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Abstract

In this study, we try to characterize the role inhibition plays in the generation of spatiotem-

poral patterns that underlie the encoding of odours by the olfactory system and most of the

information processing in the cerebral cortex. In the study of network dynamics, the effect

of inhibition can be divided into 2 interdependent parts: the connectivity among various

neurons (i.e. the structure of the network) and the magnitude of inhibition in the network.

We build our work on earlier studies which draw a connection between the dynamics of in-

hibitory networks and a structural property i.e. the vertex colorings of the inhibitory graph.

We find an ideal model for our study in the game of Sudoku. The Sudoku puzzle can be

mapped to a graph coloring problem so that the solutions to the empty Sudoku grid are

mapped to the 9-colorings of the Sudoku graph. There are O(109) solutions of the Sudoku

puzzle and thus, there are O(109) 9-colorings. We wire a network of pulse-coupled neurons

that in principle could generate all the 9-colorings of the Sudoku graph. We show empiri-

cally that the asymptotic dynamics of the Sudoku network can be classified in terms of the

solutions of the empty Sudoku puzzle or equivalently the 9-colorings of the Sudoku graph.

We find that the dynamical system has a measure of closeness between colorings i.e. pertur-

bations to the state representing a Sudoku solution lead you to other near by solutions. We

propose that these dynamical patterns of excitatory-inhibitory pulse coupled networks which

are characterized by the colorings of the graph underlying the inhibitory network are the

spatiotemporal patterns involved in odour representation and memory. The huge number

of such patterns found in our system point to a very high encoding capacity of neuronal

networks. The sense of locality in response to perturbations to the state in our system is

similar to the associative nature of memory. Lastly, we focus our attention on the role of

the magnitude of inhibition on the dynamics. We vary the coupling strengths systematically

to find that our system shows a maximization of encoding capacity for a certain ratio of

excitation to inhibition.
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Chapter 1

Introduction

Spatiotemporal patterns of neuronal activity encode all perception, action, and memory.

These patterns are generated through an interplay of excitatory and inhibitory interactions

among neurons. Central Pattern Generators (CPGs), the neuronal networks underlying

rhythmic activities such as swimming, the beating of the heart, etc, depend on an inhibition

based mechanism to produce the patterned rhythmic output (Marder and Bucher, 2001).

The Cerebral cortex, involved in most of the information processing in the brain as well as

the integration of sensory inputs, relies on inhibitory circuits to perform its function (Mann

and Paulsen, 2007). Inhibition also plays a key role in Locust Olfactory Networks. Odours

are represented in the Antennal Lobe in the spatiotemporal activity of the Projection Neu-

rons (PNs). The odour space is very high dimensional and inputs generally tend to be noisy.

Despite this, the locust has the ability to differentiate very similar odours with relative ease.

This requires the synchronization of groups of PNs which fire at different peaks of the Local

Field Potential (LFP). Inhibition is known to bring about this synchronization of the Pro-

jection neurons and the spatiotemporal patterning which characterizes an odour (Laurent,

2002).

For something so ubiquitously present, little is known about how the effect of the struc-

ture of inhibitory neuronal networks on the dynamical patterns these networks generate. We

employ the idealized model of pulse-coupled neurons given by Mirollo and Strogatz (1990)

in our study. It has been shown that ”all-to-all” excitatory networks of these pulse-coupled

neurons synchronize for almost all initial conditions. They go on to argue that even if the
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connectivity is not ”all-to-all”, all neurons asymptotically synchronize as long as the under-

lying network is connected. A more interesting case occurs when the coupling is inhibitory.

While excitatory systems have a unique state of complete synchrony that all initial condi-

tions evolve to, inhibitory ”all-to-all” connected systems display a plethora of asymptotic

states called splay phase states (Strogatz and Mirollo, 1993). For a N -oscillator system, these

splay phase states are characterized by the N -oscillator’s phases distributed uniformly on a

unit circle. There is multiplicity associated with these states i.e. if there is one splay state

then there are (N − 1)! dynamically identical states that can be obtained by permuting the

oscillators. This leads to the phenomena of attractor crowding as the number of oscillators,

N , increases (Wiesenfeld and Hadley ’, 1989).

Most of the work on characterizing the dynamics of these systems has been limited to net-

works with ”all-to-all” connectivity and roles of excitation and inhibition are studied in the

absence of each other. Thus, all the existing studies do not capture the richness of neuronal

dynamics in the cortex where the connectivity is not limited to ”all-to-all” and the neuronal

population consists of excitatory as well as inhibitory units.

Earlier studies had drawn a link between a structural property of inhibitory networks (its

colorings) and the dynamics it constrains (Assisi et al., 2011; Parihar et al., 2017). This

connection provides a useful way of looking at the dynamics of cortical networks but char-

acterizing the dynamics of arbitrary random networks this way is a difficult task. The

computational complexity of the graph coloring problem is known to be NP − hard. The

sheer effort involved in finding all the colorings of an arbitrary inhibitory network and under-

standing the network dynamics in terms of these colorings leaves the approach intractable.

As with many complex physical problems, the key lies in figuring out a toy system that is

simple enough to work with, but sufficiently complex that it embodies many of the essential

components of the original, seemingly intractable system. We discovered that the simple

and popular puzzle, Sudoku, was the perfect toy to tinker with.

Interestingly, the Sudoku puzzle can be mapped to a vertex coloring problem on an 81

vertex graph where each 9-coloring is the solution to some Sudoku puzzle (Herzberg and

Murty). We wire an inhibitory network that could, in principle, generate all possible solu-

tions of Sudoku puzzles (nearly O(109)) and study its dynamics. We hypothesize that the

patterns that this Sudoku network generates can be mapped to the colorings of the under-
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lying inhibitory graph (Herzberg and Murty).
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Chapter 2

Methods

2.1 Pulse Coupled Neurons - Mirollo Strogatz Model:

Mirollo and Strogatz generalized the ”integrate and fire” model for Cardiac pacemaker cells

given by Peskin (Mirollo and Strogatz, 1990). In the model neurons are described as oscilla-

tors. An oscillator’s state is given by it’s phase φ(t). The phase grows monotonically in time

according to φ̇ = 1 until it reaches the threshold φthreshold = 1 (fires), is reset to the resting

phase φresting = 0 and a spike is sent to all neurons postsynaptic to the firing neuron. Then,

the cycle repeats (see figure 2.1 (a)).

2.1.1 Spike Processing: Emission and Reception

The synaptic interaction among neurons consist of two consecutive events: first, the presy-

naptic neuron fires an action potential and then, the action potential is received by the

postsynaptic neuron after time τ (the delay time). The assumption made in the model

is that the interaction between these neurons is mediated by pulses whose effect on the
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Figure 2.1: Y: phase, X: time. (a) Single Neuron Dynamics, (b) Effect of an excitatory
spike of strength = .01 received at φ = .4. Current I = 1.01

postsynaptic oscillators is an infinitely fast phase shift.

This phase shift in the post synaptic neuron(s) is governed by a function U(φ)

which has the following properties:

1. U is concave down i.e U ′′ < 0,

2. monotonically increasing(U ′ > 0) and

3. normalized such that U(φresting = 0) = 0 and U(φthreshold = 1) = 1.

(2.1)

Figure 2.2 shows the interaction curve.

2.1.2 State variables of the system with delays

We consider a small delay τ in our system and pulses/spikes are received by postsynaptic

oscillators/neurons after time τ after the presynaptic neuron spikes. Please note, under this

generalization of the model, the state is represented by:

• phases φi ∀ i = {1, ..., N} where N is the total number of neurons and

• set of times ti,k ∀ k = {1, ..., N spikes
i } where N spikes

i are the total number of spikes

travelling in the synapses. Here, ti,k is the time at which the kth spike will reach the

postsynaptic neuron i.
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Figure 2.2: Y: U(φ), X: φ. Showing the effect (i.e. ∆φ− and ∆φ+) of a pulse of magnitude
ε at 2 different phases φ−, φ+. Note that φ− < φ+ =⇒ ∆φ− < ∆φ+ .
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Say, oscillator i reaches threshold at time t0 i.e. φi(t
−
0 ) = 1, it is reset to it’s resting phase

i.e. φi(t0) = 0 and a pulse/spike is sent to all neurons post-synaptic to i i.e. ∀ jε Post(i)
which is received after time τ according to:

φj(t = t0+τ) =

U−1(U(φj(t
−
0 + τ)) + εj) if U(φj(t

−
0 + τ)) + εj < 1

0 and a spike is sent to all Post(j) if U(φj(t
−
0 + τ)) + εj ≥ 1 (2.2)

εj is the pulse size which is determined by the network structure and coupling strengths by

εj = εexcij + εinhij where εexcij = θ(
∑

k c
exciAexcijk δk(t− (t0 + τ))) and εinhij =

∑
k c

inhiAinhijk δk(t−
(t0 + τ)).

where Ainhijk is the inhibitory adjacency matrix), Aexcijk is the excitatory adjacency matrix),

cexci the excitatory coupling, cinhi inhibitory coupling and θ(x) is the excitatory spike re-

sponse function that controls the effect of excitatory spikes on the post synaptic neurons.

δk(t−(t0+τ))=

1 if t=t0 + τ i.e. the kth neuron spiked τ time before this event

0 otherwise

Figure 2.2 shows the variation in the effect of 2 excitatory spikes received at different values

of the phase due to the concave down nature of the interaction curve.

We work with U(φ) = I
γ
(1 − eTIFφ); where γ = 1 and the intrinsic period of the oscilla-

tor TIF = 1
γ
log(1 − γ

I
)−1 . But the results are expected to be robust for most functions

U(φ) obeying the conditions labelled (2.1).

2.1.3 Numerical Advantage of the Model: Event Based Update

Apart from being equivalent to several important neuronal models, a notable numerical ad-

vantage of pulse coupled systems pointed out by Timme (2002) is that the time evolution

of the state need not be done continuously unlike other neuronal models where differential

equations need to be integrated over time. Instead, the simulation is done event by event

making it considerably more efficient. This event based update feature of the model is essen-

tial in our study of the asymptotic dynamics of neuronal networks.
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Events are of two types:

1. Threshold Event: A neuron reaches the threshold phase and emits spikes

2. Reception Event: Spikes are received by neuron(s)

2.2 Simulating the system event by event

The time evolution of the system is just determining the next event and changing the phases

based on the event. Between consecutive events, the phases of all the neurons grow by the

same amount and phase difference among all neurons is a constant frequency is same for all

the neurons (φ̇i = 1 ∀ i = {1, ..., N} where N is the total number of neurons).

To perform the simulation, we calculate time of the next threshold event (tthreshold) and

time of the next reception event (treception).

1. tthreshold= mini(t
threshold
i ) ∀ i = {1, ..., N} where tthresholdi (= 1 − φi) is the time after

which the ith neuron will fire.

2. treception= mini,k(t
reception
i,k ) where treceptioni,k is the time after which the ith neuron will

receive the kth spike (see section 2.1.2, definition of state of the system with delays).

As the system has delay between spike emission and reception, a neuron may already

have a set of spikes travelling towards it which have not been received.

Now, if tthreshold < treception, it’s a threshold event

• we update the phases φi to φi + tthreshold ∀i and the spikes reception times treceptioni,k to

treceptioni,k − tthreshold

• we set the neurons that reach threshold phase and spike to zero i.e. we set φj = 0 if

j : φj + tthreshold = 1,
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• we use the adjacency matrix of the network to find all neurons postsynaptic to the

spiking neurons i.e. Post(j) ∀j : φj + tthreshold = 1,

• we queue these spikes to be received by the postsynaptic neurons given by Post(j)

after the delay time τ .

else treception < tthreshold and it’s a reception event

• then the spikes are received at time t+ treception, we update the phases of the neurons

which are receiving spikes according to equations marked (2.2),

φj(t+ treception) =

U−1(U(φj(t+ treception)) + εj) if U(φj(t+ treception)) + εj < 1

0 if U(φj(t+ treception)) + εj ≥ 1

,

and the spikes reception times treceptioni,k to treceptioni,k − treception

• neurons k for which U(φk(t))+εk ≥ 1 fire, get reset and send spikes to their postsynaptic

neurons,

• we use the adjacency matrix of the network to find all neurons postsynaptic to the

spiking neurons i.e. Post(k) ∀k : U(φk(t)) + εk ≥ 1

• we queue these spikes to be received by the postsynaptic neurons given by Post(k)

after the delay time τ .

This is one event in the system. The simulation is done by evolving the system through

events.
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Chapter 3

Results

3.1 Dynamics of Reciprocally Connected Neurons

To elucidate the dynamics of bigger networks we start by understanding the dynamics of

small motifs of neurons.

Mutually Excitatory Neurons Synchronize

Mirollo and Strogatz proved that for all initial conditions pair of mutually excitatory pulse

coupled neurons synchronize (see figure 3.1). The proof was given under the assumption of

infinitely fast transmission of pulses i.e. no delay τ = 0 in the reception of a pulse (Mirollo

and Strogatz, 1990).

Proof Outline: The idea behind the proof is that the phase difference decreases over

successive events (see methods for definition of event). Say, at the nth event one of the

oscillator is at phase φ1(n) and the other at φ2(n). Now, note that the phase difference

∆φ1,2(n) (= min{|φ1(n) − φ2(n)|, 1 − |φ1(n) − φ2(n)|}) only changes when there is a spike

reception by either of the 2 oscillators as the frequencies of both is the same (φ̇1,2(n) = 1).

Let’s look at change in ∆φ1,2(n) over successive events. We look at the case when events

n, n + 1, n + 2 are not suprathreshold ( an event in which reception of an excitatory spike

13
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Figure 3.1: Y: phase difference between the pair of the oscillators. X: time (units : Tfree).
Each curve represents an instance of a system 2 reciprocaly exciting neurons. The initial
phase difference is varied in the 10 instances from .1 to .5(maximum possible) in steps
of0.05. The figure shows that for any initial phase difference, neurons attract and go to the
minimum possible phase difference ∆φ1,2 ≈ 0 (equality if no delay, τ = 0). Parameters :
I=1.01, excitatory coupling cexci = .001, delay τ = .001, γ = 1, frequency ω = 1

causes the postsynaptic neuron to cross the threshold and spike in the same event) because

in case of a suprathreshold event, the neurons synchronize immediately and ∆φ1,2(n)=0.

We can assume without the loss of generality that φ1(n) > φ2(n) > 0.5, then (oscillator)

1 fires first and a pulse of magnitude ε is received by 2. This event decreases ∆φ1,2(n) by
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Figure 3.2: Y: phase difference between the pair of the oscillators. X: time (units : Tfree).
Each curve represents an instance of a system 2 reciprocally inhibiting neurons. The initial
phase difference is varied in the 10 instances from .1 to .5(maximum possible) in steps of0.05.
The figure shows that for any initial phase difference, neurons repel and go to the maximum
possible phase difference ∆φ1,2 ≈ .5. Parameters : I=1.01, inhibitory coupling cinhi = .001,
delay τ = .001, γ = 1, frequency ω = 1.

∆φ+
exci(φ2(n)) (see figure 2.2) i.e.

∆φ1,2(n+ 1) = ∆φ1,2(n)−∆φ+
exci(φ2(n))

The next event is neuron 2 firing and neuron 1 receiving a pulse of magnitude ε which in-

creases ∆φ1,2 by ∆φ−exci(φ1(n+ 1)) (figure 2.2) i.e.

15



∆φ1,2(n+ 2) = ∆φ1,2(n+ 1) + ∆φ−exci(φ1(n+ 1))

So,

∆φ1,2(n+ 2) = ∆φ1,2(n) + [∆φ−exci(φ1(n+ 1))−∆φ+
exci(φ2(n))]

and φ1(n+ 1) > φ2(n) as neuron 2 spiked in event n+ 1.

Due to concave down nature of interaction function U , we have φ− < φ+ =⇒ ∆φ− > ∆φ+

(see figure 2.2). Thus,

∆φ−exci(φ1(n+ 1)) < ∆φ+
exci(φ2(n))

=⇒ ∆φ1,2(n+ 2) < ∆φ1,2(n)

We see that ∆φ1,2 decreases over consecutive events until it goes to 0 in a suprathrehold

event. For the proof of synchronization of ”all-to-all” excitatory networks, refer to Mirollo

and Strogatz (1990). Their simulations show that even if the network is not ”all-to-all”, as

long it’s connected, complete synchronization is the asymptotic state.

The assumption of no transmission delay is quite a strong and not very realistic when

considering neuronal networks. So, we added a small transmission delay to our system.

Our simulations show that excitatory neurons synchronize and inhibitory neurons go to anti

phase states even in the presence of small delays (see figure 3.1 and 3.2, τ = .00001).

Mutually Inhibitory Neurons Do Not Synchronize

Mutual inhibition gives rise to ”out of phase” dynamics. Inhibitory neurons don’t synchro-

nize, they go to anti phase states or they ’repel’ in phase space . The existence of the

asymptotic splay phase states has not been proved for pulse coupled model given by Mirollo

and Strogatz (1990) but an argument can be made following the same line as the proof for

synchronization of excitatory oscillators given in the previous section. i.e. the phase differ-

ence ∆φ1,2 increases on consecutive events (see fig 3.2).
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This dynamical behaviour of antagonistic agents is not limited to the Mirollo-Strogatz model.

Assisi et al. (2011) use single compartment Hodgkin-Huxley neurons and show for com-

plete k-partite networks and other variants that the dynamics of inhibitory networks can

be characterized by the colorings. But the network variants considered in the study posses

very few colorings. Parihar et al. (2017) employ V O2 based coupled relaxation oscillators to

solve the minimum coloring problem using inhibitory interactions. Here, the focus is on the

possibility of using distributed dynamical system to solve computationally hard problems

such as minimal graph coloring problem. The study does not describe the effect of multiple

allowed colorings on network dynamics.

Inspired by these studies, we looked for a network with large number of allowed colorings. We

found an ideal candidate in the game of Sudoku which could be mapped to a graph coloring

problem. The number of Sudoku solutions of the empty grid and equivalently 9-colorings of

the graph coloring problem is ≈ 109, a huge number. In the next section, we describe the

game of Sudoku and map it to a graph coloring problem.

3.2 Game of Sudoku

The widely popular game of Sudoku is played on a 9 x 9 grid (Figure 3.3). The 9 x 9 grid

consists of nine 3 x 3 sub-grids. A Sudoku puzzle consists of a 9 x 9 grid partially filled

with numbers 1 to 9. The aim is to fill numbers (from 1 to 9) at the empty locations in the

grid until none remain, while respecting the following rules: each row, column and 3 x 3 sub

grid must have numbers 1 to 9. The rules ensure that numbers are not repeated in any row,

column or sub grid (figure 3.5 highlights the row, column and sub-grid in white).

3.2.1 Sudoku as a Graph Coloring Problem

Constructing the Sudoku graph

Let’s construct a graph as follows:

1. Vertex Set: Label all the 81 squares in a Sudoku puzzle with numbers 1 to 81 in the

17
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Figure 3.3: Left: Empty Sudoku puzzle (no clues), Right: Labelling Sudoku grids 1 to 81.

way shown in fig 3.3. Then, define the vertex set by mapping each of the 81 squares to a

vertex. So, the vertex set of graph GSudoku is given by V(G)={v1, v2, ...v81} .

2. Adjacency Matrix: Two vertices vi and vj are connected i.e. Ai,j(GSudoku)=1, if

they belong to the same column, same row or same 3x3 sub-grid of the empty Sudoku grid

where A is the adjacency/connectivity matrix (see Figure 3.4).

We call this the Sudoku graph.

Mapping Sudoku solutions to colorings of the Sudoku graph

Graph Colorings Let G=G(V, E) be a graph on the set of vertices V and set of edges E.

Then, a k-coloring of G is defined as a grouping of vertices into k partitions P1, P2, P3, ..., Pk

such that inside any partition Pi, there are no edges connecting any two vertices.

The claim is that the 9-colorings of this graph has a one to one mapping to the solutions of

the empty Sudoku puzzle which have been found to be O(109) (Herzberg and Murty). This

follows from the way we have constructed the Sudoku graph.
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Figure 3.4: Constructing the Sudoku graph. (a) All edges for vertex 41 (label as in fig 2.2),
(b) adding edges for vertex 1, (c) adding the edge for all 81 vertices, we arrive at the empty
Sudoku graph.

Any Sudoku solution S can be expressed by siε{1, 2, ..., 9} for iε{1, 2, 3, ..., 81} where i refers

to the label of a box inside the Sudoku puzzle (as in Figure 3.3: Right Panel) and si is the

number inside the box.
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Associated coloring C is obtained by putting all the vertices with same si in the same par-

tition. This way one arrives at 9 partitions. Now note that any vertex has connections only

with vertices in the same row, column or sub-grid as in figure 3.4 and the condition for S to

be a solution is that no numbers can occur twice in the same row, column or sub-grid. Thus,

there can be no edges between vertices labeled by the same si and C must be a coloring of

the Sudoku graph/network.

3.2.2 Structural Properties of Sudoku Graph GSudoku

1. Each vertex in this network/graph has degree 20. This is obvious from the way the

network was constructed. We connected each vertex to all the vertices in the same

row, same column, and same 3x3 sub-grid. So, total neighbors for any vertex is 20 (see

the boxes in white rectangles in figure 3.12).

2. The graph is symmetric.

3. The chromatic number(minimum number of colors required to color the graph) is 9.

4. Every solution of the Sudoku puzzle is a 9-coloring of the empty Sudoku network.

3.3 Creating the Dynamical System

Now we construct the Sudoku network which we will use to demonstrate the characterization

of asymptotic dynamics in terms of the network’s colorings.

We map the Sudoku graph GSudoku to a dynamical system by mapping each vertex to pulse

coupled neuron/oscillator and all the edges are mapped to inhibitory connections/synapses.

So, adjacency matrix of the inhibitory graph Ainhi=A(GSudoku). In addition, we have the

excitatory network Aexci = Āinhi where Ā is the adjacency matrix of the complement graph

obtained from A by putting all ones to zeros and zeros to ones. The excitatory graph is

just the complement of the inhibitory graph. Note that there are no self connections i.e.

Ainhiii = Aexciii = 0 ∀i .

For all Sudoku related results, we take the excitatory spike response function θ(x) (see
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methods for definition) to be a step function i.e. θ(x) =

0 if x = 0

1 if x > 0

This is equivalent to saying that multiple excitatory spikes (> 1) received at

a single event are treated as one spike. This is an important caveat of our

system.

This is done to obtain a dynamical system with perfect colorings. This allows us to map

dynamics to solutions of Sudoku and analyze the phase space structure in terms of Sudoku

solutions.

In general, the response to multiple spikes is not equal to the response to one spike but

nor is it additive. Mirollo and Strogatz state: ”it seems improbable that 10 fireflies flashing

simultaneously would have 10 times the effect that one would have.” (Mirollo and Strogatz

(1990), section 3.4).

The model was originally based on the flashing of fireflies but even in the context of neurons,

it is presumable that the response is sub-linear. We expect that the results will be valid for

a sufficiently sub-linear excitatory spike response function θ(x).

3.4 Sudoku Dynamics

We extrapolate on our understanding of the dynamics of a pair of inhibitory neurons and

a pair of excitatory neurons (see section 3.1) to gain an intuition for the dynamics of the

Sudoku network.

Role of Inhibitory Network: Any 2 neurons connected in this network will ’repel’ one

another in state space (see fig 3.1). Thus, states in which none of the neurons that inhibit

each are far apart will be stable.

Role of complementary Excitatory Network: The neurons that do not inhibit each

other excite each other(by the definition of Aexci see section 3.3) and evolve towards syn-

chronization.
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Through this interplay of excitation and inhibition, the system effectively evolves towards

states where neurons that are not connected in the inhibitory network (or equivalently in

the Sudoku graph GSudoku), fire close (synchronously even) to each other in phase space.

For a range of coupling strengths such that the ratio of excitatory and inhibitory coupling

cexci/cinhi is O(1), the neurons form 9− groups/partitions firing sequentially, separated from

each other in phase space such that all the inhibitory connections are across and none inside

the groups. Then, the system’s state can be mapped to a 9 − coloring of GSudoku using

algorithm in section 3.4.1. As cexci/cinhi increases, the clustering of neurons increases and

number of partitions i.e. k decreases (see section 3.7 for detailed explanation).

Of course, the argument is heuristic, the idea of emergence i.e. ”whole may be greater

than the sum of parts” may play a role and the local stability of each inhibitory oscillator

pair may not imply the stability of the network of oscillators. But simulations agree with

the argument.

3.4.1 Algorithm for Coloring identification

To identify the 9-coloring associated with the state of the dynamical system, we apply the

following algorithm:

• We pick the oscillator labelled 1 to 9 (see figure 3.3) to be in 9 separate partitions.

These vertices are connected all to all (see figure 3.4) and by the definition of graph

coloring, can never be together in any coloring of the network.

• Next, we calculate the phase difference of all the oscillators from these 9 vertices

∆φi,j(e) = min{|φi(e)−φj(e)|, 1−|φi(e)−φj(e)|} where iε 1, 2, ..., 9, jε {1, 2, 3, ..., 81}
and e is the event. We average the phase difference over a few events ∼ O(100).

• For each oscillator i from 1 to 9, we put 8 oscillators with the least average phase

difference ∆φi,j from oscillator i into the partition Pi containing oscillator i. Now,

every oscillator from 1 to 81 belongs to a partition.
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• If there is no partition Pi, iε 1, 2, ..., 9 such that any vertices vα, vβεPi are connected,

then the dynamical system has arrived at a coloring.

3.4.2 Colorings and Associated Sudoku solutions

We study the asymptotic dynamics by choosing random initial phases for the 81 oscillators

picked from a uniform distribution over 0 to 1 (see figure 3.5 and 3.6) and evolving the

dynamical system for a large number of events (see methods for definition). The oscillators

form clusters and keep changing their neighbors until they find themselves in an allowed

coloring of the system In figure 3.15, we plot the number of times system arrives at a color-

ing for 500 random initial phases of the 81 oscillators generated using MATLAB rand(81,1)

function with seeds 1 to 500. One can see that the system arrives at colorings for a large

fraction of the total instantiations of the system.

Asymptotic states close to proper colorings

We note that there are initial states for which the system gets stuck in imperfect colorings

— which are close to the allowed 9 colorings. Close in the sense that if we cluster them using

the algorithm given in section 3.4.1 then a few partitions have inhibitory connections/edges

among its constituent neurons/vertices, and hence the state is not a perfect colouring but

close to one. In Figure 3.14, it’s evident that the number of coloring increases on application

of small perturbations. That is, some of the imperfect colorings that the system gets stuck

in also arrive at proper colorings. We elucidate this role of noise in the system in section 4.2.

Dynamics at a Solution/Coloring

At a coloring the 81 neurons are separated into 9 partitions (see figure 3.5 (c), 3.6 (c). These

9 partitions have 9 neurons each all of which excite each other (by the definition of a coloring

there are no inhibitions within a partition).

We analyze the dynamics of the coloring shown in figure 3.5 (c) to pave way for the argument
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Figure 3.5: Dynamics of the 81 oscillators can be understood as the oscillators rotating
anticlockwise on a circle with uniform velocity unless a spike is received. The colors represent
the final identities of the neurons. For example, all the orange neurons cluster together in
the asymptotic state. See fig 3.8 (c) (next page). (a) The initial state: one can see that
there is no clustering of neurons. (b) After 1.2x104 events, we see that some neurons have
formed clusters. Some neurons of orange and the green partitions are already synchronized
and separated from the rest of the neurons. The system goes through a transient in which
neurons synchronize and desynchronize, eventually ending up into a coloring state. (c)
Dynamics after 2x104 events or 461Tfree (on next page): the system arrives at a valid
coloring of GSudoku. The 9 partitions keep going around the circle sequentially.
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Fig 3.5(c)

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Oscillators move anti clockwise on the circle with time

Threshold phase

i.e.   =0 or 1

25



(a) (b)

(c) (d)

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

0.68

0.69

0.7

0.71

0.72

0.73

0.74

2
3

4

5

6

7

8 1......1 9

Period
 : a measure of

synchrony

Figure 3.6: Y: the phase difference ∆φa,reference, aε1, ..., 81 of 81 oscillators from reference
oscillator, chosen to be oscillator 1 (see figure 3.3). X: time (unit: Tfree). (a) The initial
state: no obvious clustering of oscillator is observed, (b) After 104 events, some clusters
form but they do not represent a coloring. The system hasn’t settled. (c) Dynamics after
2x104 events or 416Tfree. The system has arrived at a valid Coloring C and maintains itself
there. (d) shows how the partition splits apart (desynchronizes) when the neurons in the
other 8 partitions fire and then resynchronizes as the it fires and excites all the neurons to
thresholding.

26



(a) (b)

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

0

0.1409

0.2214

0.3088

0.2225

0.09713

0.1409

0

0.0805

0.2214

0.3191

0.2381

0.2214

0.0805

0

0.1409

0.2386

0.3186

0.2214

0.1409

0

0.09769

0.2256

0.3288

0.3191

0.2386

0.09769

0

0.1279

0.2311

0.3174

0.2256

0.1279

0

0.1032

0.1895

0.3149

0.3088

0.3288

0.2311

0.1032

0

0.0863

0.2117

0.2225

0.3174

0.1895

0.0863

0

0.1254

0.09713

0.2381

0.3186

0.3149

0.2117

0.1254

0

0.3624

0.4601

0.412 0.447

0.4498

0.3635

0.3665

0.4697

0.444

0.3624

0.4151

0.4595

0.4601

0.4428

0.412

0.447

0.3665

0.4498

0.4697

0.3635

0.444

0.4151 0.4595

0.4428

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Figure 3.7: Matrix of inhibitions J(C) (see section 3.7.2) and D(C) for the coloring obtained
in Fig 3.6 and 3.7: (a) J(C) : JP,P ′(C) is the number of inhibitory connections between
partition P and P ′ when the system is in the coloring C. The matrices have been ordered
according the firing order of the partitions. It can be seen that the partitions that fire next
to each other inhibit each other the least i.e. JP,P±1 = 18 (b)D(C): the distance matrix
where DP,P ′ is the average phase difference between the oscillators of partition P and P ′. As
the partitions are arranged according to the firing order of partitions for Coloring obtained
in Fig 3.6 and 3.7, thus DP,P±1 are the minimum distances for any partition Pε{1, 2, ..., 9}.
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on the stability of colorings based on the J matrix (see Section 3.7.2.2). We do this event

by event:

• Event 1: Let the first event be a neuron of the sky blue partition (or partition 9)

reaching threshold (as shown in figure 3.6 (c),(d)).

• Event 2: The remaining 8 neurons receive excitatory spikes after some delay τ = 10−5,

their phases increases by ∆φ+
i,skyblue (see figure 2.2) and they spike on the reception of

these spikes from the first sky blue neuron and synchronize.

• Event 3:

– The first neuron now receives spikes from the 8 neurons that reached threshold

τ time before and it’s phase increases by ∆φ−1,skyblue which is small as φ−1,skyblue =

τ = 10−5 (see figure 2.2). Thus, the neurons of the partition come close in phase

space as the partition passes through the threshold.

– The neurons in any other partition P ′ 6= 9, skyblue receive inhibitory and excita-

tory spikes. The number of inhibitory spikes received by any neuron of partition

P ′ 6= skyblue is either 2 or 3 as discussed in section 3.7.2 (5)) and the number of

excitatory spikes received by any neuron in P ′ is either 6 or 7 (as excitatory net-

work is the complement of the inhibitor graph) but they are treated as 1 spike (see

definition of excitatory spike response function θ(x) in section 3.3). The response

to the inhibitory spikes is higher than that of the excitatory spikes as cinhi > cexci.

Thus, any neuron in any partition P ′ 6= 9, skyblue experiences a decrease in it’s

phase and is effectively pushed away from partition P = 9, skyblue. Thus, inter-

partition distance increases.

The phase jumps caused by the spikes are progressively lower for partitions with phase

to close to 0 and maximum for the ones that are closest to phase of 1. This is due to

the concave down nature of the interaction function U .
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Figure 3.8: Stability of Coloring C (obtained in figures in sections 3.5, 3.6) to phase pertur-
bations. Starting from the state that is associated with a coloring (fig 3.6 (c)), we perturb
the phases of the 81 oscillators by ∆φ̄ ≈ 0.04 drawn from a Gaussian distribution with mean
0 and standard deviation=.04. MATLAB random number generator(seed=1) was used. We
can see that the system returns to the original coloring after some time.

3.5 Stability of Colorings

The states representing colorings obtained after long term simulation of the system are sta-

ble to certain order of magnitude of phase perturbations. To demonstrate this, we shift the

29



phases of the 81 oscillators in a coloring we obtained earlier (Figure 3.5(c) and 3.6(c)) by ∆φ̄

drawn from a Gaussian distribution with mean 0 and standard deviation=.04. MATLAB

random number generator seed=1 was used. The perturbation makes the partitions diffuse

(see Figure 3.8 (a), (b)). The system returns to the original coloring after evolution over

some events (Figure 3.8 (c), (d)).

In general, colorings obtained are stable up to ∆φ̄ ≈ 0.05. A heuristic argument about

the stability can be made based on the number of partitions/colors in the system. We have

9 partitions in the system which are going from φresting = 0 to φthreshold = 1 periodically.

So, the average distance between any two partitions of the 9 total partitions is ≈ 0.11. If

the perturbation to each neuron (∆φ) ≈ 0.05 or greater, neurons from different partitions

will come close (see Figure 3.9 (b) and they may exchange neurons at the threshold events

to arrive at a different coloring (Figure 3.9 (d)).

3.6 Noise Induced Transitions Among Sudoku Solu-

tions

We have shown that starting from random initial conditions, the dynamical system arrives

at states characterized by the colorings of the Sudoku graph. Now, we perturb the system

at the 2 ∗ 104th event i.e. after it has reached the coloring, (see for Figure 3.5 and 3.6 for

the coloring before the perturbation). We have used MATLAB rand function with random

number generator seed 1 to generate the initial state with an instantaneous phase perturba-

tions ∆φ̄ drawn from a normal distribution with mean 0 and standard deviation 0.05 (used

MATLAB normrand function with random number generator seed 48 for the perturbation).

We can see that the partition colored teal(label 1) and the partition colored violet(label

9) exchange neurons and a different coloring is obtained (Figure 3.9(c),(d) and Figure 3.10).

The Sudoku solutions associated with the 2 colorings are shown in Figure 3.10.

For any Sudoku solution (colorings), there are other solutions which may be obtained by

exchange of neurons among partitions. The distance between these solutions is measured

by the number of minimum exchanges required to go from one solution to the other. Thus,
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there is a locality to the dynamical space of our network. We elaborate on this locality in

section 4.1.
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Figure 3.9: Switching to another coloring: Starting from the state that is associated with a
coloring (fig 3.6 (c)), we perturb the phases of the 81 oscillators by an instant phase shift give
by ∆φ̄ ≈ 0.05 drawn from a Gaussian distribution with mean 0 and standard deviation=.05.
MATLAB random number generator(seed=1), normrnd function was used. Note that the
perturbation is applied exactly at the 20000th event after starting from the the random
initial phases random number generator(seed=1).

31



(a)

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

5

7

6

4

8

8

4

5

7

6

7

6

8

4

5

4

8

6

7

5

5

4

8

7

6

6

7

5

8

4

7

6

5

4

8

8

4

6

7

5

5

4

8

6

7

1

9

3

2

2

1

9

3

3

2

9

1

2

3

1

9

1

9

2

3

3

1

9

2

3

9

1

2

2

3

1

9

9

1

2

3

(b)

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

5

7

6

8

4

8

4

5

7

6

7

6

8

4

5

4

8

6

7

5

5

4

8

7

6

6

7

5

8

4

7

6

5

4

8

8

4

6

7

5

5

8

4

6

7

1

9

3

2

2

9

1

3

3

2

9

1

2

3

1

9

1

9

2

3

3

9

1

2

3

1

9

2

2

3

1

9

9

1

2

3

Figure 3.10: Sudoku solutions associated with the colorings: (a) Coloring before perturba-
tion, (b) Coloring after perturbation. Most of the boxes maintain their color or partition but
we can see that the some grids from partitions labelled 1(teal) and 9(violet) have exchanged
their positions in the grid. Partitions 2(black) and 8(sky blue ) also exchange some elements.
The number of exchanges involved in a switching gives us a measure of the distance between
the solutions or colorings.
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3.7 Description of the dynamical system as a function

of Excitation-Inhibition (E-I) ratio

The phase jump (∆φ) in the postsynaptic neuron caused by reception of a spike is propor-

tional to the coupling strength ε (see figure 2.2).

For sufficiently high values of excitatory coupling εexci, a spike from neuron i, pulls all

the neurons jε Post(i)+ to the threshold and therefore, synchronizes these neurons. Here,

Post(i)+ is the set of neurons postsynaptic to neuron i with excitatory connection. The

set Post(i)+ may include neurons that inhibit each other. Note that if two neurons that

inhibit each other spike together, they do not desynchronize upon firing together. So, the

inhibitory structural constraints are largely ignored in the dynamics. Thus, for high values

of excitatory coupling εexci, we see extreme clustering of neurons, the number of neurons per

partition increases and the number of partitions decreases with an increase in εexci.

For low values of excitatory coupling εexci, no reliable clustering of neurons occurs. The

81 neurons stay distributed diffusely from φ = 0 to 1. The pattern we see is that neurons

that are immediate neighbors in phase space (neurons next to each other on the circle in

figure 3.5 (a)) mostly don’t inhibit each other. Let the solutions satisfying the above men-

tioned constraint be denoted by Sweaki : i = 1, ..., Nweak
solutions where Nweak

solutions is the number

of dynamical patterns that satisfy this weak constraint. This constraint is much weaker

compared to constraints on the dynamics put by graph colorings and Nweak
solutions much more

than the number of patterns allowed by the coloring rule. We point out that stability of

these Nweak
solutions solutions to perturbations goes down for this system as the phase space gets

populated by a large number of these solutions and a slight noise can push the system from

one solution into the other. We see that the reliability of solutions Sweaki is low for this

system with low excitatory coupling εexci.

Thus, we expect a maximization of the number of coloring obtained for a certain ratio

of excitation to inhibition. We test this hypothesis in the following section.
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3.7.1 Number of Spatiotemporal Patterns as a function of Excitation-

Inhibition (E-I) Ratio

We simulate the system for 500 instantiations and observe the asymptotic dynamics and vary

the excitatory coupling (cexci ) while keeping the inhibitory coupling a constant (cinhi) =

6.5 ∗ 10−4. Effectively increasing the E-I ratio from left to right (Figure 3.11). We use the

algorithm for coloring identification in section 3.4.1 to classify the dynamics of the 500 in-

stantiations as: either a 9-coloring, or Not a 9-coloring.

3.7.1.1 Total number of colorings obtained

We simulate the same 500 initial conditions (chosen randomly, see Appendix for Figure 3.11)

for different values of the excitatory coupling (cexci). We keep the inhibitory coupling (cinhi)

fixed and thereby study the behavior of our network as a function of the excitation to inhi-

bition ratio (E − I ratio). We observe that the number of colorings (9-colorings) obtained

ntotal maximizes at cexci ≈ 4x10−4 (Figure 3.11, (a), Solid line).

If we simulate the same 500 initial conditions for longer time (more events), we see that

more of the asymptotic states map to colorings now (Figure 3.11: compare (a)1x105 events

with (b) 2x105 events and (c) 4x105 events). So, some states were in a transient and had

not settled after the first 1 ∗ 105 events. We expect more of the 500 instantiations will settle

to colorings if we allowed the simulations to run longer still.

We perturb the system as shown in figure 3.11 ((d), (e) and (f)). We note that the number

of colorings obtained gets progressively closer and closer to the maximum possible color-

ings i.e. 500 (which is the total number of instantiations) with more perturbations. The

system gets stuck in pathological states which are not colorings. The system can escape

these states on the application of a small perturbation (order 0.01) but this perturbation

cannot drive the system out of the colorings as the coloring states are stable to perturbations

up to order 0.05 (see Section 3.5). Thus, we see this rise in ntotal upon perturbing the system.
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Figure 3.11: X-axis: excitatory coupling cexci. Y-axis (Solid Lines:): ntotal= number of
dynamical states that were mapped to colorings using algorithm in section 3.4.2 out of 500
instances, Y-axis (Dashed Lines: ):- nclasses= number of classes of colorings (obtained
using algorithm in section 3.7.2.1) out of total coloring obtained (solid lines). We evolve the
same 500 initial conditions to (a)1x105 events (b) 2x105 events (c) 4x105 events (d) 5x105

events with a perturbation at the 4x105th event (e) 6x105 events with a perturbation at the
4x105th and 5x105th (f) 6x105 events with perturbation every 104th event after the 4x105th
event.
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We note that the peaks of the curves in Figure 3.17 (Solid Lines: number of total color-

ings obtained ntotal) shift to the right when noise is introduced in the system. System arrives

as colorings more often for higher values of excitatory coupling. But note that the peaks for

the curves labeled by Dashed lines—representing the number of different classes of colorings

nclasses—do not shift to the right. This is because the increase in the number of colorings for

high values of excitation is due to increase in the number of a particular class of colorings

H18,27 (see section 3.7.2.2).

So, even though the total number of possible colorings ntotal increases for high excitation

cexci (Figure 3.11, solid curves), the variety in the colorings given by nclasses decreases (Fig-

ure 3.11, dashed curves).

3.7.2 Constructing J(C) : Matrix of Inhibitions between Parti-

tions for Coloring C

For any solution or coloring C, a vertex in partition P is connected to 2 or 3 vertices from any

other partition P ′(6= P ) (See Figure 3.12 for the argument). If N2 and N3 are the number

of partitions containing 2 and 3 neighbours respectively of a vertex in partition P , then

2N2 + 3N3 = 20; as the degree of any vertex is 20 and

N2 +N3 = 8 as the total number of partitions (excluding P ) is 8.

Solution to the above equations is N2 = N3 = 4 i.e. any vertex has 2 neighbours in ex-

actly 4 partitions and 3 neighbours in the remaining 4 partitions.

We define J(C) as the condensed adjacency matrix of a coloring C where JP,P ′(C) is the

number of inhibitory connections between partition P and P ′ of coloring C in the Sudoku

inhibitory network given by G(Ainhi) where P, P ′ε{1, 2, 3, ..., 9}.

We see that

• JP,P ′(C) = 18 when all 9 vertices of partition P have 2 neighbours in partition P ′, so

36



(a)

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

2

0

0

0

0

0

2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

(b)

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2

1

0

0

0

0

0

0

0

0

2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

(c)

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2

1

0

0

2

0

0

0

0

0

2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Figure 3.12: Say two partitions in a coloring are represented by labels 1 and 2 as in the
figures. Without loss of generality, we place a vertex labeled by 1 at (2,3) and ask how many
neighbors can this vertex have in partition labeled by 2. Consider the two vertices in the
3x3 sub-grid at the top left corner of the grid. There are only 2 cases: First, the two vertices
labeled by 1 and 2 don’t share a row/column (a) or they do (b). For cases like (a), the
vertex labeled 1 can have 2 more neighbours outside the sub-grid. For cases like (b), the
vertex labeled 1 can have only 1 more neighbor outside the sub-grid, otherwise we end up
at a situation shown in (c), which is not allowed by the rules of the Sudoku. So, for any
Sudoku solution, each vertex in some partition P is connected to either 2 or 3 vertices from
any other partition P ′(6= P ).
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9x2=18;

• JP,P ′(C) = 27 when all 9 vertices of partition P have 3 neighbours in partition P ′, so

9x3=27.

It follows that the number of connections between any 2 partitions lies between 18 and 27 (see

figure 3.13 (a) for an example of J(C)). That is, 18 ≤ JP,P ′(C) ≤ 27 ∀ P, P ′ε{1, 2, 3, ..., 9},
P ′ 6= P for any proper coloring C of GSudoku. Note, JP,P (C) = 0 ∀ Pε{1, 2, 3, ..., 9}, as

there are no inhibitory connections inside a partition (see Figure 3.7 (a) for an example of

J matrix).

3.7.2.1 Types of Colorings based on J matrix

We separate the colorings into classes {H1, H2, H3, ..., Hnclasses} such that colorings belonging

to the different classes have different dynamics. We tackle the problem by employing the J

matrix of colorings. The method we propose checks whether 2 colorings are different dynam-

ically. This method may fail to resolve some colorings that belong to different dynamical

classes and assign them to the same class but it never assigns colorings with the same effec-

tive dynamics to different classes. Thus, the number of classes can only be underestimated.

To distinguish between different colorings {Ci} for i = {1, 2, ..., ntotal} where ntotal is the

total number of colorings, we apply the following algorithm:

• Calculate J(Ci) where C is a coloring of the Sudoku graphGSudoku for all i = {1, 2, ..., ntotal}
using the algorithm in section 3.7.2.

• Evaluate the variance for each of the 9 rows of J excluding the diagonal terms JP,P

(= 0). This gives us a variance vector v(Ci) for each coloring Ci; i = {1, 2, ..., ntotal}.

• Colorings C1, C2 belong to different classes if no permutation of v(C1) is equal to v(C2).

Each vertex in the Sudoku inhibitory network has 20 neighbours. For a coloring Ci, the 9

vertices in a partition, say P , the total neighbours are 20x9=180. None of them are inside

P (follows from definition of a coloring). It follows that the 180 neighbours are distributed

among the other 8 partitions P ′(6= P ). Thus, mean of each row (or column) of J is the same

(
∑

P ′ 6=P JP,P ′(Ci)/8 = 22.5). JP,P ′(Ci) with P ′( 6= P ) represents the number of inhibitory
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connections between partitions P and P ′. If @ a permutation of the partitions of colorings

C,C ′ such that J(C)= J(C ′), then the dynamics of C and C ′ cannot be equivalent as the

partitions of neurons interact differently for C and C ′. Comparing the variance vectors

v(C), v(C ′) is a more computationally efficient way of doing the comparison. The downside

is that sometimes v(C) and v(C ′) can be equal when @ a permutation of the partitions of

colorings C,C ′ such that J(C)= J(C ′) and the colorings are identified as belonging to a

single dynamical class. Thus, the algorithm can only underestimate the number of classes

nclasses.

3.7.2.2 Class of Most Occurring Colorings H18,27

Largely independent of the noise in the system, we observe that the majority of the colorings

that the system settles to are such that JP,P ′ = either 18 or 27 ∀ partitions P, P ′ε1, 2, ..., 9.

Figure 3.17 shows the fraction of total colorings that satisfy the above mentioned condition

on J . We note that the fraction increases as cexci or equivalently cexci/cinhi (E − I ratio)

increases.

The reason behind the stability of this class of colorings is structural as well as dynami-

cal. Recall that JP,P ′ = 18 (or 27) implies that every neuron of partition P is connected

to exactly 2 ( or 3) neurons in partition P ′ (see Figure 3.14). Thus, when the neurons of

partition P ′ spike, all neurons of P get the exact same input –2 (or 3) spikes each for JP,P ′ =

18 (or 27)– and the phase difference among the neurons of partition P doesn’t increase. This

is true for all the partitions if JP,P ′ = 18 (or 27) ∀ P, P ′ε1, 2, ..., 9. Hence, the partitions are

tightly clustered and such colorings are highly stable.
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Figure 3.13: Y-axis: Ratio of n18,27 to ntotal; where n18,27 is number of colorings with JP,P ′ =
18 or 27 ∀ partitions P, P ′ε1, 2, ..., 9 (see Section 3.7.2.2) and ntotal is the total coloring
obtained in 500 instantiations of the system. X-axis: cexci We evolve the same 500 initial
conditions to (a)1x105 events (b) 2x105 events (c) 4x105 events (d) 5x105 events with a
perturbation at the 4x105th event (e) 6x105 events with a perturbation at the 4x105th and
5x105th (f) 6x105 events with perturbation every 104th event after the 4x105th event.

40



Chapter 4

Discussion

4.1 Locality of Response to Perturbations

We have shown that the dynamics of pulse-coupled Sudoku network can be characterized

in terms of the colorings of the underlying inhibitory graph. These states are stable to

noise(instantaneous) up to ∆φ̄perturb ≈ 0.05. If the perturbation strength ∆φ̄perturb ≈ 0.05

or greater, the system may switch from one coloring say Ci to another coloring Cj. This

happens when some partitions of Ci exchange neurons with other partitions of Ci. Then,

Cj differs from Ci in that some neurons may change their partitions. For higher values

of ∆φ̄perturb, the system may go to a completely different coloring where the neurons have

changed partitions beyond recognition and Ci and Cj seem to have no discernible relation.

Each coloring has a set of neighboring colorings that the system can switch to if a per-

turbation is given. This way, we can construct a network of colorings and the phase space

may be divided into the basins of these colorings. We point out that this space of colorings

has a sense of locality which may be used to encode distance between inputs. A difference

in magnitude of the perturbations (inputs) can be inferred from the number of exchanges

that occur among the partitions of a coloring.
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Relation to Olfaction and Memory

In the context of the olfactory system, this implies that similar odours might be mapped to

similar states (colorings) and odours may be differentiated from each other due to a differ-

ence in the perturbation, say input from the Olfactory receptor neurons (ORNs).

In the context of memory, this feature of locality in dynamics relates to the associative

property of memory. That is, your next thought (next coloring that the network will arrive

at) is decided by your current state of mind (the coloring the network is at right now).

4.2 Benefit of Perturbations

In section 3.7.1, we showed that phase perturbation can drive the system to a coloring

more frequently. This might be because the colorings of the system are stable to phase

perturbations of order up to 0.05 (see section 3.5 for a heuristic justification) but the states

the system gets stuck in—the non-colorings—are not stable to phase perturbations of that

order. Thus, the instantaneous perturbations help the systems escape these pathological

states and arrive at the colorings.

We have shown that starting from random initial conditions the system arrives at colorings.

Thus, the initial randomly chosen state might be in the basin of attraction of the coloring

it ends up in. While the coloring is not always a periodic cycle, we still establish that

small perturbations O(0.05) do not drive the system away from the states that represent

the coloring. Thus, we may argue that colorings are the attractors of this system and the

basin size of these colorings O(0.05) is on average bigger than the basins of the non-coloring

asymptotic states O(0.01-0.05).

4.3 Functional Role of Excitatory- Inhibitory balance

in Neuronal Circuits

Inhibition and excitation seem to hover around a balance in various regions of the brain in-

cluding but not limited to regions of cortex (Isaacson and Scanziani, 2011) and hippocampus
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(Atallah and Scanziani, 2009). There are multiple definitions of this balance but the under-

lying idea is that the excitatory inputs to a neuron are closely balanced by the inhibitory

inputs it receives (Isaacson and Scanziani, 2011; Van Vreeswijk and Sompolinsky).

It’s very curious that the brain presses ’the accelerator and the brake’ at the same time.

Two out of all the hypotheses that have been proposed so far are:

1. Too much excitation can cause unceasing avalanches of spikes (supercritical phase) in

the system whereas if the inhibition is too high, the activity dies down too quickly (sub-

critical phase). The E-I ratio, thus, can be thought as a parameter that can maintain

the system at criticality where the state of the system is highly susceptible to input and

information transfer in maximized (Beggs and Plenz, 2003; Priesemann et al., 2014;

R. Chialvo, 2004).

2. Rubin et al. (2017) claim that it’s the encoding capacity of binary neuronal networks

that is maximized at a balance of excitation and inhibition as the system is robust to

noise in the inputs to the neurons as well as any internal noise in the neurons.

In our system, the number of attractors classifiable as the minimal colorings of the inhibitory

network peaks around cexci ≈ 0.00035 for cinhi = 0.00065. The result is true for a range of

cinhi. So, if we assume that stimuli are encoded as spatiotemporal patterns representing the

minimal colorings, our system also predicts a maximization of encoding capacity at a certain

ratio of excitation and inhibition albeit in networks of a pulse coupled continuous neurons.

4.4 Sudoku: A Content Addressable Memory System

Accounting for clues

Clues can be thought of as constraints that disallow some of the O(109) solutions/colorings of

the empty Sudoku (Herzberg and Murty). In figure 4.1 (d), the number of possible solutions

exclude all the solutions where the box labelled by (1,2) and (5,3) contain the same digit si,
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Figure 4.1: (a) A Sudoku puzzle with a unique solution, (b) the solution of the puzzle in
(a). Nothing but the rules of Sudoku are required to arrive at the solution. (c) Having fewer
clues may may allow more than one solution. (d) The box labelled 7 and the box labelled
9 reduce the number of possible colorings from O(109).
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i = {1, 2, ..., 9}. Provided enough clues, we end up with a unique solution. Thus, Sudoku

can be thought of as a content addressable memory system which outputs the complete

pattern(solution) if given enough information about the pattern(clues).

We have thought of some ways to enforce the clues into the dynamical system. First, we

explain how clues should affect the dynamics then we show how to force the system to obey

the constraints. For the puzzle in 4.1 (d), we see that vertices for boxes (1,2) and (5,3)

should not share a partition and thus, the associated neurons should ”repel” each other in

phase space. Instead, if two boxes are labeled by the same number, we need the vertices to

be inside the same partition and thus, the associated neurons should ”attract” each other in

phase space. The clues may be encoded into the adjacency matrices of the inhibitory and

excitatory network. When we say encode, we mean that the colorings disallowed by the clues

will not be allowed by the adjacency matrix itself. For the puzzle in 4.1 (d), we connect the

vertices for boxes (1,2) and (5,3) with an inhibitory edge so that they ”repel” and do not

share a partition. Instead, if two boxes are labelled by the same number, we connect the

vertices with higher excitatory coupling than normal, so that they attract in phase space

and be inside the same partition in the dynamics.

The issue is that this addition of edges and selective variation of coupling creates asym-

metries among neurons. This doesn’t allow the system to have period one dynamics(in

which all neurons fire exactly once during a cycle) as neurons in the same partition have

different strengths of connections and thus, get desynchronized from the partition.
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Chapter 5

Appendices

5.1 Parameters for Figures 3.5, 3.6, 3.8 and 3.9

Current I = 1.01, excitatory coupling cexci = .00035, inhibitory coupling cinhi = .0006, delay

τ = .00001, γ = 1, frequency ω = 1

Tfree is the time taken by a non interacting oscillator to fire (φ = 1) staring from the resting

phase (φ = 0).

5.2 Parameters for Figures 3.11, 3.13

Current I = 1.01, inhibitory coupling cinhi = .0006, delay τ = .00001, γ = 1, frequency

ω = 1.

We vary the excitatory coupling cexci for a fixed inhibitory coupling.

The 500 initial conditions (each initial condition is a 81x1 vector of phases of the 81 neu-

rons) were generated using the first 500 seeds of MATLAB random seed generator in the

rand function. The perturbations applied in plot 3.11 d,e,f and 3.13 d,e,f were generated

using MATLAB normrand function with mean 0 and standard deviation of 0.01. Seed used
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was same as the seed used to generate the initial conditions of the neurons. Effectively, the

neurons were given instant phase perturbations of magnitude ≈ 0.01.
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