate. In order to numerically deal with the delta function, we use a gaussian represen-

tation of the dirac delta function which is given by,

�(W � (Em � En)) = lim
⌘!0

1

⌘
p
⇡

exp[�
⇣(W � (Em � En))

⌘

⌘2

]

where ⌘ is a parameter which is taken to be some small value in the numerics.

5.2 Average and Variance of Work

The work obtained from two-time measurement is defined as W = Ef � Ei and this value

for the case of the kicked rotor is given by,

W = Ef � Ei =
L
2

2
� L

2
in

2

We can see that work is directly proportional to the change in the square of angular momen-

tum. Therefore we expect dynamical localization in the average work as a function of the

number of kicks after some value of the kick strength in the quantum case. For k � 5, the

classical phase space is predominantly chaotic and has very small islands that characterize

ballistic behaviour. Therefore, the average work trends for k = 4 and k = 5 were studied.

The classical and quantum cases are compared in the figures (5.1) and (5.2).

As seen in the figures, the classical and quantum trends for average and variance of work

in the case of k = 4 are similar i.e both exhibit di↵usive behaviour. But for the case of

k = 5, we observe dynamical localization setting in for the quantum case while the classical

plot shows di↵usive behaviour. The above trends are obtained for initial state being ground

state i.e temperature T = 0. A good question to ask is what will happen to these trends if
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Figure 5.1: Comparison of classical and quantum trends of (a) Average work and (b) Variance
of work for k = 4 and T = 0

we consider a canonical initial state corresponding to some temperature T . We compared

these trends for di↵erent temperatures as shown in the following figures (5.3, 5.4, 5.5 and

5.6).
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Figure 5.3: Comparison of average quantum work for k = 4 and temperatures T = 1, 10, 100
and 1000.
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Figure 5.2: Comparison of classical and quantum trends of (a)Average work and (b) Variance
of work for k = 5 and T = 0
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Figure 5.4: Comparison of variance of the quantum work for k = 4 and temperatures
T = 1, 10, 100 and 1000.
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Figure 5.5: Comparison of average quantum work for k = 5 and temperatures T = 1, 10, 100
and 1000.
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Figure 5.6: Comparison of variance of the quantum work for k = 5 and temperatures
T = 1, 10, 100 and 1000.
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We can see that for k = 5, the system exhibits dynamical localization even when we

increase the temperature. This trend is observed both for the average and the variance

of the quantum work. It is interesting to note that for k = 4, the behaviour of the system

changes from di↵usive to exhibiting dynamical localization when the temperature is increased

as shown in the figures (5.3) and (5.4). This is yet to be analysed and is a significant part

of the future work.

5.2.1 Quantum-Classical correspondence at the level of

average and variance of work

As seen in the previous section, the kicked rotor system exhibits very di↵erent behaviour in

the classical and the quantum regimes. It is therefore interesting to see what happens if we

take the ~ ! 0 limit i.e how the trends of average and variance of work change in this limit.

This was done again for the cases k = 4 and k = 5 for temperatures T = 0 and T = 100.

The quantum plots do move closer to classically exhibited one as ~ ! 0 for the all the cases

considered as shown in the following figures (5.7), (5.8), (5.9) and (5.10).
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Figure 5.7: Quantum-Classical correspondence for (a) Average work and (b) Variance of
work for k = 4 and T = 0.
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Figure 5.8: Quantum-Classical correspondence for (a) Average work and (b) Variance of
work for k = 4 and T = 100.
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Figure 5.9: Quantum-Classical correspondence for (a) Average work and (b) Variance of
work for k = 5 and T = 0.

5.3 Work distributions

In this section, I will discuss the work distributions obtained in both the classical and quan-

tum cases.
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Figure 5.10: Quantum-Classical correspondence for (a) Average work and (b) Variance of
work for k = 5 and T = 100.

5.3.1 Classical work distributions

We know that the average and variance of work values for the classical kicked rotor system

increases linear to N and we therefore expect that the work distributions flatten overtime.

The mean value increases with increased number of kicks as shown in the following figures

(5.11),(5.12),(5.13). Also,the standard deviation � increases as
p
N as indicated by the val-

ues. The distributions can be obtained by evolving the initial conditions using the standard

map and calculating the work value from the final angular momentum values.
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Figure 5.11: Classical work probability density for k = 4 and T = 100 after N = 10.
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Figure 5.12: Classical work probability density for k = 4 and T = 100 after N = 50.
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Figure 5.13: Classical work probability density for k = 4 and T = 100 after N = 300.

W/N distributions

As both the average work and variance of work scale linearly with the number of kicks, it

is expected that the distribution of W/N should remain saturated i.e the average and the

variance ofW/N should remain nearly a constant with the number of kicks. This was verified

and can be seen in the figures (5.14),(5.15),(5.16).

Verifying crooks relation

Using these classical work distributions, the Crooks relation can be verified. When ln
�

P (W )
P (�W )

�

is plotted as a function W , we expect to get a linear plot with slope equal to � = 1/T . This

was verified for three di↵erent temperatures T = 1, 2 and 5 as shown in the following figures

(5.17),(5.18). For this we take the bin egde values as the work and the corresponding bin

probabilities for obtaining the crooks relation plots.
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Figure 5.14: Classical W/N distributions for k = 4 at T = 100 after (a) N = 10 (b) N = 50
kicks.
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Figure 5.15: Classical W/N distributions for k = 4 at T = 100 after (a)N = 100 (b) N = 200
kicks.
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Figure 5.17: Crooks relation for k = 4, N = 1, T = 1
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Figure 5.16: Classical W/N distributions for k = 4 at T = 100 after (a) N = 300 (b)
N = 400 kicks. It is clear from these plots that the distribution has come to a saturation.
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Figure 5.18: Crooks relation for k = 4, N = 1, T = 2

5.3.2 Quantum work distributions

The quantum work distributions have peaks at discrete work values corresponding to di↵er-

ence in the initial and the final energies after multiple transitions due to the kicks. From

the plots it is evident that the work probabilities follow the trend suggested by the crooks

relation i.e the probability of positive work is more than that of the negative work. This

trend is more obvious for lower temperature values. Work distributions were plotted for two
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di↵erent temperatures T = 1 and T = 100. The di↵erence is visible from the plots. However,

it is very di�cult to see dynamical localization at the distribution level unlike in the classical

case. The following figures (5.19), (5.20) show the quantum work distributions.
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Figure 5.19: quantum work distributions for k = 4 at T = 1 after (a)N = 10 (b) N = 100
kicks.
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Figure 5.20: quantum work distributions for k = 4 at T = 100 after (a) N = 10 (b)N = 100
kicks.

5.3.3 Quantum-Classical correspondence at the level of

work distributions

The quantum-classical correspondence at this level can be seen by taking the limit ~ ! 0

and getting the work distribution for each ~. These plots does show that the quantum work

distribution trends to the classical distribution in the limit. It is important to note that the
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quantum work distribution shows a lot of oscillations which increases upon decreasing ~ and

when ~ = 0.05, the oscillations in work distribution cancel out and therefore becomes very

similar to the classical distribution. These are shown in the figures (5.21), (5.22).
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Figure 5.21: (a) quantum-classical correspondence of work distributions for k = 4, T = 100
after 60 kicks (b) zoomed version of the same.

-50 0 50

W

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

P
(W

)

h̄ = 1
h̄ = 0.5
h̄ = 0.05
Classical

(a)

-10 0 10

W

0

0.005

0.01

0.015

0.02

0.025

P
(W

)

h̄ = 1
h̄ = 0.5
h̄ = 0.05
Classical

(b)

Figure 5.22: (a) quantum-classical correspondence of work distributions for k = 4, T = 100
after 90 kicks (b) zoomed version of the same.
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5.4 Verification of the thermodynamic uncertainty re-

lation

One of the recent discoveries in the field of stochastic thermodynamics is the thermody-

namic uncertainty relation(TUR) which relates the non-equilibrium dissipation and the non-

vanishing currents. For systems in non-equilibrium steady state, the TUR gives a relation

between the entropy production rate � and the variance of the non-vanishing current (X)

as [16],[18],

�
V ar[X]

hXi2 � 2kB (5.1)

Therefore, the TUR quantifies the trade-o↵ between the precision and the thermodynamic

cost. If a similar relation for the dissipated work [17] is considered where the entropy

production �T = Wdis, then we get,

hW 2
dis
i � hWdisi2

hWdisi
� 2kBT (5.2)

We verified this TUR for our system which is an example of a quantum markovian system.

It was observed that for di↵erent k values and di↵erent temperatures, the value of LHS of

the equation (5.2) divided by the temperature of the system was greater than 2. This is also

captured in the following plots (5.21).

5.5 Conclusion and Future work

In this study on periodically driven kicked rotor system, we investigated the work distribu-

tions and their moments as a function of number of kicks given to the system. As expected,

we observe di↵usive behaviour of moments in the classical case and in the quantum case, we

observe dynamical localization. After this we looked at the classical and quantum work dis-

tributions and the above mentioned di↵erence in behaviour at the level of distributions.We

also verified the Crooks relation using these distributions. On a tangential note, we also

examined the trends of the distributions and their moments when the ~ ! 0 limit is taken
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Figure 5.23: (a)The thermodynamic uncertainty term plotted as a function of number of
kicks at di↵erent temperatures for k = 4. (b) zoomed version of the plot same where it is
clear that all three graphs start from above the value 2.

in order to verify the Quantum-Classical correspondence principle. As discussed earlier, we

observe a nice transition of the quantum trends to the classical ones as ~ ! 0 limit is taken.

We also investigated the change in trends of average and variance of work when the

temperature of the system is increased. The classical di↵usive trends for k = 4 at T = 0,

shows localization when temperature is increased while in the case of k = 5 where we expect

the phase space to be predominantly chaotic, we see localization even when the temperature

is increased. It is not yet clear as to why the k = 4 case exhibits localization when the

temperature is increased. This is an important part for the future work. Other interesting

variants of this system that one can study are the double kicked rotor system which consists

of two such kicked rotor being kicked with some phase di↵erence and the aperiodically driven

kicked rotor system.
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