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Abstract

The broad objective of this work is to study the wage distribution and resource allocation

through a mathematical model and analyse those as functions of choices of consumption and

the technologies of production in an economy. A simple Heterodox Model is constructed, in

which the consumption and production parts are separated and given using two global opti-

mization functions. An iterative process, called the ‘tatonnement’ is proposed, which couples

these functions and works similar to the Walrasian auction, computing the equilibrium under

certain settings. The equilibria of this process correspond directly with those of a related

Arrow-Debreu model, where existence of an equilibrium is proved. The formulation allows

us to identify the combinatorial data which link parameters of the economic system with its

equilibria, and in particular, the impact of consumer preferences on wages. The Heterodox

model also allows the formulation and explicit construction of the consumer choice game,

where individual utilities serve as the strategies with total or relative wages as the pay-o↵s.

We illustrate the mathematical details of the consumer choice game through (2 ⇥ 2) mar-

kets and explore properties of the combinatorial data associated. We show that consumer

preference, expressed through modified utility functions, does indeed percolate through the

economy, and influences not only prices, but also production and wages. We further look

at the geometric structures associated with the Heterodox model and propose a formulation

which captures its equilibria at the vertices. Finally, we look at applications of the model

on the trade theory, by explicitly deriving outcomes of trade and comparing those with the

existing models.
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Introduction

In an economy of a developing country like India, we see some characteristic concerns. These

are great variances in wages, widespread unemployment across di↵erent classes of labour,

and ine�ciency in production and its allocation [4], [16]. On the other hand, increase in

brand consciousness has resulted in lower demand for generic goods and thereby failure in

sustainability and job creation in local industries [5].

A society, comprising of various classes, allocates its resources based on consumer pref-

erences, technological constraints and the financial resources, with the last being somewhat

dependent on the first two factors. All this accounts for the consumption of the society. For

the production of goods and resources, what matters is suitable labour, capital as well as

the profit margins and the available technology. Furthermore, there is a natural relationship

between consumer choices and technological options as depending on the market demand,

appropriate goods are produced in the society. With the help of a mathematical model, we

aim to formulate the e↵ects of these factors on resource allocations to explore the reasons

for the above mentioned issues.

We propose a simple model called the Heterodox model, which couples the consumption

and production processes and illustrates the interdependence of wages and utilities. The

production is determined by a technology matrix T , which utilizes m labour classes and

produces n goods and determines quantities of goods produced, labour utilization and wages.

This part assumes prices as a given, i.e., which cannot be changed. The second part is the

consumption part, which is modelled as a Fisher market and a utility matrix U . This part

of the economy assumes the production part as given, i.e., wages and quantities of goods

produced, and allocates goods based on wages (i.e., endowments or disposable incomes) held

by each labour class, and determines prices.
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Through this model, we show the connection between U , the utility matrix and the

wages obtained by various labour classes, as implemented by T . In other words, it traces

the connection between personal consumption choice, with prices of goods, their production

and finally wages received. Next, it shows that having a “private and real” utility U
r

, and

posting or posturing a di↵erent U into the economy does indeed alter wages and has the

potential to improve both the social welfare as well as the relative welfare for certain classes.

This sets up the consumer choice game, where the manipulation of U is the strategy, and the

relative or total welfare, as measured by the allocation of goods and their utilities according

to U
r

, are the pay-o↵s. Motivation of this work is [1], where Adsul et al. proved that it is

possible to feign utility preferences in the consumption market to achieve a higher payo↵.

Under certain conditions, the market attains a Nash equilibrium when buyers strategize on

consumer choices, while maximizing their payo↵s.

Recently, much work has been done on computations of Fisher market and the existence

of Nash equilibria in the Fisher market game [1], [2], [7], [11], [22]. There have been numerous

attempts on solving the Arrow Debreu model as well [6], [13], [18], [20], [6], dealing with

a few specific instances of the market. Owing to the connections of the Heterodox theory

with the Fisher and AD market models, we further study its geometric structures and define

optimality conditions for equilibria. We also propose a Linear Complimentarity Problem

(LCP) formulation for the same.

The Heterodox model borrows from many existing models, specially so from the Arrow-

Debreu model and its earlier cousin, the Fisher model, from Sra↵a’s accounting methods for

calculating prices [8] and labour inventory using the theory of value, the marginal production

principle for calculating wages, and finally the use of utility functions to compute allocation

of goods. We also see that the ‘Heterodox’ model proposes a weak tatonnement process,

similar to that of Walrasian auction [14].

The rest of the work is organized into 8 chapters as follows. In chapter-1, we describe

the above mentioned market models, i.e., Fisher market and Arrow- Debreu market. We

define the Fisher forest and discuss its two solutions for linear utilities, viz., Eisenberg-Gale

algorithm and a simplex like algorithm. We discuss continuity properties of the Fisher

market and set up the Fisher market game. Next, we state the Arrow Debreu theorem

and provide an LCP formulation for AD markets with separable piecewise linear concave

(SPLC) utilities and polyhedral production sets. We look at a special case of AD markets-
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the exchange markets and their reduction to Fisher market. Further, we talk about the

continuity of AD markets.

In Chapter 2, we describe the Heterodox Model H(C,P) as composed of two intercon-

nected systems, the consumption model C and the production model P . We also define two

global optimization functions fC and fP , which couple C and P . They set up the tatonnement

as an iterative interaction between C and P . We further analyse the tatonnement process

and exhibit certain non-convergent trajectories.

In Chapter 3, we cast the Heterodox market H as an Arrow-Debreu market. We show

the equivalence of solutions of the Heterodox model, i.e., its fixed points, with the equilibria

of the corresponding A-D market. This proves the existence of an equilibrium in Heterodox

model. Thus, it connects the two concepts and also gives an explicit description of the

dependence of the A-D equilibria on the parameters of the economy.

In Chapter 4, we associate combinatorial structures (I, J, F ) with equilibria and under-

stand how they vary with the parameters of the economy, i.e., T, Y and U . We use these

results to define the CCG, the consumer choice game, where T, Y are fixed, and U is the

strategy space. We do this over a collection of open sets and show that explicit description

of the game is obtained over these open sets. We use the above results to illustrate a partic-

ular market of three labour classes and three goods, and examine the vicinity of a particular

fixed point H3. We use the combinatorial data associated with the fixed point, viz., the

Fisher solution forest, to explicitly construct the consumer choice game, i.e., the use of U as

strategies and the total utility as the pay-o↵s.

In Chapter 5, we analyse (2⇥2) economies and the combinatorial data arising from their

fixed points. First, through a 2-player example, we show the decomposition of the strategy

space, i.e., the U -space into various regions indexed by Fisher forests. This also leads to a

correspondence N between the strategy space and the space of possible pay-o↵s. In other

words, N ✓ R2 ⇥ R2. We show that N is largely a 2-dimensional manifold. We also give a

few conjectures commenting on the general (m⇥ n) markets.

In Chapter 6, we give a geometric formulation using market constraints and define its

feasible points and vertices. We define ‘fair’ vertices which capture the Heterodox equilibria.

We also look at some vertices, edges and transitions of the structure. Further, we derive

a partial LCP formulation which captures the set of Heterodox equilibria, and discuss its
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computability using the Lemke algorithm.

In Chapter 7, we look at some applications of the theory developed here. We describe the

classical theory of trade - Ricardo’s theory of comparative advantage. We then consider two

cases of utilities - linear and piecewise linear concave (plc) and analyse the trade outcomes

of Ricardo’s model and the Heterodox model. Next, we look at the basic di↵erence between

the models by analysing their optimization programs.

Finally, Chapter 8, we conclude by pointing out what was achieved, its economic signifi-

cance, and possible future directions.
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Chapter 1

Review of Market Models

In this chapter, we discuss the two most fundamental market models - Fisher market and

the Arrow-Debrue model, which form the building blocks of the theory described later. We

give their mathematical formulations and analyse some of their algorithmic and analytical

solutions. We describe the Fisher market game and discuss continuity properties of both the

models.

1.1 Fisher Market

The development of general equilibrium theory started with Walras (1874) modelling the

economy to compute prices and investigate the existence of equilibrium and conditions for

its stability and uniqueness. He proposed an iterative process called ‘tatonnement’ to reach

an equilibrium in the economy. In this process, an auctioneer calls for a price p and the

market computes demand and supply which are supposed to equal each other. If those are

not, the auctioneer gives a new price based on the deficit of demand and supply, and the

process terminates when an equilibrium is attained. However, convergence of this process

could not be established and the existence of an equilibrium in general economies was one

of the most sought after questions in Economics.

The existence of equilibrium was only proved in 1951 by Arrow and Debreu though

a celebrated result, which gives a non-constructive proof of existence in a production and
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consumption economy. The result also demonstrated the first theorem of Welfare Economics-

If preferences are locally non-satiated, and (p,X) is a price equilibrium, then the allocation

X is Pareto e�cient and Walras’s law- Value of excess demand and supply always equals

zero, whether or not the economy is in general equilibrium. Prior to Arrow and Debreu’s

work, Fisher had modelled the consumption part of an economy, which can be given as a

special case of the Arrow Debreu market. Fisher market determines prices and allocations of

goods to the buyers, based on their utility preferences. Though AD market is more general,

Fisher market has its own importance due its simplicity and ease of computation. Here, we

first explore the Fisher market, and then move to the AD market.

The input to a typical Fisher market is a set of buyers B s.t. |B| = m, a set of goods G
s.t. |G| = n, a utility function U

i

(x) : Rn ! R for each buyer i, a quantity vector q = (q
j

)
j2G

and a money vector m = (m
i

)
i2B, where x is a set of goods consumed, q

j

is the quantity of

good j, and m
i

is the money possessed by buyer i. Considering linear utilities, we assume

that for every good j, there is a buyer i such that u
ij

> 0 and for every buyer i, there is a

good j such that u
ij

> 0, otherwise we may discard those goods and buyers from the market.

Solution of Fisher market is equilibrium prices p = [p
j

]
j2G and allocations X = [x

ij

]
i2B,j2G

such that they satisfy the following two constraints

Market Clearing: Allocations are such that all goods are completely sold and the

money of all the buyers is exhausted, i.e.

8j 2 G, P
i2B xij

= q
j

and 8i 2 B, P2G pjxij

= m
i

Optimal Goods: Each buyer buys only those goods which give her the maximum utility

per unit of money i.e if x
ij

> 0, then uij

pj
= max uik

pk

Example 1. Consider a 2 buyers, 2 goods market with m1 = 4,m2 = 1, q1 = 2, q2 =

2, (u11, u12) = (1, 0.4) and (u21, u22) = (0.5, 1). Note that the utilities are linear here.

The equilibrium prices of this market are (p1, p2) = (1.79, 0.71) and the unique equilibrium

allocation is (x11, x12, x21, x22) = (2, 0.6, 0, 1.4).

It is also possible to consider markets where we have piece-wise linear concave (plc)

utilities [20]. In this case, we express the utilities with segments to indicate the points

(pieces) where the utilities decrease.
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Example 2. Consider the above market with modified utilities - (u111, u112, u121, u122) =(1,

0.8, 0.4, 0.2) and (u211, u212, u221, u222) =(0.5, 0.35, 1, 0.75), where u
ijk

means buyer i’s

utility for j’th good in the k’th segment. For each good and buyer, let the utilities decrease

after 0.5 units are consumed. In this case, the equilibrium prices are (1.83, 0.67) and the

goods allocation is- (x11, x12, x21, x22) = (2, 0.5, 0, 1.5).

Fisher Forest

We note that when utilities are generic, i.e., satisfy no algebraic relation amongst themselves,

the optimal solution to the Fisher market constitutes a unique weighted forest [1], which is

defined as follows : Let V(H) = G [ B. Let b
i

be the node corresponding to the buyer

i, and g
j

be the node corresponding to good j. We place an edge between b
i

and g
j

, if
uij

pj

= max
k

uik
pk

and call the edges of the solution graph as tight edges. Also, weight of a

particular edge between nodes b
i

and g
j

is the amount of good j allocated to buyer i. For

instance, the forest corresponding to Example 2 given above has four nodes (b1, b2, g1, g2)

and three edges (e11, e12, e22) with weights (2, 0.5, 1.5) respectively i.e., the bipartite graph

is a unique tree with three edges.

1.1.1 Solutions

Recently, many results on the algorithmic computability of Fisher markets have been ob-

tained which include strongly polynomial time algorithms under various settings, primal

dual type convex programs [22], a flow-network solution [17], a simplex-type algorithm [2]

etc. We describe two such solutions, as we use the similar themes later.

Eisenberg-Gale Algorithm

The first Fisher market solution was given for linear utility functions by Eisenberg-Gale,

via a non-linear convex program. The optimal solution of the optimization program or the

primal dual variables capture the equilibrium prices and allocations. We now set up the

conditions and give the program, along with the proof of existence of an equilibrium [17].

Let u
ij

denote the utility buyer i derives after consuming one unit of good j. If the buyer i
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is allocated x
ij

amount of good j 2 G for each j, her total utility is given by

X

j

u
ij

x
ij

Without loss of generality, we may assume that the number of goods produced is 1 in each

case. Next, the important considerations for the program would be -

• Utilities for each buyer should be scalable, i.e., if a buyer multiplies each u
ij

by a

constant k, the solution should remain invariant.

• If buyer i’s money is split into two buyers with same utilities, their total allocations

should equal the initial allocation of buyer i.

Following is the optimization function which maximises the money weighted utilities and

satisfies these conditions

max

 
Y

i

umi
i

! 1P
i mi

Log of its equivalent is used in the Eisenberg Gale convex program

max
X

m
i

log(
X

j

u
ij

x
ij

)

subject to :
P

i

x
ij

 1

x
ij

� 0 8i, j
(1.1)

We interpret the Lagrange variables associated with the first set of conditions as prices p
j

.

Karush-Kuhn-Tucker (KKT) conditions for the optimal solution of this program imply the

following :

• Prices are non-negative, i.e., 8j : p
j

� 0

• If a good has positive price p
j

, its supply is exhausted, i.e., p
j

> 0 implies
P

ij

x
ij

= 1

• For each buyer i, the total utility per total money is weakly larger than utility per

buck from each good ji.e.,
P

j uijxij)

mi
� uij

pj

• If a player i buys good j, its bang per buck is maximized, i.e., x
ij

> 0 implies
P

j uijxij)

mi
=

uij

pj
.
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These conditions imply that an optimal solution to the above program is indeed a market

equilibrium. The KKT conditions extend to the following set of results :

Theorem 1.1.1. For linear utility functions in the Fisher market,

1. If every good j has a potential buyer i, i.e., u
ij

> 0, an equilibrium exists in the market.

2. The equilibrium utilities and prices are unique.

3. The set of equilibrium allocations is convex.

4. If u
ij

and m
i

are rational 8i, j, then the equilibrium solutions are also rational.

We now look at another formulation of Fisher market, which computes the equilibrium

by traversing a simplex-like path.

Simplex-Like algorithm

Here, a new set of optimality conditions is given so that the solution, as guaranteed by the

KKT conditions, lies on a vertex of the corresponding polytope defined. This optimal vertex

can be reached by following a set of vertices, each time decreasing a cost function. In short,

the program is explained as follows:

Let O be a convex polytope in y � p� z space which refers to constraints (1.2-1.8) and

O
aux

be an auxiliary polytope in the y � p space, with constraints (1.2-1.5).

maximize : max
X

i

m
i

log y
i

s.t. : 8i 2 B, j 2 G : u
ij

y
i

 p
j

(1.2)
X

j

p
j

q
j


X

i

m
i

(1.3)

8i, y
i

� 0 (1.4)

8j, p
j

� 0 (1.5)

8i,
X

j

z
ij

 m
i

(1.6)
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8j,
X

i

z
ij

= p
j

q
j

(1.7)

8i, j , z
ij

� 0 (1.8)

Unlike the Eisenberg Gale algorithm, here prices are made as explicit variables and a new

set of variables Z is introduced, which talk about the equilibrium money allocations. Also,

y
i

is used which refers to the inverse of the bang per buck ratio for buyer i. Now, let x
ij

, q,

µ
i

, �
j

be the Lagrangian (dual) variables corresponding to the equations (1.2-1.5).

KKT Conditions for these equations are -

m
i

y
i

=
X

j

u
ij

x
ij

� µ
i

(1.9)

8i, j (u
ij

y
i

� p
j

)x
ij

= 0 (1.10)

(
X

j

p
j

q
j

�
X

i

m
i

)q = 0 (1.11)

8j , �
X

i

x
ij

� �
j

+ q
j

q = 0 (1.12)

8i, j � µ
i

y
i

= 0 (1.13)

8i, j � p
j

�
j

= 0 (1.14)

8i, j x
ij

, µ
i

,�
j

, q � 0 (1.15)

It is proved that the auxiliary polytope O
aux

is a projection of the polytope in the whole

space. If (y, p) is an optimal solution to the auxiliary program, then the KKT conditions

imply that p is an equilibrium price vector. An optimal solution to this is uniquely projected

back to the main polytope, which is our equilibrium solution. It is proved that this solution

is a vertex in the mn+m+n dimensional polytope. To compute the solution, special vertices

are defined which capture the optimality conditions of utility for buying the goods. These

vertices are such that each vertex is the Fisher solution with a di↵erent money endowment.

It is then proved that a simplex like path exists, which reduces the cost function and surplus

of each player when it starts with any special vertex and moves to another, finally reaching

the optimal vertex. A strongly polynomial algorithm is given which follows one such path.

For a detailed analysis, we refer to [2].
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1.1.2 Properties

Continuity of Fisher markets

As we see later in the theory, continuity of Fisher markets is an important and desirable

property. It is shown that in case of linear utilities, Fisher market prices are continuous with

respect to initial endowments m
i

and utilities u
ij

. Moreover, the set of allocations X forms a

correspondence which is upper hemicontinuous for specified U and m. A more general proof

involving AD markets is given later in this chapter.

However, we note that Fisher markets are not always continuous. It is proved that for

plc utilities, neither of the equilibrium prices, allocations or total utilities are upper hemi-

continuous [10]. But, with spending constraints utilities, equilibrium prices are continuous

and allocation and utilities are upper hemicontinuous. These results can be proved using

the network-flow solution to the Fisher market [21].

The Fisher market game

We now set up the Fisher market game, where buyers strategize on utilities to achieve higher

payo↵s. We also list some results regarding Nash equilibria of this game.

This is a one shot non cooperative game, which has m players and the strategy set for i’th

player given by the set of all possible utilities that she may pose, i.e S
i

= {(s
i1, si2, ...sin), sij �

0 8j 2 G,P
j

s
ij

6= 0}. The set of all possible strategies S = S1 ⇥ S2 ⇥ ...S
m

constitutes a

strategy matrix U . The Fisher market solution, i.e., equilibrium prices p(U) and allocations

X(U) for an input of initial endowments are computed using U as the utility functions.

However, the payo↵ functions are given by their true utility functions U
r

and allocations

X(U). In other words, if player i with a true utility function U
ri

gets allocation X
i

(U) in

the Fisher market game, her payo↵ is given by
P

j

ur

ij

X
ij

(U). The following example gives

the motivation and illustrates the definition.

Example 3. Let us consider a 2 player Fisher market with m1 = 1, m2 = 1 and two goods

with quantities q1 = 1 and q2 = 1. Let U
r

, i.e., true utilities be given by (2, 1) and (1, 2) for

player 1 and 2 respectively. The equilibrium prices for this Fisher market are p1 = p2 = 1

and the allocations are (1, 0, 0, 1). Total utilities are (2, 2). Now, the player 1 strategizes on
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her utilities as follows- U1 = (0.8, 1). The equilibrium prices are (89 ,
10
9 ) and the allocations

are (1, 1/10, 0, 9/10). The total utilities are (2.1, 1.8), where buyer-1 gets more utility after

strategizing. Note that total utilities are still calculated using U
r

, i.e., the true utilities.

We now give a few definitions and state some of the key observations and results. A

strategy profile is called a Nash equilibrium strategy profile (NESP) if no player has a

strategy that gives a better payo↵, when all other players have fixed strategies. A strategy

is called conflict-free if there is an equilibrium allocation that gives maximum payo↵ to all

players. A symmetric profile is one where all players play the same strategy.

• All NESPs are conflict free. Moreover, a symmetric profile is a NESP if and only if it

is conflict free.

• All NESPs need not be symmetric and the payo↵ w.r.t. a NESP need not be Pareto

optimal.

• For two player markets, all NESPs are symmetric. The set of NESPs form a piecewise

linear concave (plc) curve and all these payo↵s are Pareto optimal.

• For these markets, strategizing on utilities is same as di↵ering initial endowments.

• There may exist NESPs, where social welfare (sum of all payo↵s) is larger than that

of the Fisher payo↵.

For a detailed analysis and proofs, we refer to [1].

1.2 Arrow - Debreu Market

We see that Fisher market models only the consumption part of the economy, where it

requires agents to have endowments of money and production amounts in the market. Arrow

Debreu (AD) market generalizes the Fisher market where agents earn their incomes by

producing and exchanging the goods. Arrow Debreu proved that under certain conditions like

perfect competition, convex preferences and production etc., there must exist prices such that

aggregate demand equals aggregate production [3]. The proof mainly uses Kakutani fixed
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point theorem and is non constructive. So far, there has been no computational way to solve

for the most general case, though there are proposed solutions for simpler settings. Mainly,

the existing literature focuses on the exchange economy, i.e., the Arrow Debreu market

without production. Here, we describe the general model, its assumptions and solutions for

some specific markets [15].

1. Let us consider a finite set of firms F , indexed j = 1, ...l. Let the possible production

technologies be represented by a nonempty set Y
j

where an element y in Y
j

represents a

technically possible combination of inputs (raw goods) and outputs (produced goods).

We assume that Y
j

is convex, bounded, closed and includes 0 for every j. The bound-

edness assumption is relaxed in the general model. We also assume that there can be

no outputs without inputs and there does not exist any way to transform outputs to

inputs.

2. We define S
j

as the optimal supply function of firm j

S
j

(p) = { y⇤|y⇤ 2 Y
j

, p · y⇤ � p · y 8y 2 Y
j

}

Under the above assumptions, S
j

is nonempty, convex, and upper hemicontinuous for

all p 2 Rn

+, p 6= 0.

3. Let us consider a finite set of agents/households H, indexed i = 1, ...m. Let X
i

2 Rn

+

denote the set of possible consumption plans of agent i. We assume that X
i

is closed,

convex and unbounded above for each i.

4. The economy’s initial endowment of resources is denoted as r 2 Rn. Each household

has an initial endowment of goods given by ri so that
P

ri = r. Let y 2 Y =
P

j

Y
j

.

The vector y is said to be attainable if y + r � 0.

5. Firm j’s profit function is

⇡
j

(p) = max
y2Yj

(p · y) = p · S
j

(p)

Each household i has shares in firm j0s profit given by ↵
ij

so that
P

i

↵
ij

= 1.

6. Each agent is endowed with a convex preference quasi ordering �
i

on X
i

. It is proved

that the ordering can be represented by a continuous real-valued function u
i

which is
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the utility function for each i. We assume that there is always universal scarcity, i.e.,

for x
i

2 X
i

, there exists y
i

so that agent i values it more than x
i

. We also assume that

the sets A
i

(x0) = {x|x 2 X
i

, x �
i

x0} and G
i

(x0) = {x|x 2 X
i

, x0 �i

x} are closed.

7. Income of agent i is defined as-

M
i

(p) = p · r
i

+
X

j2F

↵
ij

⇡
j

(p)

The artificially restricted convex budget set is defined as -

B
i

(p) = {x
i

|x
i

2 Rn, p · x
i

 M
i

(p), |x|  c}

c is defined so that |x| < c for all attainable X. Existence of such c can be proved

using assumptions in 1.

8. Each agent has a convex demand set given by -

D
i

(p) = {x
i

|x
i

2 B
i

(p) \X
i

, x
i

�
i

y 8 y 2 B
i

(p) \X
i

}

B
i

(p) \ X
i

is continuous (lower and upper hemicontinuous), compact valued, and

nonempty for all p 2 P . Also, D
i

(p) is upper hemicontinuous, convex, nonempty,

and compact for all p 2 P .

9. We assume that for all i in H,

M
i

(p) > inf
x2Xi\{x||x|c}

p · x 8 p 2 P

For x 2 D
i

(p), it can be proved that p · x  M
i

(p). Moreover, if p · x < M
i

(p), |x| = c.

10. The excess demand correspondence at prices p is defined as Z(p) = D(p) � S(p) � r.

Under the assumptions given above, the weak Walrus’s law states that (p · z)  0. If

(p · z) < 0, there exists k = 1, 2, ...N such that z
k

> 0. Furthermore, if Z(p) is well

defined, then (p · z) = 0.

Arrow and Debreu proved that under the assumptions and specifications mentioned above,

there always exists a competitive market equilibrium P . Precisely, the following four

conditions should be satisfied for an equilibrium to exist. A set of vectors

(y1, y2, ...yl, P1, P2, ...Pn

, x1, x2, ...xm

, ) is said to be an equilibrium if
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1. y⇤
j

maximizes y
j

·P over the set Y
j

, for each firm j. In other words, y⇤
j

belongs to S
j

(P )

for each j.

2. x
i

maximizes u
i

(x
i

) over the set B
i

(P ), i.e., x
i

2 D
i

(P ).

3. Prices are non negative, bounded and not all are zero. Without loss of generality, we

can assume that
P

j

p
j

= 1.

4. Z(P )  0. Moreover, p
k

= 0 when Z
k

(P ) < 0.

The results can be extended to a general economy with unbounded technology and demand-

supply functions since the equilibrium of the restricted economy is an equilibrium in the

unrestricted economy too, as shown using Walrus’s law. We omit the proofs for brevity and

refer to Chapters 11-18 from the book General Equilibrium Theory [15].

1.2.1 Solutions

For complete AD markets, a first polynomial time algorithm for nested CES (constant elas-

ticity of substitution) utility and production functions was given by Codenotti et. al. [18].

It is proved that for SPLC (separable, piecewise linear concave) utility and production func-

tions, computation of equilibrium is PPAD complete [20]. However, for a fixed number of

either goods or agents, a polynomial time algorithm is proved [6]. Following is a polynomial

time result for the most general case so far- for SPLC utilities and polyhedral production

sets with constant number of goods [19].

Markets with production- LCP formulation

Here, we give the basic LCP formulation for AD markets with SPLC utilities and polyhedral

production sets. Using Lemke algorithm, as given in Appendix A, it is then possible to

solve for the equilibrium solution. Along with the AD ones, following are the additional

assumptions for this setup-

• For each pair of agent i and good j, we have a non-decreasing, piece-wise linear con-

cave utility function so that the utility i derives from a bundle of goods is additively
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separable (SPLC) over goods. There are |U
i

| � 2 segments and the k0th segment is

identified by ui

jk

= Slope c and li
kj

= length b�a. Length of the last segment is infinity.

• Similar to the utility function, we assume that production is also SPLC. Every firm f

produces exactly one good j
f

using a set of goods as raw material. It is assumed that

the initial endowment of each good is equal to one. Slope of the segments define the

rate at which a good can be produced. We have slope c = ↵f

jk

and length of
jk

= b� a.

We recall that agent i earns ri · p from initial endowment ri and
P

f

✓
fi

⇡
f

from profit shares

in firms, where ⇡
f

is firm f ’s total profit. Optimal production plan of firm f is given by the

following linear program, where xf

jk

denotes the amount of raw good j used by firm f .

max
j,k

xf

jk

(↵f

jk

p
jf
� p

j

) Subject to 0  xf

jk

 of
jk

Let �f

jk

denote the dual variables corresponding to the above inequalities, which capture the

profit on segment (f, j, k). Letting af
jk

= xf

jk

p
j

as the amount of money spent on raw goods,

sf
jk

as the money spent for buying goods and Rf

jk

as the total revenue of firm f , we have the

following LCP formulation.

8(f, j, k) : ↵f

jk

p
jf
� p

j

 �f

jk

and af
jk

(↵f

jk

p
jf
� p

j

� �f

jk

) = 0 (1.16)

8(f, j, k) : af
jk

 of
jk

p
j

and �f

jk

(af
jk

� of
jk

p
j

) = 0 (1.17)

8(f, j, k) : Rf

jk

= af
jk

+ of
jk

�f

jk

and 8 ⇡
f

=
X

jk

of
jk

�f

jk

(1.18)

8j 2 G :
X

i,k

si
jk

+
X

f,k

af
jk

 p
j

+
X

f2F (j),j0,k

Rf

jk

and p
j

(
X

i,k

si
jk

+
X

f,k

af
jk

�p
j

�
X

f2F (j),j0,k

Rf

jk

) = 0

(1.19)

8i 2 H :
X

j,k

ri
j

p
j

+
X

f

✓f
i

⇡
f


X

j,k

sf
jk

and �
i

(
X

j,k

ri
j

p
j

+
X

f

✓f
i

⇡
f

�
X

j,k

sf
jk

) = 0 (1.20)

8(i, j, k) : uf

jk

�
i

 p
j

+ �i

jk

and si
jk

(uf

jk

�
i

� p
j

� �i

jk

) = 0 (1.21)

8(i, j, k) : si
jk

 li
jk

p
j

and �
i

(si
jk

� li
jk

p
j

) = 0 (1.22)
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We note that (1.19) and (1.20) are the market clearing constraints with F (j) being the

set of firms producing good j. The last two equations (1.21) and (1.22) characterize the

optimal bundle for each player i. Given prices p, earnings of each agent is fixed. In case of

splc utilities, optimal bundle for each buyer can be computed as follows: using the prices,

bang per buck of every good is computed and all segments are sorted by decreasing bang

per buck. Equivalence classes are formed and the buyer starts buying partitions in order, till

she exhausts her money in say k’th partition. Class k is called flexible and �
i

is the inverse

of bang per buck for that segment. Classes 1, ..k � 1 are called forced and �f

jk

is introduced

for those so that for segment (i, j, k), 1/�
i

= ui

jk

/(p
j

+ �i

jk

).

It can be proved that any equilibrium of market is a solution to the LCP so described.

This is done by checking that the equilibrium variables and other defined quantities satisfy

the above constraints. However, we note that the above formulation has two disadvantages,

which are degeneracy and existence of solutions which are not equilibria. The Lemke algo-

rithm which provides solutions for LCP does not account for degenerate formulations. Thus

we modify the above equations by replacing p
j

with p
0
j

+c
j

so that the equations become non-

homogeneous. It is then proved that Lemke’s algorithm can be used to compute solutions,

where it always attains an equilibrium. (Appendix A)

1.2.2 Properties

Exchange markets and Reduction to Fisher market

The most studied version of the AD markets is the exchange economy, i.e., markets with-

out production. Exchange economy is similar to the Fisher market, except the buyers

have initial endowments of goods instead of money. The economy achieves an equilib-

rium by deriving prices so that each buyer gets an optimal bundle of goods through ex-

change. Each buyer/agent i has endowment (e
i1, ei2, ...ein) of n goods and utility preferences

U
i

(x
i1, xi2...xin

) : Rn ! R. No new goods are produced in the economy and hence, the

total supply of goods is (
P

i

e
i1,
P

i

e
i2, ...

P
i

e
in

). A solution to this market is prices p and

allocations X such that (i) all goods are completely exhausted (ii) all agents maximize their

payo↵s, i.e., bang per buck conditions are satisfied. Thus, through this market, agents ex-

change their goods to determine optimal prices and allocations, thereby maximizing their

own payo↵. We now see how Fisher market can be modelled as a special case of these.
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Let us consider a Fisher market [m] as the set of agents and [n] as the set of goods. Let

U
i

: Rn ! R be the utility function for each agent i and m
i

be the initial money endowment.

Let q
j

be the amount of good j available and t =
P

i

m
i

be the total money in the market.

To see this as an exchange AD market, we add an agent i = m + 1 and a good j = n + 1

which is money so that there are m+1 agents and n+1 goods. In line with the new market,

agent m+ 1 has initial endowment (q1, q2, ...qn, 0), i.e., all goods and zero amount of money.

Similarly, agent i’s endowment is given by (0, 0, ..0,m
i

). For utility functions U
0
i

, we see

that for i = 1, ..m, utility for money is zero i.e U
0
i

(x
i1, xi2...xin

, e
i

) = U
i

(x
i1, xi2...xin

) for any

money allocation e
i

. On the other hand, agent m+1 has nonzero utility only towards money,

i.e., U
m+1(xi1, xi2...xin

, x
m+1) = x

m+1. This completes the specification of AD economy as

an instance of the Fisher market.

It is easy to see that the solution to above market is a Fisher solution too. This is because

after the market clears, agent m+1 gets all the money as she is the only agent with positive

utility towards it. Similarly, all goods are exhausted as agent m+1 has zero utility towards

those. Moreover, each buyer maximizes the payo↵ given the consumption constraints.

There are multiple ways to find an equilibrium in the exchange economy. For a linear

model of exchange, a finite time algorithm based on Lemke’s scheme, a polynomial time

algorithm using ellipsoid method and interior point method as well as a combinatorial type

algorithm is given. For the general model, some combinatorial type algorithms are known,

but no strongly polynomial time algorithm is known so far.

Continuity of AD markets

For AD markets without production, it is proved that equilibrium allocations and total

utilities for the linear utilities case are upper hemicontinuous with respect to the utilities.

However, equilibrium prices are not upper hemicontinuous. We give a short proof of the first

result here [10].

We first consider the convex program given by Jain [9] which captures equilibrium alloca-

tions and utilities. Without loss of generality, we assume that each agent has an endowment

of a unique good. Let G be the directed graph formed by the set of n agents as nodes and
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edges e
ij

only if u
ij

> 0. We define w(i, j) =
P

0tn uitxit

uij
. Now, consider the convex program.

8 i, j : x
ij

� 0

8 j :
P

i

x
ij

= 1

For every cycle C in G :
Q

(i,j)2C w(i, j) � 1

(1.23)

It is proved that an allocation x is an equilibrium allocation if an only if it is a feasible point

of this convex program. Using this result, we now prove that a small change in the utilities

leads to a small enough change in allocations and total utilities.

Theorem 1.2.1. In an exchange economy of the AD market with linear utilities, equilibrium

allocation and utility are upper hemicontinuous.

Proof. Let {U
k

} be a sequence of utilities such that U
k

! U0. Let xk

2 X(U
k

) be a sequence

of allocations such that x
k

! x0. According to the definition of upper hemicontinuity, we

have to prove that x0 2 X(U0).

As stated earlier, x
k

should be a feasible point in the convex program given above, for

every k. Let G
k

be the graph formed by all the edges where uk

ij

> 0. We now have that

(1.23) holds for each k.

Now consider graph G0. As U
k

! U0, for large enough k, we have uk

ij

> 0 for every i, j

such that u0
ij

> 0. Therefore, if an edge (i, j) is present in G0, then it is present in G
k

as well.

This implies that for large enough k, if G0 has cycle C, G
k

also has it. This ensures that

the third condition above is satisfied. As k ! 1, we see that the other two conditions are

satisfied as well. Thus, we prove that x0 2 X(U0), i.e., allocation is upper hemicontinuous.

As the total utility is a linear function of X, we see that both equilibrium allocation and

utility are upper hemicontinuous.

As described earlier, this result also implies the continuity of Fisher markets.
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Chapter 2

Heterodox Model Theory

In this chapter, we describe the Heterodox ModelH(C,P) as composed of two interconnected

systems, the consumption model C and the production model P , which are coupled through

two optimization functions fC and fP . We also set up the tatonnement as an iterative

interaction between C and P , and analyse some of its properties.

2.1 The Basic Notation and Assumptions

• A good can be both, a fixed unit of service or an output of a manufacturing plant,

made available in a fixed time interval, called epoch, for example, a year. The set of

goods is denoted by G = {G1, . . . , Gm

}. Also, q is a (m⇥ 1) column vector with q
j

is

the amount of good G
j

manufactured and p is an 1⇥m row vector with p
j

being the

price of each good G
j

,

• The whole population in the economy consists of agents divided into distinct classes

according to their training. Thus, let L = {L1, . . . , Lk

} be these classes of labour, with

each class L
i

willing to devote Y
i

units (e.g., person-years) of labour in every epoch.

Thus, Y forms a k ⇥ 1 vector.

• Each (manufactured) good G
i

has exactly one production process or technology T
i

and

each T
i

is a linear map T
i

: L ! R. These tell us the amount of each labour-class

required to produce each unit of good G
i

. The class of all such technologies is denoted
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by T , which is represented as a k ⇥m-matrix T with column T
j

. Thus, in matrix T ,

T
ij

is the the amount of labour L
i

needed to produce G
i

.

• For each labour class L
i

, we have utility u
ij

for each good G
j

. We assume that utilities

are same for all persons in one labour class and are measured in happiness per person

per kilo units. For example, u
ij

is the happiness derived by a person from class L
i

by

consuming a unit of good G
j

. We denote the matrix formed by u
ij

entries as U.

• We denote w
i

as the wages received by a person from class L
i

in one epoch. Thus, w
i

is measured in Rs per person per epoch units.

Further, without loss of generality, we assume that for each labour class, there are technolo-

gies which utilize them. We also assume that the entries of T, Y and U are all in general

position and satisfy no algebraic relation amongst themselves.

Remark 2.1.1. The construction of the Technology matrix T is according to the Sra↵a’s

theory of value, which argues that value of any good is ultimately equal to value of the labour

gone into making it [8].

2.2 Theory

2.2.1 The consumption space C

Consumption in our economy is modelled as a Fisher market. Recall that, in a Fisher market,

there are k buyers (L, as in our case), and m goods (G). Each agent L
i

is endowed with

money m
i

, and each good G
j

has quantity q
j

for sale.

Solution of Fisher market is equilibrium prices p = [p
j

]
j2G and allocationsX = [x

ij

]
i2B,j2G

such that they satisfy the following two constraints

Market Clearing: Allocations are such that all goods are completely sold and the money

of all the buyers is exhausted, i.e.

8j 2 G,
P

i2L xij

= q
j

and 8i 2 L, P2G p
j

x
ij

= m
i

The consumption space is defined as: C(m, q) = {X, p|X, p satisfy market clearance}.
Next, on the set C(m, q) we define a solution to the Fisher market as one which satisfies:
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Optimal Goods: Each buyer buys only those goods which give her the maximum utility

per unit of money i.e if x
ij

> 0, then uij

pj
= max uik

pk

2.2.2 The production space P

The production space P(p) is the collection of all wages w and quantities q such that:

Tq  Y (2.1)

q
j

· (p
j

� (wT )
j

) � 0 (2.2)

q � 0 (2.3)

Note that the first condition states that the quantities of goods produced are limited by

labour constraints, while the second says that unprofitable goods are not produced.

The global maximization function fP is defined as
P

j

p
j

q
j

, i.e, revenue maximization.

However, we must specify how wages w get decided. For this, we consider the following

relaxation LP program:
max

q

pT q

s.t. Tq  Y

q
j

� 0 8j 2 G

(2.4)

To find the wages, we consider its dual program -

min
�1

�T

1 Y

s.t. �T

1 T � pT
(2.5)

Or
h
�1 �2

i
·
"

T

�I

#
=
h
p
i

where �1 and �2 correspond to the dual variables associated with the first and second in-

equalities respectively. Here, �1 and �2 are 1⇥m and 1⇥ n vectors respectively.

We take w = �1 as the wages determined by fP . Karush-Kuhn-Tucker (KKT) conditions

for the primal and dual program have the following implications-

1. If q
i

> 0, then �2i = 0.
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Therefore, it follows from (2.5) that �1iTi

= p
i

, i.e., wT
i

= p
i

.

2. If �1iTi

6= p
i

, i.e., wT
i

6= p
i

, then q
i

= 0 as �2i 6= 0.

3. If (Tq)
i

< Y , then �1i = 0, i.e., corresponding w
i

is zero.

4. Similarly, if w
i

> 0, then (Tq)
i

= Y
i

.

In particular, we see that the inequality in the dual program, viz. wTT � pT , is opposite

of the required constraint. However, in accordance with (6.2), complementary slackness

implies q
j

(p
j

� (wT )
j

) = 0. The conditions reduce T to a matrix T
0
where all constraints

are satisfied and tight for the active goods and classes. By ‘active’ goods and classes, we

refer to the variables which are positive. Let the corresponding prices, production and wages

be p0, q0, w0. We can find wages as the dual variables �1. We see that the tight equation

p0 = w0T
0
can also be derived through the marginal law of production as follows.

We see that the dual variables w actually correspond to the wages given by the marginal

law of production. We determine the wages w in terms of p. For w
i

, we find the marginal

product valued at the prices p. In other words, let �
i

be the extra production obtained

by an additional unit of labour of type L
i

. According to the marginal law of production,

the wages w
i

may then be equated to �
i

valued at price p. Let e
i

be the |L|-sized vector

with 1 for the i-th place and zero everywhere else. Clearly, T (q
J

+ �
i

) = Y + e
i

, gives us

w
i

· T (e
i

) = p. Thus, each w
i

is a specific linear combination of elements of p
J

.

We also see that total money is conserved in the economy, i.e., pq = wTq = wY holds

true. This sets up a remarkable result which connects wages and production amounts as the

dual variables of each other.

2.3 Tatonnement Process

We now set up the tatonnement process, in accordance with the Theory of General Equilib-

rium by Walrus [14]. In this process, an auctioneer calls for prices p and accordingly demand

and supply states are computed. Based on these, the auctioneer increases or decreases the

prices so as to attain the new states. The process terminates when an equilibrium is achieved,

i.e., when demand equals supply. Similarly, in Heterodox settings, the basic objective of the
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tatonnement process is to arrive at an equilibrium ⌘ = (p, q, w,X) such that (i) p,X are the

outputs of the consumption side Fisher market if inputs are the money vector w · Y , and

quantities q, and (ii) q, w are the optimal solutions on the production side on input p. The

process begins with a candidate ⌘ and checks first if ⌘ is indeed an equilibrium. If not, it

updates alternately, the consumption side and the production side.

The detailed description of the iterator function is given below.

1. Input ⌘0 = (p0, q0, w0, X0). Put n = 0.

2. We first check if the state (p
n

, q
n

, w
n

, X
n

) is an equilibrium. This is done by first

checking if (q
n

, w
n

) is an optimal solution to fP in the process P with input p
n

. Next,

we check if (p
n

, X
n

) satisfy the optimality conditions for the function fC with inputs

(W
n

, q
n

), where W
n

= w
n

·Y , the total wages. If it does indeed satisfy both conditions,

we declare the point ⌘
n

as a Heterodox equilibrium.

3. If ⌘
n

is not in equilibrium, we follow the iterative steps below.

4. Using p
n

, we first compute (q
n+1, wn+1) by optimizing fP . This is the n-th production-

side update.

5. We next find (p
n+1, Xn+1) through the process fC using the input (q

n+1,Wn+1).

6. Note that p
n+1 does not set prices for goods not produced. These are set, assuming

that a small ✏ is indeed produced and predicting its price. Thus if b1, . . . , bk are the

maximum bang per buck values for the players, then

p
j

= max
i

u
ij

b
i

This tells us that when these Fisher-like prices are o↵ered, for (at least) one player,

the maximum bang per buck ratio equals the ratio these prices give, making the player

buy the good. The computation of p as before and its modification is called C(n), i.e.,
the n-th consumption-side update.

7. This completes the definition of ⌘
n+1. We go back to Step 2.

Remark 2.3.1. The Tatonnement process so defined is in general not continuous as it

involves optimising over two polytopes.
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We now illustrate two examples of equilibria obtained through the above iterative process.

Example 4. Let us consider a 3 classes - 3 goods market with following specifications for

technology, utility and labour availability.

T =

2

64
1 0 2

3 4 0

0.5 2.5 2

3

75 ; U =

2

64
1.5 0.41 0

0.58 1.1 0.2

0.5 1.4 0.6

3

75 ; Y =

2

64
1

1

1

3

75

Starting with a random price vector [0.7379, 0.9379, 0.3617], the tatonnement process

converges to an equilibrium point in 3 iterations, with the prices, production and wages in

each iteration given by-

2

6664

p1
p2
p3
p4

3

7775
=

2

6664

2.0408 3.8706 0.7037

1.5961 3.027 1.2973

1.5099 2.8636 1.2273

1.5099 2.8636 1.2273

3

7775
;

2

6664

q1
q2
q3
q4

3

7775
=

2

6664

0.2632 0.0526 0.3684

0 0.25 0.1875

0.2631 0.0526 0.3684

0.2631 0.0526 0.3684

3

7775
;

2

6664

w1

w2

w3

w4

3

7775
=

2

6664

0.31636 0.52007 0.16357

0 0.68 0.32

0.086693 0.3865 0.52681

0.086693 0.3865 0.52681

3

7775

And the allocations are given by the forest-

Example 5. Let us now consider a (2⇥ 2) market with the following market specifications -

T =

"
0.25 0

0.25 1

#
; U =

"
1 0.81

1.234 1

#
; Y =

"
2

4

#
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The tatonnement process converges to the following output of prices, production and wages,

when it starts with p0 = [0.14196, 0.75972]

2

64
q1
q2
q3

3

75 =

2

64
0 4

8 2

8 2

3

75

2

64
p1
p2
p3

3

75 =

2

64
0.3085 0.25

0.10394 0.084232

0.10394 0.084232

3

75

2

64
w1

w2

w3

3

75 =

2

64
0 1

0.66307 0.33693

0.66307 0.33693

3

75

The solution forest and the allocations are -

2.3.1 Analysis of the Tatonnement process

The tatonnement process does not always converge and it may alternate between two or more

states. In each state, a di↵erent production set and/or set of active classes is chosen, though

there may be overlaps of multiple active goods/classes. This happens when production and

consumption do not agree on a common set of active goods and classes, but cyclically choose

two or more states. We illustrate with two such examples.

Example 6. Consider a 2 classes - 3 goods market with the following specifications.

T =

"
0.62 0.75 0.49

0.36 0.41 0.69

#
; U =

"
0.47 0.27 0.5

0.56 0.75 0.65

#
; Y =

"
10

10

#

Here, both classes contribute in manufacturing the goods and have di↵erent utilities for those.

The solution consists of two toggling states, each producing two goods. In both states, all
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classes remain active. The production, prices and wages for these two states are-

Prod =

"
0 6.29 10.65

8.01 0 10.2

#
; Prices =

"
0.06 0.05 0.06

0.05 0.07 0.06

#
; Wages =

"
0.68 0.32

0.64 0.36

#

Where first row represents first state and vice versa. For instance, in state 1, class-1 receives

0.68 and class-2 receives 0.32 wages. The total money in the economy is kept 1 and the

values are reported to 2 significant digits. The results can be interpreted by computing the

ensemble average of the system. It should be noted that the most produced goods result from

their demand as well as their e�cient production as compared to other goods. This is a

consequence of the coupling of Utility and Technology inputs.

Example 7. Let us now consider a 3 classes - 3 goods market with following specifications.

T =

2

64
0.05 1 0.9

0.5 0.8 0.15

0.4 0.5 0.4

3

75 ; U =

2

64
0.2 0.3 0.8

0.9 0.2 0.4

0.25 0.85 0.33

3

75 ; Y =

2

64
10

10

10

3

75

The production, prices and wages, as computed by the function described before, are-

Prod =

"
4.35 9.78 0

14.7 0 10.3

#
;Prices =

"
0.11 0.05 0.14

0.04 0.12 0.05

#
;Wages =

"
0.52 0.48 0

0.12 0 0.88

#

The above two states toggle cyclically. In this case it is not possible for a state to exist

where all goods and classes are simultaneously active. The solution involves two states,

where class-1 and good-1 are active in both of them and other goods and classes alternate

between the two. In general, we see that fP implies the following necessary condition for an

equilibrium to exist with a given set of active goods and classes. For all goods (j) that are

not active in the economy, we have

p
j

= max
i

u
ij

b
i

(U- Level) <
X

i

T
ij

w
i

(T- Level)

As we see earlier, if a good is not produced, it is allotted a Fisher like price, which is the

U -level defined above. All produced goods have their prices greater than or equal to their

U -levels. It is clear that if U -Level for an unproduced good j is more that its T -Level, i.e.,

p
j

> (w · T )
j

, then it being profitable, that good becomes active in the next iteration, by

perhaps pushing a less e�cient good out of production.
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As seen from the examples, this method does work similar to the tatonnement process

given in Walrus’ theory of general equilibrium [14]. It too starts with a price vector, computes

production and wages and gives a next set of prices based on these market variables. It is

clear that the process terminates if and only if it attains an equilibrium. From the above

example, we see that the process may not always converge, and there may be toggling

states. Moreover, it can be observed that equilibria whose Fisher forests are disconnected

are unlikely to arise from the above process, even though they are fixed points. We thus

make a distinction between a heterodox equilibrium or a fixed point and a limit point of the

tatonnement process. We now make the following observation.

Theorem 2.3.1. For a generic economy T, U, Y , the tatonnement process results in sym-

metric states.

Proof. Let p be a generic price vector to start with. Using p, we find the optimal production

and wages as linear combinations of the prices, thereby determining the active goods and

classes. We recall the dual program of the optimization function fP-

max
q

pT q

s.t. Tq  Y

q
j

� 0 8j 2 G

min
w

wTY

s.t. wT � p

w
i

� 0 8i 2 B

(2.6)

Using KKT conditions for the primal and dual program, we get-

1. If q
i

> 0, then wT
i

= p
i

. If wT
i

6= p
i

, then q
i

= 0 .

2. If (Tq)
i

< Y , then corresponding w
i

is zero.

These observations imply that that for all q
i

that are positive, the same number of corre-

sponding wages are positive, when p is generic. Thus, the conditions reduce T to a square

matrix T
0
where all constraints are satisfied and tight for the active goods and classes. This

means that the tatonnement results are always symmetric.
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Chapter 3

Existence of A Heterodox Equilibrium

In this chapter, we prove that the Heterodox model so described indeed has an equilibrium.

We use the celebrated result of existence of equilibrium in A-D markets by Arrow and Debreu

[3]. We construct an Arrow-Debreu (A-D) market ĀD from the heterodox model M̄(T, U, Y ),

and show the equivalence of the equilibrium points in the Heterodox model and the market

equilibria in the A-D sense. We refer to the notation set up in Chapter 1.

3.1 Heterodox Model as An A-D instance

We shall now build a suitable A-D market, given the data T, U, Y for M̄ . We assume that T

and U are m⇥n, i.e., there are m labour classes and n processed goods, and Y is the m⇥ 1

vector of labour class size. Recall that, T
ij

refers to the number of labour-units of type i

required to produce one unit of good j. The labour availability is given as a vector Y . We

now construct ĀD as follows.

• The set of firms in ĀD is F = {f1, . . . , fn}. The total number of goods are n+m, viz.,

{g1, . . . , gn, r1, . . . , rm}, where r
i

corresponds to the labour of class i. The number of

agents is m, and each agent A
i

begins with an endowment Y
i

of good r
i

above. We

call labour inputs as ‘raw’ goods, i.e., the labour per hours of the producers are the

raw goods that are needed to produce m goods.
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• The supply function of f
j

is S(p̄) which arises from the column j of T . Define v
j

as

the (m+ n) vector g
j

�P
k

T
kj

r
k

to represent that T
kj

units of labour type k are used

to make one unit of good g
j

. Then Y = {� · v
j

|� 2 [0, L]} where L is a large number.

Thus firm f
j

produces some multiple of v
j

. As the production functions are linear,

they satisfy all the assumptions specified by the A-D model.

• Agent A
i

owns a fraction ↵
ij

of the firm f
j

. The exact numbers will be irrelevant since

we will see that in equilibrium, the firms make zero profits. Hence, M
i

(p̄) is defined

as p̄ · r
i

= w̄
i

⇥ 1(labour input of one agent)= w̄
i

, as production is decided so that all

labour units are consumed.

• X
i

is the set of consumption plans and is unbounded for every j. It can be easily seen

that the sets A
i

(x0) and G
i

(x0) are closed for each x0 2 X
i

.

• The utility matrix serves to define the continuous real valued utility function u
i

for each

agent i. If X
ij

� 0 is the amount of good j allocated to agent i, then u
i

=
P

j

u
ij

X
ij

.

Utilities are zero for labour units hours, i.e., U
ij

= 0 for j > n, as it is only the firms

which have any use for labour. Since the utilities are linear, it is clear that the principle

of non-satiation holds.

• Budget set B
i

(p̄) and demand set D
i

(p̄) are defined appropriately so that each buyer

buys according to their preferences and exhausts all the money available. Z(p̄) =

D(p̄)� S(p̄)� r is defined as a di↵erence of demand and supply.

This completes the specification of the A-D market ĀD. An A-D equilibrium of the ĀD are

prices p1, . . . , pn, pn+1 = w1, pn+m

= w
m

, production q
j

·v
j

2 Y
j

and allocations X
ij

such that

(i) each firm maximizes profits p
j

q
j

· v
j

under the given global labour constraints, (ii) each

agent A
i

maximizes her utility under the expenditure constraint of the wages received from

endowments Y
i

priced at wages w
i

and (iii) Z(P )  0. Moreover, p
k

= 0 when Z
k

(P ) < 0,

i.e., demand meets supply for each good only when the corresponding price is nonzero.

3.2 Heterodox Equilibrium as A Fixed Point in AD

For the market M̄(T, U, Y ), we denote an Heterodox equilibrium as (p̄, q̄, w̄, X̄). Let us

assume that in the (m⇥n) market, in the above equilibrium, it is the first m0 labour classes
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and the first n0 goods which are active. We let (p, q, w) denote the prices, production and

wages of active goods and labour, i.e., p̄ = (p, p
M

), q̄ = (q, 0̄) and w̄ = (w, 0̄). As defined in

the Heterodox model, p
M

refers to the modified prices of the unproduced goods.

By the feasibility of the equilibrium and the activity conditions, we have,

T q̄  Y

w̄T � p̄

and

T
0
q = Y

0

wT
0
= p

where T
0
is the reduced technology matrix and Y

0
is the reduced Y vector in accordance with

the active goods and classes. Let Ȳ = (Y
0
, 0̄) be the amount of labour used. The variables

are such that the production is optimal given p and prices are solutions to Fisher market.

Also, by the price-setting mechanism of unproduced goods p
n

0+1, ...pn, and the choice of w̄

as the dual variables, we have

p
j

= max
i

u
ij

b
i

(U- Level) <
X

i

T
ij

w
i

(T- Level)

where b
i

refers to the bang per buck ratio of i’s agent.

We note that the definition of Y
i

includes all possible plans, even if those are unattainable.

Here, the technology is linear for each good and thus, unbounded. We have artificially

restricted it by considering an unattainable plan L which consumes more labour units than

available, i.e., Y .

Proposition 3.2.1. Let M̄(T, U, Y ) be the market with a Heterodox equilibrium point

(p̄, q̄, w̄, X̄) as described above. Let P = (p̄, w̄) and Q = (q̄, Ȳ ). Then, (P,Q, X̄) is an

equilibrium in the A-D market.

Proof. By definition of A-D equilibrium, we need to prove that y
j

= q
j

· v
j

2 S
i

(P ) for all

firms, X̄
i

2 D
i

(p) for all labour classes and Z(P )  0 and P
k

= 0 for Z
k

(P ) < 0. For the

last condition, as per the definition of p̄, we want Z
k

 0 for k = n0 + 1, ..n and Z
k

= 0 for

k = 1, 2, ..n0. Similarly, by the definition of w̄, Z
k

 0 for k = n+m0+1, ..n+m and Z
k

= 0

for k = n+1, ..n+m0. This translates to saying that all ‘produced’ and ‘raw’ goods satisfying
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T 0q = Y 0 should be exhausted and all ‘raw’ goods satisfying T 0q < Y 0 should receive zero

wages.

• Let us first consider the active goods and classes, i.e., k = 1, 2, ..n0 and k = n+1, ..n+

m0. We prove that each firm maximizes the profit, given the global constraints. For

firm i, let v⇤
i

= (q
i

,�l
i

) maximize the profit, given that it lies in the set of production

possible technologies i.e v⇤ 2 S
i

(p). Here, l
i

is a vector of the amount of labour units

consumed in making q
i

amount of good i. For all i, v⇤
i

should satisfy

max
y

p
i

q
i

� w · l
i

= p
i

q
i

� (w · T 0

⇤,i)qi

s.t. q
i

, l
i

� 0,
(3.1)

Using the Technology matrix, here we have l
i

given by q
i

(T
0
⇤,i).

We note that since p = wT
0
, the expression p

i

q
i

� w · l
i

equals p
i

q
i

� (w · T 0
⇤,i)qi = 0.

This means that whenever (q
i

,�l
i

) = (q
i

,�q
i

(T
0
⇤,i)), firm i gives an optimal production

value, irrespective of q
i

.

• We now consider k > n0. Since there is no production (q
k

= 0) and consumption

of labour, p
k

� (w · T⇤,k) < 0 as given by the duality of q and w in the Heterodox

model. Hence, the maximum occurs at q
k

= 0, l
k

= 0. Therefore, S(p̄) =
P

i

S
i

(p) is

a multivalued function and (q̄,�T q̄) given T
0
q = Y

0
is an optimal point belonging to

S
i

(p̄). This establishes that all firms maximize their profits.

• Next, we prove that each agent i finds an optimal consumption set X̄
i

by maximizing

her utility under the expenditure constraint . The optimization program given below

exactly conveys this requirement. We define D
i

(p̄) for each agent i as a collection of

x
i

that satisfies-
max
xi

X

j

x
ij

u
ij

s.t. p̄ · x
i

 M
i

(p̄) = w
i

,

0 < x
i

2 X
i

Here, the first constraint requires X to belong to B
i

(p). KKT conditions for this pro-

gram imply that the optimal point satisfies (u
i1, ui2, ....uin

) = µ(p1��1, p2��2, ..., pn�
�
n

), where µ and �
j

are the Lagrange multipliers associated with constraint 1 and 2

respectively. This means that whenever x
ij

is positive, �
j

= 0, and p
j

= µu
ij

. In

other words, whenever agent i buys goods j1, j2, we have uij1

uij2
= pj1

pj2
, which is a Fisher
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condition.

Since the utility function is convex, we observe that the Heterodox output for alloca-

tions, i.e., X̄ maximizes the above function, as given by the su�ciency of KKT. More-

over, the Heterodox output is such that all goods are completely exhausted, thereby

making
P

i

D
i

(p̄) which is
P

i

x
i

equal to D(p̄) = (q̄, 0). As the utility for raw goods is

zero, D
i

(p) of those equals zero for each agent i.

Thus, we prove that all agents maximize their profits andD
j

(p̄) = S
j

(p̄) for the reduced

set of producible goods , i.e., Z
j

(p̄) = 0 for j = 1, 2, ..n.

• We see that T 0q = Y 0 also implies that the raw ‘used’ goods are exhausted completely,

i.e., Z
j

(p) = D
j

(p)� S
j

(p)� r
j

= 0� (�Y
0
j

)� Y
0
j

= 0 for j = n+ 1, ..n+m0. On the

other hand, (Tq)
j

 Y
j

for raw ‘unused’ goods, i.e., Z
j

(p) = 0 �P
j

T
ij

q
j

� Y
k

 0

for j = n + m0 + 1, ..n + m. Hence, Z
j

(p)  0 for all raw goods, i.e., labour classes.

This establishes that for raw goods k = n + 1, ...n +m : Z(P )  0 and, p
k

= 0 when

Z
k

(P ) < 0.

• Therefore, Z
k

(p) = S
k

(p) � D
k

(p) � r
k

= for all k and Z
k

(p) = 0 for p
k

> 0. This

establishes that (P,Q, X̄) so defined using the Heterodox model is an equilibrium point

in the A-D market.

3.3 A-D Equilibrium as A Fixed Point In Heterodox

Setup

Now, let (P,Q, X̄) be an equilibrium point in the A-D market. We assume thatm0 classes and

n0 goods are active. Let p̄, w̄ be the corresponding prices and wages. We have P = (p̄, w̄) as

the price vector so that Z(P )  0, with P
k

= 0 for Z
k

(P ) < 0. Also, the optimal production

vector for each firm is y
j

= (q
j

, l
j

) so that the total output of firms is Q = (
P

j

q
j

= q̄,
P

j

l
j

=

Y
0
, 0̄). Let X̄

ij

give the consumption.

Proposition 3.3.1. Let ĀD be the market described above with a A-D equilibrium point

(P,Q, X̄). Then, (p̄, q̄, w̄, X̄) is an equilibrium point in the Heterodox model.
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Proof. We let q, w be the ‘active’ vectors consisting of all positive entries from q̄, w̄. Similarly,

let p denote the prices of active goods.

• We first look at the conditions p̄, q̄, w̄ satisfy being a part of A-D equilibrium. For each

firm j which is active, S
j

(P ) equals y
j

= (q
j

,�l
j

) where l
j

 Y . Using the definition

of S
j

(P ) as before, y
j

has to maximize p
j

q
j

� (w · T⇤,i)qj subject to the non-negativity

constraints. We can now consider three cases -

p
i

� (w · T⇤,i) < 0

p
i

� (w · T⇤,i) = 0

p
i

� (w · T⇤,i) > 0

Since p
j

, w are given, we note that since firm j produces finite amount q
j

, we can

only have p
i

� (w · T⇤,i)  0. If this is not true, then any finite q
j

cannot maximize

p
j

q
j

�(w·T⇤,i)qj, which contradicts the definition. In other words, the function is strictly

increasing as q
j

increases, thus giving an unbounded solution. When we artificially put

a bound on q
j

, the optimal solution is at an unattainable production plan. Moreover,

the fact that firm j is active, i.e., it is not making any losses, translates to the condition

p
j

� (w · T⇤,j) = 0. Therefore, we get that for all active firms/goods p
j

= w · T⇤,j, or

p = w · T 0
where T

0
represents the reduced T matrix corresponding to active goods.

Continuing with the same concepts, for the inactive firms we must have p
j

�(w ·T⇤,j) 
0, for any feasible p

j

.

• The analysis for D(P ) is exactly similar to that given in the earlier section, where

the optimization program catches Fisher market conditions. Next, by the definition

of an equilibrium point in AD, we know that Z
k

(P ) = 0 for all k such that w
k

> 0.

This means that D
k

(P ) � S
k

(P ) � r
k

= 0. We have, D
k

(P ) = 0 for k = n + 1, ...m

as there are no utilities for raw goods, i.e., labour hours. This forces the relation

�S
k

(P ) = r
k

. We thus get that S
k

(P ) =
P

j2F (�l
j

) = �r
k

= �Y
k

. This confirms

that T
0
q = Y

0
. For the inactive classes, we have D

k

(p) = 0. Therefore, Z
k

(P ) for those

equals S
k

(p) � r
k

=
P

j

T
ij

q
j

� Y
k

. As the equilibrium production plan is attainable,

we have T q̄ =
P

j

l
j

 Y . In all, we have that T q̄  Y for all labour classes and

T
0
q = Y

0
for all classes that are active. Similarly, we have that p̄  w̄T for all goods,

and p = wT
0
for active goods. Along with these two conditions, we have that the
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allocations and prices follow Fisher market conditions, i.e., all goods and endowments

are exhausted and every buyer maximises her utility and buys only those goods which

give her maximum bang per buck value.

• Building from the observations, we see that q̄, w̄ are dual variables of each other and

optimal for the following programs, as they satisfy the complementary slackness con-

ditions.
max

q̄

p̄ · (T q̄)
s.t. T q̄  Y

q̄
j

� 0

min
w̄

w̄ · Y
s.t. w̄T � p̄

w̄
i

� 0

(3.2)

Moreover, we see that p
j

for j = n0 + 1, ...n (unproduced goods) must satisfy

max
i

u
ij

b
i

(U- Level)  p
j

<
X

i

T
ij

w
i

(T- Level)

If p
j

� T-Level, then it violates the constraint of optimality of production for firm j.

Similarly, if p
j

< U-Level, we have p
j

< u
ij

/b
i

for some player i. This means that

b
i

is less than the bang per buck that good j o↵ers, which contradicts the optimality

condition of D
i

(p). Therefore, we see that the A-D model allows for a band for each

p
j

that corresponds to an unproduced good, which is valid for the Heterodox model

as well. However, the tatonnement process fixes prices of such goods equal to their

U-Levels, which belong to this band for every j. In short, Heterodox modifies the equi-

librium prices of inactive goods in AD, while keeping all other variables and optimality

conditions the same.

• Thus, we see that the A-D equilibrium point (p̄, q̄, w̄, X) satisfies all conditions for a

fixed point in the Heterodox settings.

As described before, thus, Heterodox model can be considered as an instance of the A-

D model, where the existence of equilibrium is proved. Using the proof given above, the

equilibrium is a fixed point in the Heterodox model too.

This gives us the existence theorem.

Theorem 3.3.2. Given any economy (U, T, Y ), an equilibrium (p, q, w,X) always exists in

the Heterodox model.
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Chapter 4

Equilibria and The Consumer Choice

Game

In this chapter, we associate combinatorial structures associated with equilibria and under-

stand how they vary with the parameters of the economy, i.e., T, Y and U . We define the

CCG, the consumer choice game, where T, Y are fixed, and U is the strategy space. We

explore a few properties of the combinatorial structures and the open sets defining those.

We then illustrate the theory through examples.

4.1 Generic Equilibrium and Combinatorial Data

We now associate a suitable combinatorial data with an equilibrium point ⌘ = (p, q, w,X)

for the parameters T, Y, U of the economy. Define I(⌘) = {i|w
i

> 0}, J(⌘) = {j|q
j

> 0} and

F (⌘) = {(i, j)|X
ij

> 0}. The combinatorial data identify key features of the equilibrium,

i.e., the labour classes with non-zero wages, the goods produced, and the Fisher forest, i.e.,

the price-determining consumption. We now define the notion of ‘generic-ness’, which allows

us to construct the equilibrium from its combinatorial data, and to extend such equilibria

at a point to its vicinity.

Definition 4.1.1. We say that ⌘ is a generic equilibrium if (i) for j 62 J(⌘), we have

(wT )
j

> p
j

, and (ii) for i 2 I and (i, j) 62 F (⌘), we have u
ij

/p
j

< max
k

u
ik

/p
k

.
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Let us now fix T, Y and vary U over U = Rm⇥n. Given a U 2 U , and an equilibrium

point ⌘ with the parameters T, Y, U , of the economy, we say that ⌘ sits over U , since it is

for this element of U , that ⌘ was observed. Theorem 4.1.1 relates to the existence of generic

equilibria.

Theorem 4.1.1. Let T, Y, U be matrices in general position, i.e., there be no algebraic

relationship between the entries, with rational coe�cients. Given a generic equilibrium ⌘

over U , with m wage-earning labour classes, i.e., |I(⌘)| = m and n goods produced, i.e.,

|J(⌘)| = n, the number of connected components (k) of the solution Fisher forest F (⌘) is at

least n�m+ 1.

Proof. Let us consider an economy with m labour classes and n goods. Without loss of

generality, we examine the existence of an equilibrium so that all labour classes and goods

are active. Let us n�m as the deficit ‘def ’. We first consider the case k�1 < def and prove

that no equilibrium can exist in this case. We then consider the case k � 1 � def and state

the possibilities of an equilibrium by giving a system of solvable equations. We conclude the

proof by giving an example of a 2⇥ 3 case.

4.1.1 k � 1 < def

Let us assume that there exist p, q, w such that p = wT , Tq = Y and p is the Fisher market

solution for the market set up by U, q and w, i.e., there exists a Heterodox equilibrium

(p, q, w,X). Using the prices, it is possible to generate the Fisher forest. We assume that

there are k trees in the forest so that k � 1 < def .

Setting up the profitability conditions, we have,

2

6666664

T11 T21 ... T
m1 | p1

T12 T22 ... T
m2 | p2

. . . . | .

. . . . | .

T1n T2n ... T
mn

| p
n

3

7777775

2

666666664

w1

w2

.

.

w
m

�1

3

777777775

=

2

6666664

0

0

.

.

0

3

7777775

We have k  def . Let us assume that the goods g1, . . . , gk are in distinct components. We

construct the rows R1, . . . , Rk

2 Rn, where R
i

(i) = 1, R
i

(j) = 0 if g
j

is not in the component
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of g
i

, and R
i

(j) = ↵
ij

a monomial in the entries of U which relates the price of g
i

with g
j

. If

we are to assume that p1, . . . , pk as temporarily known, then the equation wT = p leads us

to the equation:

h
p1 . . . p

k

�w
i

2

66664

R1
...

R
k

T

3

77775
= 0 (4.1)

Thus, in case of k = def , we can rearrange the matrix so that the determinant of the

following matrix is zero.

n

8
>>>>>>>>>>><

>>>>>>>>>>>:

2

666666666664

T11 T21 ... T
m1 | p1 . .

T12 T22 ... T
m2 | ↵p1 . .

. . . . | . p2 .

. . . . | . �p2 .

. . . . | . . .

. . . . | . . .

T1n T2n ... T
mn

| . . �p
k

3

777777777775

| }
m+k

Here, ↵, �.., � represent the algebraic relationships between prices of goods belonging to the

same components of the forest. Each column in the right corresponds to a tree. We have

rearranged p so that there are k columns. It is clear from the matrix that the zero determinant

condition translates to an algebraic relationship between ↵, �.., �, i.e., ratio of entries of U

and coe�cients of T . This contradicts the assumption that U and T are independent. In

case k < def , we can delete def�k number of rows from the above matrix so that it becomes

a (m+ k)⇥ (m+ k) matrix. Determinant of this matrix is zero, which again contradicts the

assumption. Thus, there does not exist any equilibrium when k � 1 < def .

4.1.2 k � 1 � def

We again consider (4.1), which is a system of n homogeneous equations in m+ k unknowns.

Thus, if the first m+k�n = k0 prices were fixed, then all prices and wages are defined using

this k0 prices. Here, k0 � 1.

Next, let us consider the conservation of money in each of the k components G
i

and use
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these to solve for q. We of course have wT = p, whence wY = wTq = pq. Thus the overall

conservation of money is already available and there are only k � 1 independent equations.

Next, we have the m equations Tq = Y . Now, for each component, the money available is

given as
P

Lj2Gi
Y
j

w
j

. On the goods side, we have
P

gj2Gi
p
j

q
j

. By the earlier argument,

these translate into k algebraic equations in the variables p1, . . . , pk0 and q1, . . . , qn, which

are homogeneous in p’s. By dividing throughout by p1, we get k � 1 equations in k0 � 1

variables. This gives us a total of m+ k � 1 equations in n+ k0 � 1 variables. Substituting

k0 = m+ k� n gives us m+ k� 1 equations in m+ k� 1 variables. These may be solved to

obtain all quantities. Chapter 5 shows the existence of a disconnected (2 ⇥ 2) market, i.e.,

k � 1 = 1 > def = 0, which confirms that k � 1 � def .

In all, we have proved that no equilibrium exists if k < def + 1. Moreover, we can see

that the condition k � 1 � def is necessary but not su�cient, as there are more conditions

like nonnegativity of variables and optimality of prices. We also note that the condition

of a generic equilibrium point is crucial. To see this, consider a non-generic equilibrium

point with (i, j) satisfying the bang per buck condition for buyer i such that x
ij

= 0, i.e.,

(i, j) 62 F (⌘). This increases the number of actual connected components, thereby adding

an extra tight constraint, which violates the generic economy argument. Thus, if there are

z such zero weight edges, the number of connected components is at least def + 1 + z. We

now complete the existence proof by giving an example of a 2⇥ 3 case.

Example 8. Let us consider an economy with the following specifications.

T =

"
1 0.5 0.8

0.5 1.5 0.9

#
U =

"
1 0.75 0.8

0.4 0.9 0.7

#
Y =

"
1

1

#

Here, two labour classes, with one labour unit each, can produce three goods using the above

technology constraints. We show that an equilibrium exists in this economy so that all goods

and classes are active, as opposed to the conventional square matrix solution where the num-

ber of active classes and goods is the same.

Let us consider p, q, w as follows.

p =
h
0.5235 0.8324 0.6470

i

qT =
h
0.5639 0.2426 0.3934

i
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w =
h
0.2952 0.4565

i

We see that these variables follow the equations-

p =
h
0.5235 0.8324 0.6470

i
= w · T =

h
0.2952 0.4565

i
·
"

1 0.5 0.8

0.5 1.5 0.9

#

And

Y =

"
1

1

#
= T · q =

"
1 0.5 0.8

0.5 1.5 0.9

#
·

2

64
0.5639

0.2426

0.3934

3

75

According to the definition of equilibrium in the Heterodox model, we see that q and w are

dual variables of each other and follow the market constraints. On the consumption part,

when w and q are given as inputs to the Fisher market, solution is the price vector p with

the following allocations-

Alloc =

"
0.5639 0 0

0 0.2426 0.3934

#

That is, class 1 only consumes good 1 while class 2 buys goods 2 and 3. This confirms the

existence of an equilibrium in a general m⇥ n economy with unequal number of active goods

and classes.

In the following theorem, we examine the existence of generic and non-generic equilibrium

points.

Theorem 4.1.2. Let T, Y, U be matrices in general position, i.e., there be no algebraic

relationship between the entries, with rational coe�cients. Given an equilibrium ⇣ over U ,

there are arbitrarily close U 0 and equilibria ⌘ sitting over U 0 which are generic.

Proof. Let us first consider the case where this equilibrium ⌘ is generic. We recall the

definition of generic equilibrium points- we say, ⌘ is a generic equilibrium point if (i) for j 62
J(⌘), we have (wT )

j

> p
j

, and (ii) for i 2 I and (i, j) 62 F (⌘), we have u
ij

/p
j

< max
k

u
ik

/p
k

.

In this case, the set of tight equations is the same as the set given by (I, J, F ), i.e., Tq = Y ,

wT = p and the maximum bang per buck and money conservation constraints given by the
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Fisher market. As we have assumed that the matrices are in general position, any of the

forest components cannot be cycles. This lets us choose a u
ij

with (i, j) 62 F (⌘). It satisfies

the above generic equilibrium condition- u
ij

< p
j

⇥max
k

u
ik

/p
k

. In other words, the above

forest is valid for u
ij

belonging to an open set (0, p
j

⇥max
k

u
ik

/p
k

), as buyer i will buy good

J only when its bang per buck condition is satisfied. Therefore, we can always choose a �

small enough so that u
ij

+ � or u
ij

� � correspond to a generic equilibrium.

On the other hand, when we have a non-generic point, , i.e., (wT )
j

= p
j

for j 62 J(⌘) or

u
ij

/p
j

= max
k

u
ik

/p
k

for (i, j) 62 F (⌘), the number of tight equations is more than those

given by its I, J, F . For the first case, we reduce the p
j

so that the following holds for the

same U .

max
i2I

u
ij

b
i

(U- Level) < p
j

<
X

i

T
ij

w
i

(T- Level) (4.2)

In the second case, we decrease the corresponding u
ij

so that (4.2) holds true. We thus have

proved that given an equilibrium over U , there is an arbitrarily close U 0 which corresponds

to a generic equilibrium.

It is an important question if the data (I, J, F ) does indeed determine ⌘, the equilibrium.

This is summarized in the next theorem.

Theorem 4.1.3. Let T, U, Y be in general position and ⌘ be a generic equilibrium over U

with the combinatorial data (I, J, F ), then the parameters of ⌘, viz., p, w, q are solutions of

a fixed set of algebraic equations in the coe�cients of U . For an open set of the parameter

space of U , the equilibria, as guaranteed by Prop. 3.2.1, 3.3.1, are generic and have the same

combinatorial data as ⌘.

Proof. The combinatorial data does give us the relationships w
I

T
I,J

= p
J

and T
I,J

q
J

= Y
I

.

From this it follows that |I|  |J | for otherwise there would be an algebraic relationship

between T and Y . However, if |I| = |J |, and k = 1, then w is determined by p and q by Y .

Since the forest F is connected, p is determined upto a scalar multiple and thus the whole

system is solved. In summary, if |I| = |J | and k = 1, there is a unique ⌘ sitting above this

combinatorial data. However, in the general case, we must first append to the variables q
J

,

a suitable subset {p1, . . . , pk0}, as in Theorem (4.1.1). The w’s and the remaining p’s are

expressible as homogeneous linear combinations of these k0 prices. Next, to the linear set of

equations T
I,J

q
J

= Y
I

we add the k � 1 independent money conservation equations to solve

these simultaneously. Unfortunately, the conservation equations involve terms p
i

q
i

’s and are
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quadratic in the chosen variables with coe�cients in the entries of U . Once these are solved,

all other variables are known and the equilibrium point is reconstructed. Thus, over a given

combinatorial data, we get an algebraic system with coe�cients in U , but with finitely many

solutions. By standard algebraic geometry results (Sard’s theorem), other than a over a

closed algebraic set, these solutions depend smoothly on the entries of U .

4.2 The Consumer Choice Game

We now define the consumer choice game CCG(T, Y ), which is parametrized by the technology

matrix T and the labour inventory Y , which are henceforth assumed to be fixed. The players

are the labour classes, i.e., L = {L1, . . . , Lk

}. The strategy space S
i

for player i is the utility

‘row’ vector (u
i⇤) 2 Rn. These rows together constitute the matrix U . This strategy space

is denoted by U . We also assume that there is a ‘real’ utility matrix U
r

which is used to

measure outcomes.

Given a play U , the outcome is given by an ⌘(U) = (p, q, w,X), an equilibrium over U

obtained in the Heterodox market. The payo↵s, U
i

(X) =
P

j

(U
r

)
ij

x
ij

, i.e., the equilibrium

allocations evaluated by each player on their true utilities, define the preference relations for

each player.

Let us now construct the pay-o↵ functions in the vicinity of a generic equilibrium point

⌘(U) with the combinatorial data (I, J, F ). We first see that there is an open set O
I,J,F

✓ U
containing U which has the same combinatorial data (I, J, F ). The exact inequalities defining

O
I,J,F

arise from the requirement that the Fisher forest F have non-negative flows in all edges

of F , that the edge (i, j) 62 F has an inferior bang-per-buck, and that (wT )
j

� p
j

> 0 for

j 62 J . As an example, consider an edge (i, j) 2 F , and the requirement that the flow in

this edge be positive. Now, the flow in this edge is a suitable linear combination of the

wages w’s, prices p’s and quantities q’s. As we have argued before, these in turn, are smooth

functions of the entries of U . Thus the condition that flow in the edge (i, j) be positive is

the requirement that f(U) > 0 for a suitable smooth function f on U . We can obtain such

conditions for each edge (i, j) which confirm that (I, J, F ) remains valid.

Thus, there is indeed such an open set O
I,J,F

, and the pay-o↵ functions are solutions of

algebraic equations in the entries of U , the coe�cients of which depend on the combinatorial
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data (I, J, F ). This gives us Theorem 4.2.1 below.

Theorem 4.2.1. For a generic equilibrium point ⌘(U) with the combinatorial data (I, J, F ),

there is an open set O
I,J,F

✓ U containing U and a smooth family ⌘0(U 0) of equilibria for

each U 0 2 O
I,J,F

such that (i) ⌘0(U) = ⌘(U) and (ii) the combinatorial data for ⌘0(U 0) is

(I, J, F ).

The pay-o↵ function in general is to be pieced together by such a collection of open sets,

indexed by the combinatorics. On non-generic U 0, the equilibrium ⌘(U 0) will have multiple

feasible allocations and this determines a correspondence between the strategy space U and

Rk, the pay-o↵ space. Even for a generic U , there may be multiple equilibrium points, viz.,

⌘1, . . . , ⌘k, and each of these will define an analytic sheet of the correspondence over the

generic open set. We now illustrate the theory describe so far through a (3⇥ 3) market.

4.3 An Example

In this section, we describe an economy with three labour classes and three goods, viz., H3

and construct the consumer choice game where two of the labour classes engage in strategic

behaviour.

Let I = J = {1, 2, 3}. Let T, U, Y be as given below:

T =

2

64
1/10 0 0

1/10 1/5 0

0 1/5 1

3

75 Y =

2

64
1

10

100

3

75 U
r

=

2

64
1 0 0

1 1 0

0 1 1

3

75 S =

2

64
1 0 0

↵ 1 0

0 � 1

3

75

There are 3 labour types, with numbers 1, 10 and 100 respectively. L1 only prefers good G1,

L2 only G1, G2 and L3 prefers G2 and G3 as shown in the true utilities U
r

. The example

can be understood as an instance of a market with three socio-economic classes and a good

such as footwear which is produced in three di↵erent ways or qualities. In such cases, the

given utility matrix catches the general preference towards the goods produced by di↵erent

classes. Here, T is such that each of good 1 and 2 are produced by two classes together. In

terms of e�ciency, good 1 is produced most e�ciently. The classes have utilities defined for

the goods they produce.

Let us consider labour class 2 and 3 as the players who exercise their strategies by choosing
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the variables ↵ and �. This defines the strategy space S as shown above. Note that U
r

2 S.
We compute (i) the dependence of the pay-o↵s on ↵ and �, and (ii) the sub-domain of S
over which the chosen forest F below is the equilibrium forest.

We first solve for the production part. We see that Tq = Y gives:

q = T�1Y =

2

64
10 0 0

�5 5 0

1 �1 1

3

75Y =

2

64
10

45

91

3

75

And wages are given as linear combinations of prices-

2

64
w1

w2

w3

3

75 =

2

64
10p1 � 5p2 + p3
50p2 � 10p3

100p3

3

75

This describes wages in terms of prices. All this does not need the equilibrium forest F .

For the consumption and allocation processes, let us assume that the solution forest F is

given by:

Note that this forest is motivated by the utility matrix given earlier. Conserving the total

money while allotting the goods, the equations result in the following money flows:
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The flows mentioned on edges are the amounts spent by classes on the corresponding goods.

Using Fisher market constraints of optimum utility, it is easy to see that this market is

feasible only if � > 1
5 and ↵ > 0.5 � 1

10� . Under these conditions, F will arise as the

equilibrium forest.

Assuming total money in the economy as 1, we find class wages as functions of ↵ and �

w1 =
10↵� � 5� + 1

10↵� + 45� + 91

w2 =
10(5� � 1)

10↵� + 45� + 91

w3 =
100

10↵� + 45� + 91

The forest has following implications on allocations and total utility-

Allocations Total Utility
L1 x11 = 10� 5/↵ + 1/↵� U1 = 10� 5/↵ + 1/↵�
L2 x21 = 5/↵� 1/↵�, x22 = 45� 9/� U2 = 45 + 5/↵� 1/↵� � 9/�
L3 x32 = 9/� , x33 = 91 U3 = 91 + 9/�

Analysis

We note that the forest is valid in the open set defined by � 2 (1/5,1) and ↵ 2 (0, 0.5� 1
10� ).

That is, the open set corresponds to the combinatorial data (I, J, F ). Within this set, there

is a clear dependence of utilities, i.e., ↵, � on wages and prices. However, the production

vector q is independent of U . It remains so until U does not belong to the open set defined

above. In other words, the dependence of q on U is explicit here so that q changes only if

I, J change, where it equals another constant.

From the table, it is clear that decreasing ↵ and � are the strategies for class-2 and 3.

Moreover, we see that multiple equilibrium forests are possible here, depending on ↵ and �,

including the one given above. For each forest, the number of active classes may be di↵erent

and thus the utility functions will vary. In fact, for a su�ciently small value of �, class-2

and thereby class-1 receive no wages. In this case, only good-3 is produced and its utility

for class-3 is 100, which is smaller than the maximum achievable utility through the forest

given above, implying class-3 is better o↵ when other classes are producers too.

48



Posing a small value of ↵, class-2 may similarly squeeze class-1. For example, let

(↵, �) = (0.3, 1). Here, the optimal production is q = (0, 50, 90) and the class wages are

(0, 0.285, 0.715), assuming total money equal to 1. The forest F 0 is given by-

We see that the open set given by ↵ 2 (0.5� 1
10� ,1) and (� 2 (1/5,1)) corresponds to the

combinatorial data (I = {2, 3}, J = {2, 3}, F 0).

This illustrates that the local combinatorial data is su�ciently explicit to enable the

computation of the pay-o↵ functions. Moreover, significant benefits may accrue to players if

they utilize the freedom of posturing their utility functions. We give another example of a

(2⇥ 2) case in Appendix B, where we give some numerical results illustrating the theory.
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Chapter 5

2 ⇥ 2 Markets

We now consider a specific scenario involving 2 classes and 2 goods where T, Y are the inputs.

We rigorously solve for markets, and compute the conditions for a forest to be in equilibrium.

We argue that wages are continuous functions of utilities and payo↵s and allocations are

continuous for each forest. Moreover, we prove the existence of a correspondence between the

strategy space and utilities and also that utilities on the boundaries are linear combinations

of those of the forests on both sides. We also look at the necessary conditions for Nash

equilibria to exist. Finally, we give a number of conjectures generalizing the (2 ⇥ 2) case.

We discuss the general (2 ⇥ 2) economy in Appendix C, where we illustrate that the same

results follow.

5.1 Market and Specifications

Let us consider a two class economy with the following specifications - T (Technology matrix),

Y (Labour availability), U
r

(True Utility matrix) and U = R2⇥2 (Strategy matrix)

T =

"
0.25 0

0.25 1

#
Y =

"
2

4

#
U
r

=

"
1 1

1 1

#
U2 =

"
u11 u12

u21 u22

#
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Since Fisher solutions do not change if the rows of U are scaled independently, we see that

e↵ectively, U is given by:

U2 =

"
↵ 1

� 1

#

We assume that 0 < ↵, � < 1. Let us solve this case completely, i.e., decompose U into

various zones by their combinatorial signatures. We also analyse the case when we transit

from one zone to another, and finally, when one of the labour classes is shut out of the

market.

Whenever both classes are active, q (production vector) is given by :

q = T�1Y =

"
4 0

�1 1

#
Y =

"
8

2

#

and

w =
h
w1 w2

i
=
h
p1 p2

i
· T�1 =

"
4p1 � p2

p2

#

Therefore, class-wise wages may be obtained as -

m1 = 2(4p1 � p2)

m2 = 4p2

In a general 2⇥ 2 economy, there are seven possible ways of allocating the produced goods

are six forests and a cycle, where both classes participate, and two possible (1⇥ 1) graphs,

where only one class is active. Out of these 9 graphs, the given set of inputs (T, Y ) allows

for six possible equilibrium solutions, each with a di↵erent allocation graph. Firstly, if both

the classes are active in the equilibrium, we have these five possibilities-

It is easily observed that the conservation of money allows only these graphs. The combina-
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torial data (I, J, F ) and the actual equilibrium values (p, q, w,X) depend on the choice of ↵

and �. As described in Section 3, for each forest, there is an open set, a ‘zone’, of the ↵-�

space over which the forest is the Fisher forest of the equilibrium. The conditions defining

this zone arise from positivity of wages and allocations and the maximum bang per buck

conditions. For the four forests, these are tabulated in the table given below.

The sixth possible equilibrium state is when w1 becomes zero. As we see later, it occurs

when � < 1/4. In this case, labour class 2 produces good 2 (q = 4) and gets the whole share

of economy. Note that for no set of prices, do we have w2 = 0 in equilibrium.

5.2 Equilibrium Analysis

Here is a summary of the four forests given above. We analyse the condition ↵ = �, i.e.,

the cycle in the next section. Recall that ↵ = u11
u12

and � = u21
u22

. Let U1, U2 denote the true

utility functions of class-1 and 2 respectively. Also, w1 + w2 = 1.

Forest-1 Forest-2 Forest-3 Forest-4

Prices � = p1

p2
> 1/4 ↵ = p1

p2
> 1/2 1/4 < � = p1

p2
< 1/2 p1

p2
= 1

2

Alloc - 1 x11 = 8� 2
�

x11 = 8� 4
↵

, x12 = 2 x12 = 8� � 2 x12 = 2

Alloc - 2 x21 =
2
�

, x22 = 2 x21 =
4
↵

x21 = 8, x22 = 4� 8� x21 = 8

U1 U1 = 8� 2/� U1 = 10� 4/↵ U1 = 8� � 2 U1 = 2

U2 U2 = 2 + 2/� U2 = 4/↵ U2 = 12� 8� U2 = 8

Wages-1 w1 = 1� 2
1+4� w1 = 1� 2

1+4↵ w1 = 1� 2
1+4� w1 = 1/3

Zones ↵ � � > 1/4 � � ↵ > 1/2 1/4 < � < 1/2 and � � ↵ ↵  1/2  �

In addition to the conditions for these forests, if � < 1/4, the equilibrium solution is

w1 = 0. In that case, U1 = 0 and U2 = 4 as the production amount is (0, 4). We denote

this by forest-5 or zone-5.

We also classify the generic equilibrium points here. Recall that ⌘ is a generic equilibrium

if (i) for j 62 J(⌘), we have (wT )
j

> p
j

, and (ii) for i 2 I and (i, j) 62 F (⌘), we have
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u
ij

/p
j

< max
k

u
ik

/p
k

. Therefore, we see that an equilibrium point belonging to, say zone-1,

is generic if and only if ↵ > �. As proved in Chapter-4, we can define an open set for zone-1,

viz. , ↵ > � > 1/4, comprising only of generic equilibrium points. Similarly, for zone-4, the

open set would be ↵ < 1/2 < �. As we see in the figure given below, the interior of each

zone is an open set consisting of generic points and the boundaries correspond to the non

generic equilibrium points.

Remark 5.2.1. As Theorem 4.1.3 states, for an open set of the parameter space U , the

equilibria are generic and have the same combinatorial data I, J, F . Here, we see that these

open sets are given by interior of the zones marking each forest.

5.3 The Space of Payo↵s as A Manifold

We summarize the earlier section through a figure, where five zones are marked which corre-

spond to the forests given above. The arrows indicate the direction of optimization for the

dominant class, i.e., the class that has a control over the price ratio.

We now look at the points where two or more forests are feasible, i.e., at the boundaries.

It is clear from the figure that by changing ↵ or � it is possible to transit from one forest

to another, by crossing the non-generic points where both forests are possible. It is shown

earlier [21] that the set of allocations in Fisher market is hemicontinuous with respect to

initial endowments and utility functions. Here, we show that though multiple allocations

are possible at such points, utilities are bounded by the limits of utilities of forests at both

sides. In other words, allocations and utilities at the transitions are convex combinations of
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the boundaries of those obtained in the adjoining zones. To make this precise, let us have

the following definition.

Definition 5.3.1. Let x 2 U be a point on the boundary of two zones, say Zone A and

Zone B and let ⌘ = (p, q, w,X) be a typical point above x, i.e., ⌘ is an equilibrium for the

parameter x. Let X (x) be the collection of all allocations of equilibria above x in the U-space.

We say that x is a manifold point if the set U
i

(X (x)) is a bounded interval and its bounds

are obtained as the limits lim
q!x

U
i

(X(q)) and q 2 Zone A and q 2 Zone B.

Let us consider a point x on the line ↵ = �, and let ↵(x) = �(x) = µ > 0.5. Thus p

sits on the transition between Zone 1 and Zone 2. Let ⌘(x) = (p, q, w,X) be a typical point

above x. We see that (i) I(x) = J(x) = {1, 2}, and (ii) F (p) = {(1, 1), (1, 2), (2, 1), (2, 2)},
i.e., the cycle, since X has flows on all edges. In fact, there is a set X of allocations possible

at ⌘(p) and the bounds on U
i

(X ) are precisely those achieved as lim
q!x

U
i

(X(q)) for q in

zone 1 and 2. Similarly, we see that for 1/4 < ↵ = � < 1/2, the bounds on the corresponding

U
i

(X ) are obtained through zone 1 and 3. For the points on the boundaries with forest 4,

however, we see that the limits lim
q!p

U
i

(X(q)) are equal from both zones, thus giving a

unique allocation X. On the other hand, we see that the points on the boundary � = 1/4 are

not manifold points. This is because for each point on this line, there is a unique allocation

X leading to a unique U
i

(X ) which does not equal lim
q!p

U
i

(X(q)) for q in zone 1 or 3.

Theorem 5.3.1. There exists a correspondence N between the strategy space and utilities.

Also, each space of payo↵s forms a 2 dimensional manifold whose boundaries are given by

those of the forests.

Proof. We first classify the zones into interior points and the boundaries where two or more

forests are possible. As stated earlier, the interior points refer to generic points which form

an open set. Corresponding to the interior points, we have U1, U2 defined uniquely, which

are continuous functions of ↵, �. Moreover, these are invertible functions on their restricted

domain of ↵, �, which makes the sets of possible payo↵s Up

1 , U
p

2 open. It follows that the

correspondences N
i

= (↵, �, Up

1 , U
p

2 ) are open for each forest i. Moving further, we see that

for ↵ = �, which stands for a cycle, corresponding Up

1 and Up

2 belong to open sets. For

example, on the boundary of forest 1 and 3, the open set Up

1 is given by 1/4 < ↵ < 1/2

and (8↵� 2, 8� 2/↵). The region looks like half of a parabola, bounded from all the sides.

Thus, interior of every possible solution or zone is open and neighbourhood of each point
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is homeomorphic to open subsets of R2. For forests, the homeomorphism is given by the

inverse of utility functions and for the cycle, the sets are open in R2.

We now claim that the boundaries of the forests and the cycle form 1 dimensional entities

which serve as boundaries to the described 2 dimensional manifolds. Each boundary can be

given by a unique equation in R2. On the line ↵ = �, there are two boundaries, one coming

from ↵ < � and another from ↵ > �. In between these two, a 2 dimensional plane is situated

on on each part of the segment ↵ = �, i.e., on the boundary of forest-1 and 3 and forest

1 and 2. When considered closures of the open sets, we see that correspondences intersect

along these boundaries.

We therefore establish that in the region � > 1/4, payo↵ function U
i

is a 2 dimensional

manifold with boundary, consisting of all ‘manifold’ points. Moreover, a correspondence N
= (↵, �, Up

1 , U
p

2 ) can be defined between the strategy space and the payo↵s space. A general

version is dealt with in the Appendix C where we argue that the same results follow.

5.3.1 Strategic Analysis

Here, as we see from the figure, class-2 is dominant in the sense that it has a strategy to

become the only active class in the economy, just by reducing �. However, it is not in its

interest to completely drive out class-1. If the state is in any zone with 2 active classes, �

can be decreased to reach zone 5, where class-2 gets utility 4. But, due to a discontinuity

in the utility function, we see that for any ↵, class-2 achieves the highest payo↵, which is

arbitrarily close to 10, when � approaches 1/4, but is, strictly more than 1/4. Thus, the

best strategy for class-2 is to keep class-1 active and pose � as close to, but greater than 1/4.

Technically, we see that the discontinuity of the utility functions results in the non-existence

of Nash equilibria.

Though this case rules out the possibility of a Nash equilibrium by making one class

clearly dominant, the general scenario has a possibility of existence of Nash equilibria. Ap-

pendix C explores the necessary conditions for a Nash equilibrium to exist.

Taking insights from the (2⇥2) case, Theorem 4.1.3 and 4.2.1, and the continuity results

of the Fisher and AD markets, we now have the following conjectures for a general economy

(T, U, Y ).

56



Conjecture 5.3.2. Wages are continuous functions of the utilities. Moreover, within each

forest F , allocations and payo↵s are continuous.

Conjecture 5.3.3. For any economy characterized by a fixed (T, Y ), the space of payo↵s

for each player is a m-dimensional manifold within the U space with the same combinatorial

data I, J .

Conjecture 5.3.4. In any economy characterized by a fixed (T, Y ), dominant classes are

well defined. Moreover, the existence of Nash equilibria is subject to T, Y .

57



58



Chapter 6

Geometric Formulation of Heterodox

Model

As described earlier, the tatonnement process does not converge for all markets. To achieve

this computability, we examine the geometric structure and explore the possibilities of finding

an equilibrium geometrically.

In this chapter, we consider T, U, Y as the inputs given in an economy. We consider a

real space Rmn+2m+2n and define ‘feasible’ points as those achievable by an economy, which

lead to a polytope like region X. Under certain conditions, specific vertices correspond to

Heterodox equilibrium points. We then explore the structure of X by analysing some of its

vertices, edges and transitions. Further, we give a partial Linear Complementarity Problem

(LCP) formulation and discuss its computability.

6.1 Feasibility Conditions

Let us consider the X ⇢ Rmn+2m+2n space consisting of variables m
i

, y
i

, with i = 1, . . . ,m

and p
j

, q
j

with j = 1, . . . , n and z
ij

for i = 1, . . . ,m and j = 1, . . . , n. We assume that T

and U are in “general position”, i.e., there is no algebraic relations between the entries of T

and U together, and that U > 0, i.e., u
ij

> 0, for every i, j. Let us define the feasible set X

as given by the following equations below.
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8i 2 [m], j 2 [n] : y
i

u
ij

 p
j

(6.1)

8j 2 [n] p
j

�
X

i

m
i

T
ij

 0 (6.2)

8i 2 [m]
X

j

T
ij

q
j

 1 (6.3)

8j 2 [n],
X

i

z
ij

= p
j

q
j

(6.4)

8i 2 {2, . . . ,m},
X

j

z
ij

= m
i

(
X

j

T
ij

q
j

) (6.5)

X

j

p
j

q
j

= 1 (6.6)

8i 2 [m], j 2 [n] (p
j

� y
i

u
ij

)z
ij

= 0 (6.7)

8j 2 [n] (p
j

�
X

i

m
i

T
ij

)q
j

= 0 (6.8)

8i 2 [m], j 2 [n] z
ij

,m
i

, y
i

, p
j

, q
j

� 0 (6.9)

Remark 6.1.1. We note that the region given by the above constraints is bounded. This is

because of the conditions (6.3- 6.6).

As we will see, (6.1) captures the bang per buck ratio, thereby making up the consumption

constraints along with (6.7), i.e., as in [2]. Conditions (6.4- 6.5) account for allocations and

the remaining equations make up the feasibility conditions for an economy. Without loss

of generality, as (6.3) suggests, we take Y
i

= 1 for all i. We will use the auxiliary notation

e
i

=
P

j

T
ij

q
j

, which is the employment fraction for labour class i. Note that Eqns (6.5) does

not include i = 1, and it would be useful to compute
P

j

z1j from the other inequalities. To

this end, if we write m
i

(
P

j

T
ij

q
j

) as m⇤
i

= m
i

e
i

, the shaded wages, then we have:

1 =
X

j

p
j

q
j

=
X

j

X

i

z
ij

=
X

j

z1j +
mX

j=2

m⇤
i

However, Eqns (6.2) tell us that

1 =
X

j

p
j

q
j

�
mX

i=1

m⇤
i
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This tells us that: X

j

z1j � m⇤
1 = m1e1

Thus, the expenditure available to labour class 1 is more than its wages. Indeed, it is the

special class to which all the producer surplus s
j

= q
j

(p
j

� c
j

) accrues. We then have,

1 =
X

j

p
j

q
j

=
mX

i=1

m
i

We note that this allows the possibility of a class i with m
i

> 0 and
P

j

T
ij

q
j

< 1.

Remark 6.1.2. We define this program to compute solutions for the Heterodox model, moti-

vated by the similar structures for Fisher market and the AD market, as given in Chapter 1.

Though we have established a correspondence between the equilibrium points of AD and Het-

erodox, here is why the Heterodox model is more complex than the most general case of AD

market considered so far. To be precise, we illustrate why the LCP formulation (Chapter-1)

cannot account for the Heterodox model.

We recall the production function which is SPLC. For each good j and firm f which

produces good j
f

, we have a production function P f

j

which defines f 0s ability to produce good

j
f

as a function of the amount of good j. The overall production function is P
j

(x) =
P

j

P f

j

and K’th segment is defined by (f, j, k). The slope of a segment ↵f

jk

defines the rate at which

good j
f

can be produced from a unit of good j. Note that raw goods in our case refer to

available labour hours for each labour class. Using the technology matrix defined earlier, we

can invert the reduced matrix to express production q in terms of labour availability Y
0
. Here,

Y
0
equals (0, 0, .., 1(j), .., 0). In short, ↵f

jk

= T�1
jf

.

Now, equation (1.16) requires ↵f

jk

p
jf

= p
j

� �f

jk

whenever raw good j is used to produce

j
f

. Since we have only one segment for each good j, all segments which utilize j are active

and xf

jk

 of
jk

. The dual variables �f

jk

capture the profit on each segment so that the total

profit made is
P

j,k

�f

jk

. If a firm makes zero profit, we have ↵f

jk

p
jf

= p
j

, i.e., �f

jk

= 0

for all segments. This means T�1
jf

p
jf

= p
j

. In other words, T�1
jf

p
j

= w
f

, which gives a

contradiction, as we have w
j

given by linear combination of prices of all active goods.

Thus, the LCP formulation for the AD market cannot be considered for Heterodox.
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6.2 Vertices and Optimality Conditions

Let us now examine the conditions which are satisfied by a feasible point x0 = (p0, y0,m0, q0, Z0)

such that it forms a vertex. Let us assume that exactly for i 2 I ✓ [m], we have m
i

> 0 and

for j 2 J ✓ [n], q
j

> 0, and that 1 2 I, i.e., the labour class 1 has positive wages. We make

the following sequence of observations:

1. z
ij

= 0 for all i 62 I or for j 62 J . Thus, if z
ij

> 0 it must be that i 2 I and j 2 J .

Here, unlike x
ij

, which refer to goods allocations, z
ij

are money allocations.

2. Let us build a bipartite graph with V = [m], the set of labour classes and W = [n], the

set of goods. Let E = {(i, j)|y
i

u
ij

= p
j

} be the set of tight edges, and F = {(i, j)|z
ij

>

0} the set of positive edges. We see that F ✓ E and that E has no cycles by the

general position of T, U . This is in accordance with the Fisher forest data that we have

described before.

3. Assumption A. We may now assume that e
i

> 0 for all i 2 I since otherwise we may

scale m
i

by any positive number and retain feasibility. This would imply that x0 is not

a vertex. Let us assume henceforth that for all i 2 I, e
i

> 0 as well.

4. Under assumption A, for every i 2 I, there is a j such that z
ij

> 0. This also means

that p
j

q
j

> 0 for the same j.

5. Let C be a component of the forest E. We say that C is a zero-component if there is

no edge e = (i, j) 2 C with z
ij

> 0.

6. For a non-zero component C = (V
C

,W
C

, E
C

), there must be a non-zero z
ij

, and hence

a j 2 W
C

such that p
j

, q
j

> 0. For any vertex k 2 W
C

, since there is a path from j

to k of tight edges, we must have p
k

= p
j

u↵, for some rational monomial u↵, in the

variables of U . Similarly, for a 2 V
C

, we will have y
a

= p
j

u�. Since every entry of U is

positive, we must have y
a

> 0 for all a 2 V
C

and p
k

> 0 for all k 2 W
C

.

7. In fact, for any k 2 [m], we have p
k

> 0. This is because p
k

� y
i

u
ik

, whence if there is

an i such that y
i

> 0, then for all k, p
k

> 0.

8. For any zero component C, we must have p
k

> 0 but q
k

= 0 for all k 2 W
C

, and m
i

= 0

for all i 2 V
C

.
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9. By a suitable manipulation of x0, we may assume that if q
k

= 0, then p
k

is suitably

raised so that the vertex k is not in any non-zero component. This modification does

not alter the feasibility of x0. Thus, we may assume the goods in the union of all

non-zero components exactly equals J .

10. Note that i such that m
i

= 0 may well be members of non-zero components, i.e.,

they may need to work and yet receive no wages. In other words, the sets I and

I
0
= {i|P

j

T
ij

q
j

= 1} may not equal.

Observations 1-10 imply that for a vertex with i 2 I ✓ [m],m
i

> 0 and j 2 J ✓ [n], q
j

> 0,

the corresponding variables would be

h
q1 q2 .. q|J | 0 .. .. 0

i

h
p1 p2 .. .. .. .. .. p

n

i

2

66666666666664

m1

m2

:

m|I|

0

:

:

0

3

77777777777775

2

66666666666664

y1
y2
:

:

:

:

:

y
m

3

77777777777775

2

66666666666664

z11 z12 .. z1,|J | 0 .. .. 0

z21 z22 .. z2,|J | 0 .. .. 0

: : : : 0 .. .. 0

z|I|,1 z|I|,2 .. z|I|,|J | 0 .. .. 0

0 0 0 0 0 .. .. 0

: : : : 0 .. .. 0

: : : : 0 .. .. 0

0 0 0 0 0 .. .. 0

3

77777777777775

Let us define a point v|I|,|J | with m
i

> 0 8i 2 I such that I ✓ [m] and q
j

> 0 8j 2 J such

that J ✓ [n]. We want to set the variables in a way so that v becomes a vertex. Let us now

list the important conditions required for a general case which can lead to the determination

of all variables.

p
j

�
X

i

m
i

T
ij

� 0

and p
j

0 =
P

i

m
i

T
ij

0 8j 0 2 J
0
such that J ✓ J

0
and |J 0 |+ a = |I|. Also,

X

j

T
ij

q
j

 1 8i 2 [m]
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and
P

j

T
kj

q
j

= 1 8k 2 I
0
such that |I 0 |+ b = |J |.

Note that I
0
may not be a subset of I. Let there be k connected components in the graph

formed by E. Also, we assume that the number of edges in E � F equals c, i.e., there are c

number of z
ij

’s which equal zero and for the same i, j, y
i

u
ij

� p
j

= 0. Similarly, let d be the

number of q
j

’s so that q
j

= 0 and p
j

=
P

i

m
i

T
ij

. We call such equations as double label.

Under these settings, we prove the following.

Theorem 6.2.1. If a+ b = c+ d, then a solution to v|I|,|J | defined above is a vertex.

Proof. We first successively reduce the number of variables and then solve for a smaller

system.

Without loss of generality we assume that there are no zero components, i.e., |I| =

m, |J | = n in the graph formed using E. Therefore, for k components, the number of edges

equals m + n � k, i.e., the number of nonzero z
ij

is at least m + n � k. As observation 6

notes, in each of the components, y
i

’s and p
j

’s can be expressed in terms of a single p. In

other words, there are k number of variables (p
j

) which determine the remaining m+ n� k

variables ( y
i

, p
j

). Thus, the remaining nonzero variables are 2m+2n+mn� (m+n� k)�
(mn� (m+ n� k))� (|E � F |) = 2m+ 2n� (|E � F |), so that we have p

j

(k),m
i

(m), q
j

(n)

and Z
ij

(m+ n� k � (|E � F |)).
Let us now list the tight inequalities concerning these variables. We have m�a equations of

type (6.2), i.e., (p
j

�P
i

m
i

T
ij

= 0), n� b equations of type (6.3), n equations of type (6.4),

m � 1 equations of type (6.5) and the equation (6.6). In all, we have 2m + 2n � (a + b) =

2m+ 2n� (|E � F |) tight equations.

We now prove the independence of (6.5), (6.6) which leads to the solution to z
ij

’s, given

m
i

, q
j

and p
j

. Let us first observe that these equations individually hold true for each

component of the forest formed by F . In other words, for each i 2 [m] and j 2 [n] belonging

to a particular component K, m
i

(
P

j

T
ij

q
j

) =
P

j2K z
ij

and p
j

q
j

=
P

i2K Z
ij

respectively.

This can be easily seen as for any k 2 K, z
kj

= z
ik

= 0 for all i, j /2 K. Noting the fact

that the number of vertices in K is m
K

+ n
K

, the number of nonzero z
ij

’s is m
K

+ n
K

� 1

as K is a tree. Now, from (6.5), (6.6), we have m
K

+ n
K

� 1 equations in case m1 belongs

to K and m
K

+ n
K

equations otherwise. Note that because
P

j

p
j

q
j

= 1, both these cases

are equivalent as it is possible to compute m1 from this equation. Therefore, without loss

of generality, we drop the corresponding equation for m
K1 from (6.5). Since there are no

cycles, no two vertices in K have the same set of edges. This means that
P

j

z
ij

and
P

i

z
ij
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are independent for each i and j. Now, we solve m
K

+ n
K

� 1 linear equations to find all

z
ij

’s. It can also be verified that the rank of above system is full.

Focusing on the remaining variables, we have p
j

(k), q
j

(n), andm
i

(m) and equations (6.2),

(6.3) along with k + c conservation equations
P

i

m
i

(
P

j

T
ij

q
j

) =
P

j

p
j

q
j

for all k + a + b

connected components. Moreover, there are d equations which give additional constraints

on p,m. Using the fact that T is in the general position, we invert the sub-matrix of T to

express first (n� b) q
j

’s in terms of last b q
j

’s. Similarly, we invert U to reduce the number

of variables m
i

to a by expressing in terms of p
k

’s and m
i

. Note that if a or b equal zero,

it is possible to invert U or T directly to find m, q. We’re now left with k + a+ b variables

and the same number of conservation equations, as a + b = c + d. We solve these for each

component.

It can be easily seen that each of the equations can be rewritten as
P

j2b
P

k2K h
kj

p
k

q
j

+
P

j2k pjej +
P

i2a
P

j2b lijmi

q
j

+
P

i2a mi

f
i

= 0 for each component, where h
ij

, l
ij

, e
j

, f
i

are

constants determined by T, U,K. These being quadratic equations, we note that multiple

finite solutions are possible which satisfy the system, where each is a vertex. If b equals zero,

there exists a unique solution where we determine the variables by solving linear equations.

Remark 6.2.1. If |J 0| + a = |I| and |J 0| + b = |J |, it is crucial to have c + d double label

equations so that the desired number of equations is obtained. Note that if c+ d = 0, this is

equivalent to the concept of generic points defined earlier.

Moving further, we see that observation 10 given above allows us to define fair vertices

where the classes with full employment are the ones which receive wages.

Definition 6.2.1. A vertex v|I|,|J | is a fair vertex if and only if I = {i| m
i

> 0} = I
0
=

{i|P
j

T
ij

q
j

= 1}.

According to this definition, fair vertices actually correspond to Heterodox equilibrium

points, as the following theorem shows.

Theorem 6.2.2. Let v|I|,|J | be a vertex with m
i

> 0 8i 2 I such that I ✓ [m] and q
j

> 0

8j 2 J such that J ✓ [n]. If v|I|,|J | is fair, then it is also a Heterodox equilibrium point.

Proof. Let us recall the definition of a Heterodox equilibrium point. We want (p, q, w,X)
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such that q, w are the optimal solutions of fP and (p,X) is the Fisher optimal solutions,

i.e., solutions to fC. In other words, along with the Fisher conditions, Tq  Y and p  wT

should hold true such that equations are tight for all i 2 I, j 2 J .

Firstly, as observation 1 notes, z
ij

> 0 only for I, J , which restricts the Fisher forest to

active goods and classes. Then, as observations 2 and 6 state, (6.1), (6.7) account for the

bang per buck conditions. Since I = I 0, (6.5) reduce to
P

j

z
ij

= m
i

8i 2 I. Then, (6.4- 6.6)

satisfy the market clearance conditions, so that (p,X) is the solution to fC.

Moving further, we see that wT � p and Tq  1 are the defining equations of the

region, as given by (6.2), (6.3). From the definition of fair vertices, it is easy to see that

w and q are dual variables of each other and are the solutions to fP . We also observe that

the conditions (6.1-6.2) define U -levels, T -levels and a range of feasible prices for goods with

q
j

= 0. Therefore, we establish that every fair vertex corresponds to a Heterodox equilibrium

point.

6.3 Vertices, Edges, and Transitions

In this section, we analyse the vertices and edges of the polytope-like region X defined above.

We start with (1, 1) vertices and subsequently analyse the (1, k) and (k, 1) cases by gradually

increasing the number of goods and classes. We then take up a (2, 2) vertex and examine

its adjacencies. The motivation of the theory is clear, it is to reach an optimal vertex by

traversing such vertices and edges of X.

6.3.1 (1, 1) Case : A vertex

Let i be any row index and j a column index such that Tij

uij
= min

j

0
Tij0

uij0
. We construct a

feasible point v
i,j

with the above data with the property that q
j

> 0 and m
i

> 0 and but all

other q’s and m’s are zero.

Let i⇤ be such that T
i

⇤
,j

is the largest entry in that column. First, let us define q
j

= 1/T
i

⇤
,j

,

p
j

= 1/q
j

= T
i

⇤
,j

and m
i

= p
j

/T
ij

= T
i

⇤
,j

/T
ij

. Next, let y
i

= p
j

/u
ij

. We set p
j

0 = y
i

u
ij

0 for

all j0 6= j. For i0 6= i, we choose y
i

0 as the minimum of p
k

/u
i

0
k

over all k. Finally, we put
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z
i

0
j

0 = 0 for all i0, j0, except z
ij

which equals 1.

Let us check the conditions under which v
i,j

so defined is feasible. Without loss of

generality, we assume that m1 > 0 and q1 > 0. Let i⇤ be such that T
i

⇤1 is the largest entry

in column 1. Now, equations (6.9) are easily satisfied. Next, we see that the assignments of

p
j

’s ensure that (6.1) are satisfied for i = 1. The cases i = 2, 3, ...m are similar. As regards

(6.2), (6.8), the definition of j and p
j

imply the conditions. Equations (6.3) require that

T
i1/Ti

⇤1  1 for all i, which comes from the construction. Equations (6.4)-(6.6) are easily

satisfied. Finally, in (6.7), since only z11 > 0, we check if p1 � y1u11 = 0, and this is true.

Thus v1,1(i⇤) is indeed a feasible point when T
i

⇤1 is the largest element in its column.

Let us now check if v1,1(i⇤) is a vertex. Let us briefly recall the implications of the KKT

conditions. Let D ⇢ RM be a domain given by K inequalities f
i

(x)  0, Let p 2 D be a

feasible point and let I
p

be the tight-set of indices, i.e., I
p

= {i|f
i

(p) = 0}. We say that p is

a vertex i↵ the vectors V
p

= {(rf
i

)(p)|i 2 I
p

} is full rank, i.e., rank(V
p

) = M .

Let us now list all tight inequalities in this special case, and check if V
p

is of full rank.

Equations

From (6.1), we see that the equations are tight for all (1, j) pairs by the specific construction.

Also, depending on the minimum of p
k

/u
ik

for each i 6= 1, a constraint is tight. Thus,m+n�1

equations are tight.

From (6.2 ), only one equation is tight, which is p
j

= m
i

T
ij

.

Similarly, from (6.3), only one equation is tight, which is T
i

⇤1q1 = 1.

From (6.9), p
j

, y
i

are positive 8i, j. Similarly, m1, q1, z11 > 0. All remaining variables are

zero. Thus, mn+m+ n� 3 equations are tight. Also, (6.4-6.6) are obviously tight.

Vertex

As stated above, we have 2m+ 2n+mn variables in the Rmn+2m+2n space. From these, we

can drop mn+m+ n� 3 variables which come from the tight equations of (6.8) as all these

are equal to zero and their gradients are clearly independent of each other. After removing

this subset, there are m+ n+ 3 variables left. From (6.1), by construction, y1 is defined as

p1/u11 and all other prices are defined in terms of p1 by y1⇥u1j. This gives n tight equations.

Similarly, y
i

are defined in terms of p1. This tells us that these variables are functions of p1
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and can then be dropped. Thus, there are m + n + 3 � (m � 1) � n = 4 variables, which

are m1, p1, q1, z11. Treating the dropped variables as constants, let us consider these four

equations.

(p1 �m1T11) = 0

T
i

⇤1q1 � 1 = 0

p1q1 = 1

z11 = 1

We check that the set of gradients of these equations give rank 4. Following the order [ m1

p1 q1 z11 ] while computing the gradients, we get,

D =

2

6664

T11 1 0 0

0 0 T
i

⇤1 0

0 q1 p1 1

0 0 0 1

3

7775

It can be easily seen that the determinant of above matrix is nonzero which establishes that

v1,1(i⇤) is a vertex. In this case, we have a = b = c = d = 0, and this is generic vertex.

Remark 6.3.1. Note that the vertex so defined may not be fair. In fact, for each i 2 I, we

can define a unique v1(i),1(j) where j is determined through T
i

and U
i

. For ‘fairness’, i.e.,

Heterodox equilibrium, the required condition is T
ij

= max
j

0 T
ij

0.

6.3.2 (1, k) Case

Having proved that v1,1 is a vertex, we now see how equations vary as we make another q
j

non-negative. In other words, we check if it is possible to determine all the variables when we

consider one buyer and a production of two goods in a general m⇥n market. Let m
i

> 0 and

q
j1, qj2 > 0. If two q

j

are positive, they must satisfy p
j

= m
i

T
ij

. Moreover, (6.4) implies that

z
ij1, zij2 > 0, so that (6.7) implies pj1

pj2
= uij1

uij2
. This contradicts the generic T, U assumption.

The same analysis is valid for a general (1, k), k > 1 case as well. In particular, we see that

Theorem (4.1.1) is valid for vertices of X as well. In this case, the least number of connected

components required is 2, which is not feasible for the (1,2) case.

Next, we examine the (k, 1) cases by successively increasing the number of non-negative

buyers.
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6.3.3 (k, 1) Case : An Edge

Let us now consider the case where there are two non-zero m0
i

s and one non-zero q
j

. We

move from the (1,1) case with m1, q1 > 0 to this case by relaxing m
i

= 0. Without loss

of generality, let m2 > 0. Later, we describe the necessary conditions on m1,m2. Let T
i

⇤1

be the largest entry in its column so that T
i

⇤1q1 = 1. When m2 > 0, z21 > 0 and thereby

y2 = p1/u21. Let p1 = 1/q1 = T
i

⇤1 and y1 = p1/u11. Let p
j

= max(y1u1j, y2u2j). Let us

choose y
i

= min
k

pk

uik
for k 6= 1, 2. We also have m1T11 + m2T21 = p1. Finally, we put

z11 = 1�m2, z21 = m2 and all other z
ij

= 0.

Let us now check the conditions under which this point is feasible. Constraints (6.1) are

satisfied by the specific construction. From (6.2), we have m1T11 +m2T21 = p1 = T
i

⇤1 and

m2 is such that m1,m2 satisfy-

8j0 6= 1, p
j

0 = max(y1u1j0 , y2u2j0) < m1T1j0 +m2T2j0

For (6.3), as per the definitions, T
i

⇤1q1 = 1 and other inequalities are satisfied too. Since

p1q1 = 1, it can be seen that the constraints (6.4), (6.5), (6.6) hold true. As in the last

cases, (6.7-6.9) are easily satisfied. Thus, v2,1 is indeed feasible. Next, we reduce the system

by dropping dependent and zero variables to [m1,m2, p1, q1, z11, z21]. The five equations

concerning these variables are-

(p1 � T11m1 � T21m2) = 0

T
i

⇤1q1 = 1

z11 + z21 = p1q1

z21 = m2T21q1

p1q1 = 1

Gradients of these equations with the order [m1 m2 p1 q1 z11 z21] are -

D =

2

6666664

�T11 �T21 1 0 0 0

0 0 0 T
i

⇤1 0 0

0 0 �q1 �p1 1 1

0 �1 0 �m2 T21 0 1

0 0 q1 p1 0 0

3

7777775
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We see that rank of the above matrix is 5, which means that v2,1 forms an edge. The total

rank of the system is thus, mn + 2m + 2n � 1, which is one less than the full. This is also

evident from the equation - m1T11 +m2T21 = T
i

⇤1, which forms a line.

Note that this case can also be generalized to the (k, 1) case. Let us see that by introduc-

ing a nonzero m3, which thereby adds a nonzero z31 too, according to (6.7). When we look

at the governing equations given above, the first equation remains the same except that the

term m3T31 is added. z31 is defined in the same manner as z21. Concluding as before, rank of

the reduced system is 6, which is 2 less that the full rank, i.e., 8. This is because of the equa-

tion p1 = m1T11 +m2T21 +m3T31, which involves three undetermined variables m1,m2,m3.

Building on this, we say that the rank of a general (k, 1) case is mn+ 2m+ 2n� k + 1.

6.3.4 (2, 2) Vertex and its adjacency

Next, we take up a (2, 2) vertex and explore its adjacent vertices by relaxing appropriate

edges. We start with defining v2,2 and later look at its transformation to v1,1, v2⇤,2, an

another (2, 2) vertex, and v3,3.

Without loss of generality, we let m1,m2, q1, q2 > 0 and T
i⇤1m1 + T

ik⇤1m2 = 1, T
i⇤2m1 +

T
k⇤2m2 = 1. Let (6.1) and (6.2) be tight for i, j = {1, 2}. From (6.9), let us have z11, z21, z22 >

0. Let p
j

0 = max(y1u1j0 , y2u2j0) 8j and y
i

= min
k

pk

uik
. Let p1

p2
= u21

u22
< u11

u12
and m1,m2 satisfy

8j0 6= 1, 2, p
j

0 = max(y1u1j0 , y2u2j0) < m1T1j0 +m2T2j0 (6.10)

As done before, it can be checked that v2,2 so defined is a generic vertex of X. Note that

only when {i⇤, k⇤} = {1, 2}, the vertex is fair.

Firstly, we relax the equation p2 = m1T12 � m2T22. As a result, we see that q2 = z22 = 0.

Equations (6.3) are not tight. Dropping dependent and zero variables as before, we have [m1

m2 p1 q1 z11 z21 ] variables and these equations-

(p1 �m1T11 �m2T21) = 0

z11 + z21 � p1q1 = 0

z21 = m2(T21q1)

p1q1 = 1
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It can be checked that the rank of gradient of the above system is 4, which gives a plane.

Null vectors corresponding to this are,

m1

m2

p1
q1
z11
z21

2

6666666664

�p1�m2 T21

q1 T11
� 1

q1 T11

�m2
q1

1
q1 T21

�p1

q1
0

1 0

0 �1

0 1

3

7777777775

Now, following the first null vector, we reach an edge (2, 1), when q1 increases so that the

equation T
i⇤1q1 = 1 becomes tight, where T

i⇤1 = max
i

{T
i1}. Here, rank of the gradient

matrix is 5. Null vector of this is given by-

m1

m2

p1
q1
z11
z21

2

666666664

� 1
q1 T11
1

q1 T21

0

0

�1

1

3

777777775

which suggests that we reach a (1, 1) vertex, when m1 or m2 become zero. Thus, depending

on the entries of T and U, the edges and vertices of X are defined.

Next, we consider the (2, 2) vertex again and relax the equation T
i⇤1q1 + T

i⇤2q2 � 1 = 0.

Dropping dependent and zero variables, we have [m1 m2 p1 p2 q1 q2 z11 z12 z21 ] variables

and these equations-

(p1 �m1T11 �m2T21) = 0

(p2 �m1T12 �m2T22) = 0

p1
p2

=
u21

u22
= ↵

T
k⇤1q1 + T

k⇤2q2 � 1 = 0

z11 + z21 � p1q1 = 0

z22 � p2q2 = 0
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z21 + z22 = m2(T21q1 + T22q2)

p1q1 + p2q2 = 1

Note that we have 8 equations for 9 variables. We see that the rank of the gradients matrix is

8, which confirms that this is an edge. As the null vector of this gradient suggests, all variables

of this system deviate while traversing the edge. We reach another vertex when an equation

T
h⇤1q1 + T

h⇤2q2 � 1 = 0 becomes tight with (6.10) holding true. In this transformation, the

combinatorial data I = {1, 2} remains the same but I
0
= {i|P

j

T
ij

q
j

= 1} changes from

{i⇤, k⇤} to {h⇤, k⇤}.

Next, we relax the equation m
i

> 0 for i 6= {1, 2}, i.e., we add an entry to the set of

active buyers I. We see that (6.5) forces either of z31 or z32 to be positive. That makes either

y3u31 = p1 or y3u32 = p2 tight. Note that the equations y1u11 = p1, y2u21 = p1 and y2u22 = p2

remain valid, i.e., p1 = p2 ⇥ ↵ holds true. Therefore, using the ratios p1/p2, u31/u32, it is

easy to compute y3. Without loss of generality, let us assume y3u32 = p2. Dropping the

dependent and zero variables, we get the following variables [m1 m2 m3 p1 p2 q1 q2 z11 z21

z22 z32] and tight equations-

(p1 �m1T11 �m2T21 �m3T31) = 0

(p2 �m1T12 �m2T22 �m3T32) = 0

p1
p2

=
u21

u22
= ↵

T
i⇤1q1 + T

i⇤2q2 � 1 = 0

T
j⇤1q1 + T

j⇤2q2 � 1 = 0

z11 + z21 � p1q1 = 0

z22 + z32 � p2q2 = 0

z21 + z22 = m2(T21q1 + T22q2)

z32 = m3(T31q1 + T32q2)

p1q1 + p2q2 = 1

As done before, we compute gradient matrix of these equations. From the rank of the matrix,

which is 10, we see that the equations form an edge. According to the null vector, p1, p2, q1

72



and q2 are constants, while other variables have directions of increase depending on the

values of T , U . In particular, m1 and m2 have opposite directions of increase and similarly,

each of z11, z21 and z22, z32 have di↵erent directions of increase.

There are a number of possibilities for vertices that this edge can connect to, including

various (2, 2) and (3, 3) vertices. Here, we explore one such edge. Note that (6.2) holds true

for all j 2 [n]. While m
i

, i 2 1, 2, 3 change along the edge, let p3 <
P

i

m
i

T
ij

become tight.

At this point, we also have q3 = 0. Then, according to Theorem 6.2.1, the resulting point is

a vertex with I = J = 1, 2, 3 and b = d = 1. In other words, it forms a vertex, which is a

non generic point. We denote such vertices as ‘transition’ vertices. Further, we may relax

q3 = 0 where we get an edge. It connects to a (3, 3) vertex when the corresponding equation

from (6.3) becomes tight.

This analysis shows that vertices with di↵erent combinatorial data I, J are connected

to each other through edges and it is possible to change the data by relaxing appropriate

edges. We see that the (2, 2) vertex is connected to both (1, 1) and (3, 3) vertices. This way,

we characterize the vertices and traverse the edges to gradually increase the combinatorial

data. We may also reach ‘fair’ vertices by altering the combinatorial data I, as shown for

the (2, 2) vertices.

6.4 A Partial LCP Formulation

In this section, we give a partial LCP formulation of the Heterodox model, which captures

the set of Heterodox equilibria. Let us consider the following constraints and their comple-

mentary conditions-

8i 2 [m], j 2 [n] : y
i

u
ij

 p
j

and (p
j

� y
i

u
ij

)z
ij

= 0 (6.11)

8i 2 [m], :
X

j

z
ij

 m
i

and (
X

j

z
ij

�m
i

)h
i

= 0 (6.12)

8j 2 [n] : p
j

�
X

i

m
i

T
ij

 0 and (p
j

�
X

i

m
i

T
ij

)q
j

= 0 (6.13)

8i 2 [m] :
X

j

T
ij

q
j

 1 and (
X

j

T
ij

q
j

� 1)m
i

= 0 (6.14)
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For each fixed y
i

, for i 2 I, (6.11) define the optimality conditions for Fisher market as

only for a particular set of j i.e {j|y
i

= pj

uij
}, the allocations may be nonzero. We have the

market feasibility (6.13) and labour constraints (6.14) here, and we let q
j

,m
i

be their dual

variables, respectively. This serves two purposes. Firstly, it ensures that only optimal goods

are produced and only fully employed classes earn wages. Secondly, 8j, p
j

q
j

= q
j

(
P

i

m
i

T
ij

),

and 8i, m
i

P
j

T
ij

q
j

= m
i

, imply
P

i

m
i

=
P

j

p
j

q
j

which means that total money is conserved

and (6.12) requires market clearance of money. We note that (6.14) is not considered while

defining X and it captures the fairness condition.

We note that the equations can be brought to the LCP form, e.g., for (6.11), we introduce

new variables v
ij

= p
j

� y
i

u
ij

, which give the conditions v
ij

, z
ij

� 0 and v
ij

z
ij

= 0. Next, we

have non-negativity conditions for all the variables.

8i 2 [m], j 2 [n] x
ij

, h
i

,m
i

, y
i

, p
j

, q
j

� 0 (6.15)

Let us call the LCP defined by the constraints (6.11- 6.15) as HET-LCP. It is easy to see that

equilibrium points of the Heterodox model correspond to its solutions. Clearly, (6.13-6.14)

hold true as these are the complimentary slackness conditions for fP . Further, y
i

captures

the bang per buck ratio for each i 2 I. For the goods j which are not produced, U - levels

are lower than the T -levels which imply that (6.11-6.13) hold true for all j.

We see that there are two shortcomings in HET-LCP, as regards its computability. Firstly,

not all solutions to the LCP are equilibrium points. The formulation is homogeneous in h

as (6.12) have the rhs constraints vector (denoted by q in Appendix A) as zero. As a

consequence, solutions of the LCP include (y = 0̄, p = 0̄, q,m = 0̄, X = 0̄), where q satisfies

(6.14). For the h > 0 space, however, nonzero solutions may be computed. Moreover,

the non-linear constraints
P

i

z
ij

= p
j

q
j

may not be satisfied, though the total money is

conserved. A heterodox solution is computed from the solution set to the LCP satisfying

these equations, which implies that it may not be unique. Secondly, as we know, Lemke’s

algorithm can be used to compute a solution to the LCP, but it may terminate without finding

an equilibrium. We see that an alternate LCP formulation can also be given consisting of

(6.11), (6.13-6.15), where we solve for Z using (6.4-6.6). However, this formulation also

su↵ers from homogeneity and the resultant Z
ij

’s need not be non-negative.
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Chapter 7

Applications - The Trade Theory

Theory of comparative advantage is a classical theory, developed in 1817 by David Ricardo to

explain why countries should engage in trade even if one country is more e�cient at producing

every single good as compared to other countries [11]. Using the theory of Heterodox model

and the tatonnement process described earlier, we look at the trade theory and model its

various outputs such as production, prices and wages. In particular, we see how it is possible

to derive Ricardo’s results and determine other unsolved variables which are crucial to the

economy.

7.1 Ricardo’s Theory of Comparative Advantage

In its basic form, Ricardo’s theory considers two goods produced by two countries and shows

that it is profitable to trade in terms of the goods produced and societal happiness achieved

in both countries. Let us call this way of allocating resources as Algorithm-2, with the

Heterodox model being Algorithm-1. As an illustration of Ricardo’s theory, we refer to the

following example.

Example 9. Let us consider two countries A and B with 100 labour inputs each, that produce

only two goods, computers and rice. Labour is homogeneous, i.e., there’s no further division

in terms of skills. Let both countries have di↵erent production technologies so that A is more
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e�cient in producing both. Let the number of labour inputs needed by countries A and B to

produce a unit of each good be given by-

Computers Rice
Country A 10 20
Country B 50 25

Let us first look at the countries in autarky, where no trading takes place. Here are their

production possibility frontiers (PPF), which give the possible tradeo↵ of producing goods in

various combinations while keeping the labour and technology constraints -

In Algorithm-2, we see that the ratio of prices in autarky is decided as the inverse of the

ratio of maximum possible production of each good. If the ratio equals any other value, the

country would produce only the most profitable good, where the production does not meet with

the demand for another good. This may be seen from the following optimization program for

producers in country A.
max

q

p
c

q
c

+ p
r

q
r

s.t. 10q
c

+ 20q
r

= 100

q
c

, q
r

� 0

(7.1)

So, we have, for country A and B, the ratio of autarky prices as implied by the KKT

conditions- ✓
p
c

p
r

◆

A

=
10

20
=

1

2
,

✓
p
c

p
r

◆

B

=
50

25
=

2

1

Given the PPF, let us now decide the actual choice of production. This may be done by

maximizing total social utility using a utility function. This can also be understood through

demand functions. For both the countries, production lies on the PPF.

Let us now analyse the PPFs which get modified after the trading starts. Firstly, the optimal

production is obtained through utility maximization on the combined PPF. Depending on

the utility or demand functions, the KKT conditions imply that there are three possibilities
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for optimal production, which also decides the relative ratio of prices. When both goods are

produced, the relative ratio of prices, i.e., slope of the demand function at the optimal point

is between 0.5 and 2, both inclusive.

We see that with case-1, the ratio is 0.5, and B produces only Rice, and vice versa for Case-

3. With the standard demand functions, let the solution be the second case. Now, with this

price ratio, since it is greater than 0.5, country A will produce only computers, something it

is comparatively better at. Similarly, Country B will produce only rice. Thus, with this new

ratio of prices, PPFs will get modified-

Though Algorithm-2 doesn’t explain absolute wages, it considers real wages or purchasing

power. Let us see this by dividing the homogeneous labour classes from each country into

two, each producing a good; for example, Rice producers and Computer makers. Real wage

of a computer worker in terms of rice is given by wc
pr
, where w

c

and r
c

stand for wage of

a computer worker and price of one unit of rice. [12] Before trading, each labour division

has same real wages in terms of rice and computers; otherwise the labour would shift. After

the trade begins, real wages of country 1 labour, i.e., computer workers increase in terms of

rice and remain the same in terms of computers and vice versa. This is because the ratio of

prices of rice to computers increases in A.
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With this new relative ratio, each country can buy more number of goods by exchanging the

goods it is producing. For example, if the ratio is 1.5, country A will be able to sale one

computer for 0.66 sacks of rice, as opposed to 0.5 before. Because of this outward shift in

the PPFs, both countries are now better o↵. We see that with case 1 or 3 as well, at least

one country benefits from trading. Hence, the theory of comparative advantage tells that

trading makes countries produce goods that they are comparatively more e�cient at, thereby

increasing market’s e�ciency.

However, we note that this Algorithm-2 does not allow us to compute the wages or

allocation of money and goods across the countries. In practical scenarios, though both

countries are better o↵ after trading, there’s reallocation of money due to technological

di↵erences and free market, which remains unexplained. Also, the autarky wages do not

give a satisfactory and accurate account of wages and allocations.

In case of prices, those can be found by various ways, perhaps relating to various theories

of relative prices. One way could be to feed the production values in the Fisher market and

compute prices which assumes initial money allocations. Another focuses on the capital-

labour ratio, which is not considered here. In this case, another way is to assume same

wages in a class and thus derive autarky prices by finding the technology ratio. Lastly, one

can find prices by computing the production ratio as per the Ricardian theory. However,

none of these give a notion of equilibrium wages, prices and allocations when two countries

trade given their technological di↵erences and utility preferences. The theory developed here

focuses exactly on these aspects.

We first consider an example where production of a single country is computed using

Algorithm-2, with piecewise linear concave (plc) utilities as the demand functions. There

are some remarkable properties exhibited by such structure which reestablish the relation

between KKT conditions for optimality and the Fisher market. We then consider two cases

with di↵erent types of utilities- linear and plc. We assume that consumers in both countries

are rational, i.e., they have same utilities towards the goods. In case of linear utilities,

we prove that both Ricardo’s model and the Heterodox model produce same results for

productions. For plc utilities, we consider an example to illustrate the Ricardian theory and

then analyse it using the Heterodox model.
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Utilities as demand functions

Here we consider a country with two producible goods, viz. computers and rice, and compute

its most e�cient production using utilities as demand functions. We then also look at how

Fisher prices are derived in case of plc markets [7]. Let us consider a market comprising of

a labour class of 300 homogeneous units.

• Let the technology requirements be-

Computers Rice
15 10

That is, 20 labour units are needed to make one computer and 10 for a rice sack.

• The (plc) utilities in two segments are as follows:

C R
U1 = [0.5 0.8]
U2 = [0.4 0.2]

C R
L1 = [4 6]
L2 = [10 15]

Here, U1 and U2 denote the utilities in the first and second segment, respectively.

Note that the utilities decrease from U1 to U2 after L1 units of goods are consumed, to

give a concave formulation. Also, instead of per person values, we consider per class

values here, i.e., utility of computers decreases when the society consumes 4 units as a

whole.

Now, we consider Algorithm-2 to determine optimal production, where x1 and x2 are com-

puters and rice produced in A and x3 and x4 are the same for B:

max
x

U(x) = 0.5x1 + 0.8x2 + 0.4x3 + 0.2x4

s.t. 15x1 + 15x3 + 10x2 + 10x4 = 300
(7.2)

2

6664

x1

x2

x3

x4

3

7775


2

6664

4

6

10

15

3

7775
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Where we get our first constraint from the PPF

We can now solve the optimization problem to get the following results:

Computers Rice
Production 14 9

As explained before, Ricardian theory implies that the ratio of prices equals 20
10 = 2. This

comes through the optimization program for producers. Thus, we have obtained the optimal

production and price ratio using Algorithm-2.

We now consider an optimization program for consumers to find the optimal prices. Let us

consider a consumer i with money m
i

, utilities u
ic

, u
ir

and allocations x
ic

, x
ir

. The consumer

maximizes her utility by spending at most m
i

amount.

max
x

u
ic

x
ic

+ u
ir

x
ir

s.t. p
c

x
ic

+ p
r

x
ir

 m
i

q
c

, q
r

� 0

(7.3)

To find the prices, we see that KKT conditions and the Fisher market solution imply the

same solutions.
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Since 4 computers and 6 sacks of rice are used up in the first segment as required by L,

the current allocation is in the second segment for both the goods. We know that utilities

at the operating points are 0.4 and 0.2. Hence, when we maximize the total utility, KKT

conditions imply that the ratio of prices is equal to the ratio of these utilities. This is also

equal to the one given by Fisher market. We thus reestablish the connection between the

KKT conditions and the Fisher market [2].

7.2 Ricardo and Heterodox

Firstly, we prove that the Heterodox way of finding optimal production indeed gives its

output on the PPF.

Theorem 7.2.1. Given a market comprising of two or more countries, corresponding tech-

nology matrix T, utility matrix U, and segments matrix L, the optimal production found using

the process P lies on the PPF.

Proof. To find the production, we use the following optimization program

P (X) = max
q

p1q1 + p2q2 + p3q3 + p4q4

s.t. q
j

� 0 8j
T11q1 + T12q2  Y1

T21q3 + T22q4  Y2

(7.4)

Whereas, the (PPF) is a curve consisting of all maximum output possibilities for two goods,

given resource constraints. In other words, for a point on PPF, production of one good can

only increase if that of other good decreases. Let us assume that the optimal production

given by the above program does not lie on the PPF.

In case of a generic vector p, the KKT conditions require that -

p1 = T11w1 � �1

p2 = T12w1 � �2

p3 = T21w2 � �3

p4 = T22w2 � �4
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where � correspond to the multipliers associated with q
j

� 0.

It is evident that for positive q
j

’s, �
j

should equal zero, so p
j

should be equal to T
ij

w
i

.

Therefore, for a given vector p, either q1 or q2 is positive. Similarly, one of q3 and q4 is

positive. Thus, it can be deduced that each country would specialise by producing exactly

one good.

Since the optimal point does not lie on the PPF, without loss of generality, let the

optimum point Q be such thatX = q1+q3 (Computers) can increase whileW = q2+q4 (Rice)

remains constant. This means that at least one of q1 or q3 increases while T11q1+T12q2  Y1

and T21q3+T22q4  Y2 hold. This is possible only if the inequalities are not tight. This implies

that P (X) increases as X increases, which contradicts the optimality of Q. Therefore, the

production lies on the PPF of both countries.

We note that this also implies that inequality constraints are tight, i.e., the amount that

each country produces lies on that country’s PPF.

7.2.1 Linear utilities

In this section, we prove that both these models produce same output when the countries

have linear utilities.

Theorem 7.2.2. Given a market comprising of two countries, corresponding technology

matrix T, and the linear utility matrix U, both the models, viz. Ricardo and Heterodox,

produce the same output for production.

Proof. In case of linear utilities, we have U as follows, where buyers in both countries are

rational and have same utilities towards the goods.

"
C R C R

u1 u2 u1 u2

#

This has two implications. First, the Fisher Forest of allocations is a complete graph where

both countries buy both the goods produced. Next, the iterative method gives the following

output for prices, irrespective of the produced goods-

p =
h
p1 p2 =

u2
u1

⇥ p1 p1 p2 =
u2
u1

⇥ p1
i
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Therefore, we have both optimization programs as-

max
q

u1q1 + u2q2 + u1q3 + u2q4

s.t. Tq  Y

q
j

� 0

max
q

p1q1 + p2q2 + p1q3 + p2q4

s.t. Tq  Y

q
j

� 0

(7.5)

It can be observed that both programs produce the same outputs for q since

u1

u2
=

p1
p2

We note that there exists only one stable state in case of linear utilities, which can be

computed by solving the above program.

Next, we illustrate the Ricardian market through an example, which considers piece-wise

linear concave (plc) utilities. Later, we look at a general model and provide results for this

example using the tatonnement process.

7.2.2 plc utilities

Here we have two countries, A with 200 homogeneous labour units and B with 50 homoge-

neous labour units. The countries produce two goods, Computers and Rice, with di↵erent

technology inputs for each. We consider plc utilities here, by expressing the values in terms

of segments. Here are the specifications of the market.

• Let the technology and utilities for both countries be as follows:

C R C R
A 20 10 0 0
B 0 0 5 10

C R C R
U1 = [0.5 0.7 0.5 0.7 ]
U2 = [0.43 0.2 0.43 0.2 ]

We assume that two types of goods are produced in each country - Computers and

Rice. The utilities are piece-wise linear, concave with U1 and U2 being the utility

vectors in the first and second segments respectively.
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• The L matrix (2⇥ 1⇥ 2) (maximum amounts of all segments) is

C R

L1 = [0.02 0.3]

L2 = [0.08 0.12]

where, values in these two segments are per person per good. For example, for a person

in any of the countries, utility for Rice reduces after consuming 0.3 units of a Rice sack.

Subsequently, for the combined economy of 250 people, the modified L is

L1 = [5 7.5]

L2 = [20 30]

Note that the second segment values are superfluous in the sense that we consider only

one decrement in the utilities and also that maximum possible production is [20, 25].

Now, PPF(Production Possibility Frontier) of the resultant economy is

We maximize the total utility to find optimal production, which lies on this PPF. Let z1 and

z3 be the total number of computers consumed in the first and second segments respectively.

z2 and z4 are for rice. Also, xij

refers to computers produced by the ith country and consumed

in the jth segment. Note that this does not talk about consumption by any country, it just

says that out of the total computers produced in i, x
ij

computers were consumed with

corresponding utility by both the countries together. Similarly, y
ij

is for rice. To find the
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production, the optimization program is -

max
z

U(z) = 0.5z1 + 0.7z2 + 0.43z3 + 0.2z4

s.t. 20x11 + 20x12 + 10y11 + 10y12 = 200

5x21 + 5x22 + 10y21 + 10y22 = 50

(7.6)

2

6664

z1 = x11 + x21

z2 = y11 + y21
z3 = x12 + x22

z4 = y12 + y22

3

7775


2

6664

5

7.5

20

30

3

7775

Here, inequalities mean that consumption of each good is bounded by the L1 values. Also,

the equalities are the resource constraints.

Optimization results for the above program are :

Computers Rice
A 1.47 + 4.78 = 6.25 7.5 + 0 = 7.5
B 3.53 + 6.47 = 10 0 + 0 = 0

For example, x11 + x12 = 1.47 + 4.78 = 6.25 is the total number of computers produced by

A. We see that at the optimal production, country A produces both the goods while country

B produces only computers. Total production is [16.25 7.5] which lies on the PPF.

For prices, Algorithm-2 optimizes the producer’s revenue i.e p · q. As seen from the

optimization program above, q lies on A’s segment in the PPF. Therefore, from the allowed

range of slopes (1/2, 2), ratio of relative prices equals 2. This is in line with the fact that

B produces only computers and A produces both the goods. We note that because of plc

utilities, it is possible for the optimal production to lie on points other than the corner ones

on the PPF. On the other hand, in case of linear utilities, the only possible optimal points

are the cases where only rice or computers are produced or the point where one country

produces rice and another produces computers.

As per the Ricardian theory, we can find the total production and relative prices. So now

the question is to determine the wages in this combined economy. Also, it is important to

see how these goods are allotted across these countries.
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The Heterodox interpretation of Ricardo’s model

Though an equilibrium exists as given by the existence theorems, the tatonnement process

need not converge to it. We note that the existence theorems extend to plc utilities as well.

Here, we look at how the tatonnement process works when the countries start trading with

each other. We do not compute the equilibrium, but analyse the tatonnement solutions.

We first optimise the value of pT q to find the optimal production given the technology

constraints, where q : production and p: input prices. Wages are the dual variables of this

program. Using KKT conditions, we know that for a general vector p, only two entries of

the q vector are nonzero. This is because we have the following type of feasibility conditions -

p1 = T11w1 � �1

p2 = T12w1 � �2

p3 = T21w2 � �3

p4 = T22w2 � �4

where � correspond to the multipliers associated with q
j

� 0. It is evident that for positive

q
j

’s, �
j

should equal zero, so p
j

should be equal to T
ij

w
i

. Thus, it can be deduced that each

country would specialise by producing exactly one good. We can find this good in each state

by looking at the following relation-

If
p
i

p
j

>
T
i

T
j

then, the country will produce good i, otherwise it will produce good j. Since T
i

denotes

the number of labour inputs required to produce good i, this equation makes perfect sense

because it maximises the revenue the country can generate.

Once we know both the prices, wages can be computed as-

w1

w2
=

T2

T1
⇤ p1
p2

=
p1/T1

p2/T2

This can also be seen as a solution to T�1p, where T is diagonal. Here, the subscript 1

denotes the first country. Thus, T1 is the selected technology from the first country and so

on.

Now, when we feed this data into the Fisher market, we get a new set of prices. The ratio
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of these prices equals the ratio of appropriate utilities when the forest is connected. If the

solution consists of only one state, i.e., if no switching is observed, then the next set of wages

is again computed by the above mentioned formula. Once the Fisher forest is stable, all

parameters can be found easily.

• Toggling states: As a part of our iterator function, every time we run the Fisher market,

we attribute some prices to the unselected goods given by the formula-

P
new

= u1new ⇥min
i

p
i

u2i

The states are stable unless the production changes. As stated above, those will change, if

p
i

P1new
<

T
i

T
new

i.e.,
u2i

u1new
<

T
i

T
new

for any good new that was unselected in the earlier iteration and good i that was produced.

Because we have two segments here, we often see this kind of phenomenon happening, which

results in toggling states. For example, when Fisher market is such that the following holds

p1
p2

=
u21

u22
(7.7)

and if,
u2i

u1j
<

T
i

T
j

<
u1i

u2j

then goods i and j are produced alternatively.

If good i gets over in the first segment itself and second good j is allotted to both the classes

in the next segment, we see -
p
i

p
j

=
u1i

u2j
(7.8)

and the similar analysis holds for this case too.

Now, the results for example-2 are-

Wage Iterations- Equilibrium Prices-

A B C-A R-A C-B R-B

0.537 0.462 0.05 0.0814 0.05 0.0814

0.765 0.235 0.06 0.024 0.052 0.0843

Goods Iterations - Total Allocations per person-
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C-A R-A C-B R-B C-A R-A C-B R-B

10 0 10 0 0.0537 0 0.185 0

0 20 10 0 0.0308 0.0925 0.0767 0.03

Thus, the stable system has two states, one in which both countries produce computers and

the second in which A produces Rice and B produces Computers. The average production

of these two states is -

Computers Rice
A 5 10
B 10 0

On the consumption part, Fisher market computes the prices. The unused goods are given

Fisher-like prices in each iteration. Since the wages given here are per country wages, it

can be computed that in first state, a person from A gets 0.0027 Rs and that from B gets

0.0092 Rs. While in the second, A gets 0.0038 Rs. and B gets 0.0047 Rs. Because B is more

e�cient as seen from the technology matrix, on average, a person from B receives more than

that from A.

Here, we have looked at the outputs of the tatonnement process. In particular, note that

this does not talk about the Heterodox equilibrium of the market.

7.3 The Basic Di↵erence

Ricardo’s theory is based on utility maximisation where, in a general sense, first the de-

mand function is found using utilities and optimal production is decided by maximizing

total utility. Thus, it maximises the total happiness a society can derive. Prices depend on

the optimal production. On the other hand, as Eisenberg-Gale algorithm [13] suggests, an

answer to Fisher’s market is the solution to the following optimization problem-

max
i

X
m

i

log(u
i

) (7.9)
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Thus, Eisenberg-Gale approach gives a more concrete notion as it weighs utility of each

person/class with the money available. In other words, because of more purchasing power

of the higher classes, their utility gets a higher weightage as compared to the lower ones. An

interesting interpretation of this result is that the multi-agent model derives global optimal

while all agents mazimize their utilities. Also, it is interesting to see that prices and alloca-

tions emerge as a solution to this optimization problem. This is evident as while maximizing

the utility, we have taken money considerations into account. Similarly, it is clear from the

dual understanding of this problem, which is the determination of wages and production,

that wages are nothing but prices attributed to the skills labourers have and their demand

from the society.
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Chapter 8

Conclusion

This work shows that consumer choice is indeed an important determinant of wage dis-

tribution in an economy. This connection provides an important tool for wage-earners to

understand how they can adapt their consumption so as to support a more equitable distri-

bution of wages. It does this by providing a modelling and analytic framework which allows

us to explore concretely the thread between consumer choice, prices, production and wages.

The thesis also helps us understand pricing of many everyday items, e.g., smartphones,

where two similar devices may have very di↵erent prices, and also that these prices may

dramatically change based on a fluid consumer choice. It also suggests that preferring goods

and services provided by small-branded and local/regional players, rather than buying the

“best” may be a better strategy to ensure better wages.

Next, the key data required of the economy, viz., T and Y , is a labour inventory of

the production processes of the economy and is part of some of the standard data sets of

countries. Such an inventory could be used to develop a tool allowing each household to

compute its labour footprint, i.e., an understanding of how their household consumption

brings employment across the economy. One conjecture is that the consumption preferences

of many wage-earners possibly do not support their own employment. Such an understanding

may be useful to these very classes in modifying their personal consumption. Also note that

the labour footprint, while very similar to the GDP calculation, does not need monetization.

This is important in its own way.
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The Heterodox model, may also be applied to the standard ‘comparative advantage’

arguments in Ricardian economics. Here it helps illustrate how the social benefits of trade

actually transmit as wages across various classes.

Technically, the computation of an equilibrium, given a T, U, Y is an interesting problem.

The A-D connection implies that already known e�cient algorithms will shed some light. The

algorithmic computability of fair vertices and the LCP formulation is an important question.

The tatonnement process of this paper needs to be strengthened and its ‘computing’ power

needs to be enhanced. A study of the pay-o↵ correspondence and the existence of Nash

equilibria in general economies needs to be undertaken.
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Appendix A

Lemke Algorithm

Lemke algorithm is a simplex-type vertex following algorithm, used to compute solutions to

Linear complementarity problems. It has numerous applications in Game theory including

the computation of Nash equilibria or market solutions. Here, we give a brief description of

the problem and its solution [19].

An LCP problem can be posed as -

LCP(q,M) Find : z

s.t. Mz � q  0

z � 0

z(q �mz) = 0

(A.1)

We see that the problem has a nontrivial solution z 6= 0 only if q 6� 0. Now, we introduce

slack variables v = q �Mz so that the problem reduces to -

Mz + v = q, z � 0, v � 0, z · v = 0

Let P be the polyhedron formed by the first three conditions, and we assume that it is

degenerate. This requires that any solution to (A.1) is a vertex, as it must satisfy 2n

equalities. We now introduce a variable x and call this new system an augmented system.

Mz + v � x1 = q, z � 0, v � 0, x � 0, z · v = 0
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Let P 0 be the polyhedron formed by the first four conditions. Since any solutions to (A.1)

must still satisfy 2n equalities, the set of solutions S will consists of vertices and edges of

P 0. Any solution to (A.1) also satisfies x = 0, and is a vertex of P 0.

We now categorize the points of S into two. If those have either z
i

= 0 or v
i

= 0 for each

i, those are termed as singles labels. If those have z
i

= v
i

= 0, those are said to have double

label at i. These points are vertices of P 0 and have only one double label. There are exactly

two ways of relaxing the double label, and thus, there are two edges of S incident on such

vertices. It can be observed that a solution to (A.1) has v = 0 and is not a double label of

P 0. There is a unique edge from S incident on such vertices, which is obtained by relaxing

v = 0.

We thus see that S consists of paths and cycles. Lemke’s algorithm starts with a special

path that either ends at the solution, i.e., a vertex with v = 0 or fails where, in most cases,

the original system may not have a solution. An edge of S which connects a vertex in S

with another which satisfies v > 0 is called a ray. A primary ray is special in the sense

that it is incident on a vertex with z = 0. Lemke’s algorithm starts with a primary ray

and explores a path via pivoting. The algorithm cannot be used to find trivial solutions,

however Lemke-Howson algorithm is applicable for these cases. As discussed above, Lemke’s

algorithm can be applied to any non-degerate LCP, but it may terminate without attaining

an equilibrium. There are a few su�cient conditions for the processability of this algorithm

under specific settings like semimontone LCPs.
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Appendix B

Numerical Results

In this section, we give some numerical results for a 2 ⇥ 2 case. We look at the wages and

total utilities of two classes as functions of their strategies, i.e., utilities.

Let us assume that we have two labour classes with T (Technology matrix), U (Utility

matrix) and Y (Labour availability) given by-

T =

"
0.2501 0

0.25 1

#
U =

"
1 �

↵ 1

#
Y =

"
2

4

#
U
r

=

"
1 1

1 1

#

Whenever both classes are active, q (production vector) is given by :

q = T�1Y =

"
4 0

�1 1

#
Y =

"
8

2

#

and

w =
h
w1 w2

i
=
h
p1 p2

i
· T�1 =

"
4p1 � p2

p2

#

Therefore, class-wise wages may be obtained as -

m1 = 2(4p1 � p2)

m2 = 4p2
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In a general 2⇥ 2 economy, the seven possible ways of allocating the produced goods are six

forests and a cycle, where both classes participate, and two possible (1 ⇥ 1) graphs, where

only one class is active. The combinatorial data (I, J, F ) and the actual equilibrium values

(p, q, w,X) depend on the choice of ↵ and �.

Consider the above market where, for simplicity, there are two labour classes producing

two similar goods, with di↵erent production functions as given. They derive their wages

only by producing these two goods. Assuming that the players are perfectly rational, their

actual utility functions are given by U
r

, comprising of all ones. For example, the footwear

produced by a brand which employs both the classes and similar one produced by the lower

class without any brand value should be valued equally by rational players. Now, depending

on their consumption and utility matrix U, we compute their wages.

The following table (Table-1) shows the relationship between �, i.e., the utility preference

of class-1 towards good-2 and its wage fraction (wages of class-1 divided by the total money)

and total utility. Note that these are equilibrium values, i.e., given these ↵, � and U, T, Y

as above, the market attains an equilibrium with wage fraction and utilities as given in the

table. For example, when ↵ = 0.75 and � = 0.81, utility of class-1 is 5.33 and wage fraction

is 0.5. As the number of goods produced is [8 , 2], the total utility of the society is 10 since

we look at U
r

while actually computing the utilities. Thus it follows that if utility of class-1

is x, then that of class-2 is 10� x.

We consider four di↵erent values for ↵; 0.75, 1.001, 1.5, 1.7; and for each of them, we

study the e↵ect of increase in � on total utility and wages of class-1. For each ↵, we see

U WF U WF U WF U WF
beta ↵=0.75 ↵=1.001 ↵=1.5 ↵=1.7
0.41 5.33 0.5 6.00 0.6 6.66 0.71 6.82 0.74
0.61 5.33 0.50 6.00 0.60 6.66 0.71 7.56 0.74
0.81 5.33 0.50 6.00 0.60 6.76 0.66 6.76 0.66
1.01 5.33 0.50 5.96 0.60 5.96 0.60 5.96 0.60
1.21 5.33 0.50 5.16 0.54 5.16 0.54 5.16 0.54
1.41 4.36 0.48 4.36 0.48 4.36 0.48 4.36 0.48
1.61 3.56 0.43 3.56 0.43 3.56 0.43 3.56 0.43
1.81 2.76 0.38 2.76 0.38 2.76 0.38 2.76 0.38

Table B.1: beta vs Utility and Wage fractions

that the wage fraction is decreasing w.r.t �. Also, U decreases when the utility for good-2
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increases. This is because when � increases, total wages decrease, and thus purchasing power

decreases, thereby lowering the total utility. The same results can be established for class-2.

( Table 2)

U WF U WF U WF U WF
alpha �=0.75 �=1.001 �=1.5 �=1.7
0.61 5.28 0.42 5.28 0.42 5.28 0.42 5.28 0.42
0.81 4.47 0.53 4.47 0.53 4.47 0.53 6.00 0.45
1.01 3.98 0.60 3.98 0.60 4.01 0.60 6.00 0.45
1.21 3.65 0.66 3.65 0.66 4.01 0.60 6.00 0.45
1.41 3.42 0.70 3.00 0.68 4.01 0.60 6.00 0.45
1.61 3.24 0.73 3.00 0.68 4.01 0.60 6.00 0.45
1.81 3.11 0.76 3.00 0.68 4.01 0.60 6.00 0.45

Table B.2: alpha vs Utility and Wage fractions

We can see that as the wage fraction for class-1 increases, the same for class-2 decreases

when ↵ increases. Thus we conclude that a lower ↵ value would help realize more payo↵ as

well as wages. This clearly demonstrates the e↵ects of consumption on wages and utilities

or happiness derived.
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Appendix C

(2⇥ 2) Market and Results

In this section, we generalize the results of a particular (2 ⇥ 2) market given in Chapter-

5. We argue that wages are continuous functions of utilities and payo↵s and allocations are

continuous for each forest. Moreover, we prove the existence of a correspondence between the

strategy space and utilities and also that utilities on the boundaries are linear combinations

of those of the forests on both sides. We also look at the necessary conditions for Nash

equilibria to exist.

Let us consider a 2 ⇥ 2 market with inputs T , Y , U = R2⇥2 which is a strategy matrix

and U
r

as the true Utility matrix. Since Fisher solutions do not change if the rows of U are

scaled independently, we see that e↵ectively, U is given by:

U =

"
↵ 1

� 1

#

We assume that 0 < ↵, � < 1. Let p1/p2 = ↵ where ↵ is the appropriate ratio of utilities

when the forest is connected or the ratio of some technology inputs when the forest is

disconnected. For example, if class-1 buys good 1 and class-2 buys good-2, we have p2T
�1
21 =

p1T
�1
12 . Assuming total money in the economy constant and equal to 1, we can solve for q in

terms of T, Y .

q1 = T�1
11 Y1 + T�1

12 Y2

q2 = T�1
21 Y1 + T�1

22 Y2
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We assume that T and Y are such that q1, q2 are positive. Solving for wages, we get

w1 =
Y1(↵T

�1
11 + T�1

21 )

Y1(↵T
�1
11 + T�1

21 ) + Y2(↵T
�1
12 + T�1

22 )

w2 =
Y2(↵T

�1
12 + T�1

22 )

Y1(↵T
�1
11 + T�1

21 ) + Y2(↵T
�1
12 + T�1

22 )

Like the case described before, we know that for a 2⇥2 market, there are six possible forests

and one cycle. Also, there are two possible (1⇥ 1) markets. The possible (2⇥ 2) forests are-

where each is a solution under specific conditions, which place it in a specific zone. For both

classes to be active, we first require p1

p2
> min

⇣
�T

�1
21

T

�1
11

, �T

�1
22

T

�1
12

⌘
= min

⇣
T21
T22

, T11
T12

⌘
. For connected

forests such that class i1 buys only good j1 and class i2 buys j1, j2, we have w
i1 < p

j1qj1

and w
i2 > p

j2qj2. This ensures that all allocations are positive. Lastly, we require the bang

per buck conditions to hold. All these conditions arise from the optimization functions fP ,

fC and the Fisher market optimization function.

For example, consider the first graph given above, where p1/p2 = u21/u22 = �. This graph

constitutes a generic equilibrium if and only if,

1. p1

p2
= � > T21

T22
, T11

T12
, i.e., wages are positive.

2. � > T

�1
21 Y1

T

�1
12 Y2

, i.e., allocations are positive.

w1 = Y1(p1T
�1
11 + p2T

�1
21 ) < p1q1 = p1(T

�1
11 Y1 + T�1

12 Y2) or

w2 = Y2(p1T
�1
12 + p2T

�1
22 ) > p2q2 = p2(T

�1
21 Y1 + T�1

22 Y2)

3. And, � < ↵ = u11
u12

, i.e., class-1 gets more bang per buck from good-1 than good-2.⇣
u11
p1

> u12
p2

⌘
.

It can be seen that these conditions define an open set in the strategy space U which

has a unique combinatorial data (I, J, F ). In the above example, it is given by then
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I = {1, 2}, J = {1, 2} and F as forest-1. We note that the third condition can be re-

laxed, i.e., �  ↵, which results in a non generic equilibrium at ↵ = �. This is because

multiple allocations, including the forest-1 allocations are possible for this condition. We

discuss the cycle, i.e., the set ↵ = � in the next section.

In addition to the forests described before, we note that it is possible for wages of a

particular class to become zero, i.e with a di↵erent combinatorial data (I 0, J 0). When

p1/p2  min
⇣

T21
T22

, T11
T12

⌘
, only one class is active and it produces exactly one good. We

refer to its corresponding domain in the U -space as Zone 7. In this case, if class i produces

good j, it is possible to compute its production and the utility U
i

that it gives. We note that

U
i

is smaller than the total utility of both classes combined, as there is more net production

when both classes are active.

C.1 The Space of Payo↵s as A Manifold

For the forests described above, the combinatorial data (I, J,K) is defined by the following

conditions

Forest 1 Forest 2 Forest 3 Forest 4 Forest 5 Forest 6

↵ � � = p1

p2

p1

p2
= ↵ � � � � p1

p2
= T

�1
22 Y2

T

�1
11 Y1

� ↵ �  p1

p2
= T

�1
21 Y1

T

�1
12 Y2

 ↵ � � ↵ = p1

p2

p1

p2
= � � ↵

� > T21
T22

, T11
T12

↵ > T21
T22

, T11
T12

T

�1
22

T

�1
11

> T21
T22

, T11
T12

T

�1
21

T

�1
12

> T21
T22

, T11
T12

↵ > T21
T22

, T11
T12

� > T21
T22

, T11
T12

� > T

�1
21 Y1

T

�1
12 Y2

↵ < T

�1
21 Y1

T

�1
12 Y2

↵ > T

�1
22 Y2

T

�1
11 Y1

� < T

�1
22 Y2

T

�1
11 Y1

We also graphically represent these six forests by marking their zones. We number these

forests from 1 to 6, ordered as given above. 7th zone refers to the case where only one class

is active and in equilibrium. Here, the arrows indicate the direction of optimization for the

classes, considering U
r

as the strategy matrix comprising of all ones.
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Here, c1 = T

�1
21 Y1

T

�1
12 Y2

and c2 = T

�1
22 Y1

T

�1
11 Y1

and we have assumed c2 > c1. The first graph refers to

the condition det(T ) > 0, i.e., d1 = T11
T12

> d2 = T21
T22

and second refers to det(T ) < 0. There

are four possible schemes corresponding to c1, c2 and det(T ), of which we have considered

two with c2 > c1. In the first scheme, class-1 always gets wages and vice versa. Note that

the region for 7th zone can extend depending on d1. If d1 > c1, as we will see, continuity of

wages implies zone 4 becomes a part of zone 7.

We see that there are clear ranges of ↵ and � which define the solution forest. We claim

that wages are always continuous.

Lemma C.1.1. In a (2 ⇥ 2) market, equilibrium wages are always continuous functions of

the utilities, i.e., ↵, �. Moreover, allocations and utilities are continuous within each forest.

Proof. First, we observe that wages are rational functions involving only p1/p2, i.e., the

relevant ↵, �. In case the forest is connected, wages are always continuous within a forest.

For disconnected forests, wages are constant. It is important to note that wages are bounded,

w1 +w2 = 1. At the boundary of zone 4, p1/p2, i.e., ↵ or � equals c1, which determines the

wages. In other words, as ↵ or � continuously approach c1, limit of w
i

equals w
i

for zone 4.

Similarly, zone 3 allows for smooth transitions. It is clear that wages are continuous at the

boundary ↵ = � also, as w
i

smoothly transitions. Similarly, in zone 7, wages for one class

continuously converge to zero.

Next, we observe that allocations and utilities are continuous within each forest, where

they are functions. It is because they are either linear or rational functions of ↵, �, and are
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well defined within each forest. For example, forest 1 has the following allocations-

x11 = w1/p1 = Y1T
�1
11 + Y1T

�1
21 /�

x21 = q1 � x11, x22 = q2

Though we have considered a special strategy matrix with all ones here, it can be proved

that the result is general.

We now look at the points where two or more forests are feasible, i.e., at the boundaries.

It is clear from the figure that by changing ↵ or � it is possible to transit from one forest

to another, by crossing the non-generic points where both forests are possible. It is shown

earlier [21] that the set of allocations in Fisher market is hemicontinuous with respect to

initial endowments and utility functions. Here, we show that though multiple allocations

are possible at such points, utilities are bounded by the limits of utilities of forests at both

sides. In other words, allocations and utilities at the transitions are convex combinations of

the boundaries of those obtained in the adjoining zones. To make this precise, let us have

the following definition.

Definition C.1.1. Let x 2 U be a point on the boundary of two zones, say Zone A and

Zone B and let ⌘ = (p, q, w,X) be a typical point above x, i.e., ⌘ is an equilibrium for the

parameter x. Let X (x) be the collection of all allocations of equilibria above x in the U-space.

We say that x is a manifold point if the set U
i

(X (x)) is a bounded interval and its bounds

are obtained as the limits lim
q!x

U
i

(X(q)) and q 2 Zone A and q 2 Zone B.

Lemma C.1.2. Utilities on the boundaries are linear combinations of those of the forests

on both sides, given that both forests have the same combinatorial data I = J = {1, 2}.

Proof. Firstly, we note that except for the ↵ = � line, other boundaries allow for a continuous

function where for each pair of (↵, �), a unique allocation/utility exists. Let us see this by

changing ↵ or � continuously to approach a forest/cycle from another. We see that when

a tree is disconnected by making an edge weight zero, allocations and utilities continuously

transform, according to the previous lemma. For example, in zone -1, when � approaches c1

from above, p1/p2 equals c1 where zone-4 starts, and x11 becomes q1. Therefore, forest 3,4

include their boundaries while defining utility functions, i.e., boundaries have same utilities
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as the forests. In case of ↵ = �, first an edge is added to get a cycle, where multiple

allocations are possible and then another edge is removed.

The governing equations for a connected forest, say forest 1 are : w1 = x < p1q1,

y < p1q1 and z = p2q2 along with x + y = p1q1. When we increase � to approach the cycle,

the equations become x, y < p1q1, and z, v < p2q2 along with x+ y = p1q1 and z + v = p2q2.

Thus, the maximum value of z is p2q2 where zone 1 is overlapping and minimum value is 0

where v = p2q2 when zone 6 overlaps.

The utilities for forest 1 are-

(U1, U2) =

✓
w1

p1
, q1 + q2 � w1

p1

◆

For forest-6-

(U1, U2) =

✓
q2 + q1 � w2

p1
,

w2

p1

◆

And for the cycle, these can be computed in terms of v, z-

(U1, U2) =

✓
w1 � v

p1
+

v

p2
,

w2 � x

p1
+

z

p2

◆

Rearranging the terms, this means -

(U1, U2) =

✓
w1

p1
+ v

✓
1

p2
� 1

p1

◆
,

w2

p1
+ z

✓
1

p2
� 1

p1

◆◆

Firstly, we note that the ratio 1/p2 � 1/p1 is a constant for any fixed ↵, �. Let this be a

positive constant. Now, it is clear that when v = 0, U1 for the cycle is minimum which

coincides with that of forest-1. Similarly, when v = p2q2, the maximum coincides with that

of forest-6. This establishes that utilities at the cycle are linear combinations of those on the

boundaries, so that for each ↵ on the ↵ = � line, utilities make a smooth transition. This

makes us view the cycle as a linear combination of two forests depending on values of ↵ and

�. Though we have considered U
r

made up of all ones, this result is valid for any matrix
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U
r

.

Theorem C.1.3. There exists a correspondence N between the strategy space and utilities.

Also, each space of payo↵s forms a 2 dimensional manifold whose boundaries are given by

those of the forests.

Proof. We classify the zones into interior points and the boundaries where two or more

forests are possible. As stated earlier, the interior points refer to generic points which form

an open set. Corresponding to the interior points, we have U1, U2 defined uniquely, which

are continuous functions of ↵, �, using above lemma. Moreover, these are invertible functions

on their restricted domain of ↵, �, which makes the sets of possible payo↵s Up

1 , U
p

2 open. It

follows that the correspondences N
i

= (↵, �, Up

1 , U
p

2 ) are open for each forest i. Thus, interior

of every possible solution or zone is open and neighbourhood of each point is homeomorphic

to open subsets of R2. For forests, the homeomorphism is given by the inverse of utility

functions and for the cycle, the sets are open in R2.

We now claim that the boundaries of the forests and the cycle form 1 dimensional entities

which serve as boundaries to the described 2 dimensional manifolds. Each boundary can be

given by a unique equation in R2. On the line ↵ = �, there are two boundaries, one coming

from ↵ < � and another from ↵ > �. In between these two, a 2 dimensional plane is situated

on each part of the segment ↵ = �, i.e., on the boundary of forest-1 and 6 and forest 6 and

2. When considered closures of the open sets, we see that correspondences intersect along

these boundaries.

We therefore establish that except for zone-7, payo↵ function U
i

is a 2 dimensional

manifold with boundary, consisting of all ‘manifold’ points. Moreover, a correspondence

N = (↵, �, Up

1 , U
p

2 ) can be defined between the strategy space and the payo↵s space.

Next, we look at the conditions for a Nash equilibrium to exist in scheme-1. We note

that same results hold for other schemes as well.
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C.2 Strategic Analysis

Theorem C.2.1. In a (2⇥2) market with true utility matrix U
r

comprised of all ones, Nash

equilibria exists subject to the condition that zone-4 exists.

Proof. We first observe that allocations are functions of utilities, i.e., ↵, �, either linear or

inversely related ( U
i

= a + b↵ or c + d/↵), when the forests are connected. In those cases,

maximization can occur only at the boundaries, i.e., at the points where transition of graphs

occurs. When the forests are disconnected, allocations and utilities are constants for a range

of ↵, �. Therefore, if any Nash equilibrium exists, it should be at the transition points or

forest 3 or 4.

Let us now analyse the first scheme. Looking at the arrows, we know that forest-3 cannot

be an equilibrium, which leaves ↵ = � and forest-4 as possibilities. Class-2 prefers forest-4 to

forest-2, and similarly, class-1 prefers forest-4. For a point in forest-4 to be an equilibrium,

� > d1 and ↵ > c1. In this region, given any ↵, class-2 prefers forest-4 to forest-1,3 and

5. We now have to find a region for � so that ↵ maximises U1 in that region. Note that

when c1 > � > d1, U1 is constant as a function of ↵ in zone 6. When it enters zone-2, U1

increases until it is in zone 4. Thus, we prove Nash equilibria exist in the region d1 < � < c1

and c1 < ↵. Similarly, it can be proved that Nash equilibria exists in scheme-2 in zone-3

for d2 < ↵ < c1 and c2 < �. This equilibrium is, however, subject to the condition that

the forest exists, i.e., the region is feasible. For example, in scheme-1, forest 4 exists when

d1 < c1, i.e., T11
T12

< T

�1
21 Y1

T

�1
12 Y2

and � < c1 < ↵.
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Appendix D

Market Code Documentation

In this chapter, we describe two codes- Fisher market code and a closed loop code for the

Tatonnement procedure. We explain the models, their inputs and outputs along with some

numerical results.

D.1 Fisher Market Code - plc:

Fisher market is an economic model which determines prices and allocations of goods to the

buyers, based on their utility preferences. The input to a typical Fisher market is a set of

buyers B s.t. |B| = l, a set of goods G s.t. |G| = n, a utility function U
i

(x) : Rn ! R for

each buyer i, a quantity vector q = (q
j

)
j2G and a money vector m = (m

i

)
i2B, where x is a

set of goods consumed, q
j

is the quantity of good j, and m
i

is the money possessed by buyer

i. The market is solved in such a way that the money is completely spent and the market is

cleared, i.e., all goods are sold.

Here, instead of individual buyers, we deal with labour classes as the basic units. We

consider markets where we have linear as well as piecewise linear concave (plc) utilities.

For plc, we give utility inputs in the form of linear segments. For each good, slope of the

utility decreases successively which follows from the law of diminishing marginal utilities.

The construction of inputs is illustrated below.
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Inputs

1. U : Utility matrix (l ⇤ n ⇤ k)
l: Number of labour classes

n: Number of goods

k: Number of segments

Utility can be understood as happiness per person, per good, i.e., u
ijk

= utility/happiness

that a person from labour class i derives by consuming one unit of good j in segment

k. Note that utilities are concave.

For example, when l = 3, g = 4, k = 2;

U =

2

64
0.8 0.4 0.5 0.45

0.3 0.75 0.2 0.5

0.25 0.4 0.8 0.35

3

75 ;

2

64
0.6 0.25 0.2 0.3

0.2 0.4 0.1 0.4

0.15 0.36 0.4 0.2

3

75

Here, we have three labour classes, four goods and two segments, i.e., for each labour

class, the utility of a good decreases to another value after consuming some fixed

amount of it. e.g, u141 = 0.45 = Utility of class 1 for good 4 in the first segment and,

u142 = 0.3 = utility for the same in the second segment.

2. L: Segments matrix (l ⇤ n ⇤ k)
L denotes the maximum length of each segment. This is also per person, per good.

L
ijk

= The maximum value of good j in the kth segment for which a person from class

i has utility u
ijk

. The length of the last segment is assumed to be infinity i.e the final

utility value lasts till the good gets over, and thus, the last segment values are ignored.

For example:

L =

2

64
3 4 7 4

2.5 3.8 6 0.5

9 6 1.5 3

3

75 ;

2

64
6 4 3 3.5

2 5 8 4

8 5 4 8

3

75

e.g. If we consider U,L, a person from class 2 has utility 0.3 until she has consumed

2.5 units of good 1, and later, her utility reduces to 0.2 and remains 0.2 till the end,

irrespective of the given corresponding second segment entry.

3. q: The number of goods produced. (1 ⇤ n)
For example,

q =
h
12 20 25 18

i
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Here, four goods are produced in the above mentioned quantities.

4. w: The money vector (l ⇤ 1) For example,

w =

2

64
16

7

10

3

75

Here, w shows the money endowed to each class as a whole.

Next, we illustrate a Fisher market and its solution.

Example 10. Let us consider three labour classes, four goods and U,L, tandm as follows:

U =

2

64
0.8 0.4 0.5 0.45

0.3 0.75 0.2 0.5

0.25 0.4 0.8 0.35

3

75 ;

2

64
0.6 0.25 0.2 0.3

0.2 0.4 0.1 0.4

0.15 0.36 0.4 0.2

3

75

L =

2

64
3 4 7 4

2.5 3.8 6 0.5

9 6 1.5 3

3

75 ;

2

64
6 4 3 3.5

2 5 8 4

8 5 4 8

3

75

w =

2

64
16

7

10

3

75 ; q =
h
12 20 25 18

i

We solve the Fisher market to find prices of these four goods and their allocations.

Outputs are -

Money Allocations =

2

64
2.205 1.47 2.859 1.47

0 1.397 0 0.184

0 2.205 0.613 0

3

75 ;

2

64
6.616 0 0 1.379

0 1.836 0 3.583

0 0.443 6.739 0

3

75

This matrix tells how each class has spent money on these four goods. For Ex, labour class

2 (row 2) has bought only two goods; good 2 and good 4, and it has spent 1.397 + 0.184 +

1.836 + 3.583 = 7 bucks in total.
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Here, sum of rows = [16 7 10], i.e., each labour class has completely spent its money.

Goods Allocations =

2

64
3 4 7 4

0 3.8 0 0.5

0 6 1.5 0

3

75 ;

2

64
9 0 0 3.75

0 5 0 9.75

0 1.2 16.5 0

3

75

This displays the allocation of goods. For ex, total allocation of good 3 (column 3) = 7 + 1.5

+ 16.5 = 25 units. Note how first segment entries match with the corresponding L ones.

Here, sum of columns= [12 20 25 18] which equals the total production. Thus, all goods

are sold completely.

And the prices are-

Prices = [0.735 0.368 0.408 0.368]

Thus, Prices ⇤ Production(tT ) = 33 = Sum of m= 16 + 7 + 10

D.2 Closed Loop Code - Trade

Inputs

As explained below, this program takes T, U, L, Y, p as inputs and outputs production, next

set of prices, wages, Allocations etc. U,L are as before. As explained in the theory, it uses

convex optimization tools to find production (q) using the initial set of prices. Further, wages

(w) are computed. Then, using ’plc’, and U,L, q, w as inputs, we can derive other outputs

like prices and allocations.

1. T is the technology matrix. (l ⇤ n)
T
ij

is the amount of labour L
j

needed to produce one unit of G
i

. In simple terms, to

produce one good, we have labour requirements as per its corresponding column.

For example,

T =

2

64
1 0 0

1 1 0

1 1 1

3

75

Thus, to produce one unit of good 2, we need one person from labour class 2 and one

person from labour class 3.
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2. p is the initial price vector. Using p and T , ‘Trade’ finds the production by optimization.

3. Y : The number of labour units available in each class.

Thus, using ‘Trade’, we have set up an iterator which computes desired market variables.

As per the proposed method, given a m⇥n technology matrix, a sub matrix is chosen where

the number of buyers and goods is same, and market variables are computed. In the next

iteration, after modifying prices for the unused goods, the same procedure is repeated. All

this is illustrated through the following examples.

Examples

Here we consider a market with three labour classes and three possible goods. We start with

a price vector and see how various goods are produced and how classes derive wages from

those. The following is the first iteration.

Example 11. Let T, U, L, Y, p be as follows-

T =

2

64
1 0.4 0.5

0.5 1.5 0.25

0.2 0.35 0.6

3

75

U =

2

64
0.85 0.5 0.4

0.4 0.9 0.45

0.55 0.4 0.8

3

75 ;

2

64
0.6 0.2 0.17

0.3 0.5 0.2

0.2 0.35 0.6

3

75

L =

2

64
0.33 0.40 0.1

0.3 0.4 0.2

0.93 0.6 0.7

3

75 ;

2

64
0.58 0.4 0.2

0.20 0.5 0.08

0.84 0.5 0.45

3

75

Y = [10 , 10 , 10]; p = [1 , 1.2 , 1.3]

And the outputs are (precise up to 3 decimal places )-

prices = [2.182, 1.284, 1.15]

Wages = [5.384, 2.831, 16]
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Normalized prices and wages -

prices = [0.09, 0.053, 0.0475]

Wages = [0.222, 0.117, 0.66]

The production in units is (All the three goods are produced) -

q =

2

64
1.5

3.85

13.92

3

75

Edited L (according to Y)-

L =

2

64
3.3 4 1

3 4 2

9.3 6 7

3

75 ;

2

64
5.8 4 2

2 5 0.8

8.4 5 4.5

3

75

Goods allocation-

Alloc =

2

64
1.5 1.645 0

0 2.205 0

0 0 7

3

75 ;

2

64
0 0 0

0 0 0

0 0 6.92

3

75

Note that the total money is conserved-

p1 ⇤ q = 24.215 = sum(m) = 5.384 + 2.831 + 16

However, when above prices are used as input, we do not see the same market solution. In

the third iteration, only good 1 and good 2 are produced and wages are allotted accordingly.

The following tables summarize the results of 7 such iterations. It can be observed there is

an underlying pattern in occurrence of these states. Even if the first input of prices is varied,

the system stabilizes by showing the same pattern of states.

Active Goods =

(1 represents that the goods is produced and vice versa.)

G-1 G-2 G-3

1 1 1

1 1 1
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1 1 0

1 1 1

1 1 0

1 1 1

1 1 0

Wage Iterations (up to two significant digits) =

class-1 class-2 class-3

0.22 0.12 0.66

0.83 0.12 0.05

0.86 0.14 0

0.70 0.06 0.24

0.86 0.14 0

0.70 0.06 0.24

0.86 0.14 0

Example 12. With T and U as given below and the same L, p and Y , we get the following

output. Here, all goods are produced and all classes receive wages.

T =

2

64
1.00 0.10 0.50

0.50 0.80 0.25

0.20 0.35 0.60

3

75

U =

2

64
0.85 0.3 0.4

0.4 0.9 0.35

0.3 0.4 0.80

3

75 ;

2

64
0.6 0.2 0.17

0.3 0.5 0.2

0.2 0.35 0.6

3

75

Outputs:

Active Goods =

G-1 G-2 G-3

1 1 1

1 1 1

1 1 1
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1 1 1

1 1 1

Wage Iterations (up to two significant digits) =

class-1 class-2 class-3

0.11 0.29 0.6

0.092 0.207 0.7

0.086 0.096 0.82

0.067 0.091 0.84

0.067 0.091 0.84

Price Iterations(in fractions) =

G-1 G-2 G-3

1.00 1.20 1.30

0.03 0.04 0.05

0.03 0.04 0.06

0.03 0.04 0.06
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