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Abstract

A lot of problems that arise in nature can be modelled using graphs.

In this thesis, we look at one such problem from display optimization

which can be articulated through Biclique Partition problem on Bi-

partite graphs(BPP). In BPP, given an arbitrary bipartite graph G

and an integer k, we have to determine whether there exists a parti-

tion of the edge set of G of size k such that each part in the partition

is a complete bipartite subgraph. It has been proven that this prob-

lem is NP-complete but fixed parameter tractable with exponential

kernel. In this thesis, we try to answer if the size of the kernel can be

bettered. To do this, we explore tools from partially ordered sets. We

present results on how partially ordered sets can induce structures in

the solution instances and how these structures can lead to a better

kernel.

We also state and prove how the previous kernel does not lead to a

polynomial kernel. This gives an incentive to look at certain graph

classes and answer if on them BPP is polynomial time solvable or

not. This helps us in understanding properties crucial in determining

solution. We present new results in this direction. In particular, we

prove that BPP is NP-hard on perfect elimination bipartite graph.
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Chapter 1

Introduction

We consider the Biclique Partition problem on bipartite graphs. This problem

deals with finding a partition of the edge set of the graph such that graph induced

on each part of the partition is a complete bipartite graph. A complete bipartite

graph is also called a biclique, in short.

A related problem is that of finding a Biclique Cover of a bipartite graph. Here,

one has to find a cover of the edge set such that graph induced on each part of

the cover is a biclique.

Unlike Biclique Partition problem, Biclique Cover problem is well studied in lit-

erature. In the following thesis, we study the former problem and present new

results in this direction. All graphs in consideration are bipartite graphs, if not

mentioned otherwise.

1.1 Motivations

Both these problems admit various applications such as in bioinformatics ([1],

[2]), finite automata [3], database tiling [4], finite automata [5], OLED display [6]
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1.1 Motivations

among many.

In the following section, we present how Biclique Partitions of a graph can be

utilised in OLED displays. This has been our major interest in pursuing Biclique

Partition problem.

1.1.1 OLED displays

Organic Light Emitting Diode (OLED) is an alternative form of LED used for

display screens. There are various advantages of OLED screens over commercially

used display technologies such as Liquid Crystral Displays (LCD). The images

produced by OLED display have very high contrast as well as close to 180 degrees

of viewing angle. The material used in OLED displays is physically flexible. Also,

the reaction time of pixels in OLED display is within 10 microseconds which is

much less than that of human eye. This allows for seamless video streaming.

Presently, the use OLED screens commercially faces certain limitations. But ow-

ing to these advantages, there is a lot of research being undertaken in material

science to make OLED commercially viable. There are two types of OLED tech-

nologies, namely Active matrix (AM) and Passive Matrix (PM). While the former

is more expensive to manufacture, the latter faces longevity issues.

We now present the structure of PM OLED display screens and explain why it

has limited lifetime.

For simplicity, we consider binary images. The same can be extrapolated to

coloured images. A Passive Matrix OLED display screen is a m× n matrix con-

sisting of a vertical diode for each pixel or element in the matrix. It also consists

of a switch for each row and column. The methodology followed is: (i, j)th pixel

is 1 (i.e, white) if and only if ith row’s and jth switch is 1 (i.e, on). Thus, each

pixel cannot be influenced directly.

To tackle this, each row is displayed in one frame. This is done at a sufficiently
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1.1 Motivations

high frame rate such that the human eye catches them all in it’s response time.

Then, the image perceived is the average of all the frames. If the number of

frames is large, then the time for which each frame is shun is quite small. Thus,

to have the same average at the end, the pixels have to be shun with higher inten-

sity . This leads to decreased life-time of the diode, one of the major limitations

of OLED screens.

This arrangement calls for an algorithmic solution to efficiently display the im-

age. We exploit Biclique Partition problem for this task. Consider a particular

arrangement of switches in rows and columns. Then, the cross overs of 1’s will

result in the pixel being 1, other wise 0. Elaborately, we get a matrix such that

submatrix restricted on rows and columns whose switches are on is a 1 matrix

(each element of the submatrix is 1). This corresponds to a biclique if we think

of the image matrix as the adjacency matrix of a bipartite graph. Here, the rows

correspond to one vertex-partition of the bipartite graph and the columns corre-

spond to the other. Since one biclique takes one frame, partitioning the graph

into minimum number of bicliques will lead to an increased lifetime of the diode.

For example, the following matrix can be decomposed into 3 bicliques which re-

quires 3 frames as compared to number of rows of the matrix which is 4.



1 1 0 0

1 1 0 0

0 1 1 0

0 0 1 1

0 1 1 0


=



1 1 0 0

1 1 0 0

0 0 0 0

0 0 0 0

0 0 0 0


+



0 0 0 0

0 0 0 0

0 1 1 0

0 0 0 0

0 1 1 0


+



0 0 0 0

0 0 0 0

0 0 0 0

0 0 1 1

0 0 0 0


Note that the previous strategy of shining one row at a time is also a biclique

decompostion of the matrix since a row is a biclique in itself. This is called

the trivial biclique decomposition of the graph. Thus, we aim at trying to find
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1.2 Context of the Study

minimum sized biclique partition of a graph.

1.2 Context of the Study

Unfortunately, both Biclique Partition and Cover problem are NP-complete [7][3].

A natural way of dealing with NP-complete problems is to attack the problem

from the viewpoint of parameterized complexity.

In parameterized complexity, a secondary measurement associated with an in-

stance is provided along with instance. This secondary measurement is called

parameter. Conventionally and in this report, this parameter will be denoted by

k. This parameter in some way encapsulates the difficulty of solving the prob-

lem. A problem is called fixed-parameter tractable if there exists an algorithm

which solves the problem in f(k) ·nO(1) running time. Here, n is the size of input

and f(k) is any arbitrary computable function depending only on k. Thus, if

parameter size is small we will be able to solve the problem more efficiently. Note

that the parameter can be any property of the input instance like a structural

property of the input graph or size of the solution.

An related notion of fixed-parameter tractability is kernalization. A polynomial

time algorithm is called a kernalization algorithm if it transforms an arbitrary

input instance to another equivalent instance whose input size is bounded by a

function g(k). Note that the function g only depends on k. This function g(k)

is called kernel size. If g(k) is a polynomial then we call it a polynomial kernel.

The smaller the kernel size, the better.

In this thesis, we explore the parameterized complexity of Biclique Partition

problem and present some new results in this regard.

4



1.3 Overview of the Thesis

1.3 Overview of the Thesis

We present related work done in Biclique Partition problem in the next chap-

ter. Chapter 3 states formal definitions and terms used throughout the thesis.

Chapter 4 details the parameterized complexity of Biclique Partition and Cover

problem. This includes reduction rules leading to kernalization and FPT al-

gorithms for both the problems. Chapter 5 introduces the theory of partially

ordered sets. This will be used in proving new results in Chapter 6. Chapter 6

also presents the limitation of the new result obtained. Chapter 7 talks about

the classical complexity of Biclique Cover and Partition problem on special graph

classes. Finally, Chapter 8 concludes the thesis and presents direction of future

work.

5



Chapter 2

Related work

Consider Edge Clique Cover problem (denoted by ECC). Given an arbitrary graph

G and an integer k, the problem is to determine whether the edges of G can be

covered by k cliques. One can similarly define Edge Clique Partition problem

(denoted by EPP). Both the problems are NP-complete and fixed parameter

tractable (parameterized by k)[8],[9]. ECC is one of the first problems proven with

doubly exponential lower bound on FPT running time and exponential bound on

kernel size, assuming Exponential Time Hypothesis[10]. On the other hand, EPP

admits an O(k2) kernel [11].

Following the suite of covering problems, we define Biclique Cover (BCC) problem

as the following: Given a graph G and integer k, determine whether the edges of G

can be covered by k bicliques. Similarly, we can define Biclique Partition problem

(BPP). Both these problems are NP-complete and fixed-parameter tractable on

general as well as bipartite graphs [7]. Also, both the problems admit exponential

kernel [12]. Like ECC, it has been proven for BCC that the doubly exponential

FPT running time and exponential kernel cannot be bettered in [13], assuming

Exponential Time Hypothesis. This almost closes the gap between the best known

lower bound and upper bound O∗(22k log k+2k+log k). But for BPP, there exists a
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FPT algorithm with running time O∗(22k2+k log k+k)[13]. It is an open question

if the exponential kernel size of BPP can be bettered. This thesis aim to make

advancement in this direction.

Analogously, one can define Biclique Vertex Partition problem(BVP). In BVP,

given a graph G and an integer k, one has to determine whether the vertices

can be partitioned into k bicliques. BVP is also NP-complete. But unlike all

the previous covering problems, BVP is W[2] complete [12], hence not fixed-

parameter tractable (assuming FPT 6= W[1]).

[13] shows how the exponential kernel size of BCC and BPP can be exploited to

obtain an approximation ratio of O(n/ log n).
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Chapter 3

Formal Definitions

3.1 Graph terminologies

Definition 3.1. An undirected graph G is an ordered triplet (V (G), E(G), ψG)

comprising of a non-empty set V (G) called vertices, a disjoint set E(G) of edges

and an incidence function ψG mapping edges to unordered pair of vertices (not

necessarily distinct).

In this thesis, we consider undirected graphs without loops and multiple edges,i.e,

ψG is one-one and maps edges to a pair of distinct vertices. Thus, G can also be

represented by (V (G), E(G)) where E(G) ⊆
(
V (G)
2

)
.

Definition 3.2. A graph G = (V (G), E(G)) such that V (G) = X∪Y , X∩Y = ∅

and elements of E(G) are of the form (x, y) where x ∈ X and y ∈ Y is called a

bipartite graph. Bipartite graphs are represented as G = (X, Y,E).

Definition 3.3. Let V (G) = {v1, v2, ...vm}. The adjacency matrix of the graph

G is a m×n binary matrix whose (i, j)th entry is 1 if and only if (vi, vj) ∈ E(G).

Similarly, let X = {x1, x2, ...xm} and Y = {y1, y2, ..., yn}. The bipartite adjacency

matrix of G = (X, Y,E) is a m× n binary matrix whose (i, j)th entry is 1 if and

only if (xi, yj) ∈ E(G).

8



3.1 Graph terminologies

For example, consider the following graph

Figure 3.1: Domino graph

The bipartite adjacency matrix of the above graph is

A =


1 1 0

1 1 1

0 1 1


Definition 3.4. A biclique is a bipartite graph such that any two vertices in the

two partition are connected by an edge.

Definition 3.5. A star is a biclique where one of the partition contains exactly

one vertex.

Now we proceed to define biclique partition and cover problem. Consider

G = (X, Y,E), a bipartite graph.

Definition 3.6. Let P = {P1, P2, ..., P|P|} be a partition of E. If G[Pi] is a

biclique ∀i ∈ {1, 2, .., |P|}, then P is called a biclique partition of G of size |P| .

Given a graph G, the minimum sized biclique partition of G is denoted by bp(G).

Similarly, one can define biclique cover as stated below.

9



3.1 Graph terminologies

Definition 3.7. Let C = {C1, C2, ..., C|C|} be a cover of E. If G[Ci] is a biclique

∀i ∈ {1, 2, .., |C|}, then C is called a biclique cover of G of size |C|. Given a graph

G, the minimum sized biclique cover of G is denoted by bc(G).

Here, the crucial difference between both the problems is that there are no

common edges between two parts of a partition. Below we state the decision

version of the biclique partition problem.

BICLIQUE PARTITION:

Input: A bipartite graph G = (X, Y,E)

Parameter: An integer k

Problem: Does there exist a biclique partition of G of size at most k?

Decision version of biclique cover problem can be defined similarly. We note that

k will be treated as a parameter when treated as a parameterized problem in the

later chapters.

Now, we present an example of biclique partition and cover of a graph. Consider

the graph in Figure 3.1 again. Below is a minimum biclique partition of size 3 of

the domino graph.

Figure 3.2: Biclique partition of Domino graph of size 3

This is in contrast to the minimum biclique cover of domino graph which is

of size 2. Note the common edge shared by both the bicliques.

10



3.2 Matrix terminologies

Figure 3.3: Biclique cover of Domino graph of size 2

3.2 Matrix terminologies

Consider A to be a binary matrix of size m× n.

Definition 3.8. The binary rank of A is the minimum k such that A = B · C

where B and C are binary matrices of size m × k and k × n respectively. We

denote binary rank of A by b(A). Note that ’·’ represents multiplication over real

numbers.

Definition 3.9. The minimum k such that A = B ◦C where B is a m×k binary

matrix and C is a k× n binary matrix is called boolean rank of A. Note that ’◦’

represents boolean multiplication.

The concept of fooling set is formally stated in the context of communica-

tion complexity. Below we define fooling set in terms of matrix which suits our

purposes.

Definition 3.10. Let F = {(x1, y1), (x2, y2), ..., (x|F |, y|F |)} where all xi ∈ [m],

yi ∈ [n] ∀i ∈ [|F |] are distinct and Axiyi = 1 ∀i ∈ [|F |]. We call F a fooling set of

size |F | if for any two elements (xi, yi), (xj, yj) in F , either Axiyj = 0 or Axjyi = 0.

11



3.3 Parameterized complexity

NOTE: fool(A) is defined to be size of maximum sized fooling set in A.

Now we look at the relationship between fooling set and biclique cover/partition

problem.

Theorem 3.11. fool(A) ≤ bc(A) ≤ bp(A)

Proof. Consider F to be the maximum sized fooling set in A. Pick any two set

of indices from F , say (xi, yi), (xj, yj). Let the binary matrix A correspond to

the adjacency matrix of a bipartite graph. Then, as Axiyi = 1, Axiyi = 1 the

edges corresponding to (xi, yi) and (xj, yj) cannot be in the same biclique. This

is because either Axiyj = 0 or Axjyi = 0. Thus, every element of F is covered in a

distinct biclique of the biclique cover. This proves fool(A) ≤ bc(A). Since every

biclique partition of A is also a biclique cover of A, bc(A) ≤ bp(A). Thus ,

fool(A) ≤ bc(A) ≤ bp(A)

3.3 Parameterized complexity

Consider Σ to be a fixed, finite alphabet. Let Σ∗ represent the set of all words

over Σ. We follow [9] in the following section.

Definition 3.12. A parameterized problem L is a subset of Σ∗ × N . For an

instance (x, k) ∈ Σ∗ ×N , k is called parameter.

Definition 3.13. A parameterized problem L is called fixed-parameter tractable

(in short, FPT) if there exists an algorithm A, a computable function f and a

constant c such that given an arbitrary instance (x, k), the algorithm A outputs

whether (x, k) ∈ L or not in time O∗(f(k)) ( i.e, f(k) · nc).

A related notion from FPT is that of a kernalization algorithm as defined

below.

12



3.3 Parameterized complexity

Definition 3.14. A polynomial time algorithm, A is called a kernalization algo-

rithm if for an arbitrary instance (I, k), A outputs (I ′, k′) such that: (I, k) is a

YES instance iff (I ′, k′) is a YES instance, |I ′| ≤ g(k) and |k′| ≤ h(k).

Note that the functions g, h only depends on k. This function g(k) is called kernel

size or simply, kernel of the problem. If g(k) is a polynomial then we call it a

polynomial kernel.

Remark. A parameterized language admits a kernel if and only if it is fixed-

parameter tractable.

13



Chapter 4

Parameterized complexity of

Biclique Partition Problem

Both biclique cover and partition problem admit a 22k kernel using the same

set of reduction rules. We present these reduction rules below. As before, let

G = (X, Y,E) be a bipartite graph and A be it’s adjacency matrix.

4.1 Reduction Rules

Red. 1: If two vertices have same set of neighbours, delete one of the vertex

while keeping the parameter unchanged.

Red. 2: If there exists an isolated vertex, then delete that vertex while keeping

the parameter unchanged.

Now, we present the viability of these reduction rules.

Lemma 4.1. Red. 1 is safe and can be performed in polynomial time.

Proof. Suppose there exists two vertices x1, x2 ∈ X such that N(x1) = N(x2).

Let G′ = G−{x2}. We have to prove (G, k) is a YES instance iff (G′, k) is a YES

instance.

14



4.1 Reduction Rules

Suppose (G, k) is a YES instance. Consider the biclique partition of G of size

k. We note that removal of a vertex from a biclique results in another biclique.

Remove x2 from all the biclique parts in the partition containing x2. Since the

resultant graph is G′, we obtain a biclique partition of size at most k of G′. Thus,

(G′, k) is a YES instance.

Suppose (G′, k) is a YES instance. Thus, there exists a biclique partition of G′

of size k. Consider all the biclique parts in the partition containing x1. Since

N(x1) = N(x2), we can add x2 to all these bicliques to obtain new bicliques. The

resultant graph is G, Thus, (G, k) is a YES instance.

We now justify that these operations can be performed in polynomial time.

WLOG, assume that m ≤ n. We apply brute-force to obtain twins. It takes(
n
2

)
operations to check for twins Y . This can create more twins in X which

can be checked in
(
m
2

)
time and then we again check for twins in Y . We do this

recursively until there are no twins left. Complexity wise worst case scenario is

every time a partition is reduced, we create more twins in the other partition.

But after n + m iterations, we exhaust the graph, so we get a O(n3) running

complexity.

Lemma 4.2. Red. 2 is safe and can be performed in polynomial time.

Proof. Consider an isolated vertex v in a graph G. Since there are no edges

incident on v, it does not participate in biclique partitions of G. Thus, given a

biclique partition of G of size k, one can remove v to obtain G′ and the resultant

is a biclique partition of G′. Similar arguments hold for reverse direction.

One can perform a liner check to identify isolated vertices.

Now we describe how these reduction rules lead to the aforementioned kernel

size. We will exploit the following lemma in this regard.

Lemma 4.3. Consider G = (X, Y,E) to be fully reduced i.e, Red. 1 and Red.

15



4.1 Reduction Rules

2 cannot be further applied. If |X| or |Y | is greater than 2k then (G, k) is a NO

instance.

Proof. Let G be a fully reduced instance. Suppose (G, k) is a YES instance. We

have to prove that |X| ≤ 2k and |Y | ≤ 2k. We prove by contradiction. Suppose

|X| > 2k. Since G is a YES instance, there exists a partition P of G of size k. We

associate with every vertex an incidence vector, a k-tuple defined as follows: ∀v ∈

G, Iv = (1v∈Pi
: ∀i ∈ [k]). Here, 1x∈A is the indicator function over an arbitrary

set A. We know there are at most 2k distinct binary k-tuples. Since |X| > 2k,

there exists x1, x2 ∈ X such that Ix1 = Ix2 . If Ix1 is a zero vector, then x1 is an

isolated vertex and Red. 2 is applicable which is a contradiction. Otherwise, both

x1 and x2 participate in the same biclique which implies N(x1) = N(x2). Thus,

Red. 1 is applicable which is again a contradiction. Hence, |X| ≤ 2k. Following

similar arguments, we prove that |Y | ≤ 2k.

Given any arbitrary instance, we apply Red. 1 and Red. 2 exhaustively. If

the obtained instance has more than 2k vertices, we conclude it is a NO instance.

Otherwise, we obtain an equivalent instance whose size is bounded by 2k. Thus,

we obtain exponential kernel.

We now present couple more reduction rules. Though these reduction rules do

not lead to a better kernel size, they can still be applied in practice.

Red. 3: If there exists a vertex v of degree 1, remove the vertex N(v) and

decrease the parameter by 1.

The next reduction rule was presented in [1] and is only valid for biclique cover

problem.

Red. 4: Suppose G is irreducible. If there exists x ∈ X such that N(x) = Y ,

then remove x without changing the parameter. Analogous result hold for Y .

We present the safeness of these reduction rules.

16



4.1 Reduction Rules

Lemma 4.4. Red. 3 is safe and can be performed in polynomial time.

Proof. Let v be a vertex of degree 1. Suppose (G−N(v), k−1) is a YES instance.

Then there exists a biclique partition of G of size (k − 1). Add the star biclique

rooted at N(v) to this to obtain graph G. Thus, (G, k) is a YES instance. We

now prove the backward direction.

Now suppose (G, k) is a YES instance. Then there exists a biclique partition of G

of size k. Consider the part P in the partition containing v. Since v is of degree

1, P is a star. We remove N(v) from all the parts excluding P . As explained

in the proof of Red. 1, the resultant parts are also biclique. We modify P to

the star biclique rooted at N(v). This is also a biclique partition of G of size k.

Removing P from this results in graph G − N(v) and it’s biclique partition of

size (k − 1). Thus, (G−N(v), k − 1) is a YES instance.

One can perform a liner check to identify vertices of degree 1.

Lemma 4.5. Red. 4 is safe and can be performed in polynomial time.

Proof. Suppose there exists x ∈ X such that N(x) = Y . Consider (G, k) to be

a YES instance. As explained in the proof of Red. 1, (G − {x}, k) is also YES

instance.

Suppose (G − {x}, k) is a YES instance. Then there exists a biclique cover of

size k. Add x to all the parts in the biclique cover. The resultant parts are also

bicliques since N(x) = Y . To prove that the resultant is also a biclique cover,

we have to make sure that all the edges incident on x are covered. Suppose not.

That means there exists y in Y such that xy is not covered. By construction, this

would mean that y does not belong to any part in the biclique cover of G− {x}.

This is a contradiction as NG−{x}(y) ≥ 1.
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4.2 Matrix Rank and Biclique Partition Problem

4.2 Matrix Rank and Biclique Partition Prob-

lem

The entire graph theoretic notion of biclique cover/partition problem can be

studied equivalently in terms of matrices. We now proceed to prove bp(G) = b(A)

and bc(G) = bool(A).

Theorem 4.6. bp(G) = b(A)

Proof. b(A) = mink{∃B ∈ {0, 1}m×k, C ∈ {0, 1}k×n s.t A = B · C}

A = B · C =
k∑
i=1

Bi · Cj (4.1)

Here, X i represents ith column of X and Xi represents ith row of X. Note that

a biclique is a rank one matrix. Thus, by ( 4.1), we get b(A) exactly represents

minimizing k such that A is sum of exactly k bicliques. Hence, bp(G) = b(A).

Theorem 4.7. bc(G) = bool(A)

Proof. Similar to the proof of Theorem 4.6.

In this thesis, we use both the notions inter-changeably according to context.

As a slight abuse of notion, we also write bp(A) to imply b(A).

As a simple corollary of Theorem 4.6, we obtain an inequality for bp(G). This

inequality is special in the sense that this is the first result which is true only for

biclique partition problem, not for cover problem.

Corollary 4.8. rank(A) ≤ bp(G)

Proof. This is a straightforward observation of Theorem 4.6. Since rank(A) ≤

b(A) = bp(G), we get rank(A) ≤ bp(G).

Note that rank(A) is minimum k such that A = B · C where B is a m × k real
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matrix and C is a k×n real matrix. On the other hand, b(A) is minimum k such

that A = B ·C where B is a m×k binary matrix and C is a k×n binary matrix.

Since every binary matrix is a real matrix, we get rank(A) ≤ b(A).

4.3 FPT algorithms

In this section, we present the best known FPT algorithms on Biclique Cover and

Partition problem. While the former is a result of Brute force on the exponential

kernel, the latter makes use of the binary rank relationship.

4.3.1 Biclique Cover

As stated before, the following algorithm presented in [1] is a Brute force algo-

rithm. This will be applied on the exponential kernel to obtain a 222k log k+3k FPT

running time.
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Algorithm 1: FPT algorithm for Biclique Cover

Input : A bipartite graph G = (X, Y,E) and a positive integer k with

|X|, |Y | ≤ 2k

Output: A biclique cover of G of size k

1 foreach Partition {E1, E2, ..., Ek} of E do

2 foreach i ∈ [k] do

3 if G[Ei] is not a biclique then

4 check if edges from G \Ei can be added to make G[Ei] a biclique

5 if the above is not possible then

6 Break

7 end

8 else

9 Record the biclique formed in Ei

10 end

11 end

12 end

13 Return YES instance with {E1, E2, ..., Ek}

14 end

15 Return NO instance

We now do the running time analysis of Algorithm 1 below:

Lemma 4.9. Algorithm 1 runs in time O∗(2
22k log k+2k+log k

k!
).

Proof. In Algorithm 1, we run over all partitions of the edge set of size k and

check if each part can be made a biclique by appending edges in it. For appending

edges, we check all the edges of the graph bounded by |V (G)|2 = 22k. Since this

has to be done over all the parts in the partition, running time for one particular

partition is k · 22k = 22k+log k. Total number of non-empty partitions into k parts

20
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of a set F is called Sterling number of second kind, denoted by S(F, k). This has

been shown to be asymptotically equal to k|F |

k!
. Thus, total running time comes

out to be S(E(G), k) · 22k+log k = S(22k, k) · 22k+log k = 22
2k log k+2k+log k

k!
.

A natural follow-up question is that can the kernel size and FPT running time

be bettered. This is answered in the following stated results from [13]

Theorem 4.10. There exists a polynomial time reduction stated as follows: given

a 3-SAT ψ instance on n variables and m clauses, produces a bipartite graph G

with |X|+ |Y | = O(n+m) such that there exists a positive integer k = O(log n)

for which G has a biclique cover of size at most k if and only if ψ is satisfiable.

Corollary 4.11. Biclique Cover cannot be solved in 22o(k) unless Exponential

Time Hypothesis fails.

Corollary 4.12. There exists a δ > 0 such that there is no polynomial time

algorithm that produces a kernel for Biclique Cover of size 2δk, unless P = NP .

One can refer to [13] for proofs of the above. We note that the gap between

the lower bound and upper bound of running times of Biclique Cover is almost

closed. Thus, doing better than the simple exponential kernel and brute force

FPT algorithm is not possible (under appropriate assumptions).

We now move on to Biclique Partition problem and see if similar results are true.

4.3.2 Biclique Partition

Unlike the doubly exponential lower bound on FPT running time of Biclique

Cover problem, we have a FPT algorithm of running time O∗(23k2) [13]. We

present this algorithm below. This algorithm makes use of the binary rank equiv-

alency of the biclique partition problem.
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Algorithm 2: FPT algorithm for Biclique Partition

Input : A binary matrix A of size m× n and a positive integer k with

m,n ≤ 2k

Output: Two binary matrices B and C of sizes m× k and k× n such that

A = B · C

1 foreach {i1, i2, ..., ik} ⊆ [m] and B′ ∈ {0, 1}k×k do

2 Permute {i1, i2, ..., ik} rows of A to be the first rows of A

3 A′ := first k rows of A foreach j ∈ [n] and Cj ∈ {0, 1}k×1 do

4 if jth column of A′ 6= B′ · Cj then

5 break

6 end

7 end

8 if C is found then

9 Guess the remaining columns of B

10 Return B and C

11 end

12 end

We do the running time analysis of Algorithm 2 below:

Lemma 4.13. Algorithm 2 runs in time O∗(22k2+k)

Proof. Guessing k rows of A to be permuted to become the first k rows take
(
m
k

)
time. Guessing B′ takes 2k

2
time. For each such pair of k rows and guess of B′,

finding C column-wise takes 2k ·n time. Similarly, the remaining rows of B takes

2k ·m time. Hence, we get a total running time of O∗(
(
m
k

)
· 2k2 · 2k) = O∗(22k2+k)

using m ≤ 2k.

Unlike Biclique Cover problem, it is open to determine if the size of kernel

of the Biclique Partition problem can be brought down. This thesis focuses on
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utilizing tools from poset theory to answer this question which is the subject of

the next two chapters.

We also implemented the above stated Algorithm 2 in C++. Appendix A presents

a code snippet of the implementation. Below we present the running time ma-

trix obtained for a fixed k = 3. The following has been performed on Intel(R)

Core(TM)i3-4005U CPU (1.70 GHz) with 4 GB RAM. It ran Windows 10 and

C++ codes were complied using gcc 13.12 with std c++11.

Random matrices of the given size were inputs and the results are average over

multiple random sampling. 20 random samples were taken for all the entries.

The following is the matrix obtained with standard error.

col/row 4 5 6 7 8

4 0.031 ± 0.009 0.048 ± 0.005 0.051 ± 0.002 0.066 ± 0.03 0.071 ± 0.004

5 0.051 ± 0.01 0.069 ± 0.003 0.140 ± 0.015 0.159 ± 0.020

6 0.091 ± 0.07 0.142 ± 0.09 0.232 ± 0.012

7 0.323 ± 0.052 0.412 ± 0.071

8 0.525 ± 0.08

Running time is controlled for k=3. For k = 4, a 6*6 matrix takes 13 sec, 7*7

takes 39.1 sec, 8*8 takes 187.4 sec. From here on, it starts shooting up.
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Chapter 5

Partially Ordered Sets

Chapter 5 explores the relationship between partially ordered sets and biclique

partition problem. We devote this chapter to introduce partially ordered sets.

We follow [14] in this regard.

5.1 Definition

Definition 5.1. A partially ordered set or poset (S,�) is a set S, along with a

binary relation ’�’ which is transitive that is, if x � y and y � z then x � z and

antisymmetric that is, if x � y and y � x then x = y.

Two elements x and y are called comparable if either x � y or y � x.

Definition 5.2. A subset S ′ of a poset S is called a chain if any two distinct

elements of S ′ are comparable.

Definition 5.3. Exactly opposite to the definition of chain, a subset S ′ of a poset

S is called an antichain if any two distinct elements of S ′ are incomparable, that

is ∀x, y ∈ S ′, neither x � y nor y � x.
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5.2 Examples

5.2 Examples

There are several examples of Posets that are encountered in applications. We

present some of them below.

• Set inclusion: a family of sets can be partially ordered by taking set-

inclusion as a binary relation.

• Integer divisibility: a set of positive integers can be partially ordered by

integer divisibility i.e, ’x � y’ iff x divides y in whole parts.

• Reachability in DAG: consider a directed acyclic graph. Then ’x � y’ iff

vertex x is reachable from vertex y.

• Vector comparison : a set of vectors of fixed dimension can be partially

ordered by vector comparison i.e, ’x � y’ iff x ≤ y.

It is a trivial exercise to check the above are posets. A pictorial way to realize

posets is through Hasse diagrams : elements of the set correspond to vertices on

a plane arranged and connected in such a fashion that if x � y, then there exists

an edge xy and x lies below y.

For instance, take F = {{1}, {2}, {1, 2}, {2, 3}, {3, 4}, {1, 2, 3, 4}}. We know that

(F,⊆) is a poset. Below, we present it’s hasse diagram.

Figure 5.1: Hasse diagram of F
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5.3 Decomposition theorems

We present examples of chain and antichains in F:

• Let C1 = {{1, 2}, {1, 2, 3, 4}}, C2 = {{3, 4}, {1, 2, 3, 4}}. Both C1 and C2

are chains in F.

• We call a chain C maximal chain if 6 ∃ any element x ∈ F such that x ∪ C

is a chain. For example, C1 is not a maximal chain as {{1} ∪ C1} is also a

chain. On the other hand, C2 is a maximal chain as no other element in F

can be added in C2 to make a bigger chain.

• Similarly, one can define the maximal antichain.

• {{3,4},{2,3},{1,2}} is a maximal antichain in F

Definition 5.4. Let X be a finite set. Let (2X ,≤) be a poset. Here, the binary

relation is set inclusion again. Then, a antichains in this system is called a Sperner

family.

For example, consider all family of all sets with a fixed size. It is a trivial exercise

to check these are antichains. Thus, if |X| = n, we can obtain antichains of size(
n
bn/2c

)
. Are there larger antichains possible? This is answered in a well known

theorem called Sperner’s theorem.

Theorem 5.5. Let F ⊆ 2X where |X| = n. If F is an antichain then |F | ≤(
n
bn/2c

)
.

Remark. We note again that the above theroem is tight as explained before.

5.3 Decomposition theorems

Given a poset P, decomposition of P deals with finding a partition of P into

mutually disjoint chains or antichains. The lesser the partition size, the better.

Consider the following lemma.
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Lemma 5.6. Let C be a chain and A be an antichain in a poset P. Then

|C ∩ A| ≤ 1.

Proof. Suppose |C ∩ A| > 1. Pick any two distinct elements x and y in C ∩ A.

Since x and y belong to both a chain and an antichain implies they are both

comparable and incomparable. This is a contradiction.

Thus, consider any chain of size q. Then the poset cannot be partitioned

into fewer than q antichains. Is this optimal ? This is answered by the following

decomposition theorem.

Theorem 5.7. Let the largest chain in a poset S be of size q. Then S can be

partitioned into q antichains.

Proof. Let Ai denote the set of all elements x in S such that the longest chain

ending at x is of size i. Since the largest chain in S is of size q, Ai = ∅ for i > q.

Thus, we get a disjoint union of S as S = A1 ∪ A2 ∪ ... ∪ Aq. We now prove

that any arbitrary Ai is an antichain and then we are done. We prove this by

contradiction. Suppose there exists two distinct elements x and y in Ai such that

x ≺ y. Let Cx be the longest chain ending at x of length i. Then, Cx∪y is a chain

of length i+ 1 ending at y. This implies y 6∈ Ai which is a contradiction.

We note that the duality of the arguments presented. Does the same result

hold for partition into mutually disjoint chains? This was answered affirmative

by Dilworth in 1950 in the famous Dilworth’s Decomposition theorem.

Theorem 5.8. (Dilworth’s theorem) Let the largest antichain in a poset S be of

size q. Then, S can be partitioned into q chains.

Proof. We prove this by inducting on cardinality of S. Let a be a maximal

element in S. For |S| = 1. the statement is true trivially. Consider S ′ = S \ a.

We assume that S ′ = C1 ∪C2 ∪ ... ∪Cq where q is the size of largest antichain in
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S ′. We now prove that that S either contains an antichain of size q+1 or can be

written as disjoint union of q chains.

Note that any antichain in S ′ of size q contains one element from each Ci. Let xi

be the maximal element in Ci that belongs to some q element antichain in S ′. We

now prove that A = {x1, x2, ..., xq} forms an antichain. To prove by contradiction,

we suppose there exists two distinct elements in A such that xi ≺ xj. Consider

the q element antichain of which xj is a part of. We know that this antichain

must contain an element of Ci, say x′i. Then if x′i ≺ xi, then by transitivity we

get x′i ≺ xj which is a contradiction. xi 6≺ x′i because of xi is a maximal element

which belongs to a q sized antichain. This implies xi = x′i which is again a

contradiction because xi ≺ xj and hence, cannot be in an antichain. This proves

A is an antichain.

Consider A ∪ a. Suppose this is an antichain. Then we obatin an antichain

of size (q + 1) and we are done. Otherwise, there exists xi ≺ a. Consider

C ′ = {x : x � xi} ∪ {a}. Then in S ′ \C ′, there is not antichain of size q because

xi was the maximal element participating in such an antichain. Thus S ′ \C ′ can

be partitioned into (q − 1) chains. Add C ′ to this and we are done.

To realize the power of this theorem, we state the following remark.

Remark. Marriage theorem is a special case of Dilworth’s theorem.
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Chapter 6

Biclique Partition Problem and

Posets

Summary

In this chapter, we explore how poset theory can be used to obtain better kernel

for biclique partition problem. This approach has not been explored before. We

obtain some results in this direction and culminate it into a theorem at the end.

This will lead to a new technique in identifying smaller kernels. Nevertheless, this

approach has it’s own limitations. We prove that identifying polynomial kernel

will not be possible through this technique.

6.1 Notations

Consider G = (X, Y,E) to be a bipartite graph where |X| = m and |Y | = n.

Let A represents it’s adjacency matrix. Suppose (G, k) is a Yes instance and

irreducible.

Then, there exists two binary matrices B and C of size m × k and k × n such
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6.2 New Results

that A = B · C.

Note that the rows of A are in one-to-one correspondence with rows of B. In

other words, every row of A is associated with a binary k-tuple which is precisely

the corresponding row in B. Similarly, the columns of A are in one-to-one corre-

spondence with columns of C.

Consider the rows of the adjacency matrix A as a poset, (Ar,�). That is, Ar com-

prises of the row vectors as elements and the ordering relation ’�’ is set-inclusion.

Elaborately, if r1 and r2 are two rows of A, ’r1 � r2’ iff supp(r1) ⊆ supp(r2). Sim-

ilarly, define poset Ac consisting of columns of A, Br consisting of rows of B and

Cc consisting of columns of C.

6.2 New Results

Result 6.1. Let S ′ ⊆ Ar be a chain in (Ar,�). Let G′= G[S ′ ∪ Y ]. Then,

bp(G′)=|S ′|. Similar statement is true for S ′ ⊆ Ac.

Proof. Let S ′ = {r1, r2, ..., r|S′|} such that r1 ≤ r2 ≤ ... ≤ r|S′|. Since we assume

that (G, k) is irreducible, ri 6= ri+1∀i ∈ [|S ′| − 1]. This implies r1 < r2 < ... <

r|S′|. Define r0 as zero vector. Now, we construct a set F as follows: pick any

e ∈ ri \ ri−1∀i ∈ [|S ′|]. Then, F is a fooling set. This is because for any two

elements rij, rkl in F , ril = 0. Using Theorem 3.11 we get that |S ′| ≤ bp(G′). By

taking the star biclique partition, we know that bp(G′) ≤ min{|S ′|, |Y |} ≤ |S ′|.

Implies bp(G′) ≤ |S ′|. Thus, we get bp(G′) = |S ′|. One can analogously prove the

same result Ac.

Result 6.2. Let r1, r2 ∈ Br be comparable. Then, the rows corresponding to r1

and r2 in A are also comparable in Ar. Similar statement is true for columns of

A.
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Proof. Let r1, r2 ∈ Br be comparable, say r1 ≤ r2. Then, the corresponding rows

in A are r1 · C and r2 · C. We have to prove that r1 · C ≤ r2 · C.

This is true trivially if C ≥ 0. Since C is a binary matrix, we are done.

Corollary 6.3. Let S ′ ⊆ Ar be an antichain in Ar. Then, the rows corresponding

to S ′ in B form an antichain in Br.

Proof. Suppose not. This implies there exists b1 and b2 in Br such that b1 ≤

b2. Using Result 6.2, this would imply the corresponding rows in A are also

comparable. This is a contradiction as we started with an antichain.

Corollary 6.4. Let S ′ ⊆ Cc be a chain in Cc. Then, the corresponding columns

in A form a chain in Cc.

Proof. We proceed similar to the proof of Corollary 6.3. Suppose not. This

implies there exists c1 and c2 in columns of A such that c1 6≤ c2. Using Result 6.2,

this would imply the corresponding columns in C are also incomparable. This is

a contradiction as we started with an chain.

We now prove a new theorem which will help us in building a better technique

to kernalize Biclique Partition problem. Below we present some definitions in this

regard.

• {0, 1}p×q:= collection of all p× q binary matrices

• Bm,k:= {B ∈ {0, 1}m×k| 6 ∃ a zero column in B and the rows of B form an

antichain}

• Ck,n:= {C ∈ {0, 1}k×n| 6 ∃ a zero row in C and the columns of C form an

antichain}

We define function F (k) as below:

F (k) := max{min(m,n)| B ∈ Bm,k, C ∈ Ck,n s.t. B · C ∈ {0, 1}m×n }
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One intuition behind defining F (k) in such a way is the following: Since all the

YES instances admit the factorization A = B ·C where A,B and C are all binary

matrices, both B and C need to attain a ’restricted structure’ in order to achieve

dot product binary. An easy way to to have this would be to use vertical zero

blocks in B and horizontal zero blocks in C. Thus, we impose that restraint. Now

adding the antichain restriction tightens the structure more as large antichains

will exhaust lot more possibilities of dot product being binary.

Below we present an interesting result on F (k) that shows that the conditions in

Bm,k of requiring non zero columns can be dropped without any change in the

value of F (k). To prove this we define the following:

• B′m,k:= {B ∈ {0, 1}m×k| the rows of B form an antichain}

• C′k,n:= {C ∈ {0, 1}k×n| the columns of C form an antichain}

We define function F ′(k) as below:

F ′(k) := max{min(m,n)| B′ ∈ B′m,k, C
′ ∈ C′k,n s.t. B′ · C ′ ∈ {0, 1}m×n }

Result 6.5. F (k) = F ′(k)

Proof. By definition, we know that Bm,k ⊆ B′m,k and Ck,n ⊆ C′k,n. Thus,

F (k) ≤ F ′(k) (6.1)

We now prove the other direction. Consider B′ ∈ B′m,k, C
′ ∈ C′k,n such that

min(|B′|, |C ′|) = F ′(k). Corresponding to B′ and C ′, we construct BB′ ∈ Bm,k

and CC′ ∈ Ck,n such that BB′ · CC′ is binary. We give the construction later and
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proceed with the proof.

F ′(k) := min(|B′|, |C ′|)

= min(|BB′ |, |CC′ |)

≤ max{min(|B|, |C|)|B ∈ Bm,k, C ∈ Ck,ns.t.B · C is binary}

= F (k)

(6.2)

Thus,

F ′(k) ≤ F (k) (6.3)

Using Eq. (6.1) and (6.3), we obtain F (k) = F ′(k). We now give the construction

of BB′ and CC′ as mentioned before. Suppose there does not exist a zero column

in B′ and zero row in C ′. Then, take BB′ = B′, CC′ = C ′ and we are done. Now

assume there exists a zero column in B′. WLOG, assume that the first column

is 0. Then, construct BB′ as below: Let

B′ =


0 b1

0 b2
...

...

0 bm


Then,

B =


1 0 · · · 0

0 b2
...

...

0 bm


We now prove that k ≤ F ′(k). Consider [Ik|0]T ∈ B′m,k and [Ik|0] ∈ C′k,n.

Since the dot product of these matrices is binary, we get k ≤ F ′(k). Thus, we

can assume k ≤ m. We do the above construction for all zero columns in B′
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recursively. Since there can be at most k many 0 columns and k ≤ m, this is

plausible.

We now prove that the rows of B form an antichain. Since the rows of B′ were

an antichain which implies B′ \ {b1} is also an antichain. Let the the first row

of B be r1. We have to prove that (B′ \ {b1}) ∪ {r1} is an antichain. Suppose

not. Then, ∃ 2 ≤ i ≤ m such that either bi ≤ r1 or r1 ≤ bi. Since r11 = 1 and

bi1 = 0, r1 6≤ bi. This implies bi ≤ r1. But r1j = 0 ∀ 2 ≤ j ≤ k which implies

bij = 0 ∀ 2 ≤ j ≤ k. Since bi1 = 0 by construction, this means bi is a zero vector

which is a contradiction because B′ \ {b1} is an antichain. Thus, the rows of B

are an antichain.

We can analogously construct C from C ′ and prove the same line of results. We

now explain that B · C is a binary matrix and then we are done. Since B′ · C ′ is

binary and we are replacing the rows of B′ and columns of C ′ with unit vectors,

the dot product still remains binary. Hence, B · C is a binary matrix .

Thus, we work with F (k) in computations as the search space is smaller. We

now proceed to prove the main theorem on F (k) and it’s proof. In the following

section, we see how this might help in finding a better kernel.

Theorem 6.6. Suppose (G, k) is a Yes instance. Then, min(m,n)≤ k · F (k).

Proof. Suppose (G, k) is a Yes instance. Then, using Result 6.1, we know that

the largest chain in Ar and Ac is of size k. Then using Theorem 5.7, we know

that Ar can be partitioned into at most k antichains. Note that |Ar| = |X| = m.

Pick the largest antichain among this partition and call it A′. Using Corollary

6.3, we know that the rows corresponding to A′ in B forms an antichain. Call it

B′. Thus, using Theorem 5.7, we conclude that

m ≤ k · |A′| = k · |B′| (6.4)
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Note that B′ · C is a binary matrix. Consider a chain in Cc, say C ′′. Using

Corollary 6.4, we know that the corresponding columns in A is also a chain, say

A′′. Using Result 6.1 again, we know that |A′′| ≤ k. As |A′′| = |C ′′| due to the

one-one correspondence implies |C ′′| ≤ k. As C ′′ was any arbitrary chain in Cc,

size of the largest chain in Cc is at most k. Then using Theorem 5.7 again, Cc

can be partitioned into at most k antichains. Pick the largest antichain out of

this partition and call it C ′. Therefore, (using Theorem 5.7 again) we conclude

that

n ≤ k · |C ′| (6.5)

Again by construction, B′ · C ′ is a binary matrix. Also, rows of B′ form an an-

tichain, so does the columns of C ′. Thus min(|B′|,|C ′|) ≤ F ′(k). Using Result 6.5,

we get min(|B′|,|C ′|) ≤ F (k). This implies min(k.|B′|,k.|C ′|) = k·min(|B′|,|C ′|)

≤ k ·F (k). Using (6.4) and (6.5), we know that min(m,n) ≤ min(k.|B′|,k.|C ′|)≤

k · F (k). Thus, min(m,n)≤ k · F (k).

6.3 Kernel through posets

6.3.1 Technique

We now address how Theorem 6.6 can be used to obtain kernels. We note that

Theorem 6.6 talks about min(m,n) but in order to obtain a kernel, one should

bound max(m,n). Our next result talks about this issue.

Result 6.7. For Biclique Partition problem, bounding min(m,n) by a subexpo-

nential function will lead to a better FPT running time of Algo 2.

Explanation. We observe the running time analysis of Algo 2. Without loss

of generality, we assume that m ≤ n. The running time depends polynomially

in n and hence, does not contribute in the O∗ notation. Thus, if we bound
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min(m,n) = m by a better function, the O∗ running time would drop.

So, as a slight abuse of notation, we refer tomin(m,n) as size of the instance. Sup-

pose one can bound F (k) by a subexponential function, say g(k). If min(m,n) >

k · g(k), then it is a NO instance. Otherwise, size of the instance is bounded by

k · g(k).

We also have computationally evaluated the some values of F(k). We present

them in the table below.

k F (k)

3 3

4 7

6 8

7 11

8 15

9 21

We now compare the previous kernel size and the new kernel size obtained for

these values.

k 2k k · F (k)

3 8 9

4 16 28

6 64 48

7 128 77

8 256 120

9 512 189

We observe that through the poset technique, we obtain better kernel sizes for k =

6, 7, 8, 9. Also, we observe that the growth of the new kernel is quite controlled
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6.3 Kernel through posets

as compared to the known exponential kernel. This gives us a incentive to look

for a suitable bound for F (k).

6.3.2 Limitations

In this section, we talk about the limitations of the kernalization technique de-

scribed in the previous section. As described before, bounding F (k) by a suitable

function can lead to a better kernel. We now prove that this bounding function

is not polynomial. Thus, through this technique, we will not be able to conclude

whether there exists a polynomial kernel or not.

To prove this, we construct two ’large’ matrices B and C such that B ∈ Bm,k,

C ∈ Ck,n and B · C is a binary matrix.

As F (k) := max {min(m,n)| B ∈ Bm,k, C ∈ Ck,n s.t. B · C ∈ {0, 1}m×n }, we

obtain a large instance in a set over which we are maximizing size.

We now present these matrices in the following pages. Fix i ∈ [k].
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6.3 Kernel through posets

B =



i︷ ︸︸ ︷
1 1 1 0 0 · · · 0 0 0

1 1 0 1 0 · · · 0 0 0

1 0 1 1 0 · · · 0 0 0

0 1 1 1 0 · · · 0 0 0
...

...
...

...
...

...
...

...
...

...
...

...

0 0 0 0 1 · · · 0 1 1

0 0 0 0 1 · · · 1 0 1

0 0 0 0 1 · · · 1 1 0

0 0 0 0 0 · · · 1 1 1

(k − i)︷ ︸︸ ︷
1 0 0 · · · 0 0

0 1 0 · · · 0 0
...

. . .
...

0 0 0 · · · 0 1
...

...
...

...
...

...
...

...
...

...
...

...

1 0 0 · · · 0 0

0 1 0 · · · 0 0
...

. . .
...

0 0 0 · · · 0 1



Construction of B is as follows:

• Consider submatrix formed by the first i columns of B. The rows of this

submatrix consist of Sperner family of size
(

i
bi/2c

)
.

• Consider the submatrix formed by the last (k− i) columns of B. It consists

of repeating blocks of I stacked on top of each other until we exhaust
(

i
bi/2c

)
rows. We note that the bottom most block might just be the first few rows

of I.
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6.3 Kernel through posets

C =



i︷ ︸︸ ︷
1 0 0 0 0 · · · 0 0 0

0 1 0 0 0 · · · 0 0 0

0 0 1 0 0 · · · 0 0 0
...

...
. . .

0 0 0 0 0 · · · 0 0 1

0 0 0 0 0 · · · 0 0 0

0 0 0 0 0 · · · 0 0 0
...

...
...

...
...

...
...

...
...

0 0 0 0 0 · · · 0 0 0

0 0 0 0 0 · · · 0 0 0

(k − i)︷ ︸︸ ︷
0 0 0 0 0 · · · 0 0 0

0 0 0 0 0 · · · 0 0 0

0 0 0 0 0 · · · 0 0 0
...

...
. . .

...

0 0 0 0 0 · · · 0 0 0

1 1 1 0 0 · · · 0 0 0

1 1 0 1 0 · · · 0 0 0
...

...
...

...
...

...
...

...
...

0 0 0 0 1 · · · 1 1 0

0 0 0 0 0 · · · 1 1 1



Construction of C is as follows:

• Consider submatrix formed by the first i columns of C. The first i rows of

this submatrix is I. This is followed by
(

(k−i)
b(k−i)/2c

)
many zero vectors.

• Consider the submatrix formed by the last (k − i) columns of C. The first

i rows of this submatrix is a zero block. The next
(

(k−i)
b(k−i)/2c

)
rows is the

sperner family of this size.
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6.3 Kernel through posets

We note that B ∈ Bm,k and CT ∈ Ck,n.

Lemma 6.8. B · C is a binary matrix.

Proof. Consider any arbitrary row r in B and row c in C. We prove that r · cT is

binary. Suppose r · cT = 0. Then we are done.

Otherwise, ∃j ∈ [k] such that rj = cj = 1. We consider two cases. Suppose j ≤ i.

Then, by construction of C, we know that this is possible only in the first i rows

of C. But the first i rows are unit vectors which implies r · c is binary. Now,

suppose i < j ≤ k. Again by construction of C, we know that this is only possible

in the rows after the first i rows. Then,

r · c =
k∑
l=1

rl · cl

=
i∑

p=1

rp · cp +
k∑

q=i+1

rq · cq

=
i∑

p=1

rp · 0 +
k∑

q=i+1

rq · cq

=
k∑

q=i+1

rq · cq

=
k∑

q=i+1,q 6=j

rq · cq + rj · cj

=
k∑

q=i+1,q 6=j

0 · cq + 1 · 1

= 1

(6.6)

Thus, B · C is a binary matrix.

Hence, F (k) is lower bounded by min(|B|, |C|).
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6.3 Kernel through posets

|B| =
(
i

i/2

)
|C| = i+

(
(k − i)

(k − i)/2

) (6.7)

Thus, we get

max
i∈[k]

{
min

{( i

i/2

)
, i+

(
(k − i)

(k − i)/2

)}}
≤ F (k) (6.8)

Pick i = k/2 and we get an approximate lower bound of F (k) using Stirling’s

approximation of binomial coefficient.

√
2√
k
· 2k/2 ≤ F (k) (6.9)

Hence, we cannot get a polynomial bound for F (k). Nevertheless, there is still

room for improvement from the previous 2k kernel as the gap could be closer to
√

2k2k/2 than towards 2k.
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Chapter 7

Biclique Partition Problem

restricted on graph classes

Below we briefly define some special graph classes and present if BPP and BCC

can be solved in P on them or not. We conclude with a new result in this direction.

7.1 Definitions

Definition 7.1. A bipartite graph is chordal bipartite if each cycle of length at

least 6 has a chord. A chord in a cycle is an edge, not part of the cycle, between

two vertices of the cycle.

Definition 7.2. An edge xy in a bipartite graph is called bisimplicial edge if

N(x) and N(y) induce a biclique.

Definition 7.3. A bipartite graph G is called perfect elimination bipartite graph

if there exists a sequence of edges {e1, e2, ..., el} such that ei is bisimplicial in the

graph G \ Si and G \ Sl has no edges. Here, Si is union of all endpoints of the

edges {e1, e2, ...ei} and S0 = G. The sequence is {e1, e2, ..., el} is called perfect

edge elimination ordering.
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7.1 Definitions

Definition 7.4. A sequence {e1, e2, ..., el} is called perfect edge without vertex

elimination ordering if ei is bisimplicial in the graph G \ Si and l equals |E|.

Here, Si is union of the edges {e1, e2, ...ei} and S0 = G.

An equivalent definition of chordal bipartite graph is as follows:

A bipartite graph is chordal bipartite if it admits a perfect edge without vertex

elimination ordering.

Remark. One can easily construct a perfect edge elimination ordering from a

perfect edge without vertex elimination ordering. This implies chordal bipartite

graphs is a subclass of perfect elimination bipartite graph.

Definition 7.5. A bipartite graph is called a convex bipartite graph if there

exists an permutation of the columns of the biadjacency matrix such that all

the 1s appear consecutively in the rows of the matrix after the permutation or

vice-versa.

Definition 7.6. A strong ordering in a bipartite graph G is an ordering of vertices

in X and Y such that for any edge ab and a′b′ such that a <X a′ and b <Y b
′, ab′

and a′b is an edge.

Definition 7.7. The following two definitions are equivalent:

1. A graph G is distance-hereditary if it is connected and every induced path is

isometric; that is, if the distance function in every induced subgraph of G is the

same as in G itself.

2. A graph G is distance-hereditary if it can be construct from a single vertex by

the following operations:

• Adding a pendant vertex: A new vertex that is adjacent to precisely one

existing vertex of the graph.

• Creating true twins: For an existing vertex x add a new vertex y with

neighbours N [x].
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7.2 Previous Work

• Creating false twins: For an existing vertex x add a new vertex y with

neighbours N(x).

A graph which is both bipartite and distance hereditary is called bipartite distance

hereditary graph.

7.2 Previous Work

Following the suite of parameterized complexity, results of Biclique Cover on spe-

cial graph classes are more studied than that of Biclique Partition problem. We

see in [15] that Biclique Cover problem is in P in bipartite permutation graph,

bipartite distance hereditary graph and bipartite C4 free graph. We also see in

[15] that Biclique Cover problem is NP-complete on chordal bipartite graphs. In

[16], we see a stronger result which proves that both biclique cover and partition

number are equal on bipartite domino-free graph and can be computed in poly-

nomial time.

[16] also states how Biclique Cover problem can be solved in P for convex bipar-

tite graphs in with reference to a related problem in [17]. In [18], we see that

Biclique partition problem is in P for convex bipartite graph. In the diagram

below, we present these results in a concise form.
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7.3 New results

Figure 7.1: Biclique Cover and Biclique Partition on special graph classes: Left
block represents Biclique Cover and the right block represents Biclique Partition

7.3 New results

7.3.1 Biclique Partition Problem on Perfect Elimination

Bipartite graph

In this section, we prove that Biclique partition problem is NP-complete when

restricted on perfect elimination bipartite graph. The proof idea is along the lines

of the proof in [19] which proves Biclique Vertex Partition problem is NP-complete

on perfect elimination bipartite graph.

Theorem 7.8. There exists a polynomial-time reduction from Biclique Parti-

tion problem on general bipartite graph to Biclique Partition problem on Perfect

elimination bipartite graph.
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7.3 New results

Proof. Consider any arbitrary bipartite graph G = (X, Y,E) and construct G′ as

stated: Make a copy of G. Now, consider the vertices in X = {X1, X2, ..., Xm}.

Corresponding to each vertex Xi, add 3 more vertices Ai, Bi and Ci such that

Xi, Ai, Bi and Ci form a K2,2 by adding edges {XiAi, XiBi, BiCi, CiAi}. The

below diagram makes the construction more clear.

Figure 7.2: G

Figure 7.3: G’
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7.3 New results

We first prove that G′ is a perfect elimination bipartite graph. This is ev-

ident by observing that {B1C1, B2C2, ..., BmCm, A1X1, A2X2, ..., AmXm} is an

edge elimination scheme. Also, G′ is a bipartite graph with bipartition (X ∪

{C1, C2, ..., Cm}, Y ∪ {A1, B1, A2, B2, ..., Am, Bm}).

We now prove that bp(G′) = bp(G) +m.

This can be easily proved using the reduction rules described in Chapter 4. Note

that N(Bi) = N(Ai) for all i between 1 and m. Thus, using Reduction 1, we can

delete a twin and the biclique partition number of the remaining graph remains

the same. Remove Bi from the graph for all i between 1 and m. In the remaining

graph, Ci becomes a vertex of degree 1. We use Reduction rule 3 and remove all

Ai for i between 1 and m. Each removal causes the biclique partition number of

the remaining graph to drop by 1. Since there are m such removals, we biclique

number drops by m. The final remaining graph has all the Ci(s) as isolated ver-

tices. We use Reduction rule 2 to remove these. This does not change the biclique

partition number. The final remaining graph now is G. Thus, bp(G) = bp(G′)−m

or bp(G′) = bp(G) +m.
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Chapter 8

Conclusion and Future Work

We deal with two related problems, Biclique Cover and Partition problem. Bi-

clique Cover problem is extensively studied in literature unlike its counter prob-

lem, Biclique Partition. It is known that both problems admit exponential kernel.

While it is has been proven that the kernel size for the former cannot be bettered

assuming ETH, we don’t know any such bound for the later. In order to tackle

this, we try to bring some structure into solution instances of Biclique Partition

problem using poset theory. We prove that bounding min{m,n} is enough and

that it is less than k · F (k). We present certain values of F (k) generated com-

putationally. We try to generalize these matrices and obtain a sub-exponential

lower bound for F (k). This rules out the possibility of obtaining a polynomial

kernel through this technique. From a theoretical point of view, computing or

bounding F (k) is interesting and will lead to better insights into the problem.

We then try to answer whether Biclique Partition problem can be solved in poly-

nomial time or not on certain graph classes. In this regard, we prove that Biclique

Partition problem is NP-complete on perfect elimination bipartite graphs. We

note that all the special graph classes for which the classical time complexity of

both the problems is known, either both of them are NP-complete or both of
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them are polynomial time solvable. One interesting problem would be to find

a graph class on which this nature differs. This will be helpful in getting bet-

ter insights into the problem. One important observation is to make use of the

rank lower bound which is there for biclique partition problem but not in bil-

cique cover problem. We also note that rank of a random binary matrix can be

quite large and thus, solution size, which is lower bounded by rank, might not

be the best parameter for the problem. A better parameter would be to consider

k′ = k − rank(A). It will be interesting to explore if Biclique Partition problem

admits a polynomial kernel with k′ as the paramter
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Appendix A

Appendix

Listing A.1: Code snippet from the implementation of Algorithm 2

1 int b i c l i q u e p a r t i t i o n ( vec to r <int> &A, vec to r <int> &B,

2 vec to r <int> &C, int row , int co l , int k )

3 {

4 vector<int>I ( k ) ;

5 I [ k−1] = row ;

6 for ( int i=k−1; i>0;−− i )

7 I [ i −1] = I [ i ]−1;

8 int c=0;

9 int r e s ;

10 vector<int> one com ( k ) ;

11 for ( int i =0; i<k;++ i )

12 one com [ i ] = ( i +1);

13 do

14 {

15 r e s =0;

16 i f ( c == 0)

17 ++c ;
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18 else

19 get comb ( I , row , k ) ;

20 vec to r <int> one ( ( k∗k ) , 1 ) ;

21 vec to r <int> one k (k , 1 ) ;

22 vec to r <int> B1( ( k∗k ) , 0 ) ;

23 do

24 {

25 int j , counte r 1 ;

26 gue s s vec (B1 , ( k∗k ) ) ;

27 for ( j =0; j<c o l ;++j )

28 {

29 vec to r <int> C1(k , 0 ) ;

30 do

31 {

32 counter 1 = 0 ;

33 gue s s vec (C1 , k ) ;

34 vec to r <int> prod (k , 0 ) ;

35 for ( int u=0;u<k;++u)

36 for ( int v=0;v<k;++v )

37 prod [ u ] = prod [ u ] +( B1 [ ( u∗k)+v ]∗C1 [ v ] ) ;

38 for ( int u =0;u<k;++u)

39 i f (A[ ( ( I [ u]−1)∗ c o l )+ j ] != prod [ u ] )

40 {

41 counter 1 = 1 ;

42 break ;

43 }

44 i f ( counter 1 == 0)
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45 {

46 for ( int u=0;u<k;++u)

47 C[ ( u∗ c o l )+ j ] = C1 [ u ] ;

48 break ;

49 }

50 } while (C1 != one k ) ;

51 i f ( (C1 == one k)&& ( counte r 1 == 1))

52 break ;

53 }

54 i f ( ( j == c o l )&&(counte r 1 == 0))

55 {

56 r e s = get remain ing B (A,B,C, I , B1 , row , co l , k ) ;

57 i f ( r e s == 1)

58 return r e s ;

59 }

60 } while (B1 != one ) ;

61 }while ( I != one com ) ;

62 return r e s ;

63 }
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