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Abstract

In this thesis, we study simple stochastic models that show rich and interesting behavior.

The plan of the thesis is as follows: after a brief introduction and overview of the work in

Chapter 1, Chapter 2 begins with a discussion on the simplest stochastic interacting particle

system − the exclusion process. After briefly motivating the process, we will describe a

two-species exclusion problem that shows a remarkable, counter-intuitive feature, called the

TASEP Speed Process. Our aim in this chapter will be to provide a simple approximate

description for this phenomena using what we here call the effective medium approach. After

addressing the issue of the TASEP Speed Process, we will extend our approach to different

variations of the multi-species exclusion process. Following the discussing in this chapter

on a system of stochastically interacting particle system, in Chapter 3, we will discuss the

stochastic evolution of a surface, taking the example of the Eden Model. We start with

an small exposition of the process and its variants following which, we will motivate the

question of finding upper bounds to the shape of growing clusters using examples from day-

to-day life. In this chapter, we will obtain upper bounds of increasing accuracy by using the

independent branching process and its variants. In Chapter 4, we will move on to the study

of the stochastic evolution of a model with two interacting surfaces, called Chase-Escape.

This process, defined as a prey-predator model, shows a very interesting feature that the

prey can survive even when it can run only half as fast as the predators. After studying

the critical properties of this process, we will compare the dynamics of the front of Chase-

Escape process with the Eden front. Our analysis of this problem will be partly inspired by

our analysis of the Eden process in the previous chapter. In Chapter 5, we will present a

summary of all our results and will outline future directions.
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Chapter 1

Introduction

We begin our journey into Stochastic Evolution in Models of Statistical Physics by very

briefly introducing ourselves to the fascinating world of non-equilibrium statistical physics

and laying out a plan for the rest of the thesis. Here, we will define the three exciting

stochastic processes, all of which have their origins in problems in Biology, that will form

the main focus of the thesis and will motivate the purpose of studying each of them.

Statistical Physics is a branch of science that deals with systems consisting of many par-

ticles interacting with each other where we attempt to better understand the phenomena

that emerge out of these interactions, many of which are not accessible through reductionist

treatments. Systems that are in thermal equilibrium obey the laws of Equilibrium Statis-

tical Physics − a subject whose tools are mature and well developed. However, unlike its

equilibrium counterpart, Non-Equilibrium Statistical Physics does not have an overarching

formalism. But in the last three decades, this field has seen a substantial amount of progress.

A significant portion of this recent progress has come through the use of a kinetic approach.

The idea of this approach is to study simple stochastic models specified by dynamical rules

which capture the essence of the real process that we are trying to describe. Once the model

and its dynamical rules are established, the next step is to analyze these simple models, and

through this analysis, uncover what more can the model tell us about the real process. To

do so, we develop an array of tools and methods that help us understand the process better.

And with this kinetic approach as the guiding principle, we begin our study of Stochastic

Evolution in Models of Statistical Physics.
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The plan of the thesis is as follows: Chapter 2 begins with a general discussion on

the simplest stochastic interacting particle system − the exclusion process. After briefly

motivating the process and discussing what is known, we will describe a two-species exclusion

problem that shows a remarkable, counter-intuitive feature, called the TASEP Speed Process.

More precisely, we will discuss the approximate phenomenological description of the motion

of a single second-class particle in a two-species totally asymmetric simple exclusion process

(TASEP) on a 1D lattice. Initially, the second class particle is located at the origin and to

its left, all sites are occupied with first class particles while to its right, all sites are vacant.

Ferrari and Kipnis [14] proved that in any particular realization, the average velocity of

the second class particle tends to a constant, but this mean value has a wide variation in

different histories. We will discuss this phenomenon called TASEP Speed Process, in an

approximate effective medium description, in which the second class particle moves in a

random background of the space-time dependent average density of the first class particles.

We do this in three different approximations of increasing accuracy, treating the motion

of the second-class particle first as a simple biased random walk in a continuum Langevin

equation, then as a biased Markovian random walk with space and time dependent jump

rates, and finally as a Non-Markovian biased walk with a non-exponential distribution of

waiting times between jumps. We will show that when the displacement at time T is x0,

the conditional expectation of displacement, at time zT (z > 1) is zx0, and the variance

of the displacement only varies as z(z − 1)T . We will extend this approach to describe the

trajectories of a tagged particle in the case of a finite lattice, where there are L classes of

particles on an L-site line, initially placed in the order of increasing class number. Lastly,

we will discuss a variant of the problem in which the exchanges between adjacent particles

happened at rates proportional to the difference in their labels. After addressing the issue

of the TASEP Speed Process, we will extend our approach to different variations of the

multi-species exclusion process.

In Chapter 3, we will discuss the stochastic evolution of a surface, taking the example of

the Eden Model. We start with an small exposition of the process and its variants following

which, we will motivate the question of finding upper bounds to the shape of growing clusters

using examples from day-to-day life. We will then discuss three approximations to determine

the Eden cluster shape on a d-dimensional hypercubical lattice, in terms of region visited

up to time t by an independent branching process (IBP) on the d-dimensional hypercubical

lattice and two modifications to it − one in which each cell independently gives rise to

daughter cells at neighbouring sites except along the bond that connects it to its mother cell
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and the other, in which we iteratively evolve the system and in each iteration, impose the

condition at any non-empty site, no more cells can be added due to the descendants of the

cells present at that site. All three of these will provide upper bounds to the region reached

in the original infection process, and will become asymptotically exact in the large-d limit.

Even in d = 2, we will show that the simplest IBP approximation is rather good.

In Chapter 4, we will move on to the study of the stochastic evolution of a model with

two competing surfaces, called Chase-Escape and will study its critical properties. This

process, defined as a prey-predator model on the 2−D square lattice, shows an intriguing

survival-extinction phase transition for the prey. The prey can co-exist with predators even

it is moving at a speed significantly lesser than that of the of the predators. While this is

not unexpected, the issue gets very interesting when it is noted that the estimated critical

value of the rate of spreading of prey pc = 0.5 ± 0.01, which is the critical value of the

classic bond percolation on the 2−D square lattice. We will study Chase Escape Percolation

on the 2−D square lattice and determine its critical value using numerical simulations to

be pc = 0.4943 ± 0.001. This provides strong evidence against the idea that the Chase-

Escape percolation might be the bond percolation in disguise. We will also establish that

the critical behaviour of this process in different directions is not different by finding that

pc = 0.4943 ± 0.001 in the diagonal direction as well. Apart from this phase transition,

the Chase-Escape front also undergoes a depinning transition. For pc < p < 1, the center

of mass of the red and blue fronts coincide as a function of time and the two fronts move

together in a pinned way. Interestingly, we will show that the speed of the Chase-Escape

front is smaller than the speed of the Eden front for the same value of p. Using simulations,

we will provide a possible mechanism for this counter-intuitive phenomena. Finally, we will

provide a lower bound to the cluster size distribution for p < pc.

We will conclude in Chapter 5 by providing a brief summary of our results and outline

future directions for research that arise as a consequence of the results obtained in this thesis.

In the problems considered for this project, I have tried my best to first understand

the process to the best of my abilities and then to provide simple descriptions to the rich

phenomena that is observed in these processes. Approximate descriptions that capture the

phenomenology of the process are going to be a recurring theme in the coming chapters of

the thesis. Another theme that will be common in our analysis will be going beyond the

simple description by making better approximations, by incorporating more elements of the
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processes that we are trying to model, and hence providing models that, with increasing

accuracy, describe aspects of the real process.

4



Chapter 2

TASEP Speed Process: An Effective

Medium Approach

Advantage begets further advantage − this effect, often called the Matthew effect, is observed

in various forms in day-to-day life, most commonly in social and economic aspects. But can

such an effect be seen in systems where the evolution is completely memory-less? The answer

is yes. In this chapter, we will study a Markov process in which, the dynamics of a special

particle at late times is heavily determined by its dynamics at early times. We will provide

a simple description of this phenomena and using simple models, improve upon the current

understanding of this phenomena.

2.1 Introduction

There has been a lot of interest in understanding exclusion processes on a line as the simplest

model of stochastic evolution in systems of interacting particles [1]. In the simple symmetric

exclusion process on a 1−D lattice, we start with an initial condition where particles occupy

some lattice sites with the constraint that each lattice site can at most accommodate one

particle. In the continuous time version of this process, the time evolution of the system is

given by the rule that each particle hops to an empty nearest neighbour site with rate 1.

Many exact results are known for this simple exclusion process on a line [5]. Several variants

of the exclusion process have been studied including multi-species exclusion processes and
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the partially and totally asymmetric exclusion processes (ASEP and TASEP) [1, 5 − 8].

These have found several interdisciplinary applications and are good models of many physical

systems, such as traffic on highways [2], transport in narrow channels [3] and motion of motor

proteins on microtubules [4].

Figure 2.1: A schematic representing an exclusion process. Particles can only hop to empty
nearest neighbours.

If we want to study the trajectory of individual particles in an assembly of interacting

particles, one often adopts a self-consistent mean-field kind of approximation, in which the

motion of the particle occurs in an effective field provided by the others. The best known

example being Brownian motion [9, 10], that was first studied to describe the motion of

pollen grains in a liquid. In this case, the molecules present in the liquid provide a random

fluctuating force, that leads to a diffusive motion of the pollen grains. The strength of the

random force is determined by some average macroscopic properties of the liquid like the

effective viscosity and temperature. Other examples of self-consistent treatments include

the Hartree-Fock theory of electronic structure of atoms [11, 12], and the motion of ions in

plasmas in the Vlasov approximation [13].

In this chapter, we will discuss this general approach, called the effective medium ap-

proach here, in the specific setting of a two-species totally asymmetric exclusion process.

We will consider a system of hard-core particles on a 1-dimensional lattice, with two classes

of particles. We will consider the evolution from the special initial condition, where there

is only one second class particle at the origin, and all sites sites to the left are occupied by

first class particles, and all sites to the right of the origin are vacant. The dynamics follows

continuous-time Markovian evolution where each first class particle exchanges position with

a second-class particle or vacancy to its right with rate 1. The second class particle can jump

to the left, if forced by a first class particle moving from its left, or jump one space to an

empty site on its right, with rate 1.

For this problem, Ferrari and Kipnis made a rather surprising observation [14]. In their
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own words, “a second class particle initially added at the origin chooses randomly one of

the characteristics with the uniform law on the directions and then moves at constant speed

along the chosen one.” This is a remarkable property as the system undergoes Markovian

evolution, and has no memory. It happens, because if the second-class particle initially,

by chance, gets a large positive displacement, in subsequent times it encounters a smaller

density of other particles, and hence also moves faster at later times. This is an example

of persistence, where time average of one evolution history is very different from ensemble

average over all histories of evolution.

While the authors proved this result, they did not discuss how big are the fluctuations in

the velocity, and how they decrease with time. In this chapter, we will describe this process

in a simple Langevin description [15], that also allows us to estimate how the fluctuations

in the average speed decrease with time.

We will show that, when the displacement of the second class particle at time T is x0,

the conditional expectation of displacement, at time zT (z > 1) is zx0, and the variance of

the displacement only varies as z(z − 1)T . Thus the fluctuations, for fixed z, increase as√
T . Equivalently, we find that if v∗ is the asymptotic value of velocity of the second class

particle, for large z, (v∗ − x0/T ) has a typical spread of 1√
T

which goes to 0 as T increases.

The plan of this chapter is as follows: in Section 2.2, we define the model precisely.

In section 2.3, we discuss the description of the trajectory of the second-class particle in a

Langevin equation description. We use this to determine the variance of the particle position

at time zT , given the position at time T . In Section 2.4, we discuss different approximations

of increasing accuracy describing the trajectory as a biased random walk. In section 2.5, we

then use this approach to study the mean trajectories in a more complicated problem called

the Oriented Swap Process. Section 2.6 contains a summary and concluding remarks that

includes the description of an interesting open problem.

2.2 Definition of the Process

We consider a two species TASEP with initial conditions such that a single second class

particle is located at the origin of the lattice. To the left of the second class particle, each

lattice site is occupied by a first class particle and to its right, each site is vacant. We will
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denote a first class particle by 1, a second class particle by 2 and a vacant site (hole) by 0.

The allowed nearest neighbour transitions in this process are:

10
rate Γ−−−→ 01

20
rate Γ−−−→ 02

12
rate Γ−−−→ 21

We set Γ = 1.

We wish to understand the dynamics of the second class particle in this process. Ferrari

and Kipnis proved [14] that the position of the second class particle X(t) at time t follows:

lim
t→∞

X(t)

t
= U

where U is a uniform random variable on [−1, 1].

We will call the process in which the velocity of the second class particle tends to a

random number distributed uniformly between [−1, 1] as TASEP Speed Process (TSP) and

will provide a simple explanation of this remarkable phenomena. The name TSP earlier

has been used in the study of joint distribution of the velocities of different particles in a

multi-species version of this process [16].

2.3 Langevin Description

We aim to understand the motion of the second class particle, when all the sites to its

left are occupied by first class particles and all sites to its right are vacant, using a simple

approximation by breaking this problem into two steps:

1. We first discuss how the mean density ρ(x, t) of first class particles evolves in space
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Figure 2.2: Trajectories of second class particle in the TASEP Speed Process. 150 different
trajectories consisting of 4000 steps taken by the second class particle have been plotted.

and time, in the absence of the second-class particle.

2. Then we try to describe the motion of the second class particle moving as a random

walk in a space-time-dependent background field ρ(x, t) .

We show that this simple description captures essential features of TSP and allows for further

analysis.

Let x(t) denote the position of the second class particle at time t. We want to discuss the

stochastic properties of this trajectory, by integrating out all the first-class particles. The

hydrodynamics of TASEP was first studied by Rost [17]. The coarse-grained evolution of

the sea of first class particles in terms of particle density ρ = ρ(x, t) can be described by the

partial differential equation:
∂ρ

∂t
+ (1− 2ρ)

∂ρ

∂x
= 0 (2.1)

with

ρ(x, t = 0) = θ(−x),

where θ(x) is the step function, which is 0 for x < 0, and 1, for x > 0. The solution of this
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partial differential equation is obtained to be:

ρ(x, t) = 1 for x < −t (2.2)

ρ(x, t) = 0 for x > t (2.3)

ρ(x, t) =
1

2
(1− x

t
) for −t ≤ x ≤ t (2.4)

The motion of the second class particle is described by a stochastic differential equation

dx

dt
= V̄ (ρ(x, t)) + η(t) (2.5)

where V̄ equals the mean velocity of the particle, and η(t) takes into account all the fluc-

tuations away from the mean. By definition, < η(t) >= 0. V̄ is an externally prescribed

function of ρ in Eq(5). In our problem, V̄ = 1− 2ρ, where rho is given by Eq(4). Hence we

write

V̄ (ρ(x, t)) = 1− 2ρ(x, t) (2.6)

Substituting the value of ρ(x, t) from above:

dx

dt
=
x

t
+ η(t) (2.7)

This is a linear differential equation, and may be solved by using an integrating factor.

Equivalently, we make a change of variables to v(t) = x(t)/t, the mean velocity of the

particle. This satisfies the simpler equation

dv(t)

dt
=
η(t)

t
(2.8)

This is easily solved to give

v(zT )− v(T ) =

zT∫
T

η(t′)

t′
dt′ (2.9)

As η, by definition has zero mean and z is a real number greater than 1. This gives <

v(zT ) >=< v(T ) >.

We can also determine the variance of v(T ):

〈
(v(zT )− v(T ))2〉 =

zT∫
T

zT∫
T

< η(t′)η(t′′) >

t′t′′
dt′dt′′ (2.10)
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We expect correlation function < η(t)η(t′) > to be short-ranged. It was shown for TASEP in

[18] that correlations < ρ(x, t)ρ(x′, t′) > are exponentially decreasing in time |t− t′|, unless x

and x′ are such that x− x′ = u(t− t′), where u is the mean velocity of the flow. In our case,

we easily see that while the second-class particle sees a constant density, the mean velocity

of first class particles is 1− ρ, and of second class particle is 1− 2ρ, and they are not equal.

So, in general, the correlation function is short-ranged, and if D =
∫ +∞
−∞ dτ < η(t)η(t+ τ) >,

we may write < η(t)η(t′) >= Dδ(t− t′)), which gives

< [v(zT )− v(T )]2 >=
D(z − 1)

zT
(2.11)

which goes to 0 as T increases. This shows that the velocity of the second-class particle does

get fixed at large T .

Figure 2.3: A schematic representing the motion of the second class particle (blue) in the
space-time dependent background density plotted as a heat map.
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2.4 Approximate random walk descriptions of the tra-

jectory

While the Langevin description correctly describes the long-time behavior of trajectory cor-

rectly, the actual walk occurs on a discrete lattice, and a more accurate description would

be as a random walk on a line in continuous time. This we will try to develop now.

2.4.1 Simple Biased Random Walk

In the spirit of the discussion above, consider motion of a second class particle in uniform

density ρ. The trajectory then has mean velocity U = 1−2ρ, and its time evolution for times

t >> 1 can be discussed as a simple random walk. It is known that if there is no second class

particle, then in the steady state, occupation numbers of TASEP have a product measure.

Then, in the steady state of TASEP, with a fixed density ρ, if we assume that we place a

second class particle, with prob. (1 − ρ), its site on the right will be empty, and then it

jumps with rate 1. Similarly, with probability ρ, the site on its left will be occupied and it

will overtake the second class particle with rate 1. So, we conclude that trajectory of particle

is a biased random walk. On a background density ρ(x, t), the second class particle jumps

to the left with rate ρ(x, t), and to the right with rate 1 − ρ(x, t). As a check, the mean

velocity is U = 1 − 2ρ(x, t), which agrees with the exact asymptotic value of velocity [19].

We have simulated this walk on the background ρ(x, t) given by Eq(2.2-2.4). The results are

shown in Figure 2.4. We also compare with the the simulation of the original process (Figure

2.2). We see that while we do get trajectories with velocity fixation, and the velocity U is

uniformly distributed in the interval [−1, 1], the time taken by the walker to take 4000 steps

is roughly the same while, the time taken in TSP shows a clear ρ dependence.

2.4.2 Markovian Continuous Time Random Walk

This shows that the rates of left and right jumps in our simple approximate model do not

correctly describe the trajectories of the original problem. The difference occurs because the

average density of first class particles near the second-class particle is not the same as in the

bulk, away from the second class particle. Hence our approximation of using the steady state
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Figure 2.4: Trajectories of a CTRW with rate ρ(x, t) of jumping to the left and 1 − ρ(x, t)
of jumping to the right. 150 different trajectories consisting of 4000 jumps made by the
random walker have been plotted. Notice that the time taken by the walker to take 4000
jumps is roughly the same in each trajectory which is not the case in TSP.

measure of TASEP to calculate jump rates in the problem with a second class particle is

present not adequate. The average density profile near a second class particle in the steady

state has been calculated in [20] using the matrix product ansatz. It was shown that the

second class particle is attracted to regions with a positive density gradient. More precisely,

it was found that for a second class particle on a ring with density ρ of first class particle,

in the steady state, the mean density on the site to the right is 2ρ − ρ2 and on the site to

the left is ρ2. This implies the probability of the site to the right being empty is (1− ρ)2. If

we use a continuous time random walk model with jump rates (1 − ρ)2 to the right and ρ2

to the left we still get mean velocity = 1− 2ρ. But now the agreement with the simulations

is much better as seen in Figure 2.5.
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Figure 2.5: Trajectories of second class particle in the CTRW model with jump rates
(1− ρ(x, t))2 to the right and (ρ(x, t))2 to the left. 150 different trajectories consisting
of 4000 steps taken by the second class particle have been plotted.

2.4.3 Continuous Time Random Walk with Waiting Time Distri-

butions

However, our description is still not sufficiently accurate. If we are given a single long trajec-

tory of the second-class particle, with mean velocity U in the original process between times

T and nT , for T >> 1, and also one generated using the Markovian jump rates descibed

above, can one distinguish between them? The answer is yes. Clearly, in the Markovian

approximation, the waiting times between successive jumps are independent random vari-

ables, with a distribution that is a simple exponential. One can easily verify that in the

original process the waiting time intervals do not have an exponential distribution. This

comes from the fact that since occupancy of neighbors by first class particles have non-

trivial correlations in time, so the probabilities of jump in nearby time intervals [t, t + ∆t1]

and [t+ ∆t1, t+ ∆t1 + ∆t2] are not uncorrelated.

The trajectories in the TASEP Speed Process show a nearly exponential distribution

14



of waiting times only for velocities close to 1 and −1 whereas a clear departure from the

exponential distribution is observed for smaller velocities. Figure 2.6 shows the distribution

of waiting times for the TSP and the CTRW model. The histograms were plotted for two

trajectories, consisting of 8000 steps taken by the second class particle, of velocity (a) 1 and

(b) 0.2. It is clearly seen that an even more accurate modelling of the trajectory will be

as a random walk which involve a continuous time non-Markovian walk with a prescribed

distribution of residence times f(τ), with probability to jump left or right given by p(τ) and

1−p(τ). The calculation of the exact functions f(τ) and p(τ) is rather difficult, and will not

be attempted here. We can take these to be approximately determined from simulations.

Of course, even this modelling of the trajectory as a continuous time random with a dis-

tribution of waiting times is approximate. In the original process, the waiting times between

successive jumps are only approximately uncorrelated. But going beyond this description

falls outside our aim of providing a simple approximate description of the trajectories.

2.5 Extensions of our approach

This work can be extended to the case of a multi-species partially asymmetric exclusion pro-

cess (ASEP). It was conjectured in [2] that even in partially asymmetric case, the asymptotic

velocity tends to a uniformly distributed random variable. More precisely, in this case, if we

start with the initial conditions as before and look at the motion of the second class particle,

then:
X(t)

t
t→∞−−−−−−−→ Up

where X(t) is the position of the second class particle at time t and Up is a uniform random

variable between [−(2p−1), (2p−1)] where p is the rate of jumping to the right (1−p being

the rate of jumping to the left). An Langevin description can be developed for this as the

evolution of density for first class particles is given by:

∂ρ(x, t)

∂t
+ (2p− 1)(1− 2ρ(x, t))

∂ρ(x, t)

∂x
= 0

Even in the case of multi-species ASEP, our analysis goes through and the fluctuations about

the average velocity die out as t−1.
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Figure 2.6: Waiting time distributions for trajectories with speeds (a) 1 and (b) 0.2 in the
CTRW model (black circle) and the TASEP Speed Process (red circle). For speeds close
to 1, the waiting time distribution for the TASEP Speed Process matches closely with the
exponential waiting times of the CTRW model. However, for intermediate speeds, a clear
departure from exponential waiting time distribution is observed.

The finite lattice version of the multi-species problem [21] offers an interesting extension

to the effective medium approach. The system considered is a finite lattice with n sites in

which, each site is occupied by a particle and its class is labeled by its initial position on

the lattice. The time evolution of the system is given by the stochastic nearest neighbor

exchange rule:

ij rate 1−−−−−→ ji for all i < j

If we wish to study the dynamics of a tagged particle of the k-th class, it is clear that the

problem is, again, reducible to a two species problem with particles of l-th class (l < k)

being equivalent to first class particles, particles of m-th class (m > k) being holes and the

tagged particle being the second class particle.
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Figure 2.7: A realization of the finite lattice process with 3 particles.

The motion of a tagged particle is strongly affected by the ends and displays an interesting

behaviour - initially, its dynamics of the tagged particle mimics the dynamics of a tagged

particle in TSP on an infinite line. However, at later times, the particle reaches a growing

impenetrable region of density 1 (0) on the right (left) and travels along with it, remaining

at the moving end of this region at subsequent times, till its absorbing position. This is

expected as the lattice is finite and after some time, clearly the first class particles (holes)

start to get accumulated at the right (left) boundary. Figure 2.8 is a schematic of this

evolution. It is interesting to note that the absorbing position of a particle whose initial

position was k is always n−k. This behaviour can be described by CTRW model with jump

rates given by the following background density:

ρ(x, t) = 0 for x ≤ l(t)

1 for x ≥ n− r(t)
1
2
(1− x−k

t
) for −t+ l(t) < x− k < t− r(t)

1 for l(t) ≤ x < k − t+ l(t)

0 for k + t− r(t) ≤ x < n− r(t)

(2.12)
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Figure 2.8: Density profiles at various times: (a)t = 0, the process hasn’t started; (b) positive
t, no finite size effects felt so far; (c) and (d) regions of density 1 and 0 start to form on the
right and the left sides respectively; (e) the process ends.

The fact that the density of first class particles evolve in such a way was elegantly obtained

in [5]. l(t) and r(t) are the mean widths of impenetrable regions of density 1 and 0 on the

right and left boundary respectively and they satisfy:

r(t) = 0 for t ≤ (n− k)

t+ (n− k)− 2
√
t(n− k) for ts ≥ t > (n− k)

k for t > ts

l(t) = 0 for t ≤ k

t+ k − 2
√
tk for ts ≥ t > k

n− k for t > ts

(2.13)

where ts is the mean time taken by the tagged particle to reach its absorbing position

and is given by ts = n+ 2
√
k(n− k).
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We simulated the process on a lattice of 1000 sites and looked at the various trajectories

of the particle labelled 200. Figure 2.9 shows 150 such trajectories and Figure 2.10 shows

analogous results for the effective medium description using a continuous time random walker

on a line with jump rates determined by the background density given in Eq(2.12).

Figure 2.9: 150 different trajectories of the particle labelled 200 in the finite lattice version
of TSP with 1000 particles.

As an interesting variation to the multi-species problem, consider a 1D lattice where each

lattice site is occupied with a particle and the class of each particle is labeled by its position

on the lattice with only the following nearest neighbor transitions allowed:

ij rate (j − i)α
−−−−−−−−−−→

ji for all i < j

This model is clearly a better model for traffic flow if we visualize the x-coordinate of particles

to not be their position in real space, but their relative order on the road as the overtakings

between two particles happen at rates proportional to the difference between their labels

(which is a proxy for the velocity).

Some special cases of this model have been studied before [6 − 8]. It is known that the

steady state of such a model on a 1D lattice with open boundary conditions and α = 1,
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Figure 2.10: Trajectories of a continuous time random walker with space time dependent
jump rates determined by the evolving density of first class particles defined by Eq(2.12)

in which there was an additional feature that particles could enter the system from the

left end and leave from the right at rates depending on their labels, can be obtained by a

matrix product ansatz. This was later generalized to obtain the steady state properties of

this system on a ring. We consider the dynamics of a tagged particle in this modified multi-

species exclusion process on an infinite line for a general α where particles do not enter or exit

the system. This problem cannot be reduced simply to the 2-species problems as each particle

interacts with every other particles differently. However, we find that something analogous

to the “velocity selection” in TSP happens in this process as well. The trajectories of the

tagged particle in this process seem to belong to the family of curves t = ax1−α for α 6= 1

and t = ln ax for α = 1 where a parametrizes the trajectories. A heuristic argument for

this is as follows:if a particle has moved distance x in time t, then the typical change in

velocity it encounters with its neighbor is proportional to x. Then dx/dt ∼ xα implies that

x ∼ t1/(1−α). for α 6= 1 and t ∼ lnx for α = 1.

We demonstrate numerical results in Figures 2.11 and 2.12 for α = 1
2
. Figure 8 shows

150 different space-time trajectories of the process and Figure 9 shows the trajectories when

the time coordinate t is scaled as t
2
√
x

where we have only chosen the trajectories whose dis-

placement always remains positive. We see that t/
√
x is nearly constant for each trajectory,
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Figure 2.11: 150 trajectories consisting of 3000 jumps made by a tagged particle in the
modified multi-species exclusion process with α = 0.5.

but different trajectories have very different values of this variable. Finding the distribution

of the asymptotic value of a over different trajectories remains an open problem.

2.6 Summary

In summary, we discussed the effective medium approach to describe the motion of a tagged

particle in the time-evolving background other particles. We provided a simple Langevin

description of the dynamics, that captures the key features of the large-scale behavior of

TSP, and also calculated the variance of the average velocity within one history, and for

different histories. We discussed how to improve the effective medium description to take

into account different additional features of the trajectories. These were approximating the

trajectory as a biased random walk, with rates of walk calculated from the steady state of

the TASEP, in the absence of the second-class particle. We found that to get a quantitative

agreement with the original process, one has to incorporate the modification of the average

density profile that occurs near the second-class particle. Also, while the time evolution of
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Figure 2.12: Trajectories of the tagged particle in the modified multi-species exclusion process
with α = 0.5 after time coordinate t is scaled as t

2
√
x
. 150 different trajectories are plotted

showing that all the trajectories belong to a family of curves given by t ∼
√
x.

the original process was Markovian by definition, the evolution of the projected process is

non-Markovian. This is most easily seen in the non-exponential distribution of waiting times

between jumps in the motion of the second-class particle. We proposed a non-Markovian

continuous time random walk with a distribution of waiting times between jumps as a good

description of this. We later extended our approach to a finite lattice version of the TSP

and studied the trajectories of a tagged particle in this process. In this case, interesting end-

effects are seen which can also be explained within the effective medium approach. Lastly,

we looked at a modified multi-species exclusion process in which exchanges between adjacent

particles happened at rates proportional to the difference in their labels. We showed that in

this process too, the motion of a tagged particle shows a behaviour in which it initially chooses

a trajectory from a family of curves and sticks to it asymptotically. A better understanding

of our heuristic arguments, and numerical observations about this process for a general α

seems to be an interesting problem for further study.
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Chapter 3

The Asymptotic Shape of Eden

Clusters

From bacterial colonies and growing tumors to forest fires and spreading of rumors, phenom-

ena of cluster growth can be seen everywhere. While studying models of these processes, it is

natural to ask about the spatial extent of the growing cluster at any given time t. Given that

there is a disease outbreak, in what regions should you focus your immunization programs?

Or given that a rumor has been started by a specific person, who are the people to whom

the rumors would have reached? In this chapter, we will provide a method to answer such

questions, in the context of the Eden model.

3.1 Introduction

In Chapter 3, our main focus would be studying the stochastic evolution of a growing surface

or cluster. There has been a lot of interest in the study of stochastic growth models in recent

years [5, 15, 23, 25, 29] − mainly owing to their ubiquity and partly to their beauty. With

the recent advances in network theory and stochastic processes, there is a growing interest in

studying spreading phenomena in complex heterogeneous environments. However, there still

is a lot left to understand in the simplest model, defined on a regular lattice, called the Eden

model [32]. Important questions that are yet to be addressed are based on studying the long

time asymptotics of its dynamics. One such question is understanding the asymptotic shape
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of the growing cluster. In this regard, in the context of the Eden model, bounds on velocity

of the growing cluster along the axis and the diagonal directions have been obtained earlier

[24, 25, 28]. In the context of this epidemic process, the question of finding upper bounds

to the shape of the growing cluster is natural, and is equivalent to estimating the size of

region in which the residing people could be exposed to a particular infection given that

the patient zero resides at the origin. As far as the shape is concerned, most studies have

been concerning the inequality of velocity along the axes and diagonal [26, 30]. While some

numerical studies of the asymptotic shape have been reported in 2 dimensions, we could not

find any discussion of the equation of the asymptotic shape. Here, we find the upper bounds

on the growth velocity in a general direction on d-dimensional hypercubical lattice.

3.2 The Eden Model

We begin by defining the Eden model as an epidemic model. Consider an infection process

on a d−dimensional hypercubical lattice where each site can either be infected or healthy.

We denote the coordinates of each site by (x1, x2, ..., xd). At time t = 0, only the origin

O=(0, 0, ..., 0) is infected and all other sites are healthy. The evolution is a continuous time

Markov process in which an infected site infects its healthy neighbours at rate 1. We consider

the process in which an infected site never recovers. This model is equivalent to first passage

percolation with exponentially distributed independent passage times.

This model was first introduced by Murray Eden in 1961 [32] to investigate the growth of

biological cell colonies. Many variants of this model have been studied since then − starting

from the model of skin cancer by Williams and Bjerknes [31] to the SIR (Susceptible-Infected-

Recovered) and SIS (Susceptible-Infected-Susceptible) models of epidemics. Apart from the

many applications that one can think of, surface growth models, in general, have given us

a lot of insight into nonequilibrium phenomena by providing us with a platform to study

universal behavior [29].

With this motivation in mind, we start our discussion on the shape of Eden clusters.
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Figure 3.1: The idea behind finding a lower bound to the velocity of the Eden front.

3.2.1 Lower bound to velocity of the Eden front along axis in 2D

Before addressing the question of upper bounds to the velocity of Eden front in any general

direction, we will provide an analytical method to obtain a lower bound on the velocity along

the axis in two dimensions.

The idea is as follows: Consider the semi-directed Eden process in which infections can

traverse along the positive and negative y− axis and the positive x−axis we want to find

the time taken to infect any lattice point on the line x = n+ 1 given that the first infection

on the line x = n just happened. Suppose, all the infected sites on the lines x = k for k < n

become dead as soon as a site on x = n is infected (dead sites can’t infect their neighbors

any further). It is clear that, in this modified process, the time taken to infect any lattice

point on the line x = n+1 after the first infection on the line x = n happened will be greater

than the time taken in the Eden model for the same. This idea was presented originally

by Kesten to refute the Eden conjecture but he could only show it for dimensions larger

than 106. Recently, Bertrand and Pertinand [24] used this idea and improved bounds on the

velocity along axis and significantly decreased the upper bound on the number of dimensions

in which the Eden conjecture does not hold to 22. Figure 3.1 demonstrates the idea behind

finding this bound in 2D. In 3.1(a), the line x = n has just been infected (orange). The

deep blue particles on the line x = n − 1 are now dead and cannot infect any further. The

dynamics is now constrained only to the lines x = n and x = n+ 1. Let T1 denote the time

taken to first infect line x = n+ 1 starting from the configuration shown in 3.1(a). Clearly,
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there are only two possibilities for the next step: either the infection spreads further on the

x = n line (3.1(c)), or it infects the line x = n+ 1 (3.1(b)). It is easily seen that T1 satisfies

the following equation

T1 =
1

3
.
1

3
+

2

3
.

(
1

3
+ T2

)
Where T2 denotes the time taken to first infect line x = n+1 starting from the configuration

shown in 3.1(c) where there are two adjacent infected sites on the line x = n. Similarly, we

can define TN as the time taken to infect the line x = n+ 1 starting from the configuration

where there are N adjacent infected sites on the line x = n. Then

T2 =
1

4
.
2

4
+

2

4
.

(
1

4
+ T3

)
and we have the general recursion relation

TN =
1

N + 2
.
N

N + 2
+

2

N + 2
.

(
1

N + 2
+ TN+1

)
This recursion relation can be solved to give T1 = 0.5973, which is an upper bound on time

taken for a line to infect its adjacent line. Equivalently, 1/T1 = 1.674 gives a lower bound

on the velocity of the Eden front along the axis.

We will now shift our discussion to upper bounds to the asymptotic shape of the Eden

cluster using the Independent Branching Process (IBP) and its variants. But first, we will

define the IBP.

3.3 The independent branching process

The independent branching process (IBP) on the Zd lattice is defined as follows: We consider

an infection process in which the number of cells present at a site can be arbitrarily large.

Let n(~R, t) denote the number of cells present at the site ~R at time t. At the time t = 0,

there is only one cell present in the system, and it is placed at the origin ~O. Then, we have

n(~R, t = 0) = δ~R, ~O.

The time evolution is a continuous-time Markov process. At any time t, a cell can give

birth to a descendant cell, that sits at a nearest neighbor site. Then number of cells at the
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neighbor increases by one. Once born, a cell never dies. We assume that the rate at which

a cell gives birth to a daughter cell is 1 along each bond, independent of the number of cells

present at the site, or at neighbours.

In this model, the number of cells present at time t increases exponentially with t. Each

cell gives birth to a daughter cell at a rate 2d per unit time (because each has 2d neighbors).

Hence the average number of cells present at time t is exp(2dt), for all t > 0. Also, with

time, the region occupied by at least one cell, also called the region invaded by the cells,

grows with time. The outer boundary of the region invaded by the cells is called the invasion

front. We define u(~Ω) as the velocity of the invasion front in the direction ~Ω as

u(~Ω) = lim
t→∞

(1/t) ~Rt(~Ω) (3.1)

where ~Rt(~Ω) is position of the invasion front in the direction ~Ω) at time t. It is easily seen

that u(~Ω) has a non-zero limit, and the fluctuations in (1/t) ~Rt(~Ω) tend to zero as time

increases.

In the Eden process(EP), the number of cells at any site is at most 1. It is easily that

if we have two configurations C and C ′, where C evolves according to the rules of EP, and

C ′ evolves as an IBP, and at any given time t, the number of cells in C ′ at any site ~R is

greater than or equal to the number at the corresponding site in C. Then, this property will

be preserved at at subsequent times. This implies that the front velocity in IBP proves an

upper bound to the front velocity in EP in all directions ~Ω.

It is straight forward to determine the growth velocity in IBP. Let the average number

of cells in the IBP at time t, at the site ~R be denoted by n̄(~R, t). We use the fact that in

IBP, these variables satisfy a linear equation

d

dt
n̄(~R, t) =

∑
nn

n̄(~R′, t) (3.2)

where the sum runs over the 2d nearest neighbors of ~R. This is a linear equation, and is

easily solved, by Fourier transformation. We define the variables ñ(~k, t) as

ñ(~k, t) =
∑
~R

n̄(~R, t)exp(−i~k. ~R) (3.3)
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Then, these variables satisfy the equation

d

dt
ñ(~k, t) = λ(~k)ñ(~k, t) (3.4)

with λ(~k) = 2
∑d

i=1 cos(ki).

This equation is easily solved, and by inverse Fourier transformation, we get

n̄(~R, t) =

∫
d~k

(2π)d
exp(λ(~k)t+ i~k. ~R). (3.5)

It is easily seen that for fixed ~r, n̄(~R, t) increases as exp(2dt). We are interested in the

case where as t increases, ~R also becomes bigger with time as ~R = ~vt. Then, the integral

becomes

n̄(~R, t) =

∫
d~k

(2π)d
exp(t

[
λ(~k) + i~k.~v

]
). (3.6)

In the limit of large t, this is evaluated easily, using the steepest descent method. The

stationary point occurs at a imaginary value of ~k = i~κ, given by

κj = sinh−1(vj/2). (3.7)

We define the large deviation function F (~v) by the condition that for large t,

n̄(~vt, t) ∼ exp [tF (~v)] (3.8)

with

F (~v) =
d∑
i=1

[
2
√

1 + vi2/4− vi sinh−1(vi/2)
]

(3.9)

We note that F is a decreasing function of its argument. At ~V = 0, it has a value 2d.

And for large |v|, it varies as −
∑

i |vi| log |vi|).

At the cluster boundary, n̄ is of O(1). So, the boundary of the cluster, scaled by t, is

given by equating the growth rate of n̄ to zero. Thus, we get that the scaled boundary of
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the cluster in the IBP is given by

d∑
i=1

[
2
√

1 + vi2/4− vi sinh−1(vi/2)
]

= 0. (3.10)

Note that from Eq.(3.6), n̄(~R, t) is also equal to the number of walkers expected at ~R at

time t, if exp(2dt) walkers are released at the origin at time t = 0, and perform independent

random walks.

As a check, we see that along the diagonal direction (1, 1, 1, 1..), we set vi = Vdiag, for all

i. Then, for all d, we get V ∗ is the solution of the equation

2
√

1 + Vdiag
2/4 = Vdiag sinh−1(Vdiag/2) (3.11)

which gives Vdiag ≈ 3.01776. This gives the well-known upper bound to the speed along the

diagonal in d dimensions (measured in Euclidean norm) as

vdiag,EP ≤ vdiag,IBP = 3.01776
√
d. (3.12)

One can also verify that this agrees with the already known results about the asymptotic

velocity along one of the axes in the IBP. In this case, we set ~v = (Vaxis,IBP , 0, 0, 0..). The

corresponding equation becomes

2
√

1 + Vaxis,IBP
2/4 + 2d− 2 = Vaxis,IBP sinh−1(Vaxis,IBP/2) (3.13)

This is easily solved, and gives Vaxis,IBP = 4.4668, 5.67295, 6.75371 and 7.75405, for d = 2, 3, 4

and 5 respectively. For large d, Vaxis varies as 2d/log(d). These results about velocity along

the axes, or along the main diagonal have been known some time. However, we could not

find a discussion of the equation of the asymptotic surface. Numerically, Alm and Deijfen

[26] studied the shape of Eden clusters. The new result here is the exact equation for

the asymptotic shape of the cluster for the IBP, which provides an upper bound for the

asymptotic cluster for the Eden process. In Fig. 3.2, we show the asymptotic shape in

3-dimensions calculated numerically using Eq.(3.10) In the EP, Alm and Deijfen found that

the cluster shape is not exactly circular, with the Euclidean speed along the diagonal and
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Figure 3.2: (a) A contour plot for the independent branching process in 3-D for z =
0, 1, 2, 3, 4, 5, 5.5, 5.65 starting with the outermost curve. (b) A demonstration of the de-
parture from the spherical ball. The plot in blue is a numerical plot of equation (10) and
orange is an arc of a circle with the radius 5.67

Figure 3.3: A plot of velocity v as a function of direction θ. Note that the velocity is
maximum along the axis (θ = nπ/2 for integer n) and minimum along the diagonal direction
(θ = (2n+ 1)π/4).
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along the axis being 2.4420 and 2.4742 respectively. Thus the speed along the diagonal is

smaller by about 1.3%. For the IBP, we found these to be 4.26775 and 4.4668, with the

diagonal speed being smaller that that along the axis by a bigger amount(about 4.5%).

3.4 Cluster shape in modified IBP1

We will now define a model that is a bit more complicated than the IBP defined above.

This is also a continuous-time Markovian evolution independent branching process. Here,

we consider the process on a hyper-cubical lattice in d dimensions. The number of cells at

any site can be a non-negative integer. As before, We start with a single cell at the origin

at t = 0, with the rest of the lattice empty. However, We note that all cells, other than the

original ‘eve’-cell have a mother cell. The evolution rule is still Markovian. Each cell gives

rise to a daughter cell along each bond at rate 1, independent of the state of the other sites,

except along the bond that connects it to its mother cell. Thus, such a cell will have (2d− 1)

bonds along which it can The ‘eve’-cell gives rise to a child along all the 2d bonds connected

to it, at rate 1. We call this process the Modified IBP1 (MIBP1).

For the MIBP1 process also, we can write a closed set of coupled linear evolution equations

for the average number of cells at site ~R at time t. But we need to define 2d variables at

each site. Let n̄(~R, t, eα) denote the average number of cells residing at the site ~R at time

t, whose mother cell is along the bond eα. Here α takes 2d possible values ±1,±2, . . . ,±d,

and e1 is the unit vector along coordinate x1, and e−1 = −e1. Then, the variables n̄(~R, t, eα)

evolve according to the equations

d

dt
n̄(~R, t, eα) =

∑
α′ 6=−α

n(~R + eα, t, eα′) (3.14)

Again, we define the Fourier transform variables of n̄(~R, t, eα) as ñ(~k, t, eα) as

ñ(~k, t, eα) =
∑
~R

exp(i~k. ~R)n̄(~R, t,α ) (3.15)

Then, the equations for different ~k decouple, and the infinite set coupled equations reduces

to that of 2d coupled variables ñ(~k, t, eα), for the 2d values of α for fixed ~k. These are easily
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seen to be

d

dt
ñ(~k, t, eα) = exp(−ikα)

[
S(~k)− ñ(~k, t,−eα)

]
(3.16)

d

dt
ñ(~k, t,−eα) = exp(ikα)

[
S(~k)− ñ(~k, t, eα)

]
(3.17)

where α = 1, 2..d, and S(~k) =
∑d

β=1[fβ + f−β]. This may be written as

d

dt
ñ(~k, t, α) =

∑
α′

Mα,α′(~k) ñ(~k, t, α′) (3.18)

The eigenvalues for this 2d × 2d matrix for a fixed ~k-block are easily determined. For the

eigenvalue λ, we define the eigenvector of the matrix be fα. We discuss the diagonalization

of the matrix M . Explicitly, the matrix elements are

Mα,β = exp(ikα), ifβ 6= −α; (3.19)

= 0, ifα = −β. (3.20)

Here the indices α and β take values (±1,±2,±3..±d) For the eigenvalue λ and its eigenvector

fα, we have, for α = 1 to d

λfα = e−ikα [S(~k)− f−α] (3.21)

λf−α = eikα [S(~k)− fα] (3.22)

where

S(~k) =
d∑
i=1

= [fi + f−i]. (3.23)

We try to solve the coupled equations for fα and f−α in terms of S(~k). When λ2 6= 1, we

can solve these equations to give

fα =
eikαλ− 1

λ2 − 1
S(~k); f−α =

e−ikαλ− 1

λ2 − 1
S(~k) (3.24)

Then, the consistency condition 3.23 becomes

λ2 − 1 + 2d = 2λ

[
d∑
i=1

cos ki

]
(3.25)

32



This is a quadratic equation in λ, and has two roots. We denote the larger one by λmax. this

gives

λmax = Λ +
√

Λ2 − 2d+ 1. (3.26)

where we have defined Λ =
∑d

i=1 cos(ki).

Writing ~R = ~ut allows us to write

n̄(~ut, t) =

∫
d~k

(2π)d
exp

[
t
(
i~k.~u+ Λ +

√
Λ2 − 2d+ 1

)]
(3.27)

The above integral can be easily evaluated in the long time limit using the method of steepest

descent giving

iuj − sin kj

[√
Λ2 − 2d+ 1 + Λ√

Λ2 − 2d+ 1

]
= 0 (3.28)

The stationary point occurs at a imaginary value of ~k = i~κ which upon substitution gives

κj = sinh−1 uj
β

(3.29)

where

β =

√
Λ2 − 2d+ 1 + Λ√

Λ2 − 2d+ 1
(3.30)

This gives us

Λ =
d∑
j=1

√
1 + (

uj
β

)2 (3.31)

Now we can write

n̄(~ut, t) ∼ exp

[
t(Λ +

√
Λ2 − 2d+ 1− uj sinh−1 uj

β
)

]
(3.32)

Equation of the boundary is then obtained to be

d∑
j=1

Λ +
√

Λ2 − 2d+ 1− uj sinh−1 uj
β

= 0 (3.33)
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Eq(3.30, 3.31 and 3.33) together form a set of coupled equations that give us the exact

shape in the MIBP1.

3.5 Cluster shape in modified IBP2

We now define another version of the IBP which is modified in the following way: we start

with a single eve cell at the origin at t = 0, with the rest of the lattice empty. We break

the time evolution of the process in time intervals of ∆. At time z∆ where z is real and

non-negative, all cells at site −→r perform an IBP till time (z + 1)∆ given the constraint that

no descendants of any cell at −→r can give rise to daughter cells at −→r . This modified evolution

is captured by the modified propagator G′(R,∆) given by

G′(
−→
R,∆) = G0(

−→
R,∆) + [1−G0(0,∆)] δ−→

R,0
(3.34)

In Fourier space,

G̃′(
−→
k ,∆) = e2∆

∑
cos ki + 1− Id0 (2∆) (3.35)

To evolve this system up to time t, it is immediately noted that the propagator needs to

be applied iteratively and the result takes the form

G̃′(
−→
k , t) = G̃′(

−→
k ,∆)t/∆ (3.36)

Upon taking an inverse Fourier transform and substituting for
−→
R = −→u t, we get

G(−→u t, t) =
1

(2π)d

∫ −→
dke[t(

1
∆

log(e2∆
∑

cos kj+1−Id0 (2∆))+i
−→
k .−→u )] (3.37)

The above integral can be easily evaluated in the long time limit using the method of

steepest descent giving

iuj +
1

∆

(
e2∆

∑
cos ki(−2∆ sin kj)

)
e2∆

∑
cos kj + 1− Id0 (2∆)

= 0 (3.38)
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The stationary point occurs at a imaginary value of ~k = i~κ which upon substitution gives

uj =
2

Γ
sinhκj (3.39)

where

Γ =
e2∆

∑
coshκj − Id0 (2∆) + 1

e2∆
∑

coshκj
(3.40)

One can eliminate κ from the above equation using sinh−1 Λ
2
uj = κj which gives the

equation

ln (1− Γ) = ln
(
Id0 (2∆)− 1

)
− 2∆

d∑
j=1

√
1 +

(
Γ

2
uj

)2

(3.41)

It is clear that if ∆ is close to zero, then the capping is ineffective as for small ∆, evolution

is effectively already capped. Also, for very large ∆, this method would be ineffective as only

the origin would be capped and the evolution of the MIBP2 would be very much like the

IBP. Hence, ∆ can be optimized over and then, Eq(3.39-41) for a set of coupled equations

whose solution gives the exact shape of the MIBP2 cluster.

3.6 Summary

We discussed bounds to the asymptotic shape of Eden clusters by first calculating the exact

shape of the IBP cluster. We showed that even in the IBP cluster, a departure from the

circular shape of cluster is seen as pointed out by Alm and Deijfen for the Eden cluster. Then

we improved upon the bounds by considering two independent modifications to the IBP -

one in which each cell independently gives rise to daughter cells at neighbouring sites except

along the bond that connects it to its mother cell and the other, in which we iteratively

evolve the system and in each iteration, impose the condition at a non-empty site, no more

cells can be added due to the descendants of the cells present at that site.
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Can we write an equation for n̄(~R, t) when the process is not Markovian?

Definition of the non-Markovian model: We consider an infection process on Z2 in which

the number of cells present at a site can be arbitrarily large. At the time t = 0, there is only

one cell present in the system, and it is placed at the origin ~O. At any time t > 0, a cell can

give birth to a daughter cell, that sits at a nearest neighbor site. Then the number of cells

at the neighbor increases by one. Once born, a cell never dies. We assume that a cell gives

birth to a daughter cell independently along each bond, independent of the number of cells

present at the site, or at neighbours. The random time after which a cell gives birth along

a particular bond follows a distribution G(t) (not exponential).

This process is more complicated than the Markovian IBP because, in this process, when

a cell gives rise to a daughter cell along one bond, the clocks on other bonds connected to

it continue to age. In the Markovian case, one could assume that all the clocks reset when

a birth event happens.

Suppose the process was not on a lattice and we are only interested in studying the size

of the growing population (starting from a single cell), it is easy to see that the average total

number of cells at time t will be given by:

n̄(t) = 1 +

∫ t

0

n̄(t− u)dN̄(u)

where dN̄(u) represents the average number of births in the time interval [u, u + du] and

n̄(t− u) represents the average total number of their children up to time t .

One can do slightly better by assigning weights to different Galton-Watson trees and

through this, get information about the number of cells in each generation at any given

time. However, to tackle the problem of spatial distribution of cells on the lattice, the

Montroll-Weiss like approach seems most promising. Let Prob(n,R, t) be the probability

that there are n cells at site R at time t. We can write:

Prob(n,R, t) =
∞∑
N=0

Probt(N)ProbR(n)

where Probt(N) denotes the probability of observing N total births up to time t and

ProbR(n) is the probability that n out the N births happened at site R.
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Answering this will allow us to extend the analytical methods developed in this chapter

for the Eden process to a First Passage Percolation problem with arbitrary passage time

distributions.
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Chapter 4

Chase-Escape Percolation

In the last chapter we studied a simple stochastic model for how fast a rumor can spread

starting from a single source. But what if the spreading of a rumor is accompanied by a

competing process of scotching this rumor? Is it possible that the rumor continues to spread

even if it is being spread at a significantly slower rate than the rate of scotching the rumor?

In the model Chase-Escape percolation, which is the main focus of this chapter, the answer is

Yes. This model displays an intriguing phase transition for the spreading of rumor but more

interestingly, the critical point for this phase transition appears to be the same as that of

bond percolation − a classic problem in percolation theory. Could it be that this mysterious

is actually bond percolation in disguise? Here, we try to address this question along with

studying the process above and below criticality as well.

4.1 Introduction

Studying the dynamics of interacting populations is a fundamental problem in Biology.

However, mathematical models that are inspired by such dynamics often become problems

of great interest in Statistical Physics as they display rich and interesting features. In this

work, we study a prey-predator model, called Chase-Escape percolation [34, 37], on a lattice

in which, coexistence between prey and predator is possible even when the prey is moving

significantly slower than the predators.
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Chase-Escape (CE) percolation on hypercubical lattices can be defined as follows: Con-

sider a process on a d−dimensional hypercubical lattice where each site can either be occupied

by a blue species particle (predator), a red species particle (prey) or it can remain vacant.

We denote the coordinates of each site by (x1, x2, ..., xd). At time t = 0, origin O=(0, 0, ..., 0)

is occupied by a blue particle, a neighbour of the origin, O′=(1, 0, ..., 0) is occupied by a red

particle and all other sites are vacant. The evolution is a continuous time Markov process in

which a red particle can give birth to another red particle at a vacant neighbouring site at

rate p and a blue particle can eat up a red particle at a neighbouring site at rate 1. When

a blue particle eats up the red particle on a neighbouring site, that site is then occupied by

another blue particle. As defined, in this model, preys can only create copies of themselves

at neighbouring vacant sites and predators can only create copies of themselves at a nearest

neighbour site occupied by a prey that it can eat.

Figure 4.1: A realization of the Chase-Escape process just above the critical point on a
1000x1000 square lattice.

This model has been studied on k−ary trees [34] with initial conditions such that the

predator is located at the root and the prey occupy the k daughters of the root. It was
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shown that the critical value for coexistence in this case is given by

pc(k) = 2k − 1− 2
√
k2 − k

which in large k limit gives

pc ∼
1

4k

It was later proved that survival probability is non-zero only if p is strictly greater than pc.

Clearly, it is seen that the prey can survive on such trees even if it moves at a slower rate

than the predators. It is also noted that the critical value pc goes down as k increases. This

is expected as increase in k denotes the increase in the number of ways prey can escape.

This problem was also studied on the ladder graph and it was found that its critical value is

1. But what about the behavior on the 2D square lattice?

4.2 Improved determination of critical survival proba-

bility pc

Numerical studies [35] showed conclusively that even on the square lattice, coexistence be-

tween the prey and predator is possible when the rate of spreading of prey p is strictly less

than that of the predator. This is expected as the effective rate of spreading of predators de-

pend on the number of prey and when the number of prey decrease, the predator slows down,

allowing for the prey population to replenish in numbers. But more strikingly, it was shown

through simulations that the critical value for the survival of prey is pc ≈ 0.5. However,

what is striking is the critical value of 0.5 which is equal to the critical value for the bond

percolation problem on the square lattice [35]. Could it be that Chase-Escape percolation is

just bond percolation in disguise? To investigate this question, we use numerical methods to

determine the critical value accurately up to three decimal places. We simulated the process

on L× L lattice with periodic boundary conditions along the y−axis and initial conditions

such that each site on the line x = 0 is occupied by a blue particle and each site on the line

x = 1 is occupied by a red particle. It is well known that this initial condition with a line of

particles is better behaved as it has a self-averaging property and shows a sharper transition

than the initial condition where we start with a single prey and predator. Throughout this

chapter, we will work the initial conditions where we start with a line of prey adjacent to a
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line of predators. These two lines can be thought of as two competing surfaces. Extinction

occurs when the surface of prey is eaten up by the predator surface. In such a situation, the

system goes into one of its many absorbing states.

Figure 4.2: Survival probability as a function of p is plotted for lattice sizes L = 250, 500, 1000
and 2000. Observe the coincidence of curves away from p = 0.5. The critical probability is
determined to be 0.4943 ± 0.001

For simulation purposes, we work on finite lattices and see how the survival probability

scales as a function of the lattice size. In a simulation, the prey is said to survive if any of

the prey particles are able to reach the line x = L starting from the line x = 1 as defined in

the initial condition. Survival probability is then calculated by doing the simulation multiple

times and computing the fraction of realizations in which the prey survives. We find that the

critical probability for the survival of red species is 0.4943 ± 0.001. The plot can be seen in

Figure 4.2 where the simulation has been done on lattice sizes L = 250, 500, 1000 and 2000

and the probability of survival is calculated by doing a configuration averaging over 50000

realizations. This provides strong evidence against the idea that Chase-Escape might be a

bond percolation in any trivial way.

In Figure 4.3 we demonstrate the scaling collapse of survival probability curves for differ-

ent lattice sizes. We obtain a good data collapse at the value pc = 0.4943 and ν = 1.33. The

critical exponent thus obtained is consistent with the standard 2−D percolation universality
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class. This encourages one to draw parallels with the SIR model on a square lattice which

belongs to the same universality class. In the SIR model, in an outbreak, each site is ei-

ther Susceptible, Infected or Recovered. Infected sites can infect neighbouring sites that are

susceptible and each infected site can recover indepently. In some variants of this process, re-

covered sites become susceptible again with added immunity. In CE percolation, the vacant

sites can be thought of as susceptible, red sites as infected and blue as recovered. The key

difference between the two models however is that in the SIR process, the recovery of each

infected particle is independent of others whereas in CE, there are nontrivial correlations

owing to the fact that the blue particles always form a connected cluster.

Figure 4.3: Scaling collapse for the survival probability at ν = 1.33 and pc = 0.4943. ν = 1.33
is the value of the standard 2−D percolation universality class.

4.3 pc in the diagonal direction

In Chapter 3, we studied the asymptotic shape of growing Eden clusters. One striking feature

about the shape of Eden clusters is its departure from the circular shape. It was shown in

Alm and Deijfen that even in 2−D, there is a significant difference in the velocity of the
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front along the axis and along the diagonal direction. Taking inspiration from this, a natural

question to ask is: Is the value of pc different along different directions? We investigated

the critical behaviour of CE in the diagonal direction by initializing a modified line initial

condition on the square lattice tilted by 45 degrees as shown in Figure 4.4. We find that

the critical rate is still 0.4943 ± 0.001 which is the same as the critical value along the axis,

as seen in Figure 4.5. However, there is a clear increase in the survival probability when

compared with the survival probability along the axes. This is expected as the red particles

have more sites to escape to along the diagonal (can be seen in Figure 4.4).

Figure 4.4: A schematic of the initial conditions used to investigate the critical behavior of
CE along the diagonal direction in the 2−D square lattice.

This motivates an attempt at writing down a master equation for the Chase-Escape

process on the D−dimensional hypercubical lattice along the major direction (1, 1, ..., 1).

4.3.1 Chase-Escape along the major diagonal direction: An ad-

hoc approximation

Consider the propagation of red sites in the (1, 1, ..., 1) direction in D−dimensions. Then,

near the front, we have the approximate equation:

dn(t, R)

dt
= pDn(t, R− 1)− n(t, R)
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Figure 4.5: The critical probability calculated along the axial and the diagonal direction
is determined to be 0.4943 ± 0.001. However, the survival probability along the diagonal
direction is significantly higher − which is expected as the red particles have more sites to
escape to along the diagonal.

where R labels the hyperplane along the major diagonal direction containing the point

(R,R, ..., R) and n(t, R) is the total number of red sites on that hyperplane at time t. Here,

the first term on the right hand is the contribution of red site on the hyperplane (R− 1) to

n(t, R) as each red site on hyperplane (R−1) would have D forward neighbors at R and each

will infect a site at R at rate p. We assume that we may ignore the probability that a site

at R is already infected. The second term indicates the rate at which red on the hyperplane

R are eaten up by blue on (R − 1). We assume that each has red on R has one backward

blue neighbor.

We make a change of variables to n(t, R)et = f(t, R) and we get

df(t, R)

dt
= f(t, R− 1)

which admits the solution

n(t) ∼ (pDt)Re−t/R!
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which has the form of a travelling wave and in D = 2, it gives pc = 1/2.

While there are many simplifying assumptions in this modeling, it is able to capture the

basic phenomenology of Chase-Escape.

4.4 Dynamics of the front: The depinning transition

If we define the CE model as a problem with two interacting surfaces, many questions arise

naturally. But one important question that we choose to address here is: What does the

dynamics of the CE front look like at pc < p < 1. We will first define what we mean by front

in this context. On the lattice, starting from the line initial condition as defined above, it is

clear that both the interacting surfaces are going to spread rightward. We define the front

as the set of the sites that have the largest x−coordinate for each y−coordinate among all

sites. It is easy to see that the front separates the cluster of occupied sites from the vacant

sites. We define the red front as the subset of sites from the front that are red. Similarly,

we define a blue front. The quantity of interest for us in this analysis is going to be the x−
coordinate of the centre of mass of the red and blue fronts (Xavg). For p > 1, the width

between the red and the blue fronts will increase linearly with time. For p < pc, the system

goes into one of its absorbing states and the front has no dynamics asymptotically.

The simulations in this section have been done on a lattice of dimensions 500 × 5000 with

periodic boundary conditions along the y−axis. For pc < p < 1, interestingly, the centre of

mass of the blue sites and the red sites on the front coincide at all times. In this regime,

the two fronts are pinned together and at p = 1, a depinning transition happens. Clearly,

in Figure 4.6, we see that the blue and the red front move together. More interestingly, the

CE front on an average travels slower than the Eden front moving at rate p. This is quite a

counter-intuitive result as one would expect that the surviving red are completely unaffected

by the blue predators and hence would continue to travel at the Eden speed. Figure 4.7 is a

plot of CE and Eden fronts at values p = 0.6, 0.8 and 1. We can see that the Eden and CE

fronts coincide at p = 1. However, at p = 0.6, the CE front travels significantly slower. In

the inset of Fig.4.6, the dashed green line is the velocity of Eden front as obtained by Alm

and Deijfen [26]. Our simulation of the Eden front is in agreement with their result while

the CE front clearly lags behind. The inset of Fig.4.7 reveals that the velocity of the CE

front in the pinned regime is not linear in p.
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Figure 4.6: Dynamics of the Chase-Escape and Eden fronts at p = 0.6. It is easily seen
that the centre of mass of the blue sites and the red sites on the front coincide at all times
showing that in the regime pc < p < 1, the red and blue fronts are pinned together. Observe
that at p = 0.6, the Chase-Escape front travel significantly slower than the Eden front. Inset
is a plot of velocity as a function of time to check for convergence of velocity. We plot this
by discretizing the calculation of slope and plot it as a function of time. Slope is given by:
(Xavg(t+ 100)−Xavg(t))/100.
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Figure 4.7: Chase-escape and Eden fronts at values p = 0.6, 0.8 and 1. We can see that
the Eden and red CE fronts coincide at p = 1. As pointed in Fig.4.6, the red CE front is
significantly slower than the Eden front at p = 0.5. Inset is a plot of velocity of the CE and
Eden fronts as a function of p. Clearly, velocity of the CE front in the pinned regime is not
linear in p.

What can be the possible mechanisms that can lead to the slowing down of the front?

A clear diiference between the CE and Eden front is that the CE front consists of immobile

parts (blue sites) that can only move when there is a red site in front of it. However, if we

only look at the speed of the centre of mass of red CE front, it may be expected that this

front should behave just like the centre of mass Eden front. The argument is as follows: The

surviving red sites on the front are the ones who have not been eaten up by the blue and

hence, have not felt the presence of predation. This phenomenon is in fact common in many

prey-predator models of biology. However this does not seem to be the case in the CE model

which points towards the fact that, the presence of predation is felt by the surviving prey on

the front too. However, the only way the predator can have made an impact on the surviving

prey is by limiting the area in which they can spread. In CE, it seems like this factor is

dominant but we require further analysis to verify this. One another possible mechanism for

slowing down the CE front could be that often times, the farthest red is getting eaten up

and then the maximum position of the front, defined as largest x coordinate of a surviving

red particle is set back and then starts increasing again. This is plausible as the blue front is
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Figure 4.8: Relative difference between the velocities of the Eden and CE plotted as a
function of time at p = 0.6. This simulation has been done on a lattice of size 500× 30000
to rule out slow convergence of the speed of red CE front to the Eden front. It is evident
that there is no systematic approach to zero.

always pinned to the red front. There very well might be some red sites that by chance move

forward quickly. However, when the blue sees this stretch of red sites, it catches up very fast

naturally (because it is travelling faster) and slows down only near the front where red sites

are less. The same slowing down happens when the blue catches up with red sites which

were travelling at a slightly slower speed than the fast ones. Hence, the killing of red sites

on the front happens to the leaders also at a finite, though smaller rate and this contributes

to the chase-escape front velocity being less than the Eden front velocity. Fig.4.9 shows why

this argument might be true. Two trajectories of the maximum extent of infection at p = 0.6

for Eden front and the red front in CE are plotted. Inset shows a zoomed in picture of the

trajectory of the CE front where it is clearly visible that the maximum position of a red

infection does drop quite often. Fig.4.10 shows four other instances from the trajectory of

the maximum red front where the drop is clearly visible.
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Figure 4.9: Two trajectories of the maximum extent of infection at p = 0.6 for Eden front
and the red front in CE are plotted. Inset shows a zoomed in picture of the trajectory of the
CE front where it is clearly visible that the maximum position of a red infection does drop
quite often.

Figure 4.10: Four instances from the trajectory in Fig.4.9 where there is a drop in the
maximum position of the red front.
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4.5 Lower bound to the cluster size in the absorbing

state

So far, our analysis was focused on properties of this process at pc and above it. In this

section, we shift the focus of the discussion to p < pc. Consider the Chase Escape percolation

on the d−dimensional hypercubical lattice starting from the initial condition that the origin

O is occupied by a red species particle and a blue species particle is present at a site Q which

is connected to O with an edge but is not part of the lattice. This choice of initial condition

is chosen for convenience in calculations. We look at values of p < pc. It is clear that in this

case, the system finally goes into one of its absorbing states and we are left with a cluster of

blue sites. We are interested in knowing the distribution of the sizes of these clusters. If we

look at the probability that, in the absorbing state, there are more than s number of blue

particle and call it Prob(B > s), the we immediatiely have

Prob(B > s) ≥ C1 exp

[
−C2s

1/d

p

]
(4.1)

where C2 and C2 are constants independent of p. The idea behind this bound is the fact that

Prob(B > s) is bounded from below by the probability that by the time blue creates a copy

of itself for the first time, red species has already created s copies of itself. The probability

that the blue does not give birth until time T is just exp [−T ]. And in time T , the number

of red particles is of order (pT )d.

Since Prob(B > s) is bounded from below by a stretched exponential function, it is

clear that Prob(B > s) cannot decay as an exponential in s. This in contrast to ordinary

percolation, where for values below the critical threshold, the cluster size distribution follows

an exponential decay [22, 36].

4.6 Summary

In summary, we studied the Chase-Escape percolation on the 2−D square lattice at deter-

mined its critical value using numerical simulations to be pc = 0.4943± 0.001 amd we found

scaling collapse with exponent ν = 1.33, the standadrd value for undirected prcolation in 2d.
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This provides strong evidence against the idea that Chase-Escape percolation might be the

bond percolation in disguise. We also established that the critical behaviour of this process

in different directions is not different by finding that pc = 0.4943 ± 0.001 in the diagonal

direction as well. Apart from this phase transition, the Chase-Escape front also undergoes a

depinning transition. For pc < p < 1, the center of mass of the red and blue fronts coincide

as a function of time and the two fronts move together in a pinned way. However, interest-

ingly, we found that the speed of the Chase-Escape front is smaller than the speed of the

Eden front for the same value of p. Using simulations, we provided a possible mechanism for

this counter-intuitive phenomena. Finally, we studied the problem for p < pc and obtained

a stretched exponential lower bound to the distribution of cluster sizes. However, our un-

derstanding of the problem is still far from complete; there are several open directions left

to be explored. Most importantly, can it be proved that survival for p < 1 is a possibility

on the 2D square lattice? A new set of opportunities open up if we introduce a third species

into this problem that can spread on to only blue sites. Moreover, if we allow for cyclic

interactions where the red can also spread on to the new species, many new and interesting

features are expected to emerge.
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Chapter 5

Summary and Future Directions

We are now moving close to the end of this journey. But no journey is complete until we

take a moment to look back and reflect upon the little steps that have made it worthwhile.

In this chapter, we will briefly recall the main results obtained in this thesis and discuss a

few interesting directions that these results give rise to and which might be worth pursuing

as another journey sometime in the future.

In this thesis, we studied stochastic processes that have made their way into Statistical

Physics as models of out-of-equilibrium phenomena. We mainly focused on three models:

a two-species exclusion process, Eden model and Chase-Escape percolation. While these

models have generated interest amongst statistical physicists, all three of them have been

motivated by problems in Biology. We started off by studying the two-species exclusion in

which the second class particle showed a remarkable phenomena, called the TASEP Speed

Process, where even after the system’s evolution was Markovian, its late time dynamics

was strongly dependent on its initial dynamics. We provided a simple explanation for this

intriguing phenomena by using an effective medium approach and modeling the motion of

the second class particle as a random walk in a space-time dependent background field

determined by the motion of the other particles in the system. We demonstrated how

this approach could be extended to other more complicated problems and in the end of

Chapter 2, discussed an interesting variation of the multispecies exclusion problem where

the rate of exchange between adjacent particles depended on the difference between their

class numbers. Even in this problem, the late time dynamics shows heavy dependence on
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early time dynamics. While we have made some progress in explaining this phenomena too,

there are still many open directions that can be pursued. In Chapter 3, we motivated the

problem of cluster growth and why it is important to calculate bounds to the extent of

growth. After convincing the reader that finding these bounds are important, we discussed

how to calculate upper bounds to the shape of Eden clusters by first calculating the exact

shape of the IBP cluster and two of its variants. We showed that even in the simplest IBP

cluster, a departure from the circular shape of cluster is seen as pointed out by Alm and

Deijfen for the Eden cluster. We then outlined an open problem whose answer can extend

our analytical method to find bounds to the shape of clusters in the more general problem

of First Passage Percolation, with arbitrary passage times. Finally, for the Chase-Escape

problem in Chapter 4, using numerical simulations, we refuted the idea that pc = 0.5 by

accurately determining pc up to three decimal places and showed that this critical value

doesn’t have a visible dependence on the direction in which we choose to study the growth.

We further pointed out that apart from the extinction-coexistence transition, the model also

undergoes a depinning transition at p = 1 where for pc < p < 1 the centre of mass for

the red and blue particles on the front move together and the two surfaces are pinned. We

conclusively established a counter-intuitive result that for pc < p < 1, the CE front travels

slower than that of the Eden front and provided a possible mechanism for such a behavior.

Finally, we provided a lower bound to the cluster size distribution at p < pc. Several

challenges still remain in this problem and our understanding of this process is far from

being complete. Most importantly, can it be proved that survival for p < 1 is a possibility

on the 2D square lattice? We provided an approximate phenomenological description to

support this claim. However, many simplifying assumptions were made in that regard which

weren’t completely justified. Another interesting direction would be to see the effects of

a third species introduced into the system. Taking inspiration from many real biological

phenomena - including antibiotic resistance and production in E.Coli to mating strategies

in male side-blotched lizard, we can include cyclic interaction among the different species.

Many novel interesting features are expected to arise in such a process.
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