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Abstract

Influenza genome is organized as eight distinct RNA segments, each coding for proteins es-

sential for the virus life cycle. Post-infection, segments are replicated in the host’s nucleus

and packaged into the budding progenies. Previous experimental results show that most

viral progenies contain the complete genome, i.e., one copy of each of the eight segments. It

is unclear how the virus e�ciently assembles its genome from a pool of replicated segments.

There is strong evidence suggesting that segments form specific RNA-RNA interactions and

these inter-segment interactions lead to the genome assembly. However, the precise interac-

tion network remains unresolved. Here, we investigated the nature of the interaction network

by asking which network topologies would be most e�cient in assembling the genome. It

was shown that out of many possible network topologies, only a few of them would guaran-

tee genome packaging. Two hypothetical models were constructed to predict the topologies

that are most likely to evolve. Furthermore, the segment interaction network for Influenza

virus was inferred from three published experimental datasets. This study makes testable

predictions on the interactions that underlie the Influenza genome assembly, with the hope

that it would provide insights into the mechanism of genome packaging and viral evolution.
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Introduction

Influenza is one of the major epidemic diseases caused by virus, a↵ecting more than three

million people every year. The genome of Influenza virus is organized as eight disjointed

segments composed of single-stranded RNA (vRNAs). These eight segments code for eleven

proteins namely hemagglutinin (HA), neuraminidase (NA), matrix 1 (M1), matrix 2 (M2),

nucleoprotein (NP), non-structural protein 1 (NSP1), non- structural protein 2 (NS2), poly-

merase acidic protein (PA), polymerase basic protein 1 (PB1), polymerase basic protein 2

(PB2) and polymerase basic protein 1- F2 (PB1-F2) ([1]). vRNAs are generally present in

a complex with NP and polymerases, which together is called as viral ribonucleoproteins

(vRNPs).The segmented form of the genome provides evolutionary advantage for the virus

to shu✏e its segments with other viral strains. This process, known as viral recombina-

tion/reassortment, has previously led to the emergence of novel Influenza viruses such as

H1N1 (Spanish flu, 1918), H2N2 (Asian flu, 1957) and more recently H1N1 (Swine flu 2009)

[2].

While on the one hand, recombination is a crucial force in driving viral evolution, the seg-

mented nature also complicates the process of genome assembly inside the host cell. Influenza

virus gains an entry in the cell through endocytosis, which is triggered upon the interaction of

HA with sialic acid present on plasma membrane. After entering the cell, the viral membrane

fuses with endosomal membrane, releasing its genome into the cytoplasm. The vRNPs are

tra�cked to the nucleus, wherein genome replication and transcription take places. A quan-

titative study on viral replication dynamics showed that vRNA level increases up-to 10000

molecules per segment within the first four hours of infection before leveling out [3]. The

replicated vRNPs are exported out of the nucleus and actively transported to plasma mem-

brane. It is believed that genome assembly, i.e., bringing together eight distinct segments,

takes place on the route to plasma membrane. The production of an infectious viral progeny
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depends not only on the genome assembly but also on the localization of viral proteins at

the plasma membrane [4]. Viral progenies start to bud o↵ from the plasma membrane four

hours post infection, at the rate of 1000 virions per hour [3]. The Influenza virus’s life cycle

is summarized in Figure 1.

Figure 1: (a) Eight genomic segments of Influenza are labeled as PB2 (1), PB1 (2), PA (3),

HA (4), NP (5), NA (6), M (7) and NS (8); numeric labeling denoted in brackers. Segments

are present in complex with nucleoproteins (NP) and polymerases. (b) The life cycle of virus

from entry into the host to release of progeny (Figure adapted from [5])

From a fitness point of view, the goal of the virus is to maximize production of infectious pro-

genies. Since each segment codes for an essential protein, packaging of the complete genome

is a necessary condition for generating infectious viral particles [4]. Interestingly, Influenza

viruses show remarkable ability in assembling the eight segments. Electron tomography of

the released viral particles shows that at least 80% of the virions contain the full genome

[6, 7, 8]. This result is further supported by fluorescent in-situ hybridization study of vRNPs

at single virus resolution which demonstrated that precisely one copy of each distinct seg-

ment is packaged in the virions [9].

How the virus manages to package its genome with such a high e�ciency is an unresolved

question. A ’selective packaging model’ has been proposed in the literature. According to

this model, vRNPs bind to each other through specific RNA-RNA interactions, leading to
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the assembly of all segments. This model has now gained several lines of evidence. Firstly,

electromobility shift assay on co-incubated vRNAs show that nine vRNA pairs can interact

in-vitro [10, 8, 11]. Secondly, terminal regions of vRNAs are conserved and mutations in

these regions are associated with decreased genome packaging [12, 13, 14, 15, 16]. Pack-

aging signals have been mapped on the genome using inferences from mutational analysis

[17]. Thirdly, base-paired inter-segment interactions have been identified using cross-linking

techniques and predicted to be energetically favourable [18]. Secondary structures of vRNA

7 and vRNA 8 suggest an interaction between segment 4 and 7, and between segment 2

and 8 [19, 20]. Recent studies also indicate towards the role of nucleoproteins in mediating

genome packaging [21, 22, 23]. Electron tomography of genome inside the virions shows that

segments are interconnected on a platform like surface [8]. Further, Figure 2 shows segment

co-localization inside the cytoplasm, thereby capturing the assembly process in real time[24].

Taken together, these results provide convincing evidence in support of selective packaging

model [25, 26, 27].

Figure 2: Co-localization of segments observed in the cytoplasm through four-color fluores-

cence in-situ hybridization. Segments are labelled as yellow, green, orange and red. (Figure

adapted from [24])

Despite the molecular information gathered about the packaging signals, the precise seg-

ment interaction network remains unknown. Knowledge of this interaction network would

not only extend our understanding of genome assembly but would also provide insights into
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the mechanisms of segment re-assortment and broaden the vaccine strategies, which cur-

rently, require annual renewal. In this study, we have attempted to delineate the segment

interaction network underlying genome packaging from three independent directions. Firstly,

we studied the dependence of network topology on its e�ciency to assemble the genome. Out

of many possible topologies, it was found that only a subset of them have maximal packaging

e�ciency. We then constructed two models to investigate which topologies are more likely

to evolve. Finally, the interaction network was inferred using three di↵erent experimental

data-sets and was compared to the predictions.
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Chapter 1

Definitions

i) vRNP: Single stranded viral RNA in complex with nucleoproteins and polymerases. Note

that the term ’vRNP’ is used interchangeably with ’segment’

ii) vRNA: Single stranded viral RNA

iii)Genome Assembly: The process of bringing together eight distinct vRNPs of Influenza.

iv) Interaction Network: Set of interactions between segments

v) Connected Network: In a connected network, each segment interacts with at-least one

other segment.

vi) Disconnected Network: In a disconnected network. there is atleast one segment which

does not interact with any of the seven segments

vii)Tree Topology: Connected network with only seven interactions (for eight nodes)/Connected

network with only two interactions (for three nodes).

viii)Cycle Topology: Connected network with number of interactions ranging from eight to

twenty-eight (for eight nodes)/Connected network with three interactions (for three nodes).

ix) Cluster: Refers to a group of segments bound together through interactions

x) Assembly Reaction E�ciency: The proportion of completely assembled clusters out

of total clusters formed at steady-state

xi) Virion: Viral progenies released from the host cell

xii) Nearest nighbour segments: For a given segment, the segment present at its right,

left and center inside the virion are its nearest neighbours.
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Chapter 2

Assembly E�ciency of Networks

The goal of genome assembly is to bundle the newly synthesized vRNPs into clusters (Defini-

tions ix), such that each cluster contains only one copy of each of the eight distinct segments.

One can imagine that a minimum of seven interactions between eight vRNPs is necessary to

assemble the genome. Since there are only twenty-eight vRNPs pairs (
�
8
2

�
) and each vRNP

pair can either interact or not, the total number of possible interaction networks (Definitions

iv) is equal to 228. In this chapter, we explore if the 228 networks di↵er in their e�ciency of

genome packaging. E�ciency is defined as the number of completely assembled clusters out

of the total clusters formed at steady state. Specifically, we ask how many interactions are

required to package the genome e�ciently. All networks can be classified into two topologies:

tree or cycle (Definitions vii, viii & Figure 2.1) depending on the number of interactions. In

the figures below, segments are represented as nodes and segment interactions are drawn as

edges between the nodes.

The results of this chapter are based on two assumptions. First, all interactions of a given

network are strong and irreversible in cellular timescale. That is not to deny the possibility

of weak reversible interactions. However, we are only considering strong and stable inter-

actions which would be necessary for a successful assembly. The alternative hypothesis of

having transient-cooperative interactions is discussed in the Conclusions. This assumption

is supported by an in-vivo experiment in which the formation of a stable assembly of three

vRNPs was observed [28]. Second, since released viral particles contain only one copy of the

eight distinct segments, it was assumed that each vRNP could bind to only one copy per
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interaction partner. Had this not been the case, the cluster would continue to bind and grow

beyond eight segments.

Figure 2.1: Examples of networks with tree and cycle topology - (a) tree with eight nodes

(b) cycle with eight nodes containing a loop between 4 nodes (c) Minimal tree network (d)

Minimal cycle network.

2.1 E�ciency of Cycle Networks

The loop size, i.e the number of segments that are part of the loop in cyclic networks (of n

nodes) can range anywhere between n+1 to
�
n
2

�
. Here, we computed the assembly e�ciency

(⌘) for a loop size of 3 or the minimal cycle network (Figure 2.1 (d)). In this network, three

distinct monomers A, B, and C interact with each other to assemble a cluster ABC. The

interacting bonds can take two possible conformations- bonds pointing outwards shown in

Figure 2.2 (a) and bonds pointing inwards shown in Figure 2.2 (b). The bond direction will

dictate the accessibility for further interactions.

Figure 2.2: Possible orientation of interacting bonds: (a) Bonds point outwards, allowing

for additional interactions (b) Bonds are oriented inwards, leading to steric hindrance for

further interactions.

8



Case1: No Steric Hindrance in Interactions

In cyclic networks, each segment interacts with at least two other segments. For this partic-

ular example of minimal cycle network, if after the formation of a three-segment cluster, the

interaction sites remain available for more segments to come and bind, then the cluster would

continue to polymerize (Figure 2.3). Polymerization would trap free monomeric segments

and generate undesirable clusters, thereby not allowing the reaction to reach its maximum

e�ciency.

Figure 2.3: In the case of no steric hindrance, segments would continue to interact and

polymerize beyond the desired three node cluster.

Case2: Steric Hindrance in Interactions

If we impose steric hindrance and exclude the possibility of polymerization (Figure 2.2 (b)),

the mass conservation equations and simulations show that the reaction e�ciency would be

less than one at steady state (Methods I). Figure 2.4 depicts the assembly simulation with

time and shows that at steady state, segments are trapped in incomplete dimer assemblies

(here AB, BC, and AC), which are left with no free A, B and C to form the desired trimer

(ABC). Note that ABC/BCA/ACB... are all equivalent. The state in which dimers are un-

able to react further and proceed to assembly completion is referred here as the ’frustrated

state’.

The equations at best point towards a condition for which system would not reach maxi-

mum e�ciency. To further quantify, five hundred stochastic simulations of assembly reaction

following minimal cycle network was carried out (Methods II) and the average ⌘ was found

to be 53% (Figure 2.5). Similar simulations were performed to study the dependence of

e�ciency on the number and size of loops. Figure 2.6 shows that the e�ciency decreases

on increasing either the number of loops or the loop size. Interestingly, the decrease in ef-

ficiency is much more on increasing loops, with ⌘ changing from 60% to less than 20%, as

compared to change on increasing loop size. While we investigated the frustration in genome

packaging independently, the same e↵ect has also been recently shown in a general study of

self-assembly [29].
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Figure 2.4: Evolution of a system undergoing assembly reaction between three monomers
A, B, and C which interact according to a minimal cycle network. At time = 0, the system
contains 100 copies of A, B, and C. At steady state, monomers reach zero and dimers stay
non-zero.

Figure 2.5: Histogram of reaction e�-

ciency obtained for 500 stochastic simula-

tions of assembly reactions following min-

imal cycle network.

Figure 2.6: Dependence of assembly reaction e�-

ciency (average obtained over 500 simulations) on

the number & size of loops in interaction network.

2.2 E�ciency of Tree Networks

For an assembly reaction in which segments interact according to a tree network, proofs

and simulation show that e�ciency would always reach one at steady state (Method I and

Figure 2.7). Unlike cycles, this reaction would not undergo frustration or polymerization.
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We, therefore, believe that the segment interaction network in Influenza would be a tree,

Figure 2.7: Evolution of a system undergoing assembly reaction between three monomers A,
B, and C which interact according to a minimal linear network (Figure 2.1 (c)). At time =
0, the system contains 100 copies of A, B and C. At steady state, all monomers and dimers
have interacted to form the product ABC.

to maximize its chances of genome packaging. For eight segments, trees can further be

classified into twenty-three distinct topologies (Figure 2.9). We next investigated if the rate

of assembly di↵ers between these topologies. Stochastic simulations do not indicate any

significant di↵erence between the trees in the time taken for assembly Figure 2.8).

Figure 2.8: Time taken to assemble 25 %, 50%, 75% and 100% of the genome with interaction

network of di↵erent tree topologies
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To conclude, in this chapter, we discussed the e↵ect of interaction network topology on

the e�ciency of assembly reactions. It was shown that reactions following a cycle network

can get struck in frustration or polymerization and as a consequence of that, would not

reach maximum e�ciency. On the other hand, a network of tree topology is guaranteed

to assemble the genome, given the system to allowed to reach steady state. Further, no

significant di↵erence in the rate of the assembly was observed between the twenty-three tree

topologies.
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Figure 2.9: Twenty-three tree topologies for eight nodes. The tree labels are used for refer-

encing the tree topologies in this report.
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Chapter 3

Evolution of Trees

In the previous chapter, we concluded that any tree network would have 100% e�ciency in

assembling the genome. Within the broad category of trees, for eight segments, there are

twenty-three distinct topologies. Stocastic simulations showed that there is no significant

di↵erence in the rate of assembly between reactions following di↵erent tree topologies. This

result leaves the following question open: Given that all trees are equally competent to

assemble the genome, why would one tree topology evolve over the other? Here, we address

this question by constructing two hypothetical models on the evolution of trees - Gain Model

and Gain-Loss Model.

3.1 Gain Model

In this model, we hypothesize that, at the very beginning, the viral genome had only one

segment. Over the evolutionary time, the virus gained foreign genomic segments, which could

form interactions with the existing ones. Therefore, the evolution of segmented genome and

the corresponding interaction network started from a single segment and the rest of the seven

segments were added subsequently to the growing network. Depending on the order in which

segments were added, one can back-trace di↵erent paths through which a given tree could

have evolved. The main idea, here, is that topologies that can be constructed in maximum

pathways are most likely to evolve.
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Figure 3.1: Example of evolution of a linear topology through gain model. The segments

marked * were considered as the most anscestral segments. At each step, a new segment was

added and the choice of that segment depended on the existing segments in network.

Figure 3.2: Evolutionary likelihood of tree topologies as predicted from Gain Model

Figure 3.1 demonstrates this hypothesis and shows possible evolutionary paths for the for-

mation of a linear topology network. The total pathways possible to construct each of the

twenty-three topologies was counted and is described in Methods III. The proportion of total
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paths available for given topology out of all ways to construct any eight-segment tree was

inferred as its evolutionary likelihood (Figure 3.2). This model predicts that linear topology

(type 1), as well as trees with high out-degree (type 20, 21, 22, 23), have a very low chance

of evolution. Tree types 8, 10 and 14 are predicted most likely to evolve (probability ⇠ 0.1).

3.2 Gain-Loss Model

The previous model only considered gain of interactions, and did not include interaction loss.

To account for the latter, we modeled the evolution of tree networks as a continuous process of

gain and loss of interactions. According to this model, at the very beginning, the viral genome

was present as eight segments which interacted via a tree network. Occasionally, mutations

would cause segments to lose an existing interaction or gain an additional interaction. Unlike

gain model, here, there is no further addition of foreign segments to the genome. Of the

seven interactions between eight segments, loss of any interaction would cause the network

to disconnect. An assembly reaction guided by a disconnected network would not be able

to bring together the genome and result in zero fitness. Alternatively, gain of interaction

would change the network topology from tree to cycle. Our previous calculations show that

cycles have less than 100% packaging e�ciency and hence, lower fitness compared to trees.

Since the e�ciency is not completely zero, an assembly reaction following a cycle topology

could still produce progenies with complete genomes. If this progeny, with its eight segments

interacting through a cycle network, undergoes a further interaction loss, its topology can

change to either the same/di↵erent tree type (Figure 3.4). This mechanism of gain followed

by a loss could potentially allow for the co-existence of di↵erent tree topologies within the

same population. The question is after many such successive gain and loss of interactions,

what is the abundance of di↵erent tree topologies at steady state? Are certain topologies

more abundant than rest? To answer this, we modeled it as Markov process (Method IV).

Using steady state abundances of topologies as a proxy for their likelihood to evolve, this

model predicts that tree topology 3 has the maximum chance of evolution. For verifying

the calculations, the steady-state abundances were also obtained from simulations and were

found similar to the results from Markov Matrix (Pearson correlation coe�cient = 0.996).

Note that, all gain of interactions are assumed equally likely to happen and similarly, all

interactions are considered equally likely to break. This might not be true in reality, wherein

the probability of gaining/losing an interaction could depend on the underlying nature of the
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interaction. Since we do not know about the interactions during evolution, a simple model

of gain followed by loss without any bias in which interaction would be gained/lost was used.

Figure 3.3: Schematic of evolution of trees

from the Gain-Loss Model. The start-

ing tree can gain an interaction, changing

its topology to cycle. This cycle network

can undergo a further loss of interaction

changing its topology back to tree of the

original type or a di↵erent type.

Figure 3.4: Evolutionary likelihood of tree topolo-

gies as predicted from Gain-Loss Model

3.3 Comparison of Evolutionary Models

The two models described above are based on di↵erent hypotheses for how interaction net-

works would have evolved. Figure 3.5 shows a correlation plot of the predicted likelihood of

topologies from Gain and Gain-Loss model. Trees with high out-degree (Type 20, 21, 22,

23) are predicted least likely to evolve from both models. Trees types 5, 6, 7, 8, and 9 also

have similar likelihoods predicted from the two models. On the other hand tree types 1,

2, 3 and 4 are predicted twice more likely to evolve from the gain-loss model that the gain

model. Tree types 12, 14, 17 and 19 are predicted to have twice more abundance from the

gain model.
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Figure 3.5: Results from Gain and Gain-Loss Model

In conclusion, we formulated two di↵erent models for the evolution of the interaction network

topologies. For the gain model, the number of ways to construct a topology was used as a

proxy for its evolutionary likelihood. In the gain-loss model, topologies were subjected to

repeated gain followed by loss of interaction and the steady-state abundances were used as an

indicator of the likelihood to evolve. Both models make a strong negative prediction about

the hub-spoke topology (tree type 23) as unlikely to evolve. However, it should be noted

that the evolutionary likelihoods only di↵ered by a maximum factor of 10 and therefore, it

is di�cult to make any strong prediction about the topology that is most likely to evolve.
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Chapter 4

Inferring Network from Experimental

Data

In the previous chapters, we concluded that networks with tree topology are maximally

e�cient to assemble the genome and attempted to predict the topologies that are more

likely to evolve. Independent of this, here, the segment interaction network is inferred from

three published experimental datasets. These experiments have studied various aspects of

Influenza genome assembly: segment arrangement inside the virions, segment interactions

and co-localization of segments in the cytoplasm. Since all three experiments were done on

Influenza A/WSN/33 (H1N1) strain and MDCK (MadinDarby canine kidney) cell line, we

could integrate results and pinpoint the interactions that were consistently observed.

4.1 Electron Tomography of Virions

Inside a virion, the eight genomic segments are arranged in a characteristic 7+1 pattern,

with seven vRNPs on the periphery surrounding a central vRNP (Figure 4.1). Takeshi Noda

et al. further elucidated the identity of individual segments within the 7+1 arrangement for

thirty virions by using segment length as a proxy for segment identity (Figure 4.2 & [7]).

The length di↵erences between segments were significant to distinguish five out of eight;

however, the first three vRNPs (PB2, PB1 and PA) could not be resolved from each other.

Among the thirty viral particles, segment 4 was observed at the center position for twelve
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virions. For the rest eighteen, segment 1/segment2/segment3 occupied the center. There

was no single consistent segment order in the periphery as well, but, certain vRNP pairs

occurred more often next to each other than others. For example, the heat map of nearest

neighbor shows that segment 6 and segment 7 were found positioned next to each other in

only 2 virions, whereas segment 6 and 8 are were nearest neighbor in 10 virions (Figure 4.10).

Interestingly, the authors observed many ’thread’ like structures between the RNPs, which

were speculated to be RNA-RNA interactions (Appendix Figure 6.2). However, the exact

nature of these ’threads’ remains inconclusive.

Figure 4.1: Electron microscopy of viri-

ons shows that segments are positioned in

a 7+1 configuration with seven segments

on the periphery and one in the center

(Figure adapted [30])

Figure 4.2: Electron tomography reveals

the segment arrangement inside virions.

Out of the eight segments, the first three

(PB2, PB1 and PA) could not be resolved

and are marked 3 in this figure. The data

on the other twenty-six virions is shown

in Apppendix Figure 6.1 (Figure adapted

from [7])
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The selective packaging model predicts that there is a set of RNA interactions underlying

genome assembly. The experimental data on segment arrangement provides information on

the positioning of segments inside virions. If one assumes that only nearest neighbor seg-

ments (Definitions xii) can interact, then the segment arrangement data essentially indicates

the set of plausible and non-plausible interactions. We asked if one can derive the interaction

network from this data, assuming that interactions take place only between nearest neigh-

bor segments. This assumption is based on the fact that no electron density was observed

between segments which are not immediately positioned next to each other. Further such

interactions would face steric hindrances. If we were to include interactions with the second

nearest neighbours as well, then every segment can potentially interact with all others, and

this would reduce our ability to predict specific interactions.

Eight vRNPs can form a total of twenty-eight interactions (
�
8
2

�
), and each interaction is

either present or not in actuality. Therefore, there are only 228 networks, forming the entire

space of all plausible networks between eight segments. To find the network that best rep-

resents the segment arrangement data, all connected networks (⇠ 60, 500, 000) were scored

against the experimental data. Note that within cycle networks, interactions between 6 and

7, and 6 and 8 were not included to reduce the computational load. These two interactions

were observed as nearest neighbours in only 2 and 3 virions respectively. Networks were

assigned penalty scores based on the number of network interactions that cannot form inside

the virions (Methods V). Hence, the higher the network score, the less representative it is

of the experimental data. An ideal network would have a score of zero, indicating that all

interactions of that network are between segments that are positioned as nearest neighbours

in virions.

In the brute force based analysis, none of the networks scored zero. The minimum score

obtained was 34, corresponding to the two networks shown in Figure 4.3. Since we cannot

distinguish between segment 1/2/3, all six permutations (swapping 1/2/3 positions) of both

networks would also have the same score. Interestingly, 131 networks (distinct permutations)

were of tree topology with lowest scores ranging from 34 to 43. This analysis points out that

over the entire space of trees and cycles, the networks which best fit the experimental data

are of the tree topology, thus supporting our prediction of tree being the likely interaction

network.
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Figure 4.3: Networks that best fit the segment arrangement data (Lowest score of 34 over

all tree/cycle networks)

The non-zero score of the network indicates that all seven interactions cannot form inside

virions. In fact, for the lowest scoring network (Figure 4.3), thirteen virions had two interac-

tions missing, eight virions had one missing, and nine virions contained all seven interactions

(Figure 4.4). Since a minimum of seven interactions is necessary for the assembly of eight

segments, our analysis would predict that few virions contain the genome as disconnected

sub-assemblies. It is unlikely that segments assemble that way because then the virus would

need a non-interaction based mechanism to ensure that the right sub-assemblies come to-

gether to package the complete genome. It is possible that our assumption is not entirely

correct and certain non-neighbour interactions do take place. The second possibility is that

after the budding, the connected assembly breaks into sub-assemblies which freely change

their relative arrangement. This could cause segments that were previously interacting to

break apart and position as non-nearest neighbours.

Figure 4.4: Non-zero scores of networks imply that all interactions of the network cannot

form inside virions. Example of a network (Figure 4.3) which can assemble the segments in

a virion but is unable to form 4-7 and 7-2 interaction in another virion.

Alternatively, one can ask what is the lowest scoring network that can package the genome

as a single connected assembly in all thirty virions. Such a network is of cycle topology

with 11 interactions and has a score of 96 (Figure 4.5). This network contains two master

nodes 3 and 4, forming five and four interactions respectively. This is in somewhat a trivial
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case because master node 3 forms interaction with all segments except 1 and 4 and similarly

master node 4 connects with all except 1, 8 and 2.

Figure 4.5: Minimum scoring network that can assemble eight segments in all thirty virions

(Score = 96). Note that six permutations (swapping 1/2/3 positions) of this network would

also have same score.

We next checked if the low scoring networks actually capture the electron tomography data

or if they would score similar on a random configuration of virions. For this, 1000 synthetic

datasets were generated, each containing 30 virions, with random order of segments on the

periphery. The central segment was chosen to be 4 in 12 virions and 3 in 18 virions, as

observed in the experiments. The brute force search was repeated over the entire space of

trees to find the best fitting/least scoring network on each dataset. Cycles were excluded

because it was computationally expensive to search over all networks. The score of the best

fit network for 78% of the datasets was 48, with 42 being the least score overall, obtained

only on three datasets. Majority of the best-fit networks had hub-spoke topology (type 23)

(Figure 4.6). Since hub-spoke topology has a single master segment (here segment 3) which

interacts the rest seven, this network would completely connect the genome in virions where

segment 3 is the center. For the rest twelve, four interactions would be missing per virion,

hence the score of 48.
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Figure 4.6: Histogram of scores/topologies of best-fit networks obtained on 1000 random

datasets

The fact that for the random datasets, none of the best fit networks were non hub-spoke and

had scores as low as obtained for the experimental dataset, this suggests that the low scoring

networks inferred from experimental data do capture the highly non-random configuration

of real virions. Since the least score on synthetic datasets was 42, further analysis was

continued only on networks inferred from experimental data which scored less than 42.

4.2 Interaction Map from SHAPE-MaP and SPLASH

Electron tomography on virions cannot distinguish between the first three segments and

hence the six permutations (swapping positions of 1/2/3) of any network also had the same

scores. To further rank among the networks with score < 42 and their permutations, we used

data from another experiment which generated an interaction map between the vRNPs (Ap-

pendix Figure 6.3). Here, the authors used a technique SHAPE-MaP (Selective 2-Hydroxyl

Acylation Analysed by Primer Extension and Mutational Profiling) to probe the conforma-

tion of nucleotides and search for secondary structures [18]. The SHAPE profiles of vRNA

(i.e. without nucleoproteins) was compared to vRNPs and it was observed that the profiles

were di↵erent suggesting that nucleoproteins play a role in limiting the accessibility of nu-

cleotides. To characterize the interactions, SPLASH was done on purified virions (Sequencing

of Psoralen Crosslinked, Ligated, and Selected Hybrids) which cross-links base-paired nu-

cleotides. The experiment reported the frequency at which a given interaction (i.e. base
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pairing between two segments) was observed. Two replicates on SPLASH (here referred as

WSN2 and WSN3) were obtained which correlated with R2 of 0.87. Since purified virions

were analyzed, it is likely that the observed interactions are composed of main/primary

interactions required for assembly, interactions happening post packaging and incidental in-

teractions due to experimental protocols.

Apart from scoring potential networks against segment arrangement data, we assigned a

SPLASH score (Method VI ). The SPLASH score was indicative of how often interactions of

a given network were observed experimentally, with higher scores corresponding to network

being more close to the experimental data. To combine the two scoring schemes - electron

tomography of segment arrangement scores (ET score) and SPLASH scores, a Pareto front

was constructed over all tree networks. Pareto front represents the set of networks which

have the most optimal scores on both scoring axes (maximum SPLASH score and minimum

ET score). Figure 4.7 shows the scatter plot of scores of all tree networks (⇠ 260000) and

the Pareto front. The networks corresponding to the Pareto front with ET scores < 42 are

shown in Figure 4.8.

Figure 4.7: Score of all tree networks against electron tomography data of segment arrange-

ment inside virions (ET score) and SPLASH data of interaction maps (SPLASH score). Note

that lower ET score and higher SPLASH score is indicative of the network being closer to

the experimental data.
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Figure 4.8: Pareto trees

Another experiment quantified the colocalization coe�cients (on a scale of 0 to 1) of the

twenty-eight segment pairs by using fluorescent tags inside the cytoplasm [28]. These co-

e�cients were obtained from a snapshot of the assembly process (8 hours post infection)

for multiple single cells (Appendix Figure 6.4). Since only four segments were visualized

at a time and the coe�cients showed high variation among the cells, with 20 pairs having

standard deviation more than/equal to 0.2, we did not infer the network independently here.

This data was used only as a confirmatory test to check if the segments forming interactions

in Pareto networks co-localize significantly more than the ones that do not interact (Method

VII). Five Pareto trees were found to have significant colocalization between its interacting

segments (↵ = 0.05), with the lowest p-value being 0.0094 (Figure 4.8).

If one ignores the segment arrangement data and uses only high-frequency interactions from

SPLASH to construct a tree, then the p-value of that tree is 0.17 (WSN2) and 0.058 (WSN3),

both being higher than the values obtained for Pareto trees. Similarly, if one ignores the

SPLASH data and uses only the segment arrangement data, the best fit network obtained

is one of the Pareto trees. However, the heat map of interactions present in the Pareto trees

(score < 42) is di↵erent from the heat map of nearest neighbours in segment arrangement

data (Figure 4.9 & Figure 4.10). For example, relying solely on the assumption that nearest

neighbour interact, EM data would predict interactions between segment 5 & 6, 5 & 7, 5 &

8 and, 4 & 7. None of these interactions come up if one overlays this with SPLASH data.

We believe that combining the results from the two experiments have improved our ability
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to make predictions on non-incidental and consistently observed interactions.

Figure 4.9: Heat map of frequency at

which segment interactions are observed

within Pareto trees.

Figure 4.10: Heat map of frequency at which seg-

ments are observed as nearest neighbours inside

thirty virions.

It is tempting to predict that the topmost Pareto tree in Figure 4.8 is the most likely

interaction network because it has the lowest p-value of 0.0094, relatively good ET score of

39 (four more than lowest ET score obtained over all networks), SPLASH score of 0.351 (0.05

less than the maximum splash score), and is present in both replicates. However, the heat

map of interactions observed in Pareto trees (Figure 4.9) generates a more modest prediction

on the set of interactions that are statistically significant and consistently observed.
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Chapter 5

Conclusion

This study was centered on understanding the mechanism of influenza genome packaging.

The genome of Influenza virus is present as eight distinct RNA segments, each in com-

plex with nucleoproteins and polymerases. These segments code for proteins essential for

the production of infectious progenies from host cells. Interestingly, the virus can assem-

ble its replicated segments and package the complete genome in majority of its progenies.

It has been proposed that segments interact with each other through specific RNA-RNA

interactions, leading to the assembly of eight segments. However, the underlying mecha-

nism/interactions that give rise to a robust and accurate assembly remains unclear.

Influenza genome packaging falls under the category of self-assembly processes often ob-

served in nature. Self-assembled structures can emerge either from strong interactions or

transient but cooperative interactions. It is not known yet which of these two mechanisms

operate for the genome assembly in Influenza. In chapter 2, we started with the assump-

tion that the segments form strong specific interactions among each other, these interactions

being irreversible in cellular timescale. The chapter discussed the following question; how

many strong interactions are required for an e�cient assembly? Using stochastic simulations

of assembly reaction and numerical calculations, it was shown that seven interactions (i.e

a network of tree topology) would guarantee genome packaging, whereas more than seven

interactions (i.e network of cycle topology) would decrease the e�ciency of assembly reac-

tions. The absolute value of decrease would depend on the number of interactions and size of

loops, with the e�ciency decreasing as one increases both these parameters. To the best of
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our knowledge, there is no strong evidence for the presence of transient cooperative interac-

tions. Therefore, we can only conclude that an assembly following a tree network comprising

of seven strong interactions would package the genome with high e�ciency, as observed in

experiments. An assembly guided by cycle network would not lead to maximum e�ciency

unless some interactions are weak and there is an order/cooperativity in the assembly pro-

cess. This chapter was approached from a reaction e�ciency point of view, and we did not

account for the robustness of networks during evolution. Since interactions are formed by

base-pairing, having more interactions in a network would cause the network to be more

robust against mutations. It would be interesting to explore if there is a trade-o↵ between

robustness during evolutionary timescale and accuracy during assembly in cellular timescale.

In chapter 3, we continued with the hypothesis of tree being the likely topology of the

interaction network and studied the evolutionary likelihoods of di↵erent tree topologies by

constructing two models - Gain Model and Gain-Loss Model. The gain model was based on

the idea that the segmented genome and its interaction network evolved through continuous

gain of segments. The order of segment gain would dictate the trajectory for the evolu-

tion of a topology. The hypothesis was that the more the number of possible trajectories,

the more the likelihood of evolution. Tree topology 8 were predicted most likely to evolve,

and topology with high out-degrees (type 21, 22, 23) was predicted unlikely to evolve. The

second model conceptualized the evolution of trees as a Markov process of gain and loss of

interactions. The abundance of di↵erent topologies at steady state were inferred as their

evolutionary likelihoods. Tree topology 3 was predicted most likely to evolve and consistent

with the gain model, trees with high out degrees had a low chance of evolution. It should be

pointed out that the evolutionary likelihoods only di↵ered by a factor of 10 and therefore, it

is di�cult to conclude that topology 8 or topology 3 is highly likely to evolve.

Independent of these results, in chapter 4, we attempted to infer the interaction network

from three published experimental results. These experiments provided insights into vari-

ous aspects of influenza genome assembly; namely, segment arrangement inside the virions,

segment interactions map and the co-localization of segments during assembly in cytoplasm.

To find the network that best fits the experimental results, all possible networks between

eight segments were scored against the segment arrangement data, and it was found that

the best fitting networks were of tree topology. Further, by combining results from the other

two experiments, we constructed a heat map to pinpoint the interactions that were consis-
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tently observed and statistically significant. It should be noted that only nearest neighbor

segments were assumed to interact inside virions. As a consequence of this assumption, the

predicted best fit networks do not cluster together eight segments in all virions. This can

be explained in several ways. First, perhaps a few non-neighbor interactions do happen,

which would allow the predicted networks to cluster all segments. Second, since purified

virions were being analyzed, it is probable that the interactions that happened at the time

of assembly were no longer present and segments in the sub-assemblies had changed relative

positioning. Thirdly, we cannot falsify the existence of many weak cooperative interactions

underlying genome assembly. Such a mechanism would predict that influenza has a highly

connected interaction network and di↵erent subset of interactions allow genome assembly in

di↵erent virions.

Previously, vRNAs have been shown to interact in-vitro using EMSA [10]. Since vRNA

is present in a complex with nucleoproteins in cells and nucleoproteins can dictate the avail-

ability of interacting region, it might be erroneous to test predictions against the EMSA study

of vRNAs. An ideal test would be to check if the vRNPs predicted to interact can indeed

form interactions in-vitro. One can further see if the presence of other segments alters the

interactions. This experiment would inform about the interactions taking place during the

assembly and if the interactions between vRNPs are strong/stable or transient/cooperative.

This study and it’s experimental test would hopefully provide insights into the precise set

of interactions underlying influenza genome packaging, mechanism of viral reassortment and

genome assembly in other viruses with segmented genomes.
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Chapter 6

Methods

I. Calculations on Assembly E�ciency of Networks

In this section, the reaction e�ciency (⌘) is computed for two cases i) assembly reaction

following tree network and ii) assembly reaction following a minimal cyclic network. The

e�ciency of a reaction is defined as the proportion of completely assembled clusters out of

all clusters formed at steady state. The calculations/proofs are valid for a closed system,

which at its initial state contains N copies of each of the M distinct monomers. The central

assumption is that all interactions of a network are equally probable and irreversible. Square

brackets are used to denote the count of a given reaction species at a particular time instant.

For M=3, monomers are labeled as A, B and C, and the fully assembled cluster is denoted

by ABC.

Packaging E�ciency of Trees

Theorem 1: The e�ciency of an assembly reaction following a tree interaction network is 1.

Proof Using Mass Conservation (M=3)

At initial state (T ime = 0):

[A] = [B] = [C] = N
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At steady state (T ime ! 1):

[ABC] = P

[AB] = X, [BC] = Y

[A] = [B] =[C] =0

where values of P, X and Y are determined by solving Equation 6.1-6.3.

Since it is a closed system, the amount of monomers A, B and C should be conserved

at all time points.

[AB] + [ABC] = N ! X + P = N (6.1)

[AB] + [BC] + [ABC] = N ! X + Y + P = N (6.2)

[BC] + [ABC] = N ! Y + P = N (6.3)

By solving the equations above for steady state, we obtain,

[AB] = [BC] = 0

[ABC] = N

Therefore, ⌘ =
[ABC]

[ABC] + [AB] + [BC] + [A] + [B] + [C]
= 1

Proof By Contradiction (Generalized)

Proposition: The assembly e�ciency of a reaction following a interaction network of tree

topology is 1.

Proof: Suppose there is a reaction in which segments interact and assemble according to

a tree network and the e�ciency of this reaction is < 1.0

=) At steady state, there is at least one incomplete cluster C, having less than M monomers.

=) C lacks at-least one monomer. Let us label the missing monomer as M1.

=) Let us say M1 has an interacting partner M2 in C.

=) There are no free unbound M1 monomers that can bind to M2 and merge with C.
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=) All N copies of M1 are bound to all N copies of M2.

=) But, there is one copy of M2 monomer in C.

The total count of M2 monomers cannot exceed N. Hence, the case described above is

in contradiction with system properties and therefore for a tree interaction network, system

will always reach 100% packaging e�ciency.

Packaging E�ciency of Cycles

Theorem 2: The e�ciency of an assembly reaction wherein monomers interact based on a

minimal cycle network can be less than 1.

To prove this, it is su�ce to show that there exists at-least one steady state for which

⌘ < 1.

At initial state (T ime = 0):

[A] = [B] = [C] = N

At steady state (T ime ! 1):

[ABC] = P

[AB] = X, [BC] = Y, [AC] = Z

[A] = [B] =[C] =0

where values of P, X and Y are determined by solving Equation 6.4-6.6.

Since the system is closed, the amount of each monomer should be conserved at all time

points.

[AB] + [AC] + [ABC] = N ! X + Z + P = N (6.4)

[AB] + [BC] + [ABC] = N ! X + Y + P = N (6.5)

[BC] + [AC] + [ABC] = N ! Y + Z + P = N (6.6)
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By solving the equations above for steady state, we obtain,

[AB] = [BC] = [AC] = X

[ABC] = N - 2* [AB]

Therefore, ⌘ =
[ABC]

[ABC] + [AB] + [BC] + [AC] + [A] + [B] + [C]
<= 1

(If [AB] = [BC] = [AC] = 0, ⌘ = 1, otherwise ⌘ < 1)

II. Stochastic Simulation for Genome Assembly

Stochastic simulations of assembly reaction following a given interaction network were carried

out to compute the reaction e�ciency of that network. All interactions of the network were

considered irreversible and equally probable. Each simulation was started with 100 copies

of each of the distinct monomers and was continued till steady state (no further reaction

possible). The system state was stored as a list of all reaction species at any time instant.

In every iteration, two reaction species were picked at random from the list and checked for

the possibility of interaction based on the network defined. If the two reactant species had

no common monomers and could interact, they were put back into the system as a fused

cluster. If no interaction was possible, both reactants were put back as it is. At the end of

the simulation, e�ciency was computed as the proportion of completely assembled clusters

out of total clusters present.

III. Evolutionary Likelihood Calculation: Gain Model

This section illustrates the method for computing evolutionary likelihood of tree topologies

from Gain Model through an example for the linear topology. The calculation is centered

around counting the total number of paths through which a given topology can evolve, the

idea being that topologies which have more pathways are more likely to evolve. In other

words, given an interaction network, one has to back-trace all paths through which that

network could have evolved.
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Figure 3.1 shows an interaction network consisting of eight non-identical segments (repre-

sented with di↵erent colors), arranged in a linear topology. As per the model, the evolution of

a network began from a single segment and the rest seven segments were added subsequently

to the growing network. Any one of these eight could have been the starting/most ancestral

segment. Since ancestral segments which are topologically symmetric would lead to equal

number of pathways to form the final topology, we only considered the set of non-symmetric

segments as potential ancestors, just to avoid over-counting (in the example: yellow, orange,

violet and green).

The number of evolutionary pathways is dependent on the number of already present seg-

ments in the evolving network to which a new segment can form an interaction with. For

example, if the most ancestral segment is considered to be yellow, the only segment that

can be next added to the network is orange because yellow does not interact with any other

segment. The segment that can be further added is violet for the same reason and so on.

Hence, there is only one way to construct the given tree network starting from the yellow.

Instead, if the starting segment is red, the second segment can be either yellow or violet

because red interacts with both. The options for the third segment would depend on the

choice of the second segment. The order of addition of the yellow segment can be between

second to eighth. Therefore, there are seven choices and once its order is fixed, the other six

segments can be added in only way. Therefore, starting from red, there are 7C1 pathways to

construct linear topology. Similarly, if the starting segment is taken as violet, yellow and red

segments can be added in 7C2 orders and once the order of addition of these two segments

is fixed, there is only one way to construct the rest of the network. The total number of

ways of ways in which a linear topology can be constructed is equal to the sum of number of

paths from each ancestral segment: 1 (starting: yellow), 7C1 (starting: red), 7C2 (starting:

violet) and 7C3 (starting: green). While this example is specifically for the linear case, the

same methodology was followed for likelihood calculation for other topologies.

IV. Markov Matrix for Gain-Loss model

A 23 X 23 markov matrix was computed to capture the probabilities of transitioning from

one tree topology to another through a single gain followed by a loss of interaction. If a
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tree network gains an interaction, it’s topology would change to cycle. A further loss of

interaction in a cycle network (with eight interactions) would shift the network back to

tree, either of the original tree topology or a di↵erent one. To compute the probabilities

of transitioning from ith tree topology to jth, the ith topology was subjected to all possible

combinations of gain-loss of interactions and the proportion of jth topologies obtained was

calculated and used as the probability of transitioning from ith to jth topology.

V. Scoring Network against Segment Arrangement Data

To judge how well a network fits the experimental data on segment arrangement inside

virions, the network was scored against each of the thirty virions and was summed over to

obtain an overall score. We assumed that only nearest neighbour segments inside the virion

can interact. The scoring was based on the number of network interactions that cannot form

inside a given virion, owing to the segments being non nearest neighbors. Since segment 1,

2 and 3 are indistinguishable in the data, six permutations were generated for each virion

by swapping the positions of these three segments. The network was scored against the six

permutations and the minimum score over the six was taken as the score of that virion (Eq.

6.7).

Score of Network N =
30X

V=1

min(PV 1, PV 2, PV 3, PV 4, PV 5, PV 6) (6.7)

where PV i : number of interactions of network N are cannot form in ith permutation of virion

V because interacting segment do not occur as nearest neighbours.

VI. Scoring Network against SPLASH Data

The frequency at which a given interaction is observed in SPLASH data was obtained from

the authors for all pairwise interactions ([18]). The normalized sum of the frequencies of

seven interactions in a given network was used as the score for that network (Eq 6.8).

SPLASH Score of Network N =

P7
Ni=1 FNiP28
j=1 Fj

(6.8)
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where FNi is the interaction frequency reported from SPLASH for the ith interaction of

network N. Fj refers to the observed frequency for jth interaction, where j is ranged over all

twenty-eight interactions.

VII. Assigning P-value to Network using Colocalization Data

The average co-localization coe�cients for each of the twenty-eight RNP pairs were derived

from the plots (Appendix Figure 6.4) by using 1.7 cm on the scale as equivalent to a coe�cient

of 1. A p-value (Mann Whitney U test one-tailed) was assigned to networks to capture if

the segments forming interactions in that network (n=7 pairs) have significantly higher co-

localization coe�cients as compared to their co-localization with other vRNPs (n=21 pairs).

41



42



Appendix

Figure 6.1: Segment arrangement inside twenty-six virions obtained using electron tomogra-

phy. Figure adapted from [7]
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Figure 6.2: Thread like structures observed between genomic segments inside virions using

electron tomography. Figure adapted from [7]

Figure 6.3: Interaction map between genomic segments inferred from SPLASH. Line thick-

ness is correlated to the observed interaction frequency. Figure adapted from [18].
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Figure 6.4: Colocalization coe�cients of segments in cytoplasm obtained using fluorescence

in-situ hybridization. Figure adapted from [28]
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