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Abstract 
This project’s larger goal involves devising an experimental method to investigate links between a 

lattice of bouncing drops and the Ising machine. The coupling between droplets plays a crucial role 

in this aspect and the work carried out here encapsulates some major features pertaining to this 

interaction between droplets.  

An Ising machine is an artificial system of spins based on the Ising model, which describes the 

energy of a set of interacting constituent spin like elements with bi-stable states. Combinatorial 

optimization problems are a large class of problems which involve optimizing a certain quantity 

from a set of discrete elements and they can be mapped to the Hamiltonian function of the Ising 

model. These problems belong to the class of NP-hard problems for which computational 

complexity grows as a power law with each new added element. The purpose of building an Ising 

machine is to provide an architecture which can efficiently solve such problems by finding the 

ground state of its constituent elements. Previously, interacting coupled parametric oscillators have 

been proposed as a possible implementation of an Ising machine. The ground state can be 

efficiently determined by slowly increasing the excitation until each oscillator reaches a bi-stable 

state which is determined by its interactions with the other oscillators.   

A set of bouncing droplets on a vertically vibrated bath is a good candidate for an Ising machine. 

Each droplet can be considered as a parametrical oscillator which is controlled by the vibration of 

the bath. These droplets undergo period doubling above a given excitation threshold which defines 

a bi-stable state defined by their phase. These ‘artificial spins’ interact with each other through the 

waves that they emit on the bath. This interaction can be tuned by changing the distances between 

droplets. 

This project aims to experimentally analyse the analogy between Ising machine and bouncing 

droplets by looking at their dynamics and interaction. We develop a novel technique to produce 

reproducible drops (0.64 mm in diameter). We fully characterize the period doubling transition for 

one droplet and its associated wave field emission. This gives new insight for further analysis 

involving looking at the Fourier components of the wave field and understanding how droplets 

reach the ground state. We study the interaction and relative phase selection for a two droplets 

systems and showed that it finds the minimum energy state of the conformational space depending 

on their mutual interaction. Finally, we show some examples of more complex sets of interacting 
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droplets which also attain ground states. These results show that interacting droplets contain many 

features of an Ising machine and can perform relevant optimization calculations. The full 

experimental characterizations can now be used to perform realistic simulations and to develop an 

Ising model based on this system. 
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1 Introduction 
 

In this report we use a lattice of bouncing dropletsm bouncing on a vibrated bath and look at the 

interaction through the waves they produce. This system can be viewed as a set of interacting 

parametrically excited oscillators. For sufficient excitation, the bouncing droplets undergo period 

doubling wherein they alternate between a long and short bounce. This defines two possible states 

depending on their relative phase for each droplet. In our regime of operation, the system resembles 

a set of interacting spins which are usually described by the Ising model. There is a strong interest 

in artificially engineered systems that can be described by the Ising model. These systems are called 

Ising machines. They can be used as smart computing architectures to solve complex optimization 

problems. Since optimization problems can be mapped onto the Ising model. Hence, finding the 

ground state of an Ising machine is equivalent to solving the optimization problem. 

The bouncing droplet system is very complex and involves hydrodynamic processes that have not 

been fully understood in the context of their transition to a bi-stable state. A model for the wave 

generation, droplet dynamics and their coupling is still needed to fully understand the dynamics of 

the system and gauge as to what extent it could solve problems and be considered as an Ising 

machine. This work is a comprehensive experimental study of the droplet system. It provides a full 

characterization of the bouncing dynamics, of the waves emitted and of the coupling between these 

‘artificial spins’. In addition, it gives evidence regarding the ability of this system to find the ground 

state.  
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1.1 Bouncing dynamics of a single droplet 
 

It is found that when a bath of silicone oil is vibrated at very high frequencies like 50 Hz to 80Hz 

[1] to sustain droplets bouncing on the surface by the formation of an air layer, it gives rise to 

various interesting phenomena like [2] droplets moving on the surface called walkers, [3] particle-

wave interactions, [4] single particle diffraction statistics and so on. All these experiments involve 

dynamics of the drop with the surface. Both the bath and the droplets are made of silicone oil. 

                              

Figure 1: (Left) Silicone oil bath when excited sinusoidally with an amplitude a = Asin(ωt)  gives rise to 
interesting phenomena. Droplets introduced to the bath bounce on the bath without coalescence. (Right) 
A single drop at various stages of a bounce. The droplet size 0.64 mm. 

The schematic given in Figure 1 shows the bath being excited vertically. Since the drop is driven by 

an external excitation from the bath which has two parameters, amplitude and frequency, the drop 

has the same frequency of the bath (forcing frequency).  

 

Figure 2: The blue line represents the motion of the surface of the bath w.r.t time and the drop is in close 
proximity with the bath for the specified contact time. 

a 

Silicone Oil 
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The drops in our system, come in contact with the surface of the bath and remain in close proximity, 

till they experience an upward acceleration which is greater than g from the surface. The air layer 

must withstand the pressure imposed by the drop for the duration that the drop is close to the surface 

which is illustrated in Figure 2. The upward motion of the bath ensures that the drop stays in contact 

with the surface up to that point, due to the net effective acceleration pointing downward. Large 

droplets would require higher acceleration from the bath (more amplitude from the shaker) to leave 

the surface and small droplets would require a smaller threshold amplitude. The subsequent 

downward acceleration of the bath gives a net upward acceleration to the drop, propelling it upward 

with an initial velocity, as illustrated in Figure 3. The equations for the displacement, velocity and 

acceleration of the bath are given by: 

𝑑(𝑡) = 𝐴𝑠𝑖𝑛(𝜔𝑡) 

𝑣(𝑡) = 𝐴𝜔 cos(𝜔𝑡) 

𝛾(𝑡) = −𝐴𝜔2sin⁡(𝜔𝑡) 

 

Figure 3 [5]: The functional form of the displacement, velocity and acceleration of the shaker to better 
illustrate the droplet dynamics. Blue line is the trajectory of the drop. The x-axis is time. 

This velocity decides the height and range of the parabolic trajectory of the drop in air. The larger 

this velocity is, the higher the droplet bounces and longer it takes for the drop to return to the 

surface. Any drop introduced to the bath below a certain threshold amplitude of the motion of the 

bath, acquires the same phase w.r.t the bath and w.r.t each other.  
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1.2 Period doubling of bouncing droplets 
 

One of the interesting aspects of droplet dynamics is the process of period doubling wherein the 

droplets do a big bounce followed by a small bounce or vice versa. Since this process leads to the 

possibility of having two stable final states, this is interesting from the point of view of Ising 

machines. Understanding the mechanism responsible for this would help elucidate and model such 

a system.  

In this section we discuss the process of period doubling for a single drop. Period doubling is 

brought about by increasing the amplitude of the shaker i.e. increasing the acceleration given to the 

drop. Upon increasing the amplitude of the shaking of the bath, the contact time of the drop with 

the surface reduces since it experiences the upward acceleration required to take off more quickly.  

Beyond a certain critical point of the amplitude of the shaker, the drop acquires sufficient 

acceleration from the bath and a large enough initial velocity such that the time it takes to return to 

the surface is long enough so that the drop lands on the surface while the surface has a net 

downward acceleration greater than g (the big bounce). This makes the contact time of the drop 

extremely small since there is a net upward acceleration given to the drop at that point and the drop 

immediately shoots off the surface. The contact period discussed above refers to the close 

proximity of the drop with the surface but not in full contact with it (this would result in 

coalescence). The initial velocity given to the drop at this point is however not as large as the 

previous bounce. Since, during the big bounce, the drop was propelled with the maximum possible 

velocity (the bath had maximum upward velocity) as illustrated in Figure 4. So, the droplet does a 

small bounce with a small height and range and returns to the surface when the surface has a net 

upward acceleration (the drop experiences a net downward acceleration) and the process repeats. 

Thus, the bouncing period bifurcates into two bouncing modes. The drop carries out a big bounce 

followed by a small bounce and this cycle repeats itself. Figure 3 gives an overview of the process. 

Upon increasing the amplitude further, the big bounce gets bigger and the small bounce gets 

smaller. The drops then undergo perfect period doubling [6] where the range of the projectile 

motion of the drop exactly corresponds to twice the period of the excitation (only one big bounce 

of twice the period). Till this point, the surface can be essentially treated as flat and to be moving 

with the base of the bath. Upon further increasing the amplitude, the bouncing period of the drop  
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Figure 4 [5]: Functional form of the displacement, velocity and acceleration of the surface as a function of 
time. The blue line is the trajectory of the drop after period doubling (APD).  

becomes chaotic [5]. The chaotic behavior of the drops is driven by the parametric oscillation of 

the surface waves and the onset of Faraday instability. Faraday instability can be explained as the 

formation of surface waves due to increasing the amplitude of forcing, at half the frequency of 

excitation. All the regimes are represented in Figure 5. Our system lies in the regime of B and a part 

of PDB. The droplets in our system perform asymmetric bounces.  
 

 

Figure 5 [5]: Different states of a droplet as a function of the acceleration of the bath. The droplets 
transition from B (Bouncing) to PDB (Period Doubled Bouncing) 
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1.2.1 Some previous studies   

A previous study by [7] has modeled the period doubling with solid boundary conditions and hard 

spheres exhibits period doubling cascade as given in the figure also by [7]. 

 

Figure 6 [7]: The jumping particle model exhibits bifurcation in its period followed by a cascade. This is 
analogous to what happens in our system.  

We would expect that the drop inelastically collides with the surface owing to the deformability of 

both the surface and the drop. This is mostly true however, the contact of the drop with the surface 

is not a completely inelastic interaction and this would be the case for droplets though the results 

below 0.6 mm [5]. The surface imparts some part of the energy back to the droplet that the droplet 

loses during contact and thus the period doubling threshold is actually lower than what can be 

expected through inelastic collisions. But this difference is extremely small in our case. In our 

system, we have a lattice of bouncing droplets (more of which will be discussed in the coming 

sections) which are arranged in different patterns such as in [8].  

 

Figure 7 [1]: Lattice of bouncing droplets from [1]. (Top) Side view of the droplets. (Bottom) Different 
Lattices. 
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1.3 Our system in the context of the Ising model and Ising machines 
 

The Ising model is used as a computational tool to model materials comprising a lattice of atoms 

with their magnetic dipole moments of their atomic spins taking the value {+1/-1}. This model is 

used to study various magnetic phenomena of the comprising material, depending on the 

description of its Hamiltonian.  The most general form of which is the Ising Hamiltonian:  

𝐻 = −∑𝐼𝑖,𝑗𝜎𝑖𝜎𝑗

𝑖.𝑗

 

An Ising machine is based on the Ising model wherein materials’ properties are simulated using 

the constituent electron spins as proxies. The Ising machine is such a reprogrammable lattice of 

‘artificial spins’ which have two output values that they can choose from, and they do this selection 

based on the constraint of having minimum energy since in general, most systems naturally 

gravitate towards [9] the minimum energy state. Thus, they solve for the ground state of a system.  

The motivation behind solving for the ground state is that it represents an optimization problem. 

The goal of the final orientation of the bi-stable elements in an Ising machine is to obtain a 

configuration that has minimum energy. For this solution to occur, the system should essentially 

compute the energy of all possible configurations and acquire the one that has the least energy. 

This is the definition of a combinatorial optimization problem. Combinatorial optimization 

problems involve optimizing a quantity from a set of discrete elements. All combinatorial 

optimization problems can be mathematically mapped [10] to finding the ground state of the Ising 

Hamiltoian, which is the function of an Ising machine. Combinatorial optimization problems are 

difficult to solve on a conventional computer since the time required to obtain a solution increases 

as a power law of the number of elements. Ising machines solve such problems through multiple 

component interactions which take lesser time than simulating the problem on a conventional 

computer. Combinatorial optimization problems are NP (non-deterministic polynomial time) hard 

problems. Np-hard problems are the set of problems that cannot be solved in polynomial time and 

whose solution cannot be verified in polynomial time. On a conventional computer, problems like 

multiplication and addition fall under the class of P-Polynomial Time problems with the execution 

time/complexity scaling as 𝓞 (𝑛𝑐) whereas the set of problems whose execution time scales 

exponentially (such as 𝓞 (2𝑛)), are believed to fall under the set of NP-Non Deterministic 
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Polynomial Time problems [11]. Thus, the tractability of the solution to the class of NP problems 

is limited by ‘n’. The constraints on designing an Ising machine to solve such problems involve 

achieving greater freedom in terms of tunability and scaling of the system to involve and allow 

larger elements that take part in the computation. 

Artificial spin systems can be created using systems that have elements with a binary output. Bi-

stable systems made of electronic oscillators (like capacitors) were initially used in electronic 

circuits as logic gates. These elements are called parametrons [12]. The two equally likely 

outcomes are determined by the noise in the system. They are an example of a system with bi-

stable elements. A common recent example of an artificial spin system is the use of Optical 

parametric oscillators (OPOs). In the case of Ising machines with degenerate OPOs [13], laser 

pulses are sent through a series of OPOs, which can be programmed to have a Hamiltonian of the 

desired form and the pulses acquire a phase depending on the said Hamiltonian. The solution to the 

ground state of the Hamiltonian is the phase configuration of the pulses. OPOs are used to build an 

architecture capable of solving such problems. Thus, the pulses traverse through the degenerate set 

of OPOs and acquire a final phase corresponding to the ground state of the system and this phase 

has a binary output when operating above a certain threshold of the pump field of the lasers. If two 

pulses are out of phase with each other, the interaction is defined to be antiferromagnetic and if 

they are in phase, they have a ferromagnetic interaction. Pulses in OPOs represent the elements 

that need to be optimized and the number of pulses can be scaled [14]. OPOs exploit the fact that 

the coupling between pulses can be easily manipulated by introducing a suitable delay in the signal. 

The polarization for lasers [15] is also used in OPOs due to its bi-stable properties (left or right 

circularly polarized). 

In the case of bouncing droplets, upon increasing the amplitude of the shaking of the bath beyond 

a certain threshold amplitude, the droplets undergo symmetry breaking. Their bounces are no 

longer consecutively the same. The droplets start doing a big bounce followed by a small bounce 

or vice versa, see Figure 8. The total time period of the two bounces is twice the original time period. 

This state is termed as the ‘period doubled state’ whose process was briefly explained in section 

1.2. When this occurs, droplets acquire one of two phases depending on the distance between them. 

They either start the process of period doubling by doing a big bounce followed by a small bounce 

or the opposite. Thus, the drops are all in phase w.r.t each other initially and then take up one of 
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two possible phases. The droplets continuously interact with one another by means of the wavefield 

they generate on the bath. The droplets take up stable phases which is a function of the interaction 

between them. 

This bi-stable system wherein the elements interact with each other to arrive at a stable 

configuration corresponding to minimum energy is the very definition of an Ising machine. 

 

Figure 8 Droplet dynamics as a function of the acceleration of the shaker for the perfectly period doubled 
case. The amplitude of the shaker (red line) and the trajectory of the drop for BPD (orange) and APD (black). 
The dotted line represents phase A and the dashed line represents phase B 

The images for phase A and phase B in Figure 8 are simultaneous snapshots from the top, of two 

drops that are out of phase with each other. The gray area around the drop in the snapshot 

representing phase B, is due to the shadow of the waves created upon close contact of the drop with 

the surface. The picture depicting phase A on the other hand is devoid of this gray ring around the 

drop, since the drop is in the air and farthest from the surface, creating no waves. These snapshots 

in time illustrate the difference in the phase of the bouncing between the two droplets. Any 

deviation from having a uniform period of bouncing is the onset of the period doubled state.  

This bi-stable, macroscopic system has characteristics that are the prominent features of an Ising 

machine. Thus, this problem is worth exploring in terms of any possible links to the Ising machine, 

by studying the dynamics of the system. 
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1.4 Overview  
 

In order to ultimately look at the correspondence of the system with the Ising machine, it is 

important to probe the dynamics of the droplets. In section 2, we first look at some of the major 

techniques that were used to acquire information from the system. And this is followed by the 

process of period doubling of a single drop (section 3.1) and of two drops (section 3.2) in terms of 

the shaking amplitude of the bath i.e. the acceleration provided to the drops by the shaker. And the 

simultaneous acquisition of the wavefield of a droplet from the top and its vertical height from the 

side (section 3.1 and 2.3). And finally, we look at the phase configuration of different arrangements 

of droplets and different number of droplets (section 3.4). The wavefield envelope of a single drop 

was also used to simulate the empirical interaction between drops by looking at the decay rate 

(section 3.1) of the waves produced by a drop. This was used to check if the final phase 

configuration obtained corresponded to the one with minimum energy. The data obtained from the 

wavefield was used to simulate the actual Hamiltonian of the system (section 3.3). The outlook of 

this project involves a precise mapping to the Ising Hamiltonian if possible, and introducing 

changes to the coupling between droplets to gain a better handle on the interaction term.  

If these limitations are solved, we would have a palpable, physical, macroscopic system capable of 

solving combinatorial optimization problems which could then be mapped to NP-hard problems. 

This system is currently very much reproducible, adding physical components that are tunable 

would make the system more versatile in terms of the dynamics. If a mapping to the Ising 

Hamiltonian is possible, it would mean that the problems that would essentially take more time on 

conventional computers could be solved by means of a physical system with simultaneous many 

body interactions. The work carried out here is motivated by that final goal.  

Apart from having an interesting potential application, this system has very intriguing aspects in 

terms of the dynamics of the drops. The full understanding of the dynamics of the droplet is a 

complex hydrodynamic problem involving dynamical coupling between the surface and the 

droplets. The interaction between the drops is highly robust and reproducible. The configurations 

involving many droplets have symmetric solutions. So this system makes for an interesting fluid 

dynamics and soft matter problem in and off of itself.  
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2 Experimental Method  

 
In this section we look at some of the techniques and tools to analyse the dynamics of the drops. In 

section 2.1 we look at the set-up used to perform the experiments, which were all built from scratch. 

In section 2.2, we look at the droplet generator which was built to produce uniform sized droplets 

since the drop size plays a major role in the change in the period doubling threshold. In section 2.3 

we discuss the technique of wavefield imaging using the schlieren method. In section 2.4 and 

section 2.5 we look at methods used to track the bath and detect drops respectively. 
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2.1 Experimental Setup 
 

Silicone oil used for the experiment has a refractive index of 1.4, viscosity of 20⁡x⁡10−3Pa⁡s, 

density of 0.971 g/ml and a surface tension of 0.021⁡𝑁𝑚−1 [1]. The silicone oil bath has a 

dimension of 10 cm x 10 cm. The silicone oil bath is fixed on the shaker. Shaker specifications: 

Bruel and Kjaer type 4808. The shaker is connected to the amplifier by Bruel and Kjaer, type 2719. 

The function generator used to feed signal into the amplifier is by RIGOL DG 1022. The 

components of the droplet generator are listed in section 2.2. 

 

 

Figure 9: Only the top view of the bath acquired, for observing the final solution of a lattice of drops. (1) 
Light source, (2) Diffuser for homogenous light, (3) Frenel lens for focusing light, (4) Half-way mirror, (5) 
Shaker with the bath and (7) Portion of the Droplet generator. Basler camera, 1300-200μm 

The first implementation of the set-up given by the schematic in Figure 9, was used to look at the 

top view of the bath with many droplets, to analyse the phase in terms of the shadow of the waves 

(gray area tracking). The camera was synchronized with the bath and was used at 400 fps. Since 

the lighting was from the top, the waves formed from the impact of the drop close to the surface, 

cast a shadow around the drop which varied in time. This was a good proxy for looking at the 

transition to period doubling. A half mirror which transmitted half the light and reflected half of it 

was placed at 45 degrees and used to observe (from the top) the bath. For three drops, the phase 
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transition was analysed by looking at the shadow of the waves formed by the drops from the top 

and tracking the change in the area of the shadow. The droplet generator will be discussed in more 

detail in section 2.2.  

 

 

Figure 10: Set-up used for acquiring simultaneous vertical motion and wavefield of the drop. (1) Strong 
light source, (2) Diffuser to have a homogeneous source of light, (3) Frenel lens for focusing the light onto 
the surface of the bath, (4) Bath being excited vertically with a dimension of 10 cm x 10 cm and having a 
checkered grid at the bottom, (5) Shaker for exciting the bath, (6) Checkered grid and (7) portion of the 
droplet generator. 

In a variation to the first set-up, the second set-up was used to simultaneously acquire the wavefield 

and the vertical motion of the drop. The set-up is illustrated by Figure 10. The bath was lit from the 

top to observe the distortions of the checkerboard and from the side to observe the vertical motion 

of the drop. Both the cameras were strobed. They were also synced with each other and with the 

shaker. Vibration damping material (rubber padding and sponge) was used to isolate the camera on 

top from the vibrations of the shaker. The checkerboard was printed on an OHB sheet (since paper 

cannot be used) and the empty squares were painted white to enhance the contrast and reduce 

reflectivity of the sheet. 
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2.2 Droplet Generator 
 

In order to ensure that the process of period doubling of the drops is only based on the external 

excitation (increasing the amplitude of the shaker), we need to produce droplets that are 

reproducible and of the same size throughout the course of all the experiments. Various methods 

of conventional droplet generation involve manually producing droplets by using a pick to pinch 

off drops from the surface and later screening them to select the ones with the required size.  

While dispensing drops from a pipe, the diameter of the drops dispensed is a function of surface 

tension of the fluid and the diameter of the opening. There are two opposing forces i.e. gravity and 

surface tension. The mass of fluid dispensed is a function of the width of the opening, thus the 

width becomes a limiting factor for obtaining smaller droplets and it has been a major problem in 

studying various phenomena which involve producing uniform sized droplets. 

The drops formed from a narrow opening under the influence of gravity, are roughly twice the 

diameter of the opening. Shaking the opening would cause the drops to pinch off for smaller 

diameters due to the added component of acceleration. We considered options for producing drops 

using piezo actuators which use the principle of inkjet printers, and in spite of these set-ups 

requiring a lot of components and automation, they do not perform very well. The nozzles often 

get clogged and the system has to be operated continuously for a stable output, making it necessary 

to screen and select drops of the required size.  

 

Figure 11: Apparatus for generating droplets. (1) Syringe pump used to pump fluid into the Teflon tip at a 
constant flow rate, (2) Mini-shaker used to excite the Teflon tip, (3) Teflon tip, (4) Plexi glass to prevent oil 
from coming in contact with the camera lens, (5) camera. 
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In order to produce droplets, the basic parameters that need to be addressed are fluid flow control 

and uniform excitation of the nozzle. So, we decided to build a system comprising these elements. 

We use a syringe pump to ensure a constant flow rate (7.1 ml/hour) of silicone oil and connect the 

syringe to a Teflon tip by means of synthetic tubing. The Teflon tip was flexible enough so that the 

tip could move when connected to a shaker. The Teflon tip performed circular motion because of 

a slight curvature to the tip. The details of the set-up can be found in Figure 11. 

The idea was to operate close to the natural frequency of the tip. The tip performed circular motion 

(ellipsoidal motion when excited with greater amplitude). The tip ejected two drops in each 

rotation. One small drop which was not used and one big one which was easily distinguishable 

from the small ones when observed on the bath, without any microscopic tools or image processing. 

The size of the droplets in our system is of the order of 0.64 mm, allowing the drop to remain 

spherical while it performs projectile motion in each bounce, since the capillary pressure 

supersedes the hydrostatic pressure [3]. 

2.2.1 Materials  

Teflon tip which is used to blow air/dispense fluid on surfaces, model:  

Precision Tips Nordson EFD , PN: 7018362, TIP 25 GA PP 0.014 X 1.5’’ RED 50P, Lot/SN: 

4002264664 

 

Figure 12: Teflon tip of length ~5.8 cm 

Mini-Shaker: Bruel and Kjaer, shaker type 4810 

Function generator (to produce sinusoidal excitation with tunable frequency): RIGOL DG4162 

Amplifier (amplifies the signal from the function generator): KONIG AMP4800 

The radius of the drop as a function of the acceleration of the tip was studied. 

2.2.2 Method 

Assuming that the drop coming out of the Teflon tip is roughly spherical. The tip is being rotated 

at a constant angular frequency ‘Ω’. The surface tension of the fluid is ‘μ’. The mass of the drop is 

‘M’ and the radius is ‘R’.  
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Thus, equating the centrifugal and surface tension forces we have: 

𝑀𝛺2𝑟 = ⁡2𝜋𝜇𝑑 

𝑀 =
𝜇𝑅

𝛺2𝑟
 

4𝜋𝑅3𝜌

3
=

2𝜋𝜇𝑑

𝛺2𝑟
 

𝑇ℎ𝑢𝑠, 𝑅3 ⁡= ⁡
𝑘

𝛺2𝑟
 

⁡𝑤ℎ𝑒𝑟𝑒⁡𝑘⁡ =
3𝜇𝑑

2𝜌
 

𝑅0 = (
μd

ρg
)
0.5

⁡⁡⁡𝑅0⁡𝑖𝑠⁡𝑡ℎ𝑒⁡𝑟𝑎𝑑𝑖𝑢𝑠⁡𝑜𝑓⁡𝑡ℎ𝑒⁡𝑑𝑟𝑜𝑝⁡𝑖𝑛⁡𝑡ℎ𝑒⁡𝑎𝑏𝑠𝑒𝑛𝑐𝑒⁡𝑜𝑓⁡𝑡ℎ𝑒⁡𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟⁡𝑚𝑜𝑡𝑖𝑜𝑛.⁡  

𝑇ℎ𝑢𝑠,𝑤𝑒⁡𝑒𝑥𝑝𝑒𝑐𝑡⁡𝑎⁡𝑙𝑖𝑛𝑒𝑎𝑟⁡𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝⁡𝑏𝑒𝑡𝑤𝑒𝑒𝑛⁡𝑅3⁡𝑎𝑛𝑑
1

𝛺2𝑟
. 

Table 1: Mean values of the angular acceleration, radial distance from the center of suspension of the tip, 
centrifugal acceleration, radius of drop, and cube of the radius of the drop. 

Ω (Hz) r (mm) Ω2r (mm/s2) R (mm) R3 (mm3) 

566.5121 0.0624 20026.40387 0.3458 0.04134994791 

554.3954 0.1325 40724.43939 0.3194 0.03258402538 

546.36 0.2497 74537.75963 0.2735 0.02045841538 

546.36 0.4027 120209.6748 0.2431 0.01436662899 

 

The data fit given in Figure 13 has an R squared value of 0.9394. The red box is the condition set 

implemented for the subsequent experiments involving droplets. 

The standard deviation of the distribution as shown in Figure 14 is very small, with a range of [0.469 

mm, 0.4924 mm, purple] , [0.533 mm, 0.5568 mm, yellow], [0.625 mm, 0.6455 mm, orange] and 

[0.672 mm, 0.6994 mm, blue] with a standard error of (purple, 0.092 %) , (yellow, 0.118 %) , 

(orange, 0.0461 %) and (blue, 0.086 %). In the configuration that we use, with 40.72 m/s2 

acceleration the standard error is the least i.e. 0.05 %. Thus, our droplets are of the size 0.6387 mm 

+/- 0.0006 mm.  
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Figure 13: A linear fit between the mean radius cube and the mean centrifugal acceleration for each of the 
cases (4 points) was done. 

 

  

Figure 14: The distribution in the size of droplets as a function of the acceleration experienced by them. The 
total number of droplets sampled for each of the cases was different since the total recorded frames was 
the constant parameter. The number of drops are as follows: purple (120.21 m/s2, 174 drops), yellow (74.54 
m/s2, 96 drops), orange (40.72 m/s2, 87 drops) and blue (20.03 m/s2, 68 drops). 
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2.3 Wavefield Imaging 
 

The interaction of the droplets is mediated through the wavefield between them. The wave 

interaction between the droplets is a key component in understanding the dynamics of the system. 

The wavefield was imaged using the schlieren technique by means of the demodulation of a 

checkered backdrop [16]. A light beam that enters the surface appears to from point A due to the 

slope at the surface. The actual location of the beam being point B, as represented in Figure 15 

whose would look like Figure 19. This displacement vector can be calculated using small angle 

approximation. The same process occurs in y direction as well.   

 

Figure 15: Schematic of a wave (exaggerated) on the surface of the bath. Light rays are incident at theta s 
on the surface and get refracted at alpha. The grid is at the base of the bath. The points on the grid appear 
to come from point A, but are actually from point A, but are actually from point B. Inset on the right is the 
top view of the actual experimental distortion of the grid due to impingement of the drop. 

Small angle approximation can be used since all the displacements are very small.  

𝑢⃗ = ⁡−𝛼𝐻 

𝛼 =⁡𝜃𝑠 − 𝜃0, 𝜃𝑠⁡ℎ𝑎𝑠⁡𝑡𝑜⁡𝑏𝑒⁡𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 

𝑆𝑛𝑒𝑙𝑙′𝑠𝑙𝑎𝑤:⁡𝑛0𝜃0 = 𝑛𝑎𝜃𝑠 

𝜃0 =
𝑛𝑎𝜃𝑠

𝑛0
 

𝛼 =⁡𝜃𝑠 −
𝑛𝑎𝜃𝑠

𝑛0
=⁡−𝜃𝑠 (1 −

𝑛𝑎

𝑛0
)⁡⁡ 
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𝑢⃗ = ⁡−𝜃𝑠 (1 −
𝑛𝑎

𝑛0
)𝐻 

𝜃𝑠 =
𝑑ℎ

𝑑𝑥
⁡⁡⁡⁡⁡(𝑠𝑙𝑜𝑝𝑒⁡𝑜𝑓⁡𝑡ℎ𝑒⁡𝑤𝑎𝑣𝑒), 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦⁡𝑢⃗ ⁡𝑎𝑙𝑜𝑛𝑔⁡𝑦⁡𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛. 

𝑢⃗ 𝑝𝑥𝑙2 =⁡−(1 −
𝑛𝑎

𝑛0
)𝐻𝑝𝑥𝑙∇ℎ𝑝𝑥𝑙 

∇ℎ𝑝𝑥𝑙 =
𝑢⃗ 𝑝𝑥𝑙2

(
𝑛𝑎

𝑛0
− 1)𝐻

⁡ 

ℎ = ⁡−∫ ∇ℎ𝑝𝑥𝑙. 𝑑𝑙 
𝑥

0

=
1

(1 −
𝑛𝑎

𝑛0
)𝐻

⁡⁡(
𝑝𝑥𝑙

𝑚𝑚
)
2

⁡𝑎𝑛𝑑⁡𝑛𝑎 = 1.0029, 𝑛0 = 1.4,

𝐻~15𝑚𝑚⁡(𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑⁡𝑝𝑟𝑒𝑐𝑖𝑠𝑒𝑙𝑦⁡𝑓𝑜𝑟⁡𝑒𝑎𝑐ℎ⁡𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡) 

The resolution in x and y directions being of the order of 0.04 mm. The height is limited by the 

precision of height measurement of the bath which is measured by a screw gauge with a least count 

of 0.01m. The height was measured 5 times repeatedly for each experiment and the standard 

deviation was used to compute the precision which was of the order of 0.01 mm.  

The detection of the wavefield very close to the drop (~0.5 mm) is not very reliable due to the large 

distortions of the checkerboard/black and white grid. The grid size must be larger than the 

wavelength of the waves that are to be observed. The distortions of the grid must be small enough 

to be able to look at the dominant peaks in the Fourier space in the vicinity, without having them 

blow up to infinities. This can be achieved by using a larger grid size for the checkered backdrop, 

but this would cause a dip in the height field resolution. Thus, various grid sizes were tried, to 

optimize this trade off and a grid of 0.5 mm was chosen to visualize the wavefield. The wavefield 

was captured by the method of strobing the camera to increase the effective frame rate. Droplets 

bounce at 80 Hz on the surface of the bath. One bounce takes 0.0125 s, which would mean that we 

would require a frame rate of 800 Hz to obtain ten points of the droplet’s trajectory in one bounce. 

More points for greater temporal and spatial resolution would mean increasing the frame rate of 

our camera. This would have restricted the field of view and result in loss of some waves.  
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In order to circumvent this issue of having to increase the frame rate of the camera, a strobing 

technique was used. Instead of having the frame rate of the camera correspond to a multiple of the 

bouncing (for both BPD and APD) the camera was strobed at slightly below the frequency of the 

bouncing of the drops. Since the lower frequency is the APD state i.e. 40 Hz, this was chosen as 

the upper limit. (BPD-before period doubling state and APD-after period doubling state) 

 

Figure 16: Bounces at time of period T. Camera strobed at T-t. 

𝑇ℎ𝑒⁡𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑⁡𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛⁡𝑖𝑠:⁡𝑛(𝑇 − 𝑡) = (𝑛 + 1)𝑇 

1

𝑇 − 𝑡
⁡𝑖𝑠⁡𝑡ℎ𝑒⁡𝐹𝑃𝑆⁡𝑜𝑓⁡𝑡ℎ𝑒⁡𝑐𝑎𝑚𝑒𝑟𝑎⁡𝑎𝑛𝑑

1

𝑇
⁡𝑖𝑠⁡𝑡ℎ𝑒⁡𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦⁡𝑜𝑓⁡𝑏𝑜𝑢𝑛𝑐𝑖𝑛𝑔⁡𝑡𝑎𝑘𝑒𝑛⁡𝑡𝑜⁡𝑏𝑒⁡40𝐻𝑧. 

1

𝑇 − 𝑡
=

𝑛

(𝑛 + 1)𝑇
⁡𝑖𝑓⁡𝑛 = 39⁡𝑎𝑛𝑑⁡𝑇 = 0.025⁡𝑠, 𝑡ℎ𝑒𝑛

1

𝑇 − 𝑡
= 39⁡𝐻𝑧. 

Thus, at 39 Hz and 156 total frames, 8 cycles (BPD) and 4 cycles (APD) of the bouncing dynamics 

was recorded. This encapsulated 39 points in one bounce. The wavefield was captured for 13 

different amplitudes of the shaker. The simultaneous imaging of the side view was carried out to 

probe the relation between the wavefield and the process of period doubling. The transition to 

period doubling was observed by looking at the variation in the time taken to complete one bounce 

by the drop. 
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2.4 Tracking the vertical height of the drop 

 

 

Figure 17: Black Line-Column of pixels with the top most part of the drop. Red dots-sub-pixel detection of 
droplet edge. Step1: pixel detection of topmost point of drop Step2: column of pixels of topmost part of the 
drop detected through convolution. Step3: On adjacent columns on either side of the above column, the 
droplet detected again using convolution. Step3: Fitting parabola to the detected drop edge at taking point 
of maxima as the position of the drop. 

For the vertical motion of the drop, the drop was initially detected with pixel precision using 

thresholding which was then followed by detection using convolution. A column of pixels passing 

through the topmost part of the drop was selected (represented by the black line passing through 

the drop in Figure 17) and this column was convoluted with the function [𝜎2 ∗ 𝑐𝑜𝑙𝑢𝑚𝑛⁡𝑜𝑓⁡𝑝𝑥𝑙𝑠 ∗

𝑒−(𝑐𝑜𝑙𝑢𝑚𝑛⁡𝑜𝑓⁡𝑝𝑥𝑙𝑠/𝜎)2/2⁡]⁡⁡where 𝜎 is a small number (point spread), to obtain the dip in intensity 

which is apparent when we encounter the top of the drop (since the drop is black and the 

background is gray). This allowed for detection with sub-pixel accuracy. This process was repeated 

to pixel columns adjacent to the top most point of the drop and a parabola was fit to around 10 such 

columns on either side of the column of pixels containing the top most portion of the drop. This fit 

was also in sub-pixel range. If one pixel measured about 0.04 mm, doing sub-pixel detection would 

give a precision of the order of 0.001 mm (measured from the standard deviation of the fit). The 

maxima of the parabola was considered as the drop location. The top of the drop was not affected 

by the process of impingement and is a less noisy surface compared to the bottom. Thus, tracking 

the droplet’s center was not carried out. 
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2.5 Tracking the excitation of the bath 

 

 

Figure 18: A drop with the needle (top) as a proxy for the position of the shaker. 

The bath was made to move sinusoidally with a given frequency and amplitude. In order to look at 

the real time displacement of the bath, a proxy was used (needle with rounded end, refer Figure 18) 

to track the displacement of the bath. A thin needle with a spherical head was attached to the side 

of the bath that moved in consonance with the bath, allowing us to gain information on the actual 

displacement of the bath. The needle was again detected using the same method used for the drop 

to gain sub-pixel accuracy for bath displacement. This was plotted alongside the droplet trajectory 

to reproduce the predicted motion of the two (Figure 20). 

Thus, the temporal resolution obtained was, 0.0001 s and the spatial resolution for the vertical 

motion of the drop was in sub-pixels with up to 0.001 mm and for the wavefield the height accuracy 

was 0.01 mm with an axial resolution of 0.04 mm. 
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3 Results and Discussion 
 

In this section we discuss the results of the project. We start with the case of dynamics of a single 

droplet in section 3.1. Simultaneous acquisition of the wavefield, the vertical motion of the bath 

and the droplet’s vertical motion has never been done before, and has been carried out here. The 

data obtained could help model the entire system and all its dynamics, in the future. Section 3.1 

also covers the process of detecting the bouncing period. The wavefield obtained in section 3.1 was 

also used to simulate an Ising type model of the system (section 3.3) and look at the degree and 

strength of interaction. The dynamics of two droplets is studied in section 3.2 which gives an insight 

into the interaction. Different lattices of droplets were studied (section 3.4) and their solutions 

corroborated with the simulation in section 3.3. Finally, some preliminary experiments on moving 

droplets to unstable positions were carried out in section 3.5.  
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3.1 Period doubling of a single drop  

 

 

Figure 19: Wavefield image of a frame, 3D plot at different viewing angles. (Top, Left) Includes dip in the 
surface (blue) that the drop creates upon impingement. (Top, Right) Wavefield around the impingement. 
(Below) Top view of the wavefield. 

The wavefield imaging for one frame of the bounce is given in Figure 19. The wavefield was 

measured using the technique described in section 2.3. The radial average of the wavefield was 

used to track the wave front in time. The black line in Figure 19 (bottom), represents the direction 

in which the radial averaging was carried out. 

The dynamics of bouncing droplets with the surface was experimentally reproduced from [5] as 

shown in Figure 20 (bottom). The droplets are in contact with the surface till they are given a net 

upward acceleration by the bath, at which point they shoot off the surface. This is followed by a 

projectile motion of the droplet and the drop lands on the surface again to repeat the process.  

The key feature of this analysis is to look at the variation of the time taken for consecutive bounces. 

This contains the information on period doubling.  The wavefield for the drop was also 

simultaneous analysed. These quantifications have not been done previously.  
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Figure 20: BPD state- (Top) The wavefield of the drop as a function of time. The colour scale gives the depth 
of a row of pixels, radially outward from the drop. (Bottom) The vertical motion of the drop (blue, dotted 
line) and the vertical movement of the bath (black, solid line), plotted together. 

In Figure 20 (top), the wavefield is radially averaged and plotted in time. This gives information on 

the time evolution of the wave front. For a single drop, the process of period doubling is solely 

driven by the amplitude of excitation of the shaker. The wavefield and the vertical motion of the 

drops were simultaneously studied to look at the relation between the two. As can be seen in Figure 

20 (bottom), the point of contact of the drop with the surface is followed by the generation of the 

dip in the surface height (blue regions, top) at that point. The droplets also undergo the dynamics 

with the surface as predicted [5]. Figure 20 (bottom plot) shows the movement of the drop. The 

displacement of the bath was used to calculate the acceleration experienced by the drop [(2𝜋𝑓)2𝑥]. 

We can see that the waves travel in time. The wavefield becomes relevant when we have two or 

more droplets interacting with one another. The wavefield of a single droplet contains all the 

information needed to look at the interaction between droplets and analyse the process of period 

doubling. And the wavefield along with its phase with respect to the excitation (acceleration of the 

bath) are critical to understanding the evolution of the phase of the droplets after period doubling. 

Thus, the wavefield and the vertical motion of the droplet and shaker were analysed for thirteen 

different amplitudes of the shaker, starting from the before period doubled state.  
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The contact time of the drop with the bath is 0.0026 s. the droplet performs reproducible bounces. 

This acquisition was over four seconds at the frame rate of 39 Hz. Thus, the dynamics have been 

completely reproduced and now quantified. The period for the drop is 0.0125 s. The same process 

was carried out for other cases of amplitude as well.  

 

 

Figure 21: APD state- (Top) The wavefield of the drop as a function of time. The colourscale gives the depth 
of a row of pixels, radially outward from the drop. (Bottom) The vertical motion of the drop (blue, dotted 
line) and the vertical movement of the bath (black, solid line), plotted together. 

For the after period doubled case in Figure 21 (bottom), we have the droplet doing a big bounce and 

a small bounce consecutively. For the big bounce, the drop is lifted off the bath when the net 

acceleration is upward and the velocity imparted is the highest. And at this point, it has sufficient 

energy to have a longer range along its parabolic trajectory due to higher initial velocity. So the 

drop comes in contact with the bath at a point in time when the net acceleration (bath + gravity) 

experienced by the drop points downward. The whole cycle has a period of 0.0250 s which is 

double the period of a drop in its non period doubled state. The contact time after the small bounce 

is 0.0045 s and after the big bounce is 0.0012 s. the contact time for the before period doubled case 

is 0.0026 s. The trends in contact time agree with the expected dynamics.  



37 
 

In Figure 21 (top), the wavefield of the drop is given. It has a very discernable change when 

compared to the non-period doubled plot in Figure 20 (top). The drop sends out stronger waves 

when it impinges on the surface after the big bounce when compared to the waves after a small 

bounce. The waves from the big bounce propagate for a longer period of time as expected.  

To trace the process of period doubling, it is crucial to employ detection with high resolution since 

the order of change in the period is 0.001 s. The droplet position was detected with sub-pixel 

accuracy as discussed in section 2.4 and the motion of the drop was used to find the time period of 

each drop, again in the order of sub-pixels. This analysis was done by fitting parabolas to the 11 

topmost points (refer Figure 22) of every bounce and finding the intersection of theses parabolas. 

Since the drops perform projectile motion, the intersection of each of the parabolas would 

correspond to the point in time which marks the end of one bounce and beginning of the next. The 

bounce time was given by the difference between these points. This reinforced sub-pixel accuracy 

of the detections since the fitting was carried out with sub-pixel accuracy.  This was repeated for 

all experiments. The inset in Figure 22 gives the trajectory of the drop as a function of time, with a 

parabola fit to its top few points. 

 

Figure 22: Multiple bounces and the position of the drop (black dots) as a function of time. The point of 
intersection of the parabola fits (red x) gives the point in time when the bounce is completed. Y-axis is the 
vertical height and the x-axis is time. Inset contains the parabola fit to the top few points of the trajectory. 
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Figure 23: The time between consecutive bounces plotted as a function of increasing γ: the maximum 
acceleration provided by the shaker. 

As we increase γ, the droplets undergo symmetry breaking and the consecutive bouncing period 

steadily diverges. These experiments also give an estimate on the error of measurement based on 

the time taken for bounces before the period doubling threshold. Which gives an uncertainty of 

0.00001 s. The critical acceleration for symmetry breaking is ~2.9g. These measurements were 

carried out using the strobed technique to increase the effective frame rate of the camera. 

Figure 23 represents the variation in the time taken for each bounce. The period for bouncing 

bifurcates into two values from (0.01250+/-0.00001) s to (0.01577 +/- 0.00001) s and (0.00921+/-

0.00001) s. This data can be analysed in Fourier space for the dominant frequency responsible for 

the process of period doubling.  

These results pave way for modeling the interaction between two drops (superposition of the 

wavefields of single drops). They contain the phase between the surface and the wave fronts (all 

wave fronts). All possible variables have been measured. 
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The wave envelope for all the 13 states was obtained by looking at the depth of the surface across 

all forty frames. For each point in the radial direction, the minimum negative displacement 

(maximum downward displacement) was subtracted from the maximum positive displacement of 

the surface. 

 

Figure 24: Ten wavefield profiles generated by the drop in time, plotted in one plot to illustrate the general 
trend. A total of 30 fields in time were used in the fit (spanning one bounce). 

The wave envelope obtained in Figure 25 gives information on the rate of decay of waves with 

distance. The fit obtained (Figure 25) was in close agreement with the proposed functional form of 

the wave envelope. This was used for the simulation of interaction between droplets in section 3.3. 

The coefficients are given by 0.02 mm for a and 0.43 for b. the equation is given by, 

𝑓(𝑟) = ⁡ (
𝑎

√𝑟
) (𝑒−⁡𝑏𝑟) 

This wave envelope accurately predicts the phase outcome of different arrangement of drops which 

is elaborated in section 3.4. 
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Figure 25: BPD state- The wave envelope across two bounces of the drop before period doubling. 

 

 

Figure 26:  APD state- The wave envelope across two bounces of the drop after period doubling. 

The wave envelope starts having some oscillations in the period doubled state in Figure 26 due to 

the asymmetry in bouncing pattern.  
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3.2 Phase locking between two drops  

 

Figure 27: Sequence of images for two drops (of size 0.64 mm)  bouncing out of phase with each other. 

 

Figure 28: (Left) Wavefield produced on the surface of the bath by the impact of a drop on the surface. The 
stable positions being roughly equal, stated as λ. The droplets have three natural stable positions that they 
move to. (Right) Snapshot of drops in phase (top and bottom) and out of phase (middle). The gray area is 
the shadow of the waves formed by the impact of the drop. When the drop is at its highest point or 
descending, the shadow is absent since the waves die down. These distances decide the phase of the drop 
i.e. phase A or phase B. 

The stable distances for 2 droplets are: 

λ = 2.013 mm , 2λ = 4.99 mm and 3λ = 7.792 mm                 

Two drops can be easily arranged in one of the three distances represented in Figure 28 (right) when 

they are successively brought close to one another. These distances are stable because of the 

absence of longitudinal forces along the surface. The experimental results show that when they are 

at λ or 3λ the droplets period double in phase, thus the interaction is defined to be ferromagnetic. 

At 2λ the droplets go out of phase when they period double and the interaction is termed 

antiferromagnetic. 

a

Silicone Oil

2 mm

B

B

B

BB

A

Droplet Interactions
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When we increase the amplitude as a ramp function of the form:  

 

 

Figure 29: Amplitude of the shaker 'A' as a function of time. The red box is the region in time that has been 
zoomed into, in Figure 30. 

 

 

 

Figure 30: Two drops, drop 1-black and drop 2-blue going out of phase with each other as they transition 
to period doubling. The amplitude of the shaker is increased by a ramp function. 

 

 

The slope of the ramp function as it becomes more flat/reduces, does not allow for mistakes, but 

an interesting case occurs when the slope is sufficiently large to provoke a miscalculation by the 

dropletsm followed by a correction by the system by virtue of mutual interaction. 
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Figure 31: Zoomed in portion of Drop 1 –black, period doubles first followed by drop 2-blue, under the 
influence of a linearly increasing amplitude. The second drop (blue) stops being period doubled due to 
feedback from Drop 1. The x-axis is amplitude and the y-axis is the time between consecutive bounces. 

In Figure 31, the deviation in time period is represented by connected lines to illustrate the 

oscillatory behavior of the droplets performing a big bounce followed by a small bounce. In the 

case of two droplets as depicted in Figure 31, the first droplet (black) period doubles, and the second 

droplet (blue) follows suit with the same phase, but the droplets interact with each other and the 

second drop (blue) flips its phase after which point the asymmetry in the consecutive time period 

grows with the amplitude. This experiment establishes the fact that (a) the interaction between the 

droplets is strong enough at 2λ to flip the phases and (b) the droplets are actively calculating the 

net energy by constantly interacting with one another (c) the growth of stable modes can occur at 

slow rates of change in amplitude and (d) the rapid growth of asymmetry between the two droplets’ 

periods at a given time once the right phase is implemented, emphasizes the stability of the solution. 

For more information pertaining to the ‘slowness’ of ramp and its effect on period doubling; Since 

the ramp function has too many parameters to characterize, the outlook is to have an experiment 

with step functions very close to the threshold (for a single drop). 

From the above observations the droplet coupling is strong enough to have a discernable effect on 

the effective acceleration experienced by drop i, given by⁡𝛾𝑖(𝑡). 
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𝛾𝑖(𝑡) = 𝛾𝑒𝑥𝑐(𝑡) +⁡∑{𝛾𝑖,𝑗(𝜔𝑒𝑥𝑐)𝑒
𝑖𝑤𝑒𝑥𝑐(𝑡−

𝑟𝑖,𝑗

𝑣𝑒𝑥𝑐
+𝜑𝑗) +⁡𝛾𝑖,𝑗 (

𝜔𝑒𝑥𝑐

2
) 𝑒

𝑖𝑤𝑒𝑥𝑐
2

(𝑡−
𝑟𝑖,𝑗

𝑣𝑒𝑥𝑐
+𝜑𝑗)}

𝑗

 

𝛾𝑒𝑥𝑐(𝑡) = −𝐴𝜔2 sin(𝜔𝑒𝑥𝑐𝑡) 

The first term is from the excitation by the shaker (which is at 80 Hz).  The effect of other droplets 

on the ith droplet involves two components. The harmonic component (i.e. at 80 Hz) and the sub-

harmonic component at 40 Hz. The harmonic component either lowers or highers the period 

doubling threshold depending on φj (which has been measured, section 3.1). The sub-harmonic 

component is responsible for the phase selection and symmetry breaking leading to the two stable 

modes. The sub-harmoinic component is at the same frequency that of the period doubled state. 

Thus, the phase selection is dependent on the distance between the drops as in the case of a 2λ 

separation, the droplets go out of phase since the wavefields from both the droplets reinforce each 

other by constructively interfering each other’s wavefield when they are out of phase and negate 

each other’s wavefield by destructively interfering when they are in phase. Below the threshold of 

period doubling of a single drop, these effects are pivotal in lowering the threshold required for 

period doubling, due to which reason, configurations with many droplets period double faster. And 

drops at the center of configurations and surrounded by droplets, period double faster as well. The 

net vertical acceleration is changed by the presence of a wavefield from the second drop. This is 

due to the interaction between the droplets which reduces the acceleration that has to be provided 

by the shaker to attain period doubling. The remaining acceleration is provided by the other droplet. 

And this trend continues with the case of many droplets, which have a lower threshold when they 

are together. To summarise, the waves generated by the drops at the excitation frequency of the 

bath, can add either constructively or destructively depending on their phase (at the stable droplet 

position) relative to the bath oscillation. These waves are responsible for alleviating the degeneracy 

in the two period doubled modes by breaking the symmetry of the net excitation. Hence, the period 

doubling threshold can either be reduced or increased. The wavefield also has waves at 

subharmonic frequency (half the frequency of the bath/excitation). The phase of these waves 

decides if they favor either phase A or B.  
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3.3 Lattice of many droplets 

The lattice of many droplets arranged in different configurations at a distance of 2λ on a triangular 

lattice. In each of these scenarios the droplets interact with one another to arrive at a stable state. 

The image to the left gives the non-period doubled state and the image to the right gives the period 

doubled state of the system.  

 

Figure 32: A configuration of three droplets. On the left, before period doubling and on the right, after 
period doubling. 

In Figure 32 we have three droplets, each separated by 2λ. This system does not have a true solution. 

Every drop wants to be ideally misaligned with every other drop. However, this is not a possibility 

owing to the geometry. Thus, one of the drops (drop 2, in Figure 32) goes out of phase (phase B) 

while the other two drops (drops 1 and 3) are in the same phase (phase A). This system has one 

mistake between drops 1 and 3. However, this is the lowest possible energy for the problem of 

three droplets. This experiment was repeated multiple times and all the three drops are equally 

likely to be the one that is out of phase. This helped ascertain absence of any asymmetries with 

respect to the excitation of the system and size of the droplets.  Thus, this further supports the 

fact that the uncertainty in droplet size is in a smaller range than the order of magnitude that 

becomes relevant for the process of period doubling.  

The phase transition for three droplets was carried out by tracking the gray area around the droplets. 

The amplitude of the shaker was suddenly increased beyond the threshold for period doubling. The 

evolution of phase was very discernable, given in Figure 33. Drop 1 is the first to period double 

followed by Drop2 and then finally Drop 3. When Drop 1 chooses to go out of phase (+1), Drop 2 

goes out of phase (-1) with Drop 1.  Drop 3 is the last to choose and it can either take phase +1 or 

phase -1 (both of which have been observed), here it picks phase +1. The solution has three 
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degenerate states wherein one of the drops, either Drop 1, Drop2 or Drop 3 pick the different phase 

compared to the other two. 

 

Figure 33: Evolution of phase as a function of time. The yellow line represents Drop 2, the blue line 
represents Drop 3 and the orange line represent Drop 1. The arrow marks the point in time, at which the 
amplitude was suddenly increased to beyond the threshold for period doubling. 

This indicates that the droplets are communicating with one another to arrive at the solution. This 

is seen more apparently in the case of larger configurations as well.  

Configurations of different number of droplets: 

  

Figure 34: A lattice of seven droplets forming a hexagon. (Left) Before period Doubling and (Right) after 
period doubling. 
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Seven droplets in Figure 34 (Left) interacting with one another to arrive at the solution Figure 34 

(Right). The configuration of seven droplets has four degenerate states, this is depicted in Figure 39 

of section 3.4. The phases are again distinguishable by the gray ring around the drops. The number 

of mistakes here are 3 of the first order i.e. first nearest neighbours, every droplet wants to be out 

of phase with every other droplet ideally.  

 

Figure 35: Lattice of 15 droplets forming a triangle. (Left), BPD and (Right) APD. 

Lattices in the same shape can have different results, as demonstrated by lattices of 15 drops and 

10 drops in Figure 35 and Figure 36. The number of mistakes here are 10. Even though there are ten 

apparent mistakes of the first order, in this geometry the least energetic state is given by the phase 

configuration obtained.  

 

Figure 36: Triangular Lattice of 7 droplets forming a triangle. (Left), BPD and (Right) APD. 

Hexagonal structure of 19 droplets given in Figure 37. The lowest energy state has 12 mistakes of 

the first order. 
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Figure 37: Hexagonal geometry with a lattice of 19 droplets. (Left) BPD and (Right) APD 

 

Figure 38: 10 droplets arranged at various stable distances. 

Figure 38 represents a configuration with all three possible stable distances. The final configuration 

has zero first order mistakes. All the droplets have the expected phase configuration.  

All the configurations after period doubling correspond to the minimum energy state, which were 

verified by the simulations, given in section 3.4. This makes for a compelling system for more 

detailed study owing to the two possible outcomes of the drops, the reproducibility of the process, 

interaction between the drops leading to intriguing outcomes, and interesting dynamics between 

the drops and the surface.  
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3.4 Ising model for bouncing drop lattices  
 

The Ising Hamiltonian is given by: 

𝐻 = −∑𝐼𝑖,𝑗𝜎𝑖𝜎𝑗

𝑖.𝑗

 

The interaction term magnitude was given by the envelope of the wavefield which varied as a 

function of the distance between the droplets. The sign of the term was given by the distance 

between two droplets as explained in Table 2. 

 

Table 2: Tentative mapping for designing an Ising Hamiltonian 

Ising Machine 
 

Our Droplet Machine 

1. Minimises energy of a lattice of spins 
𝜎𝑖 which can be in {+1/-1} state. 

 

1. Minimises "energy" of a lattice of phases; 
A = +1 and B = -1, after transition to 
period doubling. 

2. Energy: H = -∑ 𝐼𝑖,𝑗𝜎𝑖𝜎𝑗𝑖,𝑗  

 

2. Energy: H = -∑ 𝐼𝑖,𝑗𝜎𝑖𝜎𝑗𝑖,𝑗  

 

3. Interaction 𝐼𝑖,𝑗⁡mediated 

electromagnetically. 
 

3. Interaction 𝐼𝑖,𝑗⁡mediated through surface 

waves. 
 

4. 𝐼𝑖,𝑗⁡positive: Spins want to align 

(ferromagnetic interaction). 
𝐼𝑖,𝑗 negative: Spins want to anti-align 

(antiferromagnetic interaction). 
 

        4.   ⁡𝑑 = (2𝑛 + 1)𝜆 : phases want to align. 
. 𝑑 = 2𝑛𝜆⁡: phases want to anti-align 
 

 

The envelope of the wavefield function was given by the form: 𝑓(𝑟) = ⁡ (
𝑎

√𝑟
) (𝑒−⁡𝑏𝑟) The droplets 

act as sources and produce waves radially, they can be described by the Bessel function [1]. The 

wavefield envelope was fit to (
𝑎

√𝑟
) (𝑒−⁡𝑏𝑟) as given in section 3.1. The fit parameters obtained were 

used to simulate the interaction between two droplets. The fit before period doubling was used 

since the droplets experience the before period doubled state’s wavefield close to the transition.  

Both the fits are very close in value (just before and just after period doubling). If the distance 

between two drops was λ or 3λ, the interaction is ferromagnetic (as described in section 3.2) and 
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the interaction sign is taken to be positive and for a distance of 2λ, the interaction term is taken to 

be negative. The results obtained were consistent with the all the experiments with different 

configurations. One example of which is demonstrated in Figure 39, the energy of the configuration 

is plotted along the x-axis with the configurations on the y-axis.  

The configurations of droplets were constructed on a triangular lattice with the coupling given by 

the interaction term for the analysis. In order to check how strong this coupling was, the simulation 

was carried out for just the first nearest neighbours. The results obtained matched the experimental 

results for a lattice constant of 2λ. 

 

 

Figure 39: Hamiltonian space with the x-axis representing energy and y-axis being the configuration. The 
phases of the drops are depicted by 1(s) and 0(s) whose order corresponds to the arrangement of drops 
depicted in the figure insets. The actual experimental result is given in the top, right.   



51 
 

3.5 Moving droplets to intermediate distances: preliminary experiments 
 

 

Figure 40: Montage of droplet 2, on the right, at different distances from droplet 1, on the left. Droplet 2 is 
moved using an electrostatically charged Teflon tip. 

The droplets were moved to different intermediate distances as shown in Figure 40, using an 

electrostatically charged Teflon tip. This induced a dipole moment on the drop, attracting it. This 

method would be efficient only if the amount of attraction is the same for both the drops which is 

not possible without having a constant voltage source. 



52 
 

 

Figure 41: Drops placed at unstable distances in wells. The distance was varied from >3λ to <1λ. 

In Figure 41, the droplets are trapped in wells. This was achieved by suitably tuning the bath height. 

This reduced the coupling between droplets, allowing them to reside at intermediate distances. The 

wells were 3D printed at distances between 3λ and 1λ. The very first pair have a stronger 

interaction, due to their proximity, that overcomes the barrier and move them to the first stable 

state of λ. This is not an ideal system since the wells limit the interaction between droplets to a 

great extent. The outlook of this project will involve finding a suitable method to tune distances 

between droplets. 

To summarise, the droplets were fixed at a position by placing wells in the bath and having a 

shallow layer of oil above these wells. As long as the wells are homogeneous, the interaction 

uniformly changes for all drops. The droplets remained at different unstable locations in the 

presence of these wells. This is a trade-off in terms of the strength of coupling between the droplets. 

The method involving electric field is to be explored. 
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4 Conclusion and Outlook 
 

On the whole, this problem was very rich in terms of exposure to different techniques. The method 

of wavefield imaging can be implemented on any transparent surface whose curvature is to be 

analysed. Different aspects in image analysis like analysis with sub-pixel accuracy are very 

versatile in their applications and whose central ideas are relevant in many situations involving 

detection and tracking. 

The set of interacting bouncing droplets behave as a system of synchronized oscillators that are 

coupled together by the wavefield that they emit on the surface. When bouncing at the excitation 

frequency, droplets spontaneously self-organize into various stable 2D patterns on the surface of 

the bath. These positions correspond to a null net horizontal force acting on them during the quasi-

contact phase between the drop and the surface of the bath. This occurs when the droplets land at 

a position in space and in time that does not have a sloping surface due to other droplets. Upon 

being sufficiently excited, the droplets undergo period doubling and acquire one of two phases with 

respect to each other. The dynamics involving this transformation was explored. The dynamical 

coupling between the droplet and the surface is responsible for the process of period doubling. 

When we have more than one droplet, the phase selection is based on the interaction term which in 

turn depends on the distance between the drops. The wavefield was measured for a single drop. 

This was used to obtain the envelope of the wavefield to verify the outcome of many configurations 

and to reinforce the empirical observations with regard to the phase selection process. The 

wavefield was simultaneously measured with the vertical motion of the drops for the outlook on 

the role of subharmonic frequencies in the process of period doubling. The case of a single droplet 

gave deeper insight into the process of period doubling and the bifurcation of the bouncing period 

into two modes along with quantified results. The experiments with two droplets looked at the 

interaction between the droplets. Two droplets at a stable distance, have a period doubling threshold 

(in terms of the amplitude of the shaker) that is lower than the threshold for a single droplet. In 

patterns involving many droplets, the droplets at the center, which have stronger coupling due to 

being surrounded by more droplets, period double for a lower threshold amplitude than in the case 

of the drops on the edge which experienced interaction with fewer drops. The simulations indicate 

that the system has strong coupling up to the first nearest neighbor after which the interaction 

decays due to the damping of the wavefield. But every drop has an effect on every other drop owing 
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to its influence on the phase selection by the drop closest to it, which later decides the phase of 

another drop. These interactions give rise to the symmetric phase configurations that are observed. 

The droplets also compute the solution corresponding to minimum energy by rectifying their phase 

if the phase does not correspond to the ground state configuration. The droplets were made to 

period double in phase with respect to each other by increasing the amplitude of the shaker by 

means of a ramp function and tuning the slope to achieve an example wherein the droplets at 2λ 

became period doubled with the same phase but rectified their mistake by coming back to the non-

period doubled state and finally going out of phase, which is the expected outcome at 2λ. This 

illustrates the robustness of the system in terms of finding the ground state. 

In our system, the distance between the drops which gives a handle on the interaction term is not 

easily manipulable currently. The drops are at fixed distances corresponding to the points in space 

that have no slope on the surface when the drop comes in contact with the surface. This limits the 

range of energy landscapes that can be explored since the number of initial configurations that we 

can have are limited to the triangular lattice. To vary the distance between droplets, some 

preliminary experiments were carried out as shown in Figure 40 and Figure 41.  

Our system is two dimensional, limiting the mapping to other systems involving spin glasses and 

most importantly the coupling between drops in our system decays with distance. Beyond ~2λ, the 

effect of the drops on each other is not prominent.  

The work carried out involved the development of new techniques and insight into the key aspects 

of the system. Both, the ability of these drops to interact and arrive at the ground state and the 

comprehensive experimental characterisation of this system provide the ideal basis for making an 

equivalence with the established Ising machines.  
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5 Appendix 

5.1 Growth rate and decay rate of period doubling for one and two drops 

 

 

Figure 42: Figure on top represents the period doubling for a single drop and figure below represents one 
drop of a configuration of two drops experiencing a series of step functions in amplitude. The period 
doubling amplitude (difference in bounce times) higher and decay is rate lower in the two drop case than 
one drop. Thus, the drops enhance each other’s period doubled state. 



56 
 

 

 

Figure 43: Figure on top represents the period doubling for a single drop and figure below represents one 
drop of a configuration of two drops experiencing a series of step functions in amplitude (different from 
previous case). The period doubling threshold is much lower for the two drops case since the drop in the 
two drop configuration has already period doubled for the same excitation. 
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5.2 Period doubling threshold for one and two drops 

 

 

Figure 44: Figure on top represents the period doubling for a single drop and figure below represents one 
drop of a configuration of two drops experiencing a series of step functions in amplitude, same as for the 
plots in Figure 44. The period doubling threshold is much lower for the two drops case since the drop 
(second figure) in the two drop configuration has already period doubled for a lower excitation. X-axis is 
the voltage (mV) of excitation given to the shaker. 
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5.3 Mapping to the Max-Cut Problem 

Max-Cut: Partitioning a graph G (V,E) with V vertices and E edges, into two sets S and V/S such 

that the weight of the edges connecting the two sets is maximised. 
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The max Cut problem is NP hard. Upon adding nodes/vertices, the computational time scales as a 

power law. 

Designing a penalising function to suit our combinatorial optimisation problem is what constitutes 

writing the Hamiltonian function. In the Max Cut problem, the penalizing function is basically 

taxing the conditions wherein the nodes connected by a heavy edge are in the same set. This is the 

reason we have the factor of (1/4).  We have considered 𝜔𝑗𝑙 = 𝜔𝑙𝑗, which gives a factor of (1/2). 

The other half adds up to one 𝜔𝑗𝑙 ⁡if 𝜎𝑗. 𝜎𝑙 = −1, that is, the nodes are in different sets. 

For example, if we have 5 nodes connected by equally weighted edges in such a manner as given 

in Figure 46, the Max Cut solution would be five-cut as depicted in Figure 45.  
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Figure 46: A 5-node 
graph with 5 equally 
weighted edges 

Figure 45: The 
solution is 5-Cut 
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Real World problems which use the Max Cut solution involve image segmentation (separating an 

object from its background), clustering problems, network analysis, market target audience and 

basically problems involving picking out data points that are close to each other. S and V/S 

represent the two sets whose sigma values have the opposite sign.  

 

 

 

 

 

 

 

 

 

 

 

The three-node case with all degeneracies is shown in Figure 47. Thus, in the three-node case, one 

node should have an opposite sign w.r.t the others. The seven-node case, considering the maximum 

weighted sides, the nodes 2,4,6, should have an opposite sign to that of 1,3,5,7. The node 7 can be 

either in S or V/S. There are four degenerate pairings of the vertices, as expected from Figure 39. 

5.3.1 Mapping the Hamiltonian to our system  
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Figure 47: Three node graph with equally weighted edges followed by all its degenerate solutions and 
(Right) seven node graph with different weighted edges followed by its solution considering the heavier 
weighted edges to play a predominant role. 
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These are the cases at 2λ, for the first λ and third 3λ stable distance, the droplets are all in phase 

after period doubling. This is evident from looking at the interaction term which is positive i.e. 

ferromagnetic interaction. And from above, we know 𝐼𝑗𝑙 = −𝜔𝑗𝑙.Thus, the total weight 𝜔𝑗𝑙 < 0.  

Thus, maximising the weights across two sets is nothing but having the total weight equal to zero 

(any edge connecting two sets will give a negative value). Thus, all the drops are in the same phase 

i.e. all nodes belong to one set. 
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