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Abstract

Proteins are important building blocks of life. Proteins play a vital role by
performing a wide variety of functions inside the cell. The structure of a protein
is an important determinant of its function, and is largely dependent on its amino
acid sequence. Therefore, structure prediction from the sequence can help us design
novel proteins that may be useful in medicine (e.g. therapeutic proteins) as well
as in industry (e.g. antibodies with lower aggregation propensity). Prediction of
protein structures from sequence is a major challenge and methods for modelling
protein structures require a good structure evaluation criteria both for evaluating
initial models as well as for refining them further.

In this study, we discuss the development of a novel protein structure evalua-
tion method that evaluates local regions in structures by comparing them to known
regions in the Protein Data Bank (PDB). It then calculates how well represented
in the PDB, is the amino acid environment of the region being evaluated, and the
conformation of its atoms in 3D. We have demonstrated here that the method may
be used to differentiate between the local regions from obsolete structures in the
PDB, and their refined versions, with a high level of confidence. We also com-
pared proteins from thermophilic and mesophilic organisms and could successfully
differentiate between them approximately 70% of the time. We noted a significant
correlation between our evaluation of the protein structures and their melting tem-
peratures. Since the method directly compares against known native structures
and evaluates local regions, it may be used for identifying regions that need to be
targetted first for structure refinement.
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1 BACKGROUND

1 Background
Protein molecules are essential parts of organisms and participate in virtually every
process within a biological cell. The three dimensional structure of a protein dictates
the biological function, and the structure is determined largely by the protein sequence
[Anfinsen, 1972, Tanaka and Scheraga, 1976]. Hence, knowing the structure of a protein
helps us to better understand how the protein works. It can provide control over how to
affect it or modify it [Worth et al., 2011, Pack and Yoo, 2004]. For example, stable site-
directed mutations in a known protein structure can help us change the function of the
protein completely, or tweak the original function to our needs [Nowlin et al., 1988]. Such
protein engineering can have far reaching consequences, which include finding possible
cures to Alzheimer’s, Prion diseases, etc [Boyle, 2008].

To solve a protein structure or to refine an existing structure, one may use either
experimental or computational methods. One may contend that solving protein structures
experimentally gives you a more accurate model of the structure. However, given the
rate at which we are discovering protein sequences versus the rate at which structures are
being deposited in the Protein Data Bank(PDB) [Schwede, 2013, Berman Helen M, 2000]
(Figure 2a), plus the time, effort and cost requirements of experimental methods of solving
protein structures; finding alternative and quick computational ways of predicting protein
structure has become important.

(a) (b)

Figure 1: Packing of atoms in a typical protein; PDB ID: 2mta
(a) Illustration of a protein structure and the local packing of atoms. (b) Illustration of packing in terms
of chemical groups(right) versus atoms(left) for two adjacent residues from a protein. The centroid of
the atoms in a chemical group defines its position.

Computational methods involve ab initiomodelling [Perez et al., 2016, Shaw et al., 2009]
or the use of template based (homology) modelling (which are based on previously known
protein structures) [Webb and Sali, 2016]. These methods require an evaluation method
[Feig, 2017, Shen and Sali, 2006, Zhou and Zhou, 2002] to know whether the in silico
built model, is accurate enough or not. The evaluation method is essentially a stand-in
for a free energy function under the solution conditions usually encountered in cells, a
minima of which is what corresponds to the native structure of the folded protein.

Consequently, given an efficient evaluation scheme, one can reverse-engineer to build
the protein structure itself [Webb and Sali, 2016, Shen and Sali, 2006]. Also, if one can
sample the local packing of residues in the protein (Figure 1a), one assumes that this
packing should correspond to the free energy minimum that the atoms in those residues
could attain, when the whole protein has reached a global free energy minimum (although
it may not reach the global minimum [Chen and Kihara, 2011]). Studies have shown
that the number of unique folds being discovered in the PDB has saturated over time
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1 BACKGROUND

[Fernandez-Fuentes et al., 2010] (see Figure 2b). This lays the foundation for this study,
where the packing of residues in naturally occurring protein structures has been sampled
to evaluate the deviation of a structural model from known natural ones.

(a) (b)

Figure 2: The widening of the gap between sequence and structure databases, and the saturation of
unique folds.
(a) Number of protein sequences in TrEMBL or SwissProt and number of structures in PDB, over the
years [Schwede, 2013]. (b) Saturation of number of unique folds discovered over the years, where folds
are characterised as Smotifs which are super-secondary structures. [Fernandez-Fuentes et al., 2010]
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2 INTRODUCTION AND OBJECTIVES

2 Introduction and Objectives
In this study, we have departed from the use of conventional knowledge-based methods.
We score protein structures based on the structural similarity of their three-dimensional
motif s, using known protein structures in the PDB. Further, instead of amino-acid residue
packing, we are looking at the packing of chemical groups. A chemical group is a group
of atoms with a certain arrangement in three-dimensional space, such that it is one of the
16 different arrangements possible as defined along the lines of previous work done by
Akash Bahai. (See Appendix 3.1 for more details about chemical groups. Figure 1b for an
illustration) One can therefore use just these 16 chemical groups to define the structure
and orientation of any of the 20 naturally occurring amino acids. The usage of a chemical
group allows us to look at the packing of parts of a protein with a higher resolution than
that of residues. However, it is at a resolution higher than that of atom-wise definition
of the protein structure, wherein many of the atoms are covalently, strongly bound, to
not be independent enough in their interactions with neighbouring atoms.

We define a three-dimensional motif called a star. A star is a representation of how
chemical groups are packed in a protein. More importantly, the definition that we use is a
strategy to sample what we assume are patterns of the local packing of atoms, repeating
across naturally occurring proteins.

(a) (b)

Figure 3: stars and centre-matching superimposition
(a) An illustration of an 8-body star. The central chemical group is of type/identity r11, and the rest are
its nearest neighbours (b) An illustration of superimposition of two star-stars of very similar geometry,
and the mapping between different chemical groups.

Let Sn be the set of all possible sets of n chemical groups in a protein structure. A
star is defined as follows: Given the ith chemical group Ai ∈ Sn , pick first n-1 nearest-
neighbours Aj, (j = 1, 2...n−1) such that Euclidean distance D[Ai, Aj] < dthr, where dthr

is some known optimal distance cut-off1. See fig. 3a for an illustration of a typical star,
and 3b for an example of a superimposition. Note the mapping of the central chemical
groups of the stars to each other. Since there are two r11 chemical groups in that star,
but one was mapped at the centre, the number of permutations is halved compared to
the case where the centres are not mapped to each other.

Now, given any query star (defined in terms of chemical groups), we superimpose it
on the known stars (target stars) of similar composition of chemical groups from the PDB

1this is important so that chemical groups from too far away in space are not picked up as part of
the star since that would mean that chemical groups with negligible interaction with each other were
considered to be part of the same residue environment
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2 INTRODUCTION AND OBJECTIVES

database, to find out the root mean square deviation (RMSD) of the groups from each
other.

The method for parsing to chemical group format, finding stars, and superimposing
the stars on stars from PDB database, was developed earlier during semester projects
done by the author. See Appendix A to read about what has been done earlier.

The objectives of this project are broadly three fold:

1. Prediction of poorly packed regions in proteins: These regions presumably
require structural refinement. We expect native-like stars to be able to find good (ie.
low RMSD) matches in the PDB (which has stars from native structure models),
and therefore, we should be able to identify these stars.

2. Correlating net-score of a structure with melting temperature: The rea-
soning made in the previous point can be extended to this, since a more flexible
structure with lower melting point should find lower RMSD matches, and therefore
worse scores. The scoring scheme is discussed in the next section.

3. Correlating scores of the stars with B-factor values: The packing of side
chains of amino acids seems to have a bearing on thermal stability [Meruelo et al., 2012].
The flexibility of residues is correlated to B-factors/temperature-factors in a region.
But a more flexible star is expected to have more distant variants (in terms of ge-
ometry) in the PDB, and worse scores by our scheme. There may be a way to find a
proxy to B-factor values which will allow us to compare B-factors across structures,
which is currently not possible.

Note that in this text, whenever native model of a protein structure is mentioned, it
refers to the structural model that was obtained by fitting the protein sequence to exper-
imental data (X-ray crystallography data, unless noted otherwise; structure obtained as
PDB file from RCSB-PDB, unless noted otherwise). The more native-like a structure is,
the lower is its RMSD from the native structure.

Swastik Mishra 4
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3 Methods

3.1 Chemical Groups Instead of Atoms
Based on previous work by Akash Bahai

Figure 4: The 16 Chemical Groups

Sixteen chemical groups were defined, whose combinations can form all the 20 natu-
rally occurring amino acids. The hydrogen atoms in the residues have not been included
in these groups, since PDB data (mostly X-ray data) is used, without information of the
light atoms such as that of hydrogens. These definitions are based on previous work done
by Akash Bahai as part of his Masters Thesis project 2. See Appendix A for a discussion
on the implementation of chemical groups, stars, as well as scoring methodology.

The basis for differentiating between different chemical groups is as follows:
2Link to the thesis at IISER Pune library: http://idl.iiserpune.ac.in:8080/jspui/handle/123456789/570
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3.2 Datasets 3 METHODS

1. Main chain atoms correspond to chemical group r1, and each r1 consists of CAi,
Ci, Oi, Ni+1 for the ith residue being parsed.

2. For side chain chemical groups,

(a) should be able to move with a large range of motion w.r.t each other, and
therefore

(b) shouldn’t be defined in a way such that there are resonance/mesomeric effects
across chemical groups

(c) the partial charges within a certain chemical group should be approximately
an integer value. This criteria is added not for the structural studies described
here, but because of a separate project in the research group. In brief, we
intend on building a force-field using known geometry and dynamics of stars,
with the dynamics of partial charges of atoms taken into account. See Section
5.7 for further discussion.

Chemical groups are also differentiated based on the atom they are covalently bonded
to e.g. primary, secondary and tertiary Carbon atoms are treated differently as r8, r2,
and r12. Proline is treated as a special case, since the Nitrogen atom of the amino acid
under consideration is part of the proline ring. We don’t parse the r1 group normally.
Instead, we skip the r1 for Proline, and parse the whole Proline residue into only a single
r11 group. Figure 4 illustrates how the groups have been named.

The distance between the groups is defined as the distance between their centroids.
These chemical groups are sets of covalently bonded atoms within the residues and a
combination of these groups can form all the 20 residues. For purposes of this project,
we are not considering the relative orientation of atoms within the groups with respect
to each other.

The algorithm for converting from atoms to groups for ith residue is as follows:

1. Parse main chain atoms

(a) If [starting residue] then group is r1 using Ni−1, CAi, Ci, Oi, Ni+1; If Ni−1 (N-
terminal amine group) is absent, use the rest of the atoms

(b) If [residue is not terminal residue] then group is r1 using CAi, Ci, Oi, Ni+1

(c) If [residue is ending residue] and then group is r1 using CAi, Ci, Oi, OXT ; if
OXT absent, use the rest of the atoms

2. Parse side chain atoms using Table 1, and chemical group definitions described in
Figure 4

3.2 Datasets
3.2.1 Identification of Native Models in a Decoy Set

A good structure evaluation method should be able to identify a native model in a set
of decoy models. In this study, the goal was for the scoring scheme to rank order all the
structural models in a decoy set, wherein lower rank of the native model implies better
performance of the scoring scheme. The reason for doing this is primarily to find an
estimate of the optimal star-size.
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Table 1: List of amino acids and their constituent chemical groups

Amino Acid Chemical Groups Amino Acid Chemical Groups
Arginine r1 + r2 + r2 +r3 Glycine r1
Histidine r1 + r4 Proline r11
Lysine r1 + r2 + r2 + r2 + r5 Alanine r1 + r8
Aspartic Acid r1 + r6 Valine r1 + r12 + r8 + r8
Glutamic Acid r1 + r2 + r6 Isoleucine r1 + r12 + r2 + r8 + r8
Serine r1 + r7 Leucine r1 + r2 + r12 + r8 + r8
Threonine r1 + r7 + r8 + r8 Methionine r1 + r13
Asparagine r1 + r2 + r9 Phenylalanine r1 + r2 + r14
Glutamine r1 + r2 + r2 + r9 Tyrosine r1 + r2 + r16
Cysteine r1 + r10 Tryptophan r1 + r2 + r15

The star-size is an important parameter to optimise for the following reason: Two
stars can be superimposed only if the composition in terms of the chemical groups is the
same. This ensures that there is a one-to-one mapping between the chemical groups of
the two stars being superimposed. If there are multiple chemical groups with the same
identity, we permute over all possible combinations of one-to-one mapping between the
stars. The higher the star-size is, the more is the number of permutations that need to
be done if there are multiple chemical groups of the same kind in a star. See Appendix A
for more details. See Section 3.3 for details of the parameters and optimisation strategy.

The Moulder set[John, 2003] was taken as the set of decoys to evaluate our scoring
scheme. It consists of 20 decoy sets, where each decoy set consists of one native model
and 300 computationally modelled decoys. The Moulder set of decoys was constructed
using iterative target-template alignment and comparative model-building to produce
suboptimal models for the following 20 proteins:

1BBH 1C2R 1CAU 1CEW 1CID 1DXT 1EAF 1GKY 1LGA 1MDC 1MUP 1ONC 2AFN 2CMD 2FBJ
2MTA 2PNA 2SIM 4SBV 8I1B

The native model for 2PNA is the only NMR structure in the set, the rest of the
proteins being X-ray crystallographic structures.

Since the scoring scheme is computationally very time intensive, 30 decoys out of the
300 for each set were arbitrarily3 chosen as a smaller decoy subset for the study. The
results for this study have been used to optimise certain scoring parameters relevant to
the objectives of this dissertation, but this study was not one of those objectives. The
results have been added to the Appendix for reference. See Appendix B for details of
how well the native ranks w.r.t the decoys in the Moulder set.

3.2.2 Prediction of Regions of Refinement

A list of obsolete structures in the PDB and their replacement structures, is available
online in the PDB database. The replacement structures are referred to as successor/re-
fined structures in the rest of this text, while the obsolete ones may be referred to as

3with the sole criteria that the 30 decoys should be uniformly sampled across the set of 300, in terms
of their RMSD w.r.t the native model
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predecessors. Some of these structures have been solved again, while others are refined
versions of their predecessors. While being blind to the changes made to get the successor
structures, a good evaluation method should be able to predict the regions where changes
were supposed to be made, and these should correlate well with the regions that actually
got changed. It should be able to differentiate between the stars from the obsolete and
the refined structures.

The list of obsolete records downloaded on 19th June 2018 has 3795 records. Some of
these records are outdated and some have undergone multiple rounds of replacement. The
data was cleaned up and culled for a non-redundant (NR) set (<30% sequence similarity
using PISCES server [Wang and Dunbrack, 2003]). The resulting 115 records were used
for this study. See Appendix C for details of how the records were cleaned and culled.

3.2.3 Correlation with Thermal Stability

Comparison of thermophilic and mesophilic proteins

1. Kumar’s set [Kumar et al., 2000]: Contains a non-redundant set of 18 high quality
thermophilic protein structures, all of which are of less than 2.5 Å resolution. The
dataset was created using the 1998 version of PDB. The source.idx file in the PDB
was searched for the keywords THERM and PYRO and cleaned and culled later.
The structures are dissimilar (seqence identity <= 20% and RMSD >= 2.00 Å), and
don’t include NMR structures or theoretical models. 5 out of the 18 thermophilic
proteins have known Tm values mentioned in the article itself, and 3 out of these
have the mesophilic Tm mentioned as well. For all the 18 structures, high quality
homologous mesophilic structures have been culled in a similar manner from the
PDB.
The objective is to see if our scoring scheme can differentiate between the ther-
mophilic and the mesophilic proteins4. The objective is the same in case of ProTherm
sets as well.

2. Szilágyi’s set [Szilágyi and Závodszky, 2000]: Contains 25 protein families with 64
mesophilic and 29 thermophilic protein subunits, all of them being of high quality
just like Kumar’s set. The differentiation between thermophilic and mesophilic
proteins is based on optimal living temperatures (Topt) of the organisms from where
the proteins were extracted from.
The objective is to see if any one of the thermophilic homologs scores the best
among all the homologs for any of the 25 proteins in the set. Ideally one would
like to make sure that there is a correlation between the Topt and the scores. The
objective here is a crude approximation of this, since the mesophilic homologs in
the set do not have Topt mentioned.

3. ProTherm set [Bava et al., 2004]: ProTherm is a thermodynamic database for pro-
teins and mutants, with ~25800 entries mapping proteins to available structures
in the PDB, sequences in SWISS-PROT, thermodynamic data such as melting
temperature (Tm), as well as additional data such as source organism for any of
the entries. The ProTherm database was culled for entries for which the wild-
type structure is available. Since most of the data is from differential scanning

4see end of Section 3.3.2 for a discussion on what is a better score
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calorimetry experiments, the database consists of multiple Tm entries for each PDB
entry. These correspond to the different phase transitions of the protein during the
experiment, and in this study, the Tm corresponding to the last phase transition
(highest Tm) was considered as the Tm of the protein.
The homolog with the minimum and maximum Tm are referred to as mesophilic and
thermohilic proteins respectively, for this dataset. Note that this naming convention
is such for the sake of clarity, and not what is usually found in literature. Mesophilic
may be shortened to meso and thermophilic to thermo in this text.
Two different variants of this set were considered:

(a) ProThermlt60plus10 (19 proteins): mesophilic protein has Tm < 60◦C and dif-
ference between thermophilic and mesophilic proteins is at least 10◦C 5

(b) ProThermlt60gt70 (13 proteins): mesophilic protein has Tm < 60◦C and ther-
mophilic protein has Tm > 70◦C . This set is a subset of the ProThermlt60plus10
set.

Family name PDB ID, source organism, Topt, resolution

1 Transcription initation factor IIb (TIF-2B) 1volA (Human, meso) 2.7 Å
2 1aisB (Pyrococcus woesei, 100 ◦C) 2.1 Å
3 Superoxide dismutase (Mn- or Fe-dependent) (SOD) 1abmA (Human, meso) 2.2 Å
4 1ar4A (Propionibacterium freudenreichii, meso)...
5 1idsA (Mycobacterium tuberculosis, meso) 2.0 Å
6 1isaA (Escherichia coli, meso) 1.8 Å
7 1vewA (Escherichia coli, meso) 2.1 Å
8 3mdsA (Thermus thermophilus, 75◦C) 1.8 Å
9 Glutamate dehydrogenase (Glu-DH) 1hrdA (Clostridium symbiosum, meso) 1.96 Å
10 1gtmA (Pyrococcus furiosus, 100◦C) 2.2 Å
11 Malate dehydrogenase (MDH) 4mdhA (Pig heart, meso) 2.5 Å
12 1bmdA (Thermus flavus, 72.5◦C) 1.9 Å
13 Phycocyanin alpha chain (Phyc-a) 1cpcA (Fremyella diplosiphon, meso) 1.66 Å
14 1liaA (Polysiphonia urceolata, meso) 2.8 Å
15 1allA (Spirulina platensis, meso) 2.3 Å
16 1phnA (Cyanidium caldarium, 45◦C) 1.65 Å
17 Signal recognition particle (receptor) (SRP) 1fts (Escherichia coli, meso) 2.2 Å
18 1ffh (Thermus aquaticus, 72.5◦C) 2.05 Å
19 Ferredoxin 1fxd (Desulfovibrio gigas, meso) 1.7 Å
20 1fxrA (Desulfovibrio africanus, meso) 2.3 Å
21 1vjw (Thermotoga maritima, 80◦C) 1.75 Å
22 Subtilisin 1sup (Bacillus amyloliquefaciens, meso) 1.6 Å
23 1cseE (Bacillus subtilis, meso) 1.2 Å
24 1bh6 (Bacillus licheniformus, meso) 1.75 Å
25 1svn (Bacillus lentus, meso) 1.4 Å
26 2pkc (Tritirachium album limber, meso) 1.5 Å
27 1sbnE (Bacillus subtilis, meso) 2.1 Å
28 1meeA (Bacillus mesentericus, meso) 2.0 Å
29 1thm (Thermoactinomyces vulgaris, 60◦C) 1.37Å
30 Neutral protease (thermolysin) (NPR) 1npc (Bacillus cereus, meso) 2.0 Å
31 1lnfE (Bacillus thermoproteolyticus, 52.5◦C) 1...
32 Rubredoxin 1iro (Clostridium pasteurianum, meso) 1.1 Å
33 1rdg (Desulfovibrio gigas, meso) 1.4 Å
34 6rxn (Desulfovibrio desulfuricans, meso) 1.5 Å
35 8rxnA (Desulfovibrio vulgaris, meso) 1.0 Å
36 1caa (Pyrococcus furiosus, 100◦C) 1.8 Å
37 Cyclodextrin glycosyltransferase (CGTase) 1cdg (Bacillus circulans strain 251, meso) 2.0 Å
38 1cgt (Bacillus circulans strain 8, meso) 2.0 Å
39 1pamA (Bacillus sp. 1011, meso) 1.8 Å
40 1ciu (Thermoanaerobacterium thermosulfurigenes...
41 1cyg (Bacillus stearothermophilus, 52.5◦C) 2.5 Å
42 Phycocyanin beta chain (Phyc-b) 1allB (Spirulina platensis, meso) 2.3 Å
43 1cpcB (Fremyella diplosiphon, meso) 1.66 Å
44 1liaB (Polysiphonia urceolata, meso) 2.8 Å
45 1phnB (Cyanidium caldarium, 45◦C) 1.65 Å
46 3-Phosphoglycerate kinase (PGK) 1qpg (Yeast, meso) 2.4 Å
47 1php (Bacillus stearothermophilus, 52.5◦C) 1.65 Å
48 1vpe (Thermotoga maritima, 80◦C) 2.0 Å

5The mesophilic Tm value is taken as less than 60◦C because most similar studies in literature take a
cutoff of Tm ∼50 – 60◦C to differentiate between mesophilic and thermophilic protein structures. Instead
of taking a hard–cutoff, a difference of 10◦C was taken. This ensures that the mesophilic and thermophilic
homologs are not very similar in terms of Tm
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49 Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 1a7kA (Leishmania mexicana, meso) 2.8 Å
50 1gadO (Escherichia coli, meso) 1.8 Å
51 1szjG (Palinurus versicolor, meso) 2.0 Å
52 1gd1O (Bacillus stearothermophilus, 52.5◦C) 1.8 Å
53 1hdgO (Thermotoga maritima, 80◦C) 2.5 Å
54 Xylanase (I) (Xyl-1) 1enxA (Trichoderma reesei, meso) 1.5 Å
55 1ukrA (Aspergillus niger, meso) 2.4 Å
56 1xnb (Bacillus circulans, meso) 1.49 Å
57 1xnd (Trichoderma harzianum, meso) 1.8 Å
58 1xyn (Trichoderma reesei, meso) 2.0 Å
59 1yna (Thermomyces lanuginosus, 45◦C) 1.55 Å
60 Xylanase (II) (Xyl-2) 1clxA (Pseudomonas fluorescens, meso) 1.8 Å
61 2exo (Cellulomonas fimi, meso) 1.8 Å
62 1xyzA (Clostridium thermocellum, 60◦C) 1.4 Å
63 TATA box binding protein (TATA-BP) 1cdwA (Human, meso) 1.9 Å
64 1vokA (Arabidopsis thaliana, meso) 2.1 Å
65 1pczA (Pyrococcus woesei, 100◦C) 2.2 Å
66 Adenylate kinase (ADK) 1ak2 (Bovine, meso) 1.92 Å
67 2ak3A (Bovine, meso) 1.85 Å
68 1aky (Yeast, meso) 1.63 Å
69 1ukz (Yeast, meso) 1.9 Å
70 1akeA (Escherichia coli, meso) 1.9 Å
71 3ukd (Dictyostelium discoideum, meso) 1.9 Å
72 1zip (Bacillus stearothermophilus, 52.5◦C) 1.85 Å
73 Carboxypeptidase (CP) 2ctc (Bovine, meso) 1.4 Å
74 1nsa (Pig, meso) 2.3 Å
75 1pca (Pig, meso) 2.0 Å
76 1obr (Thermoactinomyces vulgaris, 55◦C) 2.3 Å
77 Ornithine carbamoyltransferase (OCT) 2otcA (Escherichia coli, meso) 2.8 Å
78 1a1s (Pyrococcus furiosus, 100◦C) 2.7 Å
79 Pyrophosphatase (PPase) 1obwA (Escherichia coli, meso) 2.15 Å
80 2prd (Thermus thermophilus, 72.5◦C) 2.0 Å
81 CheY protein (CheY) 3chy (Escherichia coli, meso) 1.66 Å
82 2chf (Salmonella typhimurium, meso) 1.8 Å
83 1tmy (Thermotoga maritima, 80◦C) 1.9 Å
84 Glutathione / trypanothione reductase (G/T re... 1aogA (Trypanosoma cruzi, meso) 2.3 Å
85 1febA (Crithidia fasciculata, meso) 2.0 Å
86 1gerA (Escherichia coli, meso) 1.86 Å
87 3grs (Human, meso) 1.54 Å
88 1ebdA (Bacillus stearothermophilus, 52.5◦C) 2.6 Å
89 Phosphofructokinase (PFK) 1pfkA (Escherichia coli, meso) 2.4 Å
90 4pfk (Bacillus stearothermophilus, 52.5◦C) 2.4 Å
91 Triacylglycerol acylhydrolase (TAGAH) 1lgyA (Rhizopus niveus, meso) 2.2 Å
92 1tib (Humicola lanuginosa, 50◦C) 1.84 Å
93 3tgl (Rhizomucor miehei, 45◦C) 1.9 Å

Table 2: Szilágy’s set [Szilágyi and Závodszky, 2000]

Correlating scores with B-factor values:
A non-redundant high-resolution subset of the PDB database was extracted. This set

has 243 structures. The culling for the non-redundant set was done using PISCES server
[Wang and Dunbrack, 2003] using parameters laid out in Table 4

3.3 Scoring Methods
Since the structure of the protein is being defined in terms of chemical groups, and every
chemical group defines a star around it, no region in the model is left un-evaluated.

The regions across an obsolete protein model in this case can be evaluated quantita-
tively by scoring the stars in the model – the stars being representatives of the different
regions in the model.

Two different scoring schemes have been tried out, and are discussed below.

3.3.1 Scoring stars in terms of RMSD of best-match in the PDB

Consider a query star that is from a native-like model. Since we are assuming that most
native stars have been recorded in the PDB already, we should be able to find a star
in the PDB which is similar to the query star. The similarity is in terms of both the
composition of the star (which is in terms of the identities of the chemical groups present
in it) and in terms of geometry of the star, ie. relative arrangement of these chemical
groups in 3D.
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Protein PDB ID Source Tm in ◦C

1 3-isopropylmalate dehy-
drogenase*

1CM7 Escherichia coli 34.00

2 1OSI Thermus thermophilus 87.40
3 1WPW Sulfolobus sp. strain 7 96.00
4 Acylphosphatase* 1APS Human 56.70
5 1Y9O Sulfolobus solfataricus 100.80
6 Aldolase 1ADO Rabbit 61.20
7 1DHN Staphylococcus aureus 44.00
8 Alpha-amylase* 1AQH Pseudoalteromonas

haloplanktis
44.00

9 1BPL Bacillus licheniformis 104.30
10 1JAE Tenebrio molitor 66.40
11 1PPI Pig 65.60
12 1SMD Human 70.40
13 3KWX Aspergillus oryzae 86.00
14 Alpha-lactalbumin* 1HFY Goat 71.20
15 1HFZ Bovine 71.30
16 1HML Human 43.00
17 Beta lactamase 1BLC Staphylococcus aureus 41.60
18 1BMC Bacillus cereus 51.03
19 3BLS Escherichia coli 54.60
20 4BLM Bacillus licheniformis 68.90
21 Cel12A 1H8V Trichoderma reesei 54.40
22 1OA2 Gliocladium roseum 45.90
23 1OA3 Hypocrea schweinitzii 49.20
24 1OLR Humicola grisea 68.70
25 Cytochrome c* 1AKK Horse 83.00
26 1I5T Rat 60.00
27 1YCC Saccharomyces cerevisiae 51.70
28 2B4Z Bovine 78.00
29 Cytochrome c oxidase 1AR1 Paracoccus denitrificans 67.00
30 1OCC Bovine 57.00
31 Frataxin 1EKG Human 69.30
32 1EW4 Escherichia coli 64.10
33 2GA5 Saccharomyces cerevisiae 53.60
34 Lipase* 2FX5 Pseudomonas mendocina 53.00
35 3D2A Bacillus subtilis 71.20
36 Lysozyme* 1AM7 Lambda phage 52.30
37 1EL1 Canine 90.00
38 1H09 Bacteriophage Cp-1 52.00
39 1LZ1 Human 80.10
40 2EQL Horse 70.00
41 2LZM Bacteriophage T4 68.00
42 4LYZ Chicken 91.90
43 Myoglobin* 1BVC Sperm whale 82.20
44 1YMB Horse 84.00
45 2FAL Aplysia limacina 52.00
46 Prion protein* 1AG2 Mouse 71.00
47 1QLX Human 60.00
48 1UW3 Sheep 70.00
49 Pyrophosphatase* 1FAJ Escherichia coli 93.00
50 1K23 Bacillus subtilis 50.00
51 1QEZ Sulfolobus acidocaldar-

ius
98.00

52 2PRD Thermus thermophilus 99.00
53 Ribonuclease A* 1DZA Human 53.70
54 1RTB Bovine 90.00
55 Triose-phosphate iso-

merase*
1BTM Bacillus stearother-

mophilus
102.00

56 1TPE Trypanosoma brucei 57.00
57 1YPI Saccharomyces cerevisiae 59.00
58 3TIM Trypanosoma brucei

brucei
52.20

59 Tropomyosin* 1IC2 Chicken 74.00
60 2TmA Rat 54.20
61 Tryptophan synthase

alpha-subunit
1WQ5 Escherichia coli 62.40

62 2WSY Salmonella typhimurium 47.60

Table 3: Proteins that are part of the ProThermlt60plus10 dataset. Only the structures corresponding to
the minimum and maximum Tm values were considered for analysis.
* marked proteins refer to the subset of proteins in the ProThermlt60gt70 set
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Total number of
structures

243

Pairwise sequence
similarity

<= 30%

Resolution <= 1.0
R-factor <= 0.3
Non X-ray entries Excluded
CA-only entries Excluded

Table 4: Culling parameters for dataset used for B-factor study

To score a certain query star, the metric in this method, is the RMSD of superim-
position with the best-match star in the PDB. If there are no matches within an RMSD
cutoff, we penalise the star with a penalty score. While scoring, n and dthr are specified for
star-size and distance-threshold respectively. Star-size is the number of chemical groups
in a star, and distance-threshold is the distance from the central chemical group to the
farthest one in the star.

This best-match RMSD method doesn’t allow us to directly answer how bad is a bad
score. A star which is usually buried because it has hydrophobic chemical groups, can
probably find low RMSD matches because there isn’t much flexibility and consequently
better scores. However, a star which is supposed to be exposed, will have more flexibility.
This star will therefore find higher RMSD matches and have a higher (worse) score. We
have no means to say how high a score is bad enough to say that this star needs refinement.
In general, since, RMSD values can go from zero to arbitrarily high numbers, there is no
reasonable way to say below what RMSD cut-off should the RMSD of superimposition
imply a good match, so that one may infer that the query is a good star.

Because of the above mentioned reason, we tried an alternate scoring scheme that
takes the distribution of geometries in the PDB into account, and allows us to differentiate
between good and bad packings.

The usage of this RMSD based method was limited to the decoy-set study and for
optimising parameters such as star-size. The scoring scheme in the following section is
what was used for all other studies discussed in this text.

3.3.2 Scoring stars in terms of distribution of similar geometries (CASPER)

Ideally, we would like to cluster all the stars of a given composition in the PDB, in terms
of geometry, and because of redundancy in the PDB, we would like to try matching our
query star against one, or a few representatives from each cluster. However, clustering is
a computationally expensive job. To perform a clustering, an all-against-all superimpo-
sition needs to be done for all the stars of any composition. Then the RMSDs could be
used as linkage distances to cluster the stars in RMSD space. With current computational
capabilities this is impractical. Instead an approximate method has been tried here to
get similar results.

Consider a scenario where we had such clusters already, and representatives of each
cluster to test our query star against. Once we find a matching representative for our
query star, we can compare the query star against the cluster that the representative
belongs to, and see how close the query is to the cluster. An approximation to this
scheme can be made in the following manner: Given a query star, we match it against
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a sample S number of target stars of the same composition from the PDB 6 and rank
order these target stars based on RMSD. The top 100 or top matches with less than 2Å
RMSD7 matches are taken as what we call sisterly set.

If the query star is a native-like star, this sisterly-set is supposed to be of mostly
similar geometries and would have belonged to the same cluster of stars, had we done
a proper clustering. Since the query star is close to this set of stars in RMSD space,
it should be closer or almost as close as the top ranked star (otherwise referred to as
Superstar in this text, for clarity). To quantify the distribution of geometries in the
sisterly set, with respect to the query star, we use the following scheme:

score =
b∑

x=a+kn

f(x)
N

(1)

i.e, in steps of k, we sum f(x) from a to b, and N = b−a
k

+ 1. f(x) is the fraction of stars
in the sisterly-set that matched with the query star with RMSD lesser than xÅ. For this
study, we have used k=0.1, a=1.0Å and b=2.0Å. i.e.

score = (f(1.0) + f(1.1) + f(1.2) + ... + f(2.0)
11 (2)

a is chosen as 1.0 since the resolution of these amino-acids is ∼1Å, so we assume that
less than 1Å RMSD matches are too close to be considered as different from the query
star at all.

With this scheme in mind, consider a query star which is extremely non-native-like.
This star will not find close matches in the sisterly-set and therefore, the first term in the
numerator will be ~0 and thus the total score will tend to 0, since the rest of the terms are
populated using subsets of the first term. On the other hand, a native-like query star will
have a score closer to 1, since there will be many target stars with RMSD low enough to
contribute to the later terms in the scoring function. Since the Superstar is native-like,
being part of the PDB already, we expect it to have a low score too (with respect to
the sisterly set). A native-like query star will have a score less than or equal to the
Superstar’s score, since the sisterly-set is computed with respect to the query star. For
this reason, this kind of a scoring scheme although is better than the previous method,
provides an advantage to the query-star. A variant of this method wherein the sisterly
set is computed w.r.t to the Superstar, shall be tested in the future.

This scheme will be referred to as the CASPER scheme (Cumulative Average dis-
tribution of Stars as Protein local Environment Representatives) in the rest of this text.
If q is the score obtained for the query-star and s is that of the superstar/best-match
star, then:

• q may be referred to as CASPER query-star score. A higher score is better in this
case, since that would mean that the query-star finds more representatives that are
similar in geometry, in the PDB.

• s - q is the CASPER-badness score. A higher badness score is worse, since it implies
that the superstar has a geometry very different from that of the query-star, which

6comparing against all the stars of the same composition is computationally expensive. The number
of stars of any given composition is of the order of ∼ 106. We sample in the order of ∼ 103 to get decent
results in reasonable time. See Appendix refsec:appD for more details

7ad hoc estimate based on resolution of the structures being scored; to be optimised in the future
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allows it to find better matches in the sisterly set which was constructed w.r.t to
the query-star8.

• CASPER one-sided badness equals s - q if s > q else it is 0. One may argue that
if the query-star scores better than the superstar, it is a trivial solution, since the
sisterly set was constructed w.r.t to the querystar. Therefore by construction, any
query-star where the query-star score itself is higher than the superstar score can
be given a baseline score of zero, and this one-sided badness scores can only be
positive.

3.3.3 Calculation of Chemical Group Temperature Factors

Note that B-factor values are assigned to atoms, based on their thermal fluctuation
w.r.t the larger structure itself, quantified in terms of structure factor during any X-
ray crystallography experiment. To translate it to chemical group wise B-factor values
following methods were tried out:

• Percentile rank of an atomic B-factor, averaged over all the atoms in the chemical
group

• Z-score of the atomic B-factors, averaged over all the atoms in the chemical group

• Depth based Z-score of the atomic B-factors. The distribution of B-factors is bi-
modal normal in terms of depth of the atoms. We calculated the z-score of the
atomic B-factors w.r.t to one of the two normal distributions that it belongs to
be based on the atomic depth. Atomic depth was calculated using Depth software
(stand-alone version) [Tan et al., 2013], with default parameter values.

In this study, star-wise scores are best-match RMSDs/ Superstar RMSD for each stars.
Chemical group-wise scores are average of all the scores of the stars that a chemical group
participates in.

3.3.4 Scoring parameters

For scoring any of the PDB files that are discussed in this text, the scoring parameters
are as follows:

1. Star-size = 7

(a) Star-sizes of 7, 8, 9, and 10 were used for the decoy-set study (Section 3.2.1)
with the following subset of the proteins in the decoy set: 1BBH 1EAF 1GKY
1MDC 1ONC 2AFN 2CMD 2FBJ 2SIM, which were arbitrarily picked from the set
of 20 proteins. Since star-size 7 was the lowest size for which all 9 had the
native ranked 1, star-size was set at 7 as a rough estimate to save computational
time.

(b) RMSD-cutoff for structural overlap calculation = 2Å(the inter-chemical group
distance is approx. the same, on an average); Only complete matches (struc-
ture overlap of 100% are counted as matches, if at all

8which is why it is called badness and not goodness
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(c) Penalty value=5 (arbitraily high penalty value; Stars that don’t count as
matches are given this value for RMSD of superimposition, and a value of
zero is assigned for the CASPER query-star score)

(d) Sampling size=2000 (unless a different value is mentioned for any specific
study; This is the maximum number of stars that are sampled as target stars
for any query-star, among all the stars in the PDB)

3.4 Conflicting sequences between predecessor and successor
structures

While comparing stars between predecessor and successor structures9 it is important to
have a one-to-one mapping between the ones in the predecessor and the ones in the
successor structure, so that there is a fair comparison between the two versions of any
given star (obsolete and refined). This means that there needs to be a one-to-one mapping
between the amino acids in a similar way, since that would allow a mapping for chemical
groups and hence for the corresponding stars as well. However, sometimes certain amino
acids in the predecessor may not be the same as that in the successor, for various reasons
for example because of poorly resolved experimental data. More often, amino acids near
the ends of a chain may be present in one of the two (predecessor/successor) but absent
in the other. This may happen because the terminal stretches are usually floppy and
poorly packed w.r.t to the rest of the structure. In such a scenario it becomes difficult to
resolve the coordinates of those atoms out of the experimental data and those atoms are
sometimes left out of the final structure deposited in the PDB.

To deal with such cases, a sequence alignment was performed between the predecessor
and successor sequence (Smith-Waterman local sequence alignment, using MODELLER
[Webb and Sali, 2016]). Only the amino acids which were in consensus at a certain posi-
tion in the sequence were selected. This also provided a list of equivalences between the
chemical groups 10.

3.5 Different residue environment upon refinement
When a structure is tagged obsolete and is replaced by a successor structure, there are
modifications made in the geometry of the structure. The stars in the successor structure
may be different in terms of their chemical group composition11. Therefore, some of
the stars in the predecessor don’t have a counterpart with the same composition in the
successor, and we can’t compare these two stars directly. They represent different residue
environments in the structures. However, if the composition of the star stays the same,
the residue environment probably hasn’t changed much, and therefore need have had
extensive modifications during refinement. Because of this difference, and because two
stars with differing compositions can’t be superimposed by our method, we considered

9see Section 3.2.2 for definitions of predecessor and successor
10Note that since every chemical group defines a star around it, if a one-to-one mapping exists between

predecessor and successor chemical groups, this mapping can be extended to say that the stars around
these chemical groups are also one-to-one mapped. The identity of a star is essentially the central
chemical group’s number itself.

11For example, for a 5-body star with identities of chemical group members as: {r1, r2, r2, r5, r8}
may be a certain composition. Replacing the r8 with say an r10 chemical group as the fifth member of
the star, leads to a change in composition
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the two cases separately. Stars that have changed in composition were considered at
various levels of similarity.

3.5.1 Consideration of homologous structures in the PDB

As mentioned earlier, a non-redundant subset of the PDB database is used for comparison
with the PDB. This subset has pairwise sequence similarity less than 30% between the
structures. While scoring a structure from the PDB (for example, in case of 3.2.3), all
structures with sequence similarity greater than 30% are excluded from the sampling
space of stars. The usage of a non-redundant PDB database makes the computation
more tractable in terms of time taken. Further, since the structures compared have very
less similarity, they are likely to be non-homologous. Thus, only the structure and fold
of the protein becomes a major factor during the comparison, instead of finding matches
between homologous structures with similar sequences which is a trivial solution anyway.

3.5.2 Contact Order

It is known that there is a statistically significant relationship between protein fold-
ing kinetics and the contact order (CO) of different amino acids in a protein sequence
[Plaxco et al., 1998, Grantcharova et al., 2001]. CO is defined to be the average sequence
separation of residues that form contacts in the 3D structure of the protein. A set of
residues with higher contact order will have contribute to the protein folding more slowly
than others with lower CO, since it costs more in terms of entropy to bring high CO
residues together in space. These residues are usually found at lower residue depths and
are the first to contribute to an unfolding process.

With this logic, for the study regarding the melting temperature of proteins, we
tried scoring the protein structures only in terms of stars that have a high CO. This
was performed at contact order cutoffs of 5%, 10%, and 20%. CO cutoff in this text
implies that stars were ranked in decreasing order of their CO values and the fraction
of top ranking stars within the percentage cutoff are taken for scoring the whole protein
structure.

The CO cutoff for a star is defined here as the maximum CO between any of the
chemical groups in the star. Since chemical groups are numbered serially, 12 the CO
values can be obtained for chemical groups by taking the difference between the chemical
group numbers for any pair of chemical groups.

12even though they are not in a linear sequence and therefore this CO calculation is an approximation;
the main chain for a residue is numbered first and then the side chains are numbered in terms of increasing
distance of connectivity from the main chain chemical group
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Figure 5: Correlation between logarithm of folding rate and (a) relative CO (i.e. absolute CO divided
by chain length),(b) absolute CO and (c) log(relative CO)
[Grantcharova et al., 2001]

4 Results

4.1 Prediction of Regions of Refinement
For each record in the obsolete structures list in the PDB, a pair of obsolete (otherwise
referred to as predecessor here) and its corresponding successor structure is present. The
set of predecessor structures and the successor structures were scored and the scores were
compared for the two sets.

Overall trends in star-wise scores: With a good local structure evaluation method,
one can modify different parts of a structure and be able to judge whether there was a
refinement in the structure or not. This means that our evaluation method should at
least be able to differentiate between the refined and the predecessor structures.

When the composition of stars is changed upon refinement, we notice the successor
scores are better13 than those for the predecessor using any of the CASPER score metrics.
We performed a one-sided Mann-Whitney U-test with the null hypothesis that it is equally
likely that a randomly selected successor star-score is higher than or lower than that of
the predecessor. The alternative hypothesis is that the predecessor star-score is worse
than that of the successor. Note that when the composition of stars change, there are
only minor modifications. It’s less likely to find half of the star to have a different
composition, compared to finding that one of the chemical groups has been replaced
by another. Therefore, we checked the trends for different levels of similarity cutoff.
Similarity here is the ratio of chemical groups in the star that have stayed the same
between the predecessor and the successor versions of it. In all the cases that we checked
(similarity values of at least 40% to 90%, in intervals of 10%), the null hypothesis can be
rejected. See Figures 6–8 for moving average profiles and details of Mann-Whitney U-test
results. The stars are one-to-one mapped across the two profiles using methods described
in Section 3.4. Outliers have been removed from the figures for CASPER Badness or
CASPER one-sided badness score profiles. Very few stars are selected when maximum
similarity between the stars is less than 40%, with only 39 stars in the 30% case, and 1
star in the 20% case.

Outliers: The mean CASPER badness scores for predecessors was less than -0.1 in
13see end of Section 3.3.2 for a discussion on what is a better score based on the way the scoring

scheme is constructed
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(a) similarity cutoff of 60%; Total number of stars=1072; One-tailed Mann-Whitney U-test p-
value=7.24 × 10−3

(b) similarity cutoff of 70%; Total number of stars=2862; One-tailed Mann-Whitney U-test p-
value=1.21 × 10−3

(c) similarity cutoff of 80%. Total number of stars=9881; One-tailed Mann-Whitney U-test p-
value=1.03 × 10−3

(d) similarity cutoff of 90%. Total number of stars=37354; One-tailed Mann-Whitney U-test
p-value=7.80 × 10−3

(e) stars that didn’t change in composition after refinement; Total number of stars=90181; One-
tailed Mann-Whitney U-test p-value=0.395

Figure 6: Star-wise CASPER query-star scores for predecessor vs successor structures. Moving average
window is 2.5% of the total number of stars. Note the difference in number of stars evident from the
x-axis.
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(a) similarity cutoff of 60%; Total number of stars=1072; One-tailed Mann-Whitney U-test p-
value=8.43 × 10−3

(b) similarity cutoff of 70%; Total number of stars=2862; One-tailed Mann-Whitney U-test p-
value=9.64 × 10−3

(c) similarity cutoff of 80%. Total number of stars=9881; One-tailed Mann-Whitney U-test p-
value=1.78 × 10−3

(d) similarity cutoff of 90%. Total number of stars=37354; One-tailed Mann-Whitney U-test
p-value=5.20 × 10−6

(e) stars that didn’t change in composition after refinement; Total number of stars=90181; One-
tailed Mann-Whitney U-test p-value=0.339

Figure 7: Star-wise CASPER badness scores for predecessor vs successor structures. Moving average
window is 2.5% of the total number of stars.
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(a) similarity cutoff of 60%; Total number of stars=1072; One-tailed Mann-Whitney U-test p-
value=2.34 × 10−2

(b) similarity cutoff of 70%; Total number of stars=2862; One-tailed Mann-Whitney U-test p-
value=7.23 × 10−3

(c) similarity cutoff of 80%. Total number of stars=9881; One-tailed Mann-Whitney U-test p-
value=1.71 × 10−3

(d) similarity cutoff of 90%. Total number of stars=37354; One-tailed Mann-Whitney U-test
p-value=1.14 × 10−3

(e) stars that didn’t change in composition after refinement; Total number of stars=90181; One-
tailed Mann-Whitney U-test p-value=0.339

Figure 8: Star-wise CASPER one-sided badness scores for predecessor vs successor structures. Moving
average window is 2.5% of the total number of stars.
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(a) With outlier structures

(b) Without outlier structures

Figure 9: Outlier structures with CASPER Badness
Note the y-axis range. Since this is a moving average plot for illustration purposes, this is not the actual
range of CASPER Badness scores, but an approximation of it.

(a) with CASPER query-star score. (b) with CASPER badness

(c) with CASPER one-sided badness

Figure 10: Percentage of successor/predecessor structures that score better than their counterpart; plots
shown at different levels of maximum similarity between stars compared from the structures. The three
subfigures show the distributions for the three different CASPER scoring metrics. See Table 5 for absolute
numbers.
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7 out of the 115 pairs of structures. These turn up as outliers among the rest when
badness is plotted against star-index. See Figure 9. Note that once the 7 outlier pairs are
removed, the rest of the scores fall within a much narrower range of values (approximately
10% of the range of values that we get with the outliers included). There was no common
feature or pattern across these outliers that could be found. However, further work needs
to be done to make a conclusive statement as to why these pairs turned up as outliers.

Figure 10 shows how many of the refined (successor) structures were identified cor-
rectly, differentiated from the predecessor structure. The best performance was with
CASPER query-star score with 70.27% of structures identified, at 50% maximum simi-
larity (26 out of 37 structures). One-tailed Mann-Whitney U-test was also performed for
each of the 108 structures. In less than 10% of the structures was the p-value for rejecting
the null hypothesis less than 0.1. The comparison shown in Figure 10 and Table 5 are
based on the mean score of the structure, using the CASPER scoring metrics.

Max Similarity % CASPER Score
Metric

% of structures
where succes-

sor scores better

% of structures
where predeces-
sor scores better

No. of proteins
where there was

no change in
star composition

100
QSS 61 47 0
Badness 57 51 0
One-sided Badness 53 55 0

90
QSS 59 38 11
Badness 54 43 11
One-sided Badness 46 51 11

80
QSS 56 37 15
Badness 45 48 15
One-sided Badness 40 53 15

70
QSS 56 30 22
Badness 37 49 22
One-sided Badness 37 49 22

60
QSS 48 21 39
Badness 27 42 39
One-sided Badness 35 34 39

40 or 50
QSS 26 11 71
Badness 17 20 71
One-sided Badness 22 15 71

Table 5: Comparison of number of higher scoring structures of successor versus predecessor structures.
Total number of pairs of structures=108 pairs (one pair is one predecessor and corresponding successor
structure). QSS=Query-Star Score

4.2 Correlation with Thermal Fluctuations
4.2.1 Differentiating thermophilic and mesophilic homologs

Correctly differentiating thermophilic proteins from mesophilic homologs can help us
better design thermostable proteins. For each of the datasets, the PDB files for the
structures mentioned in the set were downloaded. They were then scored and the results
have been tabulated in Table 6. Note that 40% similarity and 50% similarity are the
same, since they correspond to 60% and 50% dissimilarity. Since the star-size is 7, these
refer to 4 out of the 7 chemical groups being dissimilar, in both the similarity cutoffs.

The net protein score was calculated at various contact order cutoffs. See Section 3.5.2
for the definitions of contact order and contact order cutoff. Note that Szilágy’s set has
multiple mesophilic structures with no mention of Topt of source organism, and multiple
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Method (CO cutoff) Kumar’s set Szilágy’s set1 ProTherm
lt60plus10

ProTherm
lt60gt70

QSS 13 13 9 7
QSS (5%) 8 10 12 8
QSS (10%) 12 12 11 9
QSS (20%) 12 12 12 8

badness 10 10 9 7
badness (5%) 8 7 12 8
badness (10%) 8 7 10 7
badness (20%) 10 9 7 5

one-sided badness 10 13 9 6
one-sided badness (5%) 9 8 8 5
one-sided badness (10%) 5 13 11 9
one-sided badness (20%) 8 10 8 5

Size of dataset 18 25 19 13

Table 6: Mean scores comparison of thermophilic vs mesophilic structures; Number of proteins where
thermophilic structure scored better than mesophilic structure.
1 Note that Szilágy’s set has multiple mesophilic structures with no Topt mentioned. The objective was
to see if a thermophilic protein scores the highest CASPER query-star score, or the lowest,
in the badness metrics. Only if one of the thermophilic proteins scored as rank 1 among all the
structures for a specific protein, the protein was counted, otherwise it wasn’t counted for this table.

thermophilic homologous structures for the same protein. Kumar’s dataset doesn’t men-
tion Tm values (except for three of the proteins). Topt of source organism need not correlate
with Tm of the protein in consideration. This is perhaps the reason why CASPER metrics
fare badly in case of Szilágy’s set, compared to the other two datasets.

A one-tailed Mann-Whitney test was conducted to compare the set of stars from
thermophilic proteins to that of the mesophilic proteins. With all three CASPER metrics,
the thermophilic stars score significantly better than the mesophilic stars in the ProTherm
sets. See Figure 11 for details.

4.2.2 Correlation with Tm values

When all the stuctures in ProTherm sets were taken together (mesophilic as well as
thermophilic), there was very little correlation14 found between any of the CASPER
metrics and the scores. The maximum correlation among any of the metrics was -0.24
(with CASPER badness as a metric, and contact order cutoff of 5%)

However, when the mesophilic and thermophilic proteins are separated, the CASPER
scores show correlation with the Tm values. Spearman rho for mesophilic query-star scores
versus melting temperature is as high as -0.828 (p-value = 4 × 10−4, contact order cut-
off=5%, see Table 7a). However, the same is not true for the set of thermophilic proteins.
On the other hand, thermophilic badness scores correlate well with melting temperature,
with Spearman rho as high as -0.791 (p-value = 0.001, contact order cutoff=5%, see Table
7b). For a detailed table of correlation between various CASPER metrics tested with the
Tm, or with the difference between thermophilic and mesophilic Tm, see Appendix D

14Spearman rank correlation coefficient
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(a)

(b)

(c)

Figure 11: Rank ordered scores for thermophilic vs mesophilic proteins; proteins from ProThermlt60gt70
set. Scoring parameters: star-size=7, sampling-size=10000 stars for each composition; moving average
window is 5% of the total number of stars.
(a) CASPER Query-star score on y-axis; One-tailed Mann-Whitney U-test (for alternative hypothesis
being mesophilic scores less than thermophilic structure) p-value =∼ 0; (value below floating point
threshold for computational calculation)
mean for mesophilic profile=0.8409, and that for thermophilic profile=0.8640
(b) CASPER Badness on y-axis; One-tailed Mann-Whitney (for alternative hypothesis being mesophilic
scores greater than thermophilic structure) U-test p-value=∼ 8.42× 10−13;
mean for mesophilic profile=-0.0135, and that for thermophilic profile=-0.0145
(c) CASPER one-sided badness on y-axis; One-tailed Mann-Whitney U-test (for alternative hypothesis
being mesophilic scores greater than thermophilic structure) p-value=∼ 2.11× 10−26;
mean for mesophilic profile=0.01160, and that for thermophilic profile=0.00940
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(a)

(b)

(c)

Figure 12: Rank ordered scores for thermophilic vs mesophilic proteins; proteins from ProThermlt60plus10
set. Scoring parameters: star-size=7, sampling-size=10000 stars for each composition; moving average
window is 5% of the total number of stars.
(a) CASPER Query-star score on y-axis; One-tailed Mann-Whitney U-test (for alternative hypothesis
being mesophilic scores less than thermophilic structure) p-value =∼ 0; (value below floating point
threshold for computational calculation)
mean for mesophilic profile=0.84305, and that for thermophilic profile=0.85832
(b) CASPER Badness on y-axis; One-tailed Mann-Whitney (for alternative hypothesis being mesophilic
scores greater than thermophilic structure) U-test p-value=∼ 4.169× 10−117;
mean for mesophilic profile=-0.01253, and that for thermophilic profile=-0.01424
(c) CASPER one-sided badness on y-axis; One-tailed Mann-Whitney U-test (for alternative hypothesis
being mesophilic scores greater than thermophilic structure) p-value=∼ 4.07× 10−07;
mean for mesophilic profile=0.01005, and that for thermophilic profile=0.00942
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(a)

(b)

(c)

Figure 13: Rank ordered scores for thermophilic vs mesophilic proteins; proteins from Kumar’s set
[Kumar et al., 2000]. Scoring parameters: star-size=7, sampling-size=10000 stars for each composition;
moving average window is 5% of the total number of stars. Total number of stars in thermohilic set =
16061, and in mesophilic set=16034.
(a) CASPER Query-star score on y-axis; One-tailed Mann-Whitney U-test (for alternative hypothesis
being mesophilic scores less than thermophilic structure) p-value =0.049
mean for mesophilic profile=0.85661, and that for thermophilic profile=0.86121
(b) CASPER Badness on y-axis; One-tailed Mann-Whitney (for alternative hypothesis being mesophilic
scores greater than thermophilic structure) U-test p-value=0.974
mean for mesophilic profile=-0.01447, and that for thermophilic profile=-0.01410
(c) CASPER one-sided badness on y-axis; One-tailed Mann-Whitney U-test (for alternative hypothesis
being mesophilic scores greater than thermophilic structure) p-value=0.883
mean for mesophilic profile=0.00883, and that for thermophilic profile=0.00905
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Figure 14: Correlation between Tm difference and CASPER badness scores for all proteins in
ProThermlt60gt70 set. Spearman correlation coefficient = -0.274; p-value = 0.363
Translucent bands show 95% CI

(a) (b)

Figure 15: Correlation between Tm and CASPER scores in ProThermlt60gt70 set
(a) with CASPER query-star score for mesophilic proteins; Spearman rho = -0.828 (p-value = 0.0004,
contact order cutoff=5%); Pearson correlation coefficient = -0.7179 (p-value = 0.0057)
(b) with CASPER badness for thermophilic proteins; Spearman rho = -0.791 (p-value = 0.001)); Pearson
correlation coefficient = -0.7172 (p-value = 0.0058)

Figure 16: CASPER Query-star score versus Tm for ProThermlt60plus10 set. Spearman correlation
coefficient = -0.249; p-value = 0.219
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(a) (b)

Figure 17: Correlation between Tm difference and CASPER scores in ProThermlt60gt70 set, with contact
order cutoff of 5%
(a) with CASPER badness scores; Pearson correlation coefficient for thermophilic: -0.622 (p-value =
0.023)
mesophilic proteins:-0.214 (p-value = 0.482)
(b) with CASPER one-sided badness; Pearson correlation coefficient for thermophilic = -0.463 (p-value
= 0.110)
mesophilic = -0.584 (p-value = 0.035)
Translucent band shows 95% CI; contact order cutoff=5% for all subfigures.

Score Metric meso SCC p-value meso PCC p-value Contact
Order
Cutoff

1 Query-star Score -0.539 0.057 -0.317 0.292 100.0
2 Query-star Score -0.828 0.0004 -0.718 0.006 5.0
3 Query-star Score -0.823 0.001 -0.610 0.027 10.0
4 Query-star Score -0.666 0.013 -0.425 0.147 20.0

(a) CASPER metric: Query-star score

Score Metric meso SCC p-value meso PCC p-value Contact
Order
Cutoff

1 One-sided Badness 0.575 0.040 0.244 0.422 100.0
2 One-sided Badness 0.806 0.001 0.465 0.109 5.0
3 One-sided Badness 0.699 0.008 0.353 0.237 10.0
4 One-sided Badness 0.627 0.022 0.374 0.208 20.0

(b) CASPER metric: One-sided Badness

Table 7: Correlation between Tm and CASPER scores for mesophilic proteins in ProThermlt60gt70 set.
The extrema for the correlation values are in bold. P-value is for null hypothesis that there is no
correlation based on the coefficient. For calculating p-values, the correlation coefficient was transformed
into a t-statistic and the p-value was calculated by using a t-test. Correlation coefficents which are not
significant enough to reject the null hypothesis at 90% CI (i.e p-value>0.1) have been marked in gray.
PCC = Pearson Correlation Coefficient
SCC = Spearman Correlation Coefficient
For other correlation coefficients and details see Appendix D
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Score Metric thermo
SCC

p-value thermo
PCC

p-value Contact
Order
Cutoff

1 Badness -0.555 0.049 -0.549 0.052 100.0
2 Badness -0.791 0.001 -0.717 0.006 5.0
3 Badness -0.560 0.046 -0.613 0.026 10.0
4 Badness -0.566 0.044 -0.619 0.024 20.0

Table 8: Correlation between Tm and CASPER scores for thermophilic proteins in ProThermlt60gt70
set. The extrema for the correlation values are in bold. P-value is for null hypothesis that there is no
correlation based on the coefficient.
PCC = Pearson Correlation Coefficient
SCC = Spearman Correlation Coefficient

Score Metric meso SCC p-value meso
PCC

p-value Contact
Order
Cutoff

3 One-sided Badness -0.357 0.231 -0.429 0.143 100.0
6 One-sided Badness -0.566 0.044 -0.585 0.036 5.0
9 One-sided Badness -0.407 0.168 -0.427 0.145 10.0
12 One-sided Badness -0.269 0.374 -0.511 0.075 20.0

Table 9: Correlation between Tm difference and CASPER scores for mesophilic proteins in
ProThermlt60gt70 set. The extrema for the correlation values are in bold

4.2.3 Correlation with difference between Tm of mesophilic and thermophilic
homologs

Similar to the correlation with Tm values, the difference in Tm values (i.e. thermophilic
Tm minus mesophilic Tm) was also compared to the CASPER scores. A good correlation
between the Tm difference and the difference in scores, may allow us to predict how much
of a Tm change may occur with a certain tweak in the structure (e.g. in case of a mutation).
There is little correlation between the Tm difference and the scores differences. The most
correlated with the Tm difference were the Badness scores at contact order cutoff of 5%:
Spearman rho = -0.274, but with a p-value of 0.363 (implying very low confidence in the
correlation).

However, the badness scores for thermophilic proteins correlates well with the differ-
ence in Tm; Spearman rho is -0.670 (p-value = 0.012) at contact order cutoff of 5%. For
mesophilic proteins, the one-sided badness scores have a Spearman rho of -0.566 (p-value
= 0.044) at contact order cutoff of 5%. See Figures 17a, 17b for regression plots for the
same.

4.2.4 Correlation with Temperature Factors

As mentioned before, a flexible region of a protein will have higher temperature fac-
tors compared to more rigid, buried regions. Further, it’s also known that the B-
factors follow a bi-modal Gaussian distribution, corresponding to buried vs exposed
residues[Parthasarathy and Murthy, 2008]. A more flexible region in a protein is ex-
pected to have more geometrical variants present in the PDB, compared to a less flexible
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region. This means that finding a good, low RMSD match, for stars from such region
is tougher. With this reasoning, we tried to look for a correlation between the B-factor
values of chemical groups and the corresponding scores that they get. There is no method
described in literature about how to compare structures, and therefore, if we find a cor-
relation, we can use our scores as a proxy for B-factors, and therefore be able to compare
B-factors across structures.

The depth cutoff is to differentiate between the two parts of the bimodal B-factor
distribution. Z-score of atomic B-factor was calculated w.r.t the normal distribution that
an atom is a part of, and the mean of these Z-scores was taken as the B-factor for the
chemical group.

The Spearman rank-correlation coefficients (SCC) for the different strategies are de-
scribed in Table 2. See 3.3.3 for a discussion on the strategies used for converting atomic
B-factor values to corresponding values for chemical groups. In none of the strategies
could we find a good SCC.

Strategy SCC
Mean of atomic B-factors 0.017
Percentile rank of atomic B-factors 0.009
Z-score -0.012
Depth based Z-score (depth cutoff = 6Å) -0.004
Depth based Z-score (depth cutoff = 7Å) 0.003
Depth based Z-score (depth cutoff = 8Å) -0.006

Table 10: SCC of chemical group wise scores vs chemical group wise B-factors, for different strategies of
calculating chemical group wise B-factor values
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5 Discussion and Further Work

5.1 Summary
5.1.1 Obsolete PDB refinement study

Our primary objective was to find a correlation between RMSD of refinement and local
scores of the stars. This would allow us to determine which regions in a protein need to
be targetted first for refinement, compared to others. However, we weren’t able to find a
good correlation in this regard.

However, when all the stars from the whole dataset are pooled together, the CASPER
metrics were able to distinguish between the stars taken from obsolete and successor
structures with very good confidence. Note that the statistical test employed for the
same is a one-tailed Mann-Whitney test. Since this is a non-parametric test, the mean or
the parameters of the distribution of the scores don’t matter. What does matter however,
is whether the results have more favorable outcomes for the alternative hypothesis, than
unfavorable ones15, when the scores are rank-ordered.

It’s also important to interpret the test results correctly. We cannot conclude that
the scores are significantly higher for one compared to the other. All we can say is that if
a random pair of stars is picked up, one each from the refined and the obsolete sets, the
refined has a very high probability of scoring better with any of the CASPER metrics.

The other key result is that the percentage of structures identified correctly as refined
structures vs. the percentage identified incorrectly (Figure 10), increases as we decrease
the maximum similarity of composition between the stars being compared. This means
that perhaps the residue environments change drastically (captured in terms of compo-
sition of stars) as we go about progressively refining a structure. This is also noticeable
in the score profiles in Figures 6-8. As the similarity increases, the score profiles become
increasingly hard to distinguish. In fact when the composition doesn’t change at all
(similarity = 100%), even the Mann-Whitney test result is not significant, with a p-value
greater than 0.1.

5.1.2 Correlation with Thermal Fluctuations

Three different datasets were used for comparing how thermophilic structures score com-
pared to their mesophilic counterparts. Of the three, we contend that Kumar’s set and
Szilágy’s set are unreliable at least for the purpose of the study conducted here. In
case of Kumar’s set, there is no objective metric to distinguish the proteins themselves,
and in case of Szilágy’s set, Topt of the source organism is taken as the metric. This
is understandable, since there are relatively few studies where thermodynamic data for
both mesophilic and thermophilic homologs are available. More importantly, even if they
are available, the corresponding structures may not be available.

We culled relavant records from the ProTherm database in terms of Tm values, for this
purpose. Although this results in a much smaller dataset, it’s perhaps more reliable since
the structural stability of the protein would determine its unfolding rate, and consequently
its melting temperature. Topt of the source organism, in comparison, is a bad metric since
the protein may be very thermostable but still exist in a mesophilic organism with low
Topt. This is perhaps the reason why the scoring scheme performs badly in case of Szilágy’s
set. In the other sets, the efficiency is higher. With Kumar’s set, in as much as ∼72%

15i.e. whether the refined structures score better than the unrefined ones or not
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(13 out of 18 pairs) of the pairs, the thermophilic structure scored better according to
our expectations (Table 6).

In this regard, the expectation was that with lower CO cutoffs, the efficiency16 of
identifying the thermophilic structures would increase. Although the best efficiency in
case of ProTherm datasets was when the CO was taken into consideration, there doesn’t
seem to be any trend as such as we go about changing the CO cutoff.

However, the best correlations between CASPER scores and mesophilic or ther-
mophilic Tm is actually at lower CO cutoffs (e.g. Table 7a). In fact in Table 13, note
that even though different CASPER metrics correlate better or worse with mesophilic
and thermophilic Tm, the best correlation is when the CO cutoff was the lowest among
all the values that were tried. Perhaps a weighted mean (instead of an absolute mean)
makes more sense for the net-score of a structure. The star-wise scores are probably not
additive in a direct manner, and a better approximation would be to weight the scores
in terms of CO of the star, depth of the star, etc. See Section 5.2 for a discussion on
additivity of scores.

Ideally, we would like to find a good correlation between the net score of the structure
and the Tm for the same. We can then perhaps use the information to predict Tm using
wild-type or mutated structures, and be able to design thermostable mutants for known
structures. Such a correlation was not found when all the structures from the ProTherm
Datasets were taken into consideration (e.g. Figure 14).

However, when the mesophilic and thermophilic structures are considered separately,
the scores correlate extremely well with Tm values. Although this is a useful and non-
trivial result, it can’t be used at least at this stage for predicting Tm values. We need to
find a threshold score value, or some other method of determining protein thermophilic-
ity. In light of this purpose, the fact that stars from thermophilic structures score better
than mesophilic structures in ProTherm datasets, may prove to be useful. We expect
thermophilic structures to contain specific residue environments that can stabilise them
at environments with high temperatures. In fact, the studies from which Kumar’s set
and Szilágy’s set were extracted [Kumar et al., 2000, Szilágyi and Závodszky, 2000] pro-
vide ample evidence of differing structural elements between thermophilic and mesophilic
structures. We believe that these structural elements have implicitly been added to the
stars that have been sampled in the PDB database, and we intend on discovering these
stars and their chemical group compositions in the future.

5.2 The approximation of additivity
One may argue that such an evaluation method is similar to a knowledge based potential
energy function or a pseudo-free energy function, since the closer a local atomistic packing
is to that found in experimentally solved native structures, the lower is the energy for
that conformation of atoms. Keeping this in mind, we have made the approximation of
additivity, by taking the mean of the star-wise scores as a measure of the score of the
whole protein. This may be a bad approximation, since the free energy contribution of
two or more phenomena (in this case, the occurrence of stars w.r.t to each other) can
be added up only if they are independent events [Dill, 1997]. This is obviously not true,
and it’s possible that a bad star has multiple good stars (in terms of CASPER scores) as
neighbours, which contribute to stabilising the bad star.

16number of thermophilic structures identified correctly divided by size of dataset

Swastik Mishra 32



5.3 Topology independence 5 DISCUSSION AND FURTHER WORK

Figure 18: Example of a thermophilic protein (Myoglobin) and mesophilic homolog; Frequency of stars
versus Query-star score. The Tm values are in ◦C, mentioned in brackets for each of the structures, along
with their PDB IDs. The trend for a large majority of stars having a score of 1.0 is there across all
structures that were compared.

The above mentioed problem is faced by most knowledge-based potentials in general
[Dill, 1997]. The advantage in CASPER’s case however, is that the evaluation is local in
nature. As a result, in the scenario wherein CASPER is used for structure refinement or
structure prediction, one may work on increasing the number of stars that score well in
the whole protein structure, instead of striving to increase the net score of the protein.

However, we do need to find a better way to find net-score of a protein structure
model, since not all stars contribute equally to the stability (evident from the change in
results when CO is taken into consideration). The simplest example is the existence of
a hydrophobic rigid core in case of most globular proteins. The stars found at higher
residue depths for example, are known to be involved more in stabilising the protein
[Chakravarty and Varadarajan, 1999, Tan et al., 2013], and should be given more weight
than the ones which are exposed.

5.3 Topology independence
The work done here takes inspiration from previous work on topology independent struc-
tural superimposition [Nguyen et al., 2011, Nguyen and Madhusudhan, 2011], which sug-
gests that a superimposition performed without explicitly adding information of the pri-
mary or secondary structure folds of a protein structure may provide better superimposi-
tion, and also provide valuable insights into the kind of amino acid residue environments
in the protein. Two proteins with completely different folds may have similar residue
environments atomistic packing in terms of geometry, which is usually overlooked by tra-
ditional structure superimposition methods. CASPER is therefore different from other
structure evaluation methods that consider structural motifs because it can compare re-
gions of protein structures that may not be part of similar secondary or super-secondary
structures.

The usage of a non-redundant PDB database prevents trivial solutions such as finding
matches for the query-star in homologous structures. Thus, for whatever representation
that is found for any of the query-stars, it can be stated that the match is because of
the representation of similar residue environments in unrelated protein structures. Quite
often one finds very similar matches for most stars in any given PDB. This could either
mean that the parameters for CASPER need to be optimised further, and they may be
very lenient and are therefore able to find close matches, or that the PDB is extremely
redundant in terms of the representation of structural motifs.
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5.4 Structure refinement
A major problem with current structure refinement methods, is the problem of initial
direction of refinement. Without the help of good local evaluation metrics, it is hard to de-
cide which regions require refinement more than others [Feig, 2017, Park and Seok, 2012].
This is the reason behind the conception of the CASPER badness metrics, since these
may allow us to answer the question of how bad is a badly packed region. With a simple
RMSD metric for example, since RMSD can be any positive number, there is no way to
know how much of an RMSD value is a bad score.

Current structure refinement methods usually use a combination of molecular dynam-
ics (MD) simulations and knowledge-based statistical potentials. The statistical potential
helps in providing restraints for the MD, so that the protein structure doesn’t unfold away
from the native state. Additionally, in case of hybrid refinement methods that sample
conformational space using Monte Carlo or Normal Mode Analysis (NMA) based sam-
pling, the potential energy function can provide direction in which the sampling may be
performed, with a suitable set of moves at every iteration [Feig, 2017]. However, such
restraints may prevent the initial models from sampling conformations that are farther
away in RMSD space. One may simulate an annealing process for this purpose, but
annealing is often a random process. The conformational sampling that one is actually
trying to simulate in such a scenario, is the effect of chaperone-mediated protein folding,
which is not a very random process, and is well controlled. We believe that CASPER may
provide a reasonable solution to this problem. For a star to move away from it’s residue
environment, one may look for similar stars with a certain degree of similarity cutoff that
may be formed by the use of other chemical groups in the vicinity. This not only allows
for a simulation of the annealing process, but may also be guided by native-like stars that
have been observed in the PDB already.

At this stage, to a certain extent we are able to distinguish between refined and
obsolete PDB structures. There is certainly a difference in trends of the scores when
refined structures are compared to their predecessor counterparts. However, whether
there is a correlation between the extent of refinement and the badness of the obsolete
structure (or any part of it), remains to be seen. We intend on developing a method
for structure refinement based on the evaluation of regions provided by the CASPER
metrics.

5.5 The CASPER metrics
The CASPER query-star score consistently has shown good performance, but lacks the
objective threshold that CASPER badness provides. We cannot say conclusively whether
a certain region requires refinement. All we can do is point out which regions have stars
that score bad, and therefore need to be targetted first. Nonetheless, the fact that the
query-star score metric is able to discern the trends even in Kumar’s set (which doesn’t
have Tm values), encourages us to work further using that metric.

One of the reasons why CASPER badness may be performing poorly is perhaps the
way the sisterly set is constructed. The set is constructed w.r.t the query-star, and this
gives it an advantage in terms of score, compared to the superstar. Perhaps a reverse
metric of constructing the sisterly set w.r.t the superstar may be a better idea. This
is because the CASPER metric in general is an attempt at approximating the selection
of stars which are similar in geometry. Since the superstar is already native-like, it
should provide a better approximation since it is closer to the rest of the stars in terms
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of geometry. However, this is computationally more time-consuming (almost twice as
much). Nevertheless, such a modified method is currently being implemented for testing.

5.6 Knowledge based potentials
The protein structure evaluation method discussed in this text is an example of a knowledge-
based method, although it is unlike other knowledge-based methods. Most knowledge-
based methods can be categorised as what are known as statistical potential energy func-
tions. Statistical potentials are attractive because they usually consume less resources in
terms of computational power and in terms of time, in comparison to ab initio physics-
based methods. A typical statistical potential would have a component of evaluating
what was the probability of occurrence of a certain arrangement of atoms or amino acids
in 3D space, otherwise referred to as an expected probability. This is then compared to an
observed probability, which is derived from known protein structures. Work on empirical
methods such as these are therefore focussed on optimising parameters related to ob-
served structural features, or the reference system for calculating expected probabilities
[Shen and Sali, 2006, Zhou and Zhou, 2002].

Although improved reference states have been quite successful in protein structure
evaluation (and as a result, for protein structure prediction), they are still approximations
to the actual expected probabilities of the conformations in the protein structure. The
method that we have presented here overcomes this difficulty by getting rid of estimating
such an expected probability measure. Instead, we are looking at how well represented
in the PDB, is a certain structural region from any protein. This is close to a probability
measure of the same. However, we are also considering how close is the query structure
to any previously known structures deposited in the PDB. In doing so, we have made the
assumption that the PDB is almost complete [Fernandez-Fuentes et al., 2010] in terms
of our knowledge local structural features of proteins17, and that they contain close to
native structures of proteins.

5.7 Related work
5.7.1 Charge dynamics dependent force field development

Classical MD force fields have fixed atomic parameters even for charges. An alternative
is the usage of polarisable force fields, which are semi-empirical and are quite nascent and
inefficient for simulation of macromolecules [Lopes et al., 2013, Ponder et al., 2010]. The
concept of a star of chemical groups allows us to look at topology independent charge
dynamics of local regions in the protein, based on the geometry of the atoms in space
as well as their residue environment. This is the basis for related work being carried
out, wherein we are trying to simulate charge dynamics in stars of chemical groups, but
represented in terms of constituent atoms. With the knowledge of how charges change
during the dynamics of protein folding, unfolding, or partial folding will not only allow
us to improve existing force fields, but also allows us a way to predict pKa of amino acids
better (since pKa can change with change in partial charges for the atoms in an amino
acid).

17which means that they contain all possible structural motifs that could have been explored
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5.7.2 PackPred mutation predictor

Packpred is a software developed earlier in the research group. It predicts the func-
tional consequences of point mutations in proteins, starting with a 3D structure, or
by modelling the structure. It combines residue environment information using DEPTH
[Chakravarty and Varadarajan, 1999, Tan et al., 2013] and CLICK [Nguyen et al., 2011].
The underlying concepts in this study and Packpred are similar, especially the usage of
structural motifs (in CLICK’s case as cliques of atoms) for creating a multibody statistical
measure.

Benchmarking of Packpred server (http://cospi.iiserpune.ac.in/packpred/) with other
mutation predictors/evaluators were also carried out as part of the fifth year project. This
includes testing the Packpred server and standalone softwares, and ensuring that they
run smoothly.
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Appendices
A Method and Framework Developed Earlier
The stars database: The database being used here is a pre-computed database. We
have parsed the PDB database to chemical group format and done a search of all stars in
all the proteins. We are using the set of all protein structures recorded in the PDB; except
the ones which have multiple models (NMR structures for example), CA-only structures,
and structures with large number of missing residues and/or atoms (in which case we
can’t parse it to chemical group representation). The total number of structures under
these criteria is 115,915 structures. However, since the PDB database is redundant, we
use only a non-redundant (NR) subset of it(culled using list of sequence similarity clusters
in PDB database, as of July 20, 2018), such that pairwise sequence similarity is always
less than 30%. The NR-30 subset is 25373 structures large in size.

Pre-computation: As described later, the way we store the information of all the
stars allows us to not store the coordinates of the stars but look them up whenever
necessary. The stars are indexed based on their composition of chemical groups for faster
access.

Parallelisation and sampling: While scoring the test protein on the computing
cluster, each query star is assigned to one core. For each star, a random sample of stars
(sample size is say, S) are picked with the same composition from the star database. The
reason for this is because:

1. We don’t need to superimpose against all the stars in the database, but only the
ones with same composition of chemical groups.

2. It is a practical limitation that the superimposition of the query star against all
stars with same composition in the database is not fast enough.

3. In a lot of cases, for example in case of alpha-helices, the stars in the database are
redundant (and their population is too large). For stars derived from such folds,
it’s perhaps unnecessary to superimpose exhaustively. Instead, a smaller random
sample serves as a representative for the whole set of stars which have the same
composition.

The group-pdb format: The protein structures have been defined in terms of the
chemical groups (we call the new format a .gpdb format for group-pdb). The formatting
of the text is standard .pdb itself, so that the lines can be read by programs which use
.pdb format.

The star-finding job is done by finding the nearest neighbours for each chemical group,
using a cKD-Tree algorithm. The program returns a list of stars, when the .gpdb file
along with the size and distance cut-off are given as arguments; the output file (.cliq
extension) is formatted such that it has indices of the groups written into each line, and
each line is a star. The corresponding structure is also written out as a .gpdb file for later
superimposition. When coordinates are required for superimposition, one can map the
indices of the chemical groups in the star to that in the .gpdb file it was extracted from.

Superimposition by centre-to-centre mapping: The superimposition is done by
using the Kearsely algorithm [Kearsley, 1989]. We map the central chemical group of
query star to the central chemical group of the target star. (Note that there is always
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one centre in every star and this is the chemical group with respect to which the star
was defined.) Thereafter, superimpositions for all possible permutations of mappings of
chemical groups of same identity (e.g. r1 to r1,r2 to r2, etc.) is done and lowest RMSD
permutation is the one which is taken as the RMSD of superimposition.

Sample lines from a .gpdb file, for illustration purposes:

ATOM 40 r2 CYS A 11 9.463 2.028 7.521
ATOM 41 r10 CYS A 11 7.856 2.863 7.659
ATOM 42 r1 ILE A 12 12.778 -2.378 7.626

Sample lines from a .cliq file, for illustration purposes:

1cxs 4 5 0 6 7 2 1 9
1cxs 5 6 4 10 11 7 68 9
1cxs 6 7 9 5 8 68 4 69

PDB ID Sampling-size S Rank of native model

1onc 2000 1
1onc 4000 1

1bbh 2000 1
1bbh 4000 1

1c2r 1000 1
1c2r 2000 1

1cau 1000 7
1cau 2000 18
1cau 4000 3

2pna 1000 215

Table 11: Native model rankings out of decoy set size with 300 decoys. Penalty P=5 Å; Clique size N=8;
RMSD as score metric
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Figure 19: Star-wise best-match RMSD score profiles for 1onc and 1bbh native model(black line) vs
decoys (300 for each protein) from Moulder decoy set[John, 2003]. Note how the native scores lower
than the decoys in most of the stars
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B Identification of Native Model In A Decoy Set

index PDB ID CASPER
Query-

star score

Superstar
RMSD

CASPER
One-sided
badness

CASPER
Badness

0 1bbh 1 1 1 2
1 1c2r 1 1 1 9
2 1gky 1 1 1 1
3 1eaf 1 1 1 1
4 2cmd 1 1 1 1
5 1onc 1 1 1 12
6 1mdc 1 1 2 2
7 2sim 1 1 1 9
8 2afn 1 1 1 1
9 2fbj 1 1 1 1
10 1cau 2 1 1 3
11 1cew 1 1 1 2
12 1cid 2 3 3 5
13 1dxt 1 1 1 1
14 1lga 1 1 1 9
15 1mup 3 1 4 3
16 2mta 1 1 1 4
17 2pna1 3 17 9 18
18 4sbv 1 1 1 1
19 8i1b 1 1 1 10

Fraction with
native model
as rank=1

16/20 18/20 16/20 7/20

Table 12: Native model ranking in Moulder decoy set. Rank is out of 31, for each protein.
1 NMR structure
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C Cleaning up and culling of obsolete PDB records

C.1 Completely obsolete records
Records where there is a missing successor for the obsolete PDB entry, were ignored for
this study.

For example, there can be entries like:

ENTRY DATE OBSLTE SUCCSSR

OBSLTE 24-JUL-07 1F83 3G94
OBSLTE 14-JUL-09 3G94

3G94 was removed as obsolete because of paper retraction!

C.2 Outdated records and multiple successors
Sometimes there can be outdated obsolete PDB records,e.g.

OBSLTE 30-OCT-78 151C 251C
OBSLTE 02-OCT-81 251C 351C

That is, they haven’t been updated to be written as:

OBSLTE 30-OCT-78 151C 251C 351C

At other times, the update has been made, so there are multiple successors for the
same obsolete record

OBSLTE 18-JUL-84 1HHB 2HHB 3HHB 4HHB

In both cases, the final structure is taken as the refined structure, and everything else
as obsolete entries paired with it. So if A is replaced by B, which is then replaced by C
and then D – we get three obsolete-successor pairs, namely: A-D, B-D and C-D

C.3 Culling parameters
A non-redundant subset with the following characteristics was used for the obsolete
PDB refinement study. Culling for this subset of the PDB was done using PISCES
server[Wang and Dunbrack, 2003].
Percentage sequence similarity <= 30%
Resolution <1.8 Å
R-factor: 0.25
exclude non-X-ray, and exclude CA-only structures

D Correlation between Tm or Tm difference and CASPER
scores
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Score Metric meso
SCC
with
Tm
diff

meso
SCC
with
Tm
diff
pval

thermo
SCC
with
Tm
diff

thermo
SCC
with
Tm
diff
pval

meso
PCC
with
Tm
diff

meso
PCC
with
Tm
diff
pval

thermo
PCC
with
Tm
diff

thermo
PCC
with
Tm
diff
pval

meso
SCC
with
Tm

meso
SCC
with
Tm
pval

thermo
SCC
with
Tm

thermo
SCC
with
Tm
pval

meso
PCC
with
Tm

meso
PCC
with
Tm
pval

thermo
PCC
with
Tm

thermo
PCC
with
Tm
pval

Contact
Order
Cutoff

1 Query-star Score 0.412 0.162 -0.011 0.972 0.352 0.238 -0.007 0.983 -0.539 0.057 -0.066 0.831 -0.317 0.292 -0.124 0.686 100.0
2 Badness 0.099 0.748 -0.489 0.090 -0.125 0.684 -0.490 0.089 -0.121 0.694 -0.555 0.049 -0.047 0.878 -0.549 0.052 100.0
3 One-sided Badness -0.357 0.231 0.033 0.915 -0.429 0.143 -0.162 0.596 0.575 0.040 0.049 0.873 0.244 0.422 -0.011 0.973 100.0
4 Query-star Score 0.335 0.263 -0.121 0.694 0.497 0.084 -0.084 0.785 -0.828 0.000 -0.192 0.529 -0.718 0.006 -0.177 0.563 5.0
5 Badness -0.330 0.271 -0.670 0.012 -0.214 0.482 -0.623 0.023 -0.099 0.748 -0.791 0.001 -0.049 0.874 -0.717 0.006 5.0
6 One-sided Badness -0.566 0.044 0.066 0.831 -0.585 0.036 -0.464 0.110 0.806 0.001 -0.011 0.972 0.465 0.109 -0.387 0.191 5.0
7 Query-star Score 0.445 0.128 -0.137 0.655 0.508 0.076 -0.017 0.957 -0.823 0.001 -0.253 0.405 -0.610 0.027 -0.166 0.587 10.0
8 Badness 0.049 0.873 -0.462 0.112 0.102 0.740 -0.534 0.060 -0.195 0.523 -0.560 0.046 -0.211 0.490 -0.613 0.026 10.0
9 One-sided Badness -0.407 0.168 0.027 0.929 -0.427 0.145 -0.437 0.136 0.699 0.008 0.038 0.901 0.353 0.237 -0.332 0.267 10.0
10 Query-star Score 0.379 0.201 -0.027 0.929 0.330 0.270 -0.035 0.909 -0.666 0.013 -0.071 0.817 -0.425 0.147 -0.137 0.655 20.0
11 Badness -0.269 0.374 -0.522 0.067 -0.314 0.296 -0.600 0.030 -0.138 0.654 -0.566 0.044 0.019 0.951 -0.619 0.024 20.0
12 One-sided Badness -0.269 0.374 -0.049 0.873 -0.511 0.075 -0.390 0.188 0.627 0.022 0.011 0.972 0.374 0.208 -0.246 0.418 20.0

Table 13: Correlation between Tm and CASPER scores for proteins in ProThermlt60gt70 set. The extrema for the correlation values are in bold. P-value is for
null hypothesis that there is no correlation based on the coefficient. For calculating p-values, the correlation coefficient was transformed into a t-statistic and the
p-value was calculated by using a t-test.
PCC = Pearson Correlation Coefficient
SCC = Spearman Correlation Coefficient
column titles ending with pval are for p-values of the correlation mentioned to the left of such columns
Tm diff = difference between thermophilic and mesophilic Tm values
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