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Abstract

p-adic L-functions for Modular Forms

by Punya Plaban Satpathy

In this thesis we give an exposition of various known techniques of constructing p-

adic L-functions in different cases. The key idea behind this is constructing a non-

archimedean measure and then performing a p-adic Mellin transform of a suitable

p-adic character. There is also the alternative approach introduced by Iwasawa of

finding a p-adic holomorphic power series interpolating the special values of a Dirichlet

L-function. We explain the prerequisites and expand upon above ideas to give a

comprehensive view.
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Chapter 1

Introduction

The theory of p-adic L-functions may be said to have begun when Euler discovered

that the Riemann zeta function ζ(s) assumes rational values (essentially Bernoulli

numbers) at negative integers. Some two centuries later, Kummer was led to look at

Bernoulli numbers when he discovered that the question of whether a given prime p

was “regular” depended upon the p-adic behaviour of certain Bernoulli numbers. He

discovered the “Kummer congruences” between Bernoulli numbers, which could be

naively described in terms of zeta values as follows;

“If k ≥ 1 is an integer not divisible by p− 1, then ζ(1− k) is p-integral, and the

value of ζ(1− k) mod p depends only on the value of k mod p− 1.”

In the late 1950’s Kubota and Leopoldt constructed a p-adic analogue of the Rie-

mann zeta-function using the technique of p-adic Mellin transform, which p-adically

interpolated the values of the Riemann zeta-function at the negative odd integers.

This also lead to an alternate explanation of the congruence satisfied by Bernoulli

numbers, discovered by Kummer.

Later Manin in [Ma2] used Mazur’s p-adic integral to construct p-adic analogues

of the Mellin transform for modular forms of arbitrary weight (for the full modular

group) and showed that the values of these functions at integer points of the critical

strip coincide with the classical values (upto elementary factors), so he was able to

construct p-adic analogues of L-functions attached to modular forms.

In the subsequent chapters we give an overview of these various approaches to-

wards constructing p-adic L-functions.

In Chapter 2, starting with basic p-adic analysis, non-archimedean distributions

are constructed out of Bernoulli numbers. They are regularized to get an appropriate

1



2 CHAPTER 1. INTRODUCTION

measure, which is then used to obtain p-adic analogue for the Riemann zeta function.

Later there is a discussion on p-adic (holomorphic) functions which are defined by

convergent power series and which take pre-assigned values at s = 0, 1, 2, . . . . These

results then lead to a p-adic extension for the Dirichlet L-functions L(s, χ), where χ

is a Dirichlet chracter. In the end there is a brief discussion on associating power

series to non-archimedean measures on Zp based on [Ka].

In Chapter 3, Jacquet-Langlands theory is discussed in some detail; results from

represenation theory of p-adic groups are given, specifically results about spherical

representations, such as relating the satake parameters to the Hecke eigenvalues for

spherical principal series, deriving the formula for spherical Whittaker function are

discussed as well as the notion of a local L-function together with its functional

equation. Then these local results are used to give global results of Jacquet-Langlands

theory such as proving the functional equation for the global L-function of a cuspidal

automorphic representation. At the end of the chapter, a comparision is given between

the Jacquet-Langlands L-function and the classical L-function attached holomorphic

cusp forms.

In the last chapter, following Manin we first describe the construction of non-

archimedean measures associated with a holomorphic cusp form on SL(2,Z), which

is also assumed to be a simultaneous eigenfunction of all the Hecke operators. Then

we use this measure to p-adically interpolate the critical values of the classical L-

function attached to the cusp form and we explicate this construction in the case of

the Ramanujan ∆-function.



Chapter 2

p-adic extension of ζ(s) and L(s, χ)

2.1 p-adic analysis and p-adic zeta function

In the late 18th century Kummer discovered some interesting congruence relations

satisfied by Bernoulli numbers. Later Kubota and Leopoldt re-interpreted those for-

mulae using the so called p-adic zeta function, describing which is the aim of this

section.

2.1.1 Open sets in Qp and p-adic Distributions

The aim of this section is to introduce the basic objects needed for the study of p-adic

zeta functions, the non-archimedian measures associated to Bernoulli polynomials.

Sets of type a + pNZp = {x ∈ Qp; |x − a|p ≤ p−N}, denoted as a + (pN) where

a ∈ Qp and N ∈ Z, form a basis for the open sets in Qp. So any open set in Qp is a

union of these kind of open sets, from now on open set of the type a + pNZp will be

called an interval. These intervals are also closed because of the p-adic topology.

An open set in Qp is compact if it can be written as finite union of intervals (the

intervals can be made disjoint). The proof is easy and follows from the fact that for

a compact set any given open cover has a finite subcover.

A locally constant function plays the same role in p-adic analysis as the role played

by step functions in real analysis while defining the concept of a Riemann integral.

Let X and Y be two topological spaces, f : X → Y is called locally constant if

for any x ∈ X , ∃ a neighbourhood U of x in X such that f is constant on U.

For example the function f : Zp → Zp given by f(x) = first digit in the p-adic

3



4 CHAPTER 2. P -ADIC EXTENSION OF ζ(S) AND L(S, χ)

expansion of x, then f is clearly locally constant because f has constant value on the

neighbourhood U of x, given by U = x+ pZp
Clearly a locally constant function is continuous.

p-adic distributions

In this section X will always denote a compact-open subset of Qp such as Zp or Z×p .

A p-adic distribution µ on X is a Qp linear map from the Qp-vector space of

locally constant functions on X to Qp, the value of µ at a locally constant function f

is denoted as
∫
fµ.

Equivalently one can define a p-adic distribution µ on X as an additive map from

set of compact-open subsets of X to Qp.

Proposition 2.1.1. Every map µ from the set of intervals contained in X to Qp

which satisfies

µ(a+ (pN)) =

p−1∑
b=0

µ(a+ bpN + (pN+1)),

whenever a+ (pN) ∈ X extends uniquely to a p-adic distribution on X.

Proof. Refer to the Proposition in §2.3, [Ko].

A p-adic distribution on X is called a measure if its values on compact-open subsets

of X are bounded by some real constant, i.e., |µ(U)|p ≤ B for all compact-open U ⊂ X

(B ∈ R).

Some examples of p-adic distributions are Haar distribution and Mazur distri-

bution given by µHaar(a+ (pN) = 1
pN

and µMazur(a+ (pN) = a
pN
− 1

2
, but one should

notice that the values of these two distributions grow p-adically to ∞ as N → ∞,

hence they are not qualified as measures, this can also be realised from the following

example.

Consider the function f : Zp → Zp given by f(x) = x, let’s try to integrate it

w.r.t the Haar distribution, we will use the fact that for any N ,

Zp =

pN−1⋃
a=0

(a+ (pN))
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and let’s find out the Riemann sum

SN,xa,N =

pN−1∑
a=0

f(xa,N)µ(a+ (pN))

if we choose xa,N = a for each N then we get SN,xa,N = pN−1
2

which goes to −1
2
p-

adically as N →∞. On the other hand if we choose xa,N = a+pNb, where b is a fixed

p-adic integer, then we will get SN,xa,N = pN−1
2

+ b which goes to b− 1
2
, p-adically as

N →∞. Since the Riemann sum is not unique, hence f isn’t integrable.

Now we will give an example of a p-adic distribution which can be regularized to

make it bounded and hence will give us a p-adic measure on Zp. This distribution is

the so called Bernoulli distribution. To define this p-adic distribution, we will first

define the Bernoulli polynomials. The k-th Bernoulli polynomial is defined as

F (x, t) = F (t)ext =
∞∑
k=0

Bk(x)
tk

k!
,

where F (t) = t/(et − 1), The first few Bernoulli polynomials are given as:

B0(x) = 1, B1(x) = x− 1

2
, B2(x) = x2 − x+

1

6
.

Using the k-th Bernoulli polynomial defined above, let us define a map µk to be

µk(a+ (pN)) = pN(k−1)Bk

( a

pN

)
for any a ∈ {0, 1, 2, . . . , pN − 1}.

Note that µ0 = µHaar and µ1 = µMazur.

Proposition 2.1.2. µk extends to a distribution on Zp.

Proof. See proposition, §2.4, [Ko].

This distribution µk is called the k-th Bernoulli distribution. Note that µk is not

a measure for any nonnegative integer k. However, there is a method to regularize

the Bernoulli distribution to obtain a measure.

Definition 2.1.3. Let α be any rational integer, not equal to one and that p does not

divide α. We define the k-th regularized Bernoulli distribution on Zp as

µk,α(U) = µk(U)− α−kµk(αU).
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We must show that µk,α is well-defined. It is clear that the sum of two distribu-

tions is a distribution and that for any α ∈ Zp and a distribution µ on Zp, αµ is a

distribution as well. Thererfore, we only need to show that µ(αU) is a distribution.

It can be shown as follows: Write U as a finite disjoint union of intervals, say {Ui}ni=1.

Then x ∈ αU ⇐⇒ x/α ∈ U ⇐⇒ x/α ∈ Ui for a unique i⇐⇒ x ∈ αUi for a unique i.

This proves that αU is a disjoint union of {αUi}ni=1 , and that µ(αU) =
∑
µ(αUi).

For α ∈ Zp, let {α}N be the unique rational integer such that 0 ≤ {α}N ≤ pN − 1

and {α}N ≡ α (mod pN). If U = a+ (pN) for some a ∈ {0, 1, 2, . . . , pN − 1} , then

αU = {x ∈ Zp : x/α ∈ U} = {x ∈ Zp : |x/α− a|p ≤ p−N}
= {x ∈ Zp : |1/α|p|x− αa|p ≤ p−N}
= {αa}N + (pN)

Now it will be easier for us to find µk,α for each k. First let k = 0, then µk = µHaar,

so µ0,α(a+(pN)) = µHaar(a+(pN))−α−0µHaar({αa}N +(pN)) = 1
pN
− 1

pN
= 0. Hence

µ0,α(U) = 0 for any open-compact subset U of Zp.

Proposition 2.1.4. µk,α is a measure for any rational integer α, not divisible by p

and for all k ≥ 1.

Proof. We will be proving this only for k = 1. For more details see Theorem 5, §2.5,

[Ko]. Note that:

µ1,α(a+ (pN)) = µ1(a+ (pN))− α−1µ1({αa}N + (pN))

= B1

( a

pN

)
− α−1B1

({αa}N
pN

)
=

a

pN
− 1

2
− 1

α

({αa}N
pN

− 1

2

)
=

1

α

[αa
pN

]
+

1

2

( 1

α
− 1
)
.

We claim that this is a measure. It is enough to show that |µ1,α(a + (pN))|p is

bounded for any a ∈ {0, 1, . . . , pN − 1}, because any compact-open subset of Zp is a

finite disjoint union of intervals. Note that α is not divisible by p, i.e., α is in Z×p ,

therefore 1/α ∈ Z×p as well. So if p 6= 2 then 1/2(1/α − 1) ∈ Zp. If p = 2, we may

write 1/α = 1 +
∑∞

i=1 ai2
i with ai ∈ {0, 1} since 1/α ∈ Z×p , hence 1/2(1/α − 1) is
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again in Zp.
Since 1

α
[ αa
pN

] is also in Zp, it follows that µ1,α(a + (pN)) ∈ Zp for any interval

a+ (pN). It follows that µ1,α is a measure. More precisely, |µ1,α(U)|p ≤ 1.

Definition 2.1.5. Let µ be a p-adic measure on a compact-open set X in Qp, and

f : X → Qp a continuous function. Then the N-th Riemann sum is defined as

SN,xai,N (f) =
m∑
i=1

f(xai,N)µ(ai + (pN)),

where X is expressed as a disjoint union of {ai + (pN)}mi=1 and xai,N are arbitrary

points in ai + (pN) for each i.

Theorem 2.1.6. limN→∞SN,xai,N in Qp, and it is independent of the choice of

{xai,N}.

We define
∫
fµ to be this limit in the above theorem. Note that it is well-defined

by the theorem.

Proposition 2.1.7. Let f : Zp → Zp be the function f(x) = xk−1 (k is a fixed positive

integer). Let X be a compact-open subset of Zp. Then∫
X

1µk,α = k

∫
X

fµ1,α

Proof. See Proposition, §2.6, [Ko].

Thus, we claim that the expression
∫
Z×p

xk−1µ1,α can be interpolated p-adically. We

know that if |f(x)− xk−1|p ≤ ε for x ∈ Z×p , then∣∣∣ ∫
Z×p

fµ1,α −
∫
Z×p

xk−1µ1,α

∣∣∣
p
≤ ε

(recall that |µ1,α(U)|p ≤ 1 for all compact-open U .) Choose for f the function xk
′−1

where k′ ≡ k (mod p− 1) and k′ ≡ k (mod pN)(writing this as one congruence k′ ≡ k

(mod (p− 1)pN). Then we have

|xk′−1 − xk−1|p ≤
1

pN+1
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for x ∈ Z×p . Thus,

∣∣∣ ∫
Z×p

fµ1,α −
∫
Z×p

xk−1µ1,α

∣∣∣
p
≤ 1

pN+1
.

We conclude that, for any fixed s0 ∈ {0, 1, 2, . . . , p− 2}, by letting k run through

Ss0 := {s ∈ Z+|s ≡ s0 mod (p − 1)}, we can extend the function of k given by∫
Z×p

xk−1µ1,α to a continuous function of p-adic integer s given by :∫
Z×p

xs0+s(p−1)−1µ1,α

But we are originally trying to p-adically interpolate the numbers − 1
k

∫
1µB,k

which are the values of ζ(1− k) (for k > 0). We just saw that we can interpolate,∫
Z×p

xk−1µ1,α =
1

k

∫
Z×p

1µk,α.

Let’s relate the two numbers:

1

k

∫
Z×p

1µk,α =
1

k
µk,α(Z×p )

=
1

k
(α−k − 1)(1− pk−1)Bk

= (α−k − 1)(1− pk−1)(−1

k

∫
Zp

1µB,k)

So, we will interpolate the numbers (1− pk−1)(−Bk

k
) :

(1− pk−1)(−Bk

k
) =

1

α−k − 1

∫
Z×p

xk−1µ1,α. (2.1.8)

Definition 2.1.9. Let α be a rational integer that is not equal to one and not divisible

by p. For any positive integer k, we define

ζp(1− k) := (1− pk−1)(−Bk

k
)
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so that, by the preceding paragraph

ζp(1− k) =
1

α−k − 1

∫
Z×p

xk−1µ1,α.

Note that this expression on the right does not depend on α, i.e, if β ∈ Z , p - β,

β 6= 1, then (β−k − 1)−1
∫
Z×p

xk−1µ1,β = (α−k − 1)−1
∫
Z×p

xk−1µ1,α, since both equal to

(1− pk−1)(−Bk/k).

Theorem 2.1.10 (Kummer). The following holds

1. If (p− 1) - k then Bk

k
is a p-adic integer.

2. If (p− 1) - k and k ≡ k′ (mod (p− 1)pN) then

(1− pk−1)
Bk

k
≡ (1− pk′−1)

Bk′

k′
mod pN+1

Proof. If k = 1, then |Bk/k|p = 1 for any p > 2. For the case k > 1, choose α such

that 2 ≤ α ≤ p− 1 and p− 1 is the smallest positive integer satisfying αp−1 − 1 ≡ 0

(mod p). Note that such α exists since α is a p-adic unit and it can be identified with

a (p − 1)th root of unity. By the choice of α and the hypothesis, α−k − 1 6≡ 0 (mod

p), and so α−k − 1 is a p-adic unit. Therefore∣∣∣Bk

k

∣∣∣
p

= |1− pk−1|−1
p |α−k − 1|−1

p

∣∣∣ ∫
Z×p

xk−1µ1,α

∣∣∣
p
≤ |µ1,α(Z×p )| ≤ 1.

To prove the second statement, let α be as chosen earlier. Since k is congruent to

k′ mod (p−1)pN , we have αk ≡ αk
′

(mod pN+1). So we have
∫
xk−1µ1,α ≡

∫
xk
′−1µ1,α

(mod pN+1 ). Hence the proof is completed by eq. 2.1.8.

Definition 2.1.11. For any α ∈ Z with α 6= 1 and p - α and for a fixed integer

s0 ∈ {0, 1, 2, . . . , p− 2}, ζp,s0(s) is defined as

ζp,s0(s) =
1

α−(s0+(p−1)s) − 1

∫
Z×p

xs0+(p−1)s−1µ1,α

for any p-adic integer s, except at s = 0 in case of s0 = 0.
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Note that ζp,s0(s) is continuous except where s0 and s are both zero. This can

be shown in the same manner as the continuity of ζp(1 − k). One can also show

that ζp,s0(k) does not depend on the choice of α for any k in As0 . This is because

ζp(1 − k) = ζp,s0(k0) where k = s0 + (p − 1)k0 for some s0 ∈ {0, 1, 2, . . . , p − 2} and

k0 ∈ Z with k0 > 0. It follows from the continuity of ζp,s0(s) and the density of As0

that ζp,s0(s) is independent of the choice of α.

We also note that ζp(t) has a pole at t = 1, by taking k = 0 (and so s0 = k0 = 0

as well) in ζp(1− k) = ζp,s0(k0).

2.2 p-adic extension for Dirichlet L-function

2.2.1 Dirichlet Characters and Generalized Bernoulli Num-

bers

We have to first define the notion of a Dirichlet character. Let n be a positive integer,

then a map χ : Z→ C is called a Dirichlet character of modulus n if

1. a ≡ a′(modn)⇒ χ(a) = χ(a′),

2. χ(ab) = χ(a)χ(b) for ∀a, b ∈ Z,

3. χ(a) 6= 0⇐⇒ (a, n) = 1.

Let χ′ be another Dirichlet character of modulus m and let n be a multiple of m.

Now define χ : Z → C by χ(a) = χ′(a) if (a, n) = 1 and χ(a) = 0 if (a, n) > 1. Now

χ is easily seen to be a Dirichlet character modulus n, which is said to be induced

from χ′. A Dirichlet character χ modulus n is said to be primitive, if it is not induced

from any characher χ′ modulus m with m < n. In this case n is called the conductor

of χ and is denoted by fχ.

For a primitive Dirichlet character χ mod f , define the kth-generalised Bernoulli

number (denoted by Bk,χ) via the following function

Fχ(t) =

f∑
a=1

χ(a)
teat

eft − 1
=
∞∑
k=0

Bk,χ
tk

k!
.
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Observe that

∞∑
k=0

Bk,χ
tk

k!
=

f∑
a=1

χ(a)
teat

eft − 1

=

f∑
a=1

χ(f − a)
te(f−a)t

eft − 1

= χ(−1)

f∑
a=1

χ(a)
−te−at

e−ft − 1

= χ(−1)
∞∑
k=0

(−1)kBk,χ
tk

k!
,

where the second last step is obtained by using the fact that χ is periodic mod f and

χ(−a) = χ(−1)χ(a). Hence Bk,χ = 0 for k 6≡ δ (mod 2) if χ 6= 1 (where δ = 0 if

χ(−1) = 1 and δ = 1 if χ(−1) = −1).

Let χ be a Dirichlet character, then the Dirichlet L-function associated to χ is

defined by the formula

L(s, χ) =
∞∑
n=1

χ(n)

ns
.

If we take χ = 1, then L(s, 1) = ζ(s). Since |χ(n)| ≤ 1 for all n ∈ Z, by comparing

with the zeta function we obtain the following result

Proposition 2.2.1. L(s, χ) converges absolutely for Re(s) > 1 and has the following

Euler product expansion

L(s, χ) =
∏
p

1

1− χ(p)p−s
.

Theorem 2.2.2. For a Dirichlet character χ and any positive integer k,

L(1− k, χ) = −Bk,χ

k
. (2.2.3)

Proof. Refer to Theorem 1, §2, [Iw].
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2.2.2 Interpolating L(1− k, χ) via p-adic power series

Let p be a prime number and let Ωp be an algebraic closure of Qp. In the following

section, we shall fix both p and Ωp and consider p-adic functions which are defined on

sufficiently large domains in Ωp and take values in the same field Ωp. Let L(s;χ) be the

classical L-function of Dirichlet. The main problem of this section is to find a suitable

p-adic function which may be regarded as a p-adic analogue of the classical function

L(s;χ). To solve this problem, Kubota-Leopoldt looked for a p-adic meromorphic

function which takes the same values as L(s;χ) at s = 0,−1,−2, . . . observing that

by Theorem 2.2.2, these values of L(s;χ) are algebraic numbers and hence, may be

considered as elements of the algebraically closed field Ωp.

In [KL], Kubota-Leopoldt obtained such a function f(s), although the condition

f(n) = L(n, χ) for n = 0,−1,−2, . . . , had to be modified slightly, and they called it

the p-adic L-function for the Dirichlet character χ. In this chapter following Iwasawa,

we shall first study p-adic (holomorphic) functions which are defined by convergent

power series and which take pre-assigned values at s = 0, 1, 2, . . . Using the results

thus obtained, we shall then discuss the existence and the uniqueness of the function

f(s) as mentioned above.

Throughout this section, let K be a finite extension of Qp, and let

K[[x]] := {A(x) =
∞∑
i=0

aix
i : ai ∈ K}

the set of all power series. We say that A(x) converges at s to mean that |aisi|p → 0

as i→∞. Now let us define

‖ A ‖ = ‖
∞∑
i=0

aix
i ‖ = supi|ai|p

and PK = {A(x) ∈ K[[x]] : ‖ A ‖< ∞}. Then ‖ . ‖ is a norm on PK and one can

show that PK is complete with respect to this norm.

Define
(
x
n

)
, for any non-negative integer n, to be the polynomial of degree n given

by, (
x

n

)
=
x(x− 1)(x− 2) . . . (x− n+ 1)

n!

This is clearly continous on Zp.
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Proposition 2.2.4. Let n be a non-negative integer, and write it to the base p, i.e.,

n = α0 +α1p+ · · ·+αtp
t, with 0 ≤ αi ≤ p−1 for all i, and let Sn :=

∑t
i=0 αi . Then,

∥∥∥(x
n

)∥∥∥ ≤ p(n−Sn)/(p−1) .

Proof. Refer to Lemma 3, §3, [Iw].

Theorem 2.2.5. Let 0 < r < p−1/p−1 and A(x) =
∞∑
i=0

ai
(
x
i

)
with ai ∈ K and |ai| ≤

Mri, for some M and for all i. Then A(x) ∈ PK and the radius of convergence of

A(x) is at least (rp−1/p−1)−1.

Proof. Let

Ak(x) =
k∑

n=0

an

(
x

n

)
.

Then Ak(x) is a polynomial of degree k, so it can be also be written as Ak(x) =∑∞
n=0 ak,nx

n, with ak,n = 0 for all n > k. By proposition 2.2.4 we have

∥∥∥an(x
n

)∥∥∥ < |an|pp(n−Sn)/(p−1) < Mrnp(n−Sn)/(p−1) < M(rp1/p−1)n

and so Ak(x) is in PK .

Also, {Ak(x)}∞k=1 is Cauchy because

‖ Al − Ak ‖ ≤ maxk<n≤l

(∥∥∥an(x
n

)∥∥∥) < M(rp1/p−1)k+1,

and this converges to 0 as k, l→∞. By the choice of Ak(x), it is clear that {Ak(x)}
converges to A(x), and the limit is in PK by the completeness of PK .

Now, we wish to prove the last assertion. Write A(x) as A(x) :=
∑∞

n=0 a0,nx
n.

Then, ∵ {Ak(x)} =
∑k

n=0 an
(
x
n

)
→
∑∞

n=0 a0,nx
n = A(x), ak,n → a0,n as k → ∞ for

each n. Let n < k, then

|ak,n|p = |ak,n − an−1,n|p ≤ ‖ Ak − An−1 ‖ < M(rp1/p−1)n

and by k → ∞ we obtain |a0,n|p < M(rp1/p−1)n, hence if |x|p < (rp1/p−1)−1 then

|a0,nx
n|p → 0 as n→∞.
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Theorem 2.2.6. Let {bi}∞i=1 ⊂ K and define cn :=
∑n

i=0

(
n
i

)
(−1)n−ibi. If there exists

M > 0 such that |cn|p < Mrn for some r with 0 < r < p−1/p−1, then A(x) :=∑∞
n=0 cn

(
x
n

)
is in PK and A(k) = bk for all k = 1, 2, 3, . . . .

Let q be an integer such that:

q :=

{
p if p 6= 2

4 if p = 2.

We will fix this notation for the rest of this section. Now, let a be in Z×p and

write a =
∑∞

i=0 αip
i with 0 ≤ αi ≤ p− 1 and α0 6= 0. First, suppose p 6= 2. Since

α0 is not divisible by p, we have αp−1
0 ≡ 1 (mod p). Therefore we can identify α0

with a primitive (p− 1) -th root of unity. Let ω(a) be such a (p− 1)-th root of unity.

(This is the Teichmüller representative of α0.) If p = 2, take an element such that

a = 1 + α12 +
∑∞

i=2 αi2
i with αi ∈ {0, 1}, and similarly identify 1 + α12 with {±1}.

Also, let 〈a〉 := a/ω(a). In this way, any p-adic unit a can be written as ω(a)〈a〉.
We also note that 〈a〉 is an element in 1 + qZp. Let us extend ω to Zp, by setting

ω(a) = 0 for all a 6∈ Z×p . Then, clearly this is a Dirichlet character of conductor q.

For any Dirichlet character χ, of conductor f , we define χn := χ · ω−n where ω

is a Dirichlet character defined as above and n is any positive integer. Let fn be

the conductor χn. Then, fn must be a factor of fq. But f also must be a factor of

fnq since χ = χn · ωn, and so fn differs from f by only a power of p. Therefore, if

a is a rational integer such that (a, p) = 1 then (a, f) = (a, fn), and it follows that

χn(a) = χ(a)ω(a)−n for any such a.

Let K = Qp(χ) and define

bk := (1− χk(p)pk−1)Bk,χk
, ck :=

k∑
i=1

(
k

i

)
(−1)k−ibi

Also let Aχ(x) :=
∑∞

n=0 cn
(
x
n

)
. We define p-adic Dirichlet L-function as

Lp(s, χ) =
1

s− 1
Aχ(1− s).

We claim that this converges in {s ∈ Q̄p : 0 < |s−1|p < (p1/(p−1))−1|q|p}. However,

it requires a bit more work to prove that this function is even well-defined.

Proposition 2.2.7. In Qp(χ), Bk,χ = limn→∞
1
pnf

Sk,χ(pnf) , where Sk,χ(n) =
∑n

a=1 χ(a)ak
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Proof. Refer to Lemma 1, §2, [Iw].

Proposition 2.2.8. ck ≡ 0 (mod qk−2f−1) for all k = 1, 2, 3, . . . .

Proof. Refer to Lemma 3, §4, [Iw].

This proposition say |ck|p ≤ |q−2f−1|p|q|kp. Thus by taking r = |q|p(< p−1/(p−1))

and M = |q−2f−1|p in Theorem 2.1, one can show that Aχ is well-defined in PQp(χ)

and that it converges at s for {s ∈ Q̄p : 0 < |s− 1|p < (p1/(p−1)|q|p)−1}.

Proposition 2.2.9. For a Dirichlet character χ and any positive integer k,

Lp(1− k, χ) = (1− χk(p)pk−1)
(
− Bk,χk

k

)
= (1− χk(p)pk−1)L(1− k, χk)

Proof. This follows directly from the definition and Theorem 2.2.2, because,

Lp(1− k, χ) = −1

k
Aχ(k) = −1

k
(1− χk(p)pk−1)Bk,χk

= (1− χk(p)pk−1)L(1− k, χk).

2.3 Power series and p-adic measures

The following discussion is taken from Katz [Ka].

Theorem 2.3.1 (Mahler). Let R be p-adically complete and separated. Then any

f ∈ Contin(Zp, R) can be uniquely written

f(x) =
∑
n≥0

an

(
x

n

)
, an ∈ R, an → 0. (2.3.2)

The an may be recovered as the higher difference of f :

an = (∆nf)(0) =
n∑
i=0

(−1)n−i
(
n

i

)
f(i).

Conversely, any series ∑
n≥0

an

(
x

n

)
, an ∈ R, an → 0



16 CHAPTER 2. P -ADIC EXTENSION OF ζ(S) AND L(S, χ)

converges to an element of Contin(Zp, R).

Proposition 2.3.3. An R-valued measure µ on Zp is uniquely determined by the

sequence bn(µ) =
∫
Zp

(
x
n

)
dµ of elements of R, and any sequence {bn} defines a R-valued

measure µ by the formula∫
Zp

f(x)dµ =
∑
n≥0

anbn =
∑
n≥0

bn(∆nf)(0).

Proposition 2.3.4. Suppose that p is not a zero divisor in R. Then an R-valued

measure µ on Zp is uniquely determined by the sequence mn(µ) ∈ R of its moments

mn(µ) =

∫
Zp

xndµ.

A sequence {mn} of elements of R arises as the moments of an R-valued measure µ

if and only if the quantities

bn :=
n∑
i=0

ci,nmi,

(a priori in R[1/p]), where ci,n is defined as(
x

n

)
=
x(x− 1) . . . (x− n+!)

n!
=

n∑
i=0

ci,nx
i (2.3.5)

all lie in R, in which case we have∫
Zp

(
x

n

)
dµ = bn

Let us denote by A the subring of Qp(T ) consisting of all ratios P (T )/Q(T ) with

P,Q ∈ Zp[T ] and Q(1) ∈ Z×p . One can show that A is the localization of the ring

Zp[T ] at the maximal ideal (p, T − 1).

Theorem 2.3.6. Given any element F (T ) ∈ A, there is a Zp-valued measure µF on

Zp whose moments are given by the formula∫
Zp

xkdµF = (T
d

dT
)k(F )|T=1 (2.3.7)
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Proof. Following Proposition 2.3.4, we must show that

n∑
i=0

ci,n(T
d

dT
)i(F )|T=1 ∈ Zp for n = 0, 1, 2, . . .

or equivalently that (by using eq. 2.3.5)(
T d
dT

n

)
(F )|T=1 ∈ Zp for n = 0, 1, 2, . . .

In fact we will prove a much stronger statement ∵ any element of the ring A is of

the form P (T )/Q(T ) with P,Q ∈ Zp[T ] and Q(1) ∈ Z×p , it is enough to prove that

the operators
(
T d

dT
n

)
act stably on the ring A, i.e.,(

T d
dT

n

)
(F ) ∈ A

First Notice that,(
T d
dT

n

)
(T a) =

n∑
i=0

ci,n(T
d

dT
)i(T a) = (

n∑
i=0

ci,na
i)T a =

(
a

n

)
T a

Hence the operators act stably on Zp[T ].

Now one should notice that
(
T d

dT
n

)
= T n

( d
dT

)n

n!
(one could easily prove it using

induction, by observing that for n = 1 the statement holds trivially and if we assume

it to be true for n− 1, we could prove it for n by using the identity
(

a
n+1

)
=
(
a
n

)
a−n
n+1

)

Then we see that Leibniz’ formula is satisfied.

(
T d
dT

n

)
(F ·G) =

T n

n!
(
d

dT
)n(F ·G)

=
T n

n!

n∑
i=0

F (i)G(n−i) = T n
∑
i+j=n

( d
dT

)i)(F )

i!
·

( d
dT

)j)(F )

j!

=
∑
i+j=n

(
T d
dT

i

)
(F ) ·

(
T d
dT

j

)
(G).

Let Q ∈ Zp[T ] such that Q(1) ∈ Z×p . Applying Leibniz’s formula to the product

Q · 1
Q

= 1, we find inductively that
(
T d

dT
n

)
( 1
Q

) ∈ A. Applying the same formula to the

product P · 1
Q

then shows that A is stable by the action of
(
T d

dT
n

)
.
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2.3.1 Examples of µF and relations to Iwasawa’s approach

Now we will use Theorem 2.3.6 to find the measure µF for some specific functions.

If i > n , then we our convention is
(
n
i

)
= 0

1. Let F (T ) = T n. In that case

bi(µ) =
i∑

k=0

ci,kmk =
i∑

k=0

ci,k(T
d

dT
)k(F )|T=1 =

(
T d
dT

i

)
T n|T=1 =

(
n

i

)
T n|T=1 =

(
n

i

)

Then by Mahler’s Theorem,∫
fdµF =

∑
i≥0

aibi =
∑
i≥0

ai

(
n

i

)
= f(n)

2. Let F (T ) = (T − 1)n. In that case

bk(µ) =

(
T d
dT

k

)
(T−1)n|T=1 =

(
T d
dT

k

)
(
n∑
i=0

(
n

i

)
T i(−1)n−i)|T=1 =

n∑
i=0

(
n

i

)(
i

k

)
(−1)n−i

Then by Mahler’s Theorem,∫
fdµF =

∑
k≥0

akbk

=
∑
k≥0

ak

n∑
i=0

(
n

i

)(
i

k

)
(−1)n−i

=
n∑
i=0

(
n

i

)
(−1)n−i(

∑
k≥0

ak

(
i

k

)
) =

n∑
i=0

(
n

i

)
(−1)n−if(i) = (∆nf)(0) = an.

So we obtain the following result,

Proposition 2.3.8. One can identify Zp valued measures on Zp with the elements of

Zp[[T − 1]], the measure µ corresponding to the series
∑
bn(T − 1)n is given by,∫

Zp

fdµF =
∑
n≥0

anbn (2.3.9)

where f(x) =
∑
n≥0

an
(
x
n

)
.
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The measures µF we considered above correspond exactly to the rational func-

tions in Zp[[T − 1]]. The multiplication of power series corresponds to convolution of

measures on tha additive group Zp.∫
f(x)d(µ ∗ ν) :=

∫ ∫
f(x+ t)dµ(x)dν(t).
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Chapter 3

L-functions on GL(2)

3.1 Main results of Hecke theory of Modular forms

Let Γ = SL(2,Z) be the full modular group, defined by

SL(2,Z) =
{( a b

c d

)
: a, b, c, d ∈ Z, ad− bc = 1

}
.

One can show that the modular group is generated by the following two matrices

T =

(
1 1

0 1

)
and S =

(
0 −1

1 0

)
.

The upper half plane is

H = {z ∈ C : =(z) > 0},

where =(z) is the imaginary part of z.

Then there is an action of Γ on H via,

Γ×H → H

(γ, z) 7→ γ(z) =
az + b

cz + d
,

where γ =

(
a b

c d

)
∈ Γ. Also define j(γ, z) = cz + d in this case.

21
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Definition 3.1.1. For any integer k, let

(f |kγ)(z) = (detγ)
k
2 j(γ, z)−kf(γ(z)),

where γ =

(
a b

c d

)
∈ Γ .

Definition 3.1.2. Let k ∈ Z. A function f : H → C is called modular form of weight

k if

1. f is holomorphic on H;

2. f |kγ = f ∀γ ∈ Γ;

3. f is holomorphic at ∞.

We will quickly explain the third condition about holomorphy of f at ∞. Since

Γ contains the matrix T =

(
1 1

0 1

)
that acts on H via the mapping z 7→ z + 1,

any function f which has property (2) must satisfy the equation f(z + 1) = f(z) for

any z ∈ H. Now set D = {q ∈ C : |q| < 1} and D′ = D\{0}. Then we have a

holomorphic map

H → D′

z 7→ e2πiz = q

and the map

g : D′ → C

q 7→ f
( log q

2πi

)
is well defined and f(z) = g(e2πiz). Now if f is holomorphic on H, then g is holomor-

phic on D′ and so g has a Laurent expansion g(q) =
∑
n∈Z

anq
n for q ∈ D′.

The relation |q| = e−2π=(z) tells us that q → 0 as =(z) → ∞. We say that f is

holomorphic at ∞ if g extends holomorphically to q = 0, i.e., if its Laurent series

sums over n ∈ N. This means that f has a Fourier expansion

f(z) =
∞∑
n=0

anq
n

with an ∈ C for all n.
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The set of all modular forms of weight k is denoted with Mk(Γ). If f ∈Mk(Γ) for

some k, we set f(∞) = a0 if
∞∑
n=0

anq
n is the Fourier expansion of f . We say that f is

a cusp form if a0 = 0. The set of cusp forms of weight k will be denoted with Sk(Γ).

Let

Γ0(N) =
{( a b

c d

)
∈ Γ : c ≡ 0 mod N

}
.

Let χ be a Dirichlet character mod N. We define a character χ of Γ0(N) by

χ(γ) = χ(d), γ =

(
a b

c d

)
∈ Γ0(N). (3.1.3)

A modular form of type (k, χ) with respect to Γ0(N) is a function f : H → C such

that

1. f is holomorphic on H;

2. f |kβ = χ(β)f ∀β ∈ Γ0(N);

3. f |kγ is holomorphic at ∞ for all γ ∈ Γ.

If a0 = 0 in the Fourier expansion of f |kγ for all γ ∈ Γ, we say that f is a cusp form

of type (k, χ) with respect to Γ0(N). The set of modular forms and cusp forms of type

(k, χ) with respect to Γ0(N) will be denoted by Mk(N,χ) and Sk(N,χ), respectively.

Now suppose f ∈ Sk(N,χ) has the following fourier expansion at ∞

f(z) =
∞∑
n=1

ane
2πinz

Then we put

 L(s; f) =
∞∑
n=1

ann
−s.

Since an = O(n
k
2 ) (see Corollary 2.1.6, §2.1, [Mi]), L(s; f) converges absolutely

and uniformly on any compact subset of Re(s) > 1 + k
2
, so that it is holomorphic on

Re(s) > 1 + k
2
. We call L(s; f) the Dirichlet series associated with f . For N > 0, we

put

ΛN(s; f) = (2π/
√
N)−sΓ (s)L(s; f), ωN =

(
0 −1

N 0

)
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Proposition 3.1.4. For any element f(z) of Sk(N,χ), ΛN(s; f) is holomorphic on

the whole s-plane and satisfies the functional equation

ΛN(s; f) = ikΛN(k − s; f |kωN).

Proof. See Corollary 4.3.7, §4.3, [Mi].

For f ∈ Sk(N,χ) as above and a Dirichlet character ψ, we put

fψ(z) =
∞∑
n=0

ψ(n)ane
2πinz,

and

L(s; f, ψ) =
∞∑
n=1

ψ(n)ann
−s.

Let m = mψ be the conductor of ψ, and put

ΛN(s; f, ψ) = (2π/m
√
N)−sΓ (s)L(s; f, ψ)

By definition,

L(s; fψ) = L(s; f, ψ)

ΛNm2(s; fψ) = ΛN(s; f, ψ)

Theorem 3.1.5. Let f(z) be an element of Sk(N,χ), and ψ a primitive Dirichlet

character of conductor m. If (m, N) = 1, then ΛN(s; f, ψ) can be holomorphically

continued to the whole s-plane, is bounded on any vertical strip, and satisfies the

functional equation:

ΛN(s; f, ψ) = ikCψΛN(k − s; f |kωN , ψ)

for a constant Cψ.

Proof. See Theorem 4.3.12, §4.3, [Mi].

Let us recall some facts about Hecke operators. For each prime p we consider the

double coset

Γ0(N)

(
1

p

)
Γ0(N) =

⋃
j

Γ0(N)γj =
⋃

(a,N)=1
ad=p,a>0

d−1⋃
b=0

Γ0(N)σa

(
a b

0 d

)
,
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where σa =

(
a′ b′

d′

)
in SL(2,Z) is chosen congruent to

(
a

a−1

)
modulo N.

Then for f ∈ Sk(N,χ), we define

T (p)f = pk/2−1
∑
j

f |kγj

= pk−1
∑
a>0
ad=p

d−1∑
b=0

χ(a)f(
az + b

d
)d−k.

Suppose f(z) ∈ Sk(N,χ) and its fourier expansion (at ∞) is f(z) =
∞∑
n=1

a(n)e2πinz,

and if g(z) = (T (p)f)(z) =
∞∑
n=1

a′(n)e2πinz, then we have

a′(n) =
∑
d|(n,p)

χ(d)dk−1a
(np
d2

)
= a(np) + χ(p)pk−1a

(n
p

)
. (3.1.6)

This means that if f(z) is a simultaneous eigenfunction for all T (p), (p,N) = 1 i.e.,

there is a λp such that

T (p)f = λpf, ∀(p,N) = 1.

Then,

a(np) + χ(p)pk−1a
(n
p

)
= λpa(n) ∀(p,N) = 1

In particular if a(1) = 1, then a(p) = λp and we have a(pq) = a(p)a(q) for all primes

p and q.

Theorem 3.1.7 (Euler Product). Under the hypothesis of Theorem 3.1.5, L(s; f, ψ)

has an Euler product expansion if and only if f is an eigenfunction of T(p) for all

prime p; more precisely T (p)(f) = cpf for all p if and only if

L(s; f, ψ) =
∞∑
n=1

ψ(n)ann
−s =

∏
p

(1− cpψ(p)p−s + ψ(p)2χ(p)pk−1−2s).

Proof. See Theorem 1.9, §1, [Ge].
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3.2 Automorphic forms as functions on SL(2,R)

Let G = SL(2,R). In G consider the following subgroups.

{
A =

(
a 0

0 a−1

)
: a > 0

}
,
{
N =

(
1 u

0 1

)}
and {

K =

(
cosθ −sinθ
sinθ cosθ

)
= r(θ), 0 < θ < 2π

}

The group B = NA acts transitively on H as

(
y1/2 xy−1/2

0 y−1/2

)
i = x+ iy. Thus the

upper half plane is identified with G/K, the stability subgroup of G at i being K.

Since G = BK = NAK, each g ∈ G may be expressed as

g =

(
a b

c d

)
=

(
y1/2 xy−1/2

0 y−1/2

)
.

(
cosθ −sinθ
sinθ cosθ

)
.

3.2.1 Maps from Sk(Γ) to G

Assume k is even. Let f ∈ Sk(Γ). Define φf : G→ C as,

φf (g) = f(g(i))j(g, i)−k.

Now we know that for any z = x + iy ∈ H,∃g ∈ G such that g(i) = z and

j(g, i) 6= 0. Hence φf ≡ 0⇐⇒ f ≡ 0 .

Then φf has the following properties.

1. φf (γg) = φ(g) ∀γ ∈ Γ.

2. φf (gr(θ)) = e−ikθφ(g) ∀r(θ) ∈ K

3. φf (g) is bounded in particular
∫

Γ\G
|φ(g)|2dg <∞, hence φ ∈ L2(Γ\G).

4. φf (g) is cuspidal i.e. for any g ∈ G and σ ∈ SL(2,Z)

1∫
0

φ
(
σ

(
1 xh

0 1

)
g
)
dx = 0.
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Proof.

φf (γg) = f(γ(g(i)))j(γg, i)−k

= f(γ(g(i)))j(γ, g(i))−kj(g, i)−k

= f(g(i)).j(g, i)−k(∵ f is modular w.r.t Γ)

= φf (g).

So, φf can be regarded as a continuous function on Γ\G.

φf (gr(θ)) = f((gr(θ))i).j(gr(θ), i)−k

= f(g(i))j(g, i)−kj(r(θ), i)−k

= φf (g).e−ikθ = e−ikθφf (g).

Since φf (γg) = φf (g) and that f is a cusp form, it follows that (Imz)k/2|f(z)| is

bounded. ∫
G

φf (g) =
1

2π

2π∫
0

∞∫
0

∞∫
−∞

φ(x, y, θ)
dxdy

y2
dθ (3.2.1)

Consequently, ∫
Γ\G

|φf (g)|2dg =

∫∫
F

|f(z)|2yk dxdy
y2

. (3.2.2)

Where F is the fundamental domain for Γ. The right hand side of 3.2.2 is the

norm of f(z) w.r.t the Peterson inner product.

1∫
0

φf

(
σ

(
1 xh

0 1

)
g
)
dx =

1∫
0

f
(
σ

(
1 xh

0 1

)
g(i)

)
.j
(
σ

(
1 xh

0 1

)
g, i
)−k

dx

=

1∫
0

f(σ(z + hx))j(z + hx)−kdx

=

1∫
0

(f |kσ)(hx+ z)dx

Since this last expression is just the zeroth Fourier coefficient of f at the cusp
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s = σ(∞), the result follows from the fact that f is a cusp form in the classical sense.

Let ∆ = −y2( ∂2

∂x2
+ ∂2

∂y2
)−y ∂2

∂x∂θ
. Then, ∵ ∆◦R(g) = R(g)◦∆, ∆ acts via a scalar

on a G-invariant irreducible subspace of L2(Γ\G) . Now let A2
k(Γ) denote the space

of functions φ on G satisfying the following conditions

1. φ(γg) = φ(g) ∀γ ∈ Γ,

2. φ(gr(θ)) = e−ikθφ(g) , r(θ) ∈ K,

3. ∆φ = −k
2
(k

2
− 1)φ,

4. φ is bounded and cuspidal.

Note that A2
k(Γ) ⊂ L2(Γ\G) by (4) (∵ φ is bounded on G, by (1) φ is bounded

on Γ\G).

Theorem 3.2.3. The formula

φf (g) = f(g(i))j(g, i)−k

describes an isomorphism between Sk(Γ) and A2
k(Γ).

Proof. See Proposition 2.1, §2, [Ge].

3.3 Representations of GL(2) over a local field

Let F be a non-archimedean Local field, O its ring of integers, p its unique maximal

ideal and $ a generator of p. Let q be the cardinality of the residue field O/p. We

will denote v : F → Z ∪ {∞} the valuation, defined by v(0) = ∞ and v($ru) = r if

r ∈ O×. We will denote by
∫
F

dx the additive Haar measure on F normalized so the

volume of O is one, and
∫
F×

d×x the multiplicative Haar measure on F× normalized

so that the volume of O× is one. Thus d×x = (1− q−1)−1|x|−1dx.

We will be interested in those representations of GL(2, F ) which are called smooth

and admissible representations. A representation (π, V ) is smooth if for any v ∈ V ,

the stabilizer of v in G is an open subgroup of G. A smooth representation is called

admissible if for any open subgroup U of G, the space V U = {v ∈ V |π(g)v = v ∀g ∈
U} is finite-dimensional.
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Theorem 3.3.1 (Local multiplicity one theorem). Let (π, V ) be an irreducible ad-

missible representation of GL(2, F ), where F is a non-archimedean local field and

let ψ be a non-trivial additive character of F . Then the space of linear functionals

Λ : V → C satisfying Λ
(
π

(
1 x

1

)
v
)

= ψ(x)Λ(v) (for all v ∈ V and x ∈ F ) is

atmost one-dimensional.

Now one can state this theorem in a slightly different manner using the notion of

Whittaker Model.

Theorem 3.3.2 (Local multiplicity one,Equivalent form). Let (π, V ) be an irreducible

admissible representation of GL(2, F ). Let ψ be a non-trivial additive character of

F . Then there exists at most one space W of functions on GL(2, F ) such that if

w ∈ W then w
(( 1 x

1

)
g
)

= ψ(x)w(g)(for all g ∈ GL(2, F ) and x ∈ F ) and such

that W is closed under right translations by elements of GL(2, F ) and the resulting

representation of GL(2, F ) is isomorphic to π.

The space of functions W is called a Whittaker Model for the representation

(π, V ). One could use Frobenius reciprocity

HomN(π, ψ) = HomG(π, IndGN(ψ)),

where N =
{( 1 x

1

)
| x ∈ F

}
to conclude that specifying a Whittaker model is

equivalent to specifying a Whittaker functional.

There is an important notion of a Jacquet module for an irreducible representation

of GL(2, F ), which is of immense help when trying to analyse the irreducibility of

these representations.

Let B(F ) denote the standard Borel subgroup of GL(2, F ), i.e., subgroup con-

sisting of upper triangular matrices. Let (π, V ) be a smooth representation of the

Borel subgroup B(F ) of GL(2, F ). Let VN be the vector subspace of V generated

by elements of the form π(u)v − v where u ∈ N(F ), v ∈ V . One can show that the

quotient V/VN (denoted by J(V )) is stable under the action of T (F ) (the subgroup of

GL(2, F ) consisting of diagonal matrices), and consequently is a T (F )-module; it is

called the Jacquet Module of the representation (π, V ) and is denoted by (πN , J(V )).
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Let χ1 and χ2 be two quasicharacters of F×. Then we define a quasicharacter of

B(F ) as follows

χ

(
a b

d

)
= χ1(a)χ2(d) a, d ∈ F×. (3.3.3)

Let B(χ1, χ2) = Ind
GL(2,F )
B(F ) be the representation of GL(2, F ) obtained by induc-

ing the one dimensional representation χ of B(F ). Then B(χ1, χ2) is an irreducible

representation except in the following two cases.

1. If χ1χ
−1
2 (y) = y−1 for all y ∈ F×, then B(χ1, χ2) has a one dimensional invariant

subspace and the quotient representation is irreducible.

2. If χ1χ
−1
2 (y) = y for all y ∈ F×, then B(χ1, χ2) has an irreducible subspace of

codimension one.

When B(χ1, χ2) is irreducible it is called a Principal Series Representation. In

the 2nd case the irreducible subspace of codimension one is called the Steinberg or

Special representation.

Theorem 3.3.4. Let (π, V ) be an irreducible admissible representation of GL(2, F ).

Then the dimension of the Jacquet module of V is atmost two dimensional. If it is

non-zero, then π is isomorphic to a subrepresentation of B(χ1, χ2).

Proof. See Proposition 4.7.1, §4.7, [Bu].

Now for the rest of the section we will be talking about spherical representation

because they are some of the most important ingredients of an automorphic repre-

sentation.

We choose a Haar measure on GL(2, F ) such that the measure of its maximal

compact subgroup K = GL(2,O) is one. An irreducible admissible representation

(π, V ) of GL(2, F ) is called spherical (or unramified) if it contains a K-fixed vector.

A nonzero element of V K is called a spherical vector.

Let H be the space of locally constant and compactly supported complex-valued

functions on GL(2, F ). Define HK = {f ∈ H : f(k1gk2) = f(g) ∀k1, k2 ∈ K}. Since

GL(2, F ) is unimodular one can give H the structure of an algebra (without unit)

under convolution:
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(f1 ∗ f2)(g) =

∫
G

f1(gh−1)f2(h)dh

Then HK is clearly closed under this convolution and hence forms a subring of H,

but it does have identity element εK , where

εK(g) :=

{
vol(K)−1 if g ∈ K;

0 otherwise.

This HK is called the spherical Hecke algebra.

Now given any admissible representation (π, V ) of GL(2,F), if f ∈ H, we define

an endomorphism π(f) of V by

π(f)v =

∫
GL(2,F )

f(g)π(g)v dg. (3.3.5)

Note that this integral makes sense because f is both locally constant as well as

compactly supported (so that it will actually turn out to be a finite sum). Observe

that π(f1 ∗ f2) = π(f1) ◦ π(f2). So, π is a representation of the ring H. Hence V is a

H module, in particular one obtains that V K is a HK module.

Proposition 3.3.6. Let (π, V ) be a smooth represenation of GL(2, F ). Assume that

V is nonzero. Then the following conditions are equivalent.

1. π is irreducible

2. V is simple as a H-module.

3. V K0 is either zero or simple as a HK0-module for all open subgroups K0 of G.

Proof. Refer to Proposition 4.2.3, §4.2, [Bu].

Theorem 3.3.7. A complete set of double coset representatives for K\GL(2, F )/K

consists of diagonal matrices (
$n1

$n2

)
where n1 ≥ n2 are integers.

Proof. Refer to Proposition 4.6.2, §4.6, [Bu].
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Proposition 3.3.8. The spherical Hecke algebra HK is commutative.

Proof. Refer to Theorem 4.6.1, §4.6, [Bu].

Theorem 3.3.9. Let (π, V ) be an irreducible admissible represenation of GL(2, F ).

Then V K is at most one-dimensional.

Proof. By Proposition 3.3.6, V K(if non-zero) is a finite-dimensional simple HK mod-

ule. But, since HK is commutative by Proposition 3.3.8, it follows that V K can be

atmost one-dimensional.

If k is a non-negative integer, let T (pk) ∈ HK be the charactersitic function of the

set of all g ∈ Mat2(O) such that the ideal generated by det(g) in O is pk. Also let,

R(p) ∈ HK be the charactersitic function of

K

(
$

$

)
K = K

(
$

$

)
.

Proposition 3.3.10. K

(
$

1

)
K =

(
1

$

)
K ∪

⋃
b mod p

(
$ b

1

)
K .

Proof. It follows from easy matrix calculations.

Proposition 3.3.11. If k ≥ 1 we have

T (p)T (pk) = T (pk+1) + qR(p)T (pk−1)

Proof. Refer to Proposition 4.6.4, §4.6, [Bu].

Let χ1 and χ2 be two unramified quasicharacters of F× (which means χi|O× = 1

for i = 1, 2) and such that χ1χ
−1
2 6= |x|±1 and let (π, V ) = B(χ1, χ2). Then (π, V ) is

an irreducible represenation of GL(2, F ). We will show that it is also spherical.

Define χ : B(F )→ C×,

χ

(
a b

d

)
= χ1(a)χ2(d).
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Then

V = {f : G→ C |f(bg) = δ1/2χ(b)f(g)}

for b ∈ B(F ) and g ∈ GL(2, F ), where δ is the modular quasicharacter of B(F )

defined by

δ

(
a b

d

)
= |a||d|−1. (3.3.12)

Then for any g̃ ∈ GL(2, F ) and f ∈ V , (π(g̃)f)(g) = f(gg̃). Now let φK ∈ V

defined by, φK(bk) = δ1/2χ(b). First we have to checck that φK is well-defined. So let

g = bk = b̃k̃, then b = b̃(k̃k−1) and hence k̃k−1 ∈ K ∩ B(F ) and since χ1 and χ2 are

unramified, we have δ1/2χ(k̃k−1) = 1 and we have φK(bk) = φ(b̃k̃). For any k̃ ∈ K,

we have

(π(k̃)φK)(bk) = φK(bkk̃) = δ1/2χ(b) = φK(bk).

Hence φK is a K-fixed vector in V. In such a case, B(χ1, χ2) is called a spherical

principal series represenation.

Proposition 3.3.13. Let φK be the normalized spherical vector in B(µ1, µ2), where

µ1 and µ2 are unramified quasicharacters of F×. Let β1 = µ1($) and β2 = µ2($).

Then π(T (p))φK = λφK and π(R(p))φK = ρφK, where

λ = q1/2(β1 + β2), ρ = β1β2.

Proof. Since, V K is a HK module, and φK ∈ V K , hence π(T (p))φK ∈ V K and is

a multiple of φK (since V K is one dimesnional), so therefore equals λφK for some

λ ∈ C; similarly π(R(p))φK = ρφk for some ρ ∈ C, and because R(p) has an inverse

in HK , we know that ρ 6= 0.

λ = (π(T (p))φK)(1) =

∫
K

 $

1

K
φK(g)dg

=
∑

γ∈K

 $

1

K/K

∫
K

φ(γk)dk =
∑

γ∈K

 $

1

K/K
φK(γ).
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Using the representatives from Proposition 3.3.10 this equals

(δ1/2µ)

(
1

$

)
+ q(δ1/2µ)

(
$ b

1

)
= q1/2(β1 + β2),

where βi = µi($). Similarly, ρ = β1β2.

Let us end this section by finding a formula for the spherical Whittaker function.

Let (π, V ) = B(χ1, χ2), where χ1 and χ2 are unramified. This representation is

spherical as well as admits a Whittaker model. The spherical Whittaker function is

just the spherical vector in the Whittaker model. More explicitly let ψ be a non-

trivial character of F (such that the conductor of ψ is O). Let Λ be the Whittaker

functional for (π, V ) given by

Λ(f) =

∫
F

φK

(
1 x

1

)
ψ(−x)dx,

where φK is the unique spherical vector defined earlier. Then W0(g) = Λ(π(g)φK).

Let wm = W0

(
$m

1

)
and let w′m = (π(T (p))W0)

(
$m

1

)
. If x ∈ O, then

(
1 x

1

)
∈ K,

and

wm = W0

(( $m

1

)(
1 x

1

))
= W0

(( 1 $mx

1

)(
$m

1

))
= ψ($mx)wm.

So, if m < 0 then (because we are chosing the conductor of ψ to be O), we can choose

x ∈ O such that ψ($mx) 6= 1 which gives us wm = 0 if m < 0. If m ≥ 0, then we

proceed as follows to obtain an expression for wm:

w′m =

∫
K

 $

1

K
W0

(( $m

1

)
g
)
dg =

∑
γ∈K

 $

1

K/K

∫
K

W0

(( $m

1

)
γ
)
dk.
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Hence

w′m =
∑

γ∈K

 $

1

K/K
W0

(( $m

1

)
γ
)

= W0

(( $m

1

)(
1

$

)
+

∑
b mod p

W0

(( $m

1

)(
$ b

1

))
= W0

(
$m

$

)
+ qwm+1.

Furthermore,

W0

(
$m

$

)
=

∫
F

φk

(( 1 x

1

)(
$m

$

))
ψ(−x)dx

=

∫
F

φk

(( 1 x

1

)(
$m−1

1

)(
$

$

))
ψ(−x)dx

=

∫
F

φk

(( 1 x

1

)(
$m−1

1

))
φk

(
$

$

)
ψ(−x)dx

= α1α2wm−1, (αi = χi($)).

Hence, w′m = qwm+1 + α1α2wm−1, but since W0 is an eigenfunction for π(T (p)) we

get q1/2(α1 + α2)wm = qwm+1 + α1α2wm−1, solving which we get

wm = q−m/2
α1

m+1 − α2
m+1

α1 − α2

w0. (3.3.14)

Definition 3.3.15. Let π denote an irreducible admissible represenation of GL(2, F )

and W(π) be its Whittaker space. Suppose χ is an unitary character of F×, g ∈
GL(2, F ), W ∈ W(π) and s ∈ C. Then the local zeta function attached to (g, χ,W )

is defined by the formula

ζ(g, χ,W, s) =

∫
F×

W
(( a

1

)
g
)
χ(a)|a|s−1/2d×a. (3.3.16)
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Theorem 3.3.17. 1. The integral defining ζ(g, χ,W, s) converges for s with suffi-

ciently large real part.

2. There exists an Euler factor L(s, χ⊗ π) with the property that

ζ(g, χ,W, s)

L(s, χ⊗ π)

is an entire function of s for every g, χ, and W, and such that

ζ(1, χ,W0, s) = L(s, χ⊗ π) (3.3.18)

for an appropriate choice of W0 ∈ W (π)

The function ζ(g, χ,W, s) possesses an analytic continuation to the whole s-plane and

satisfies the functional equation

ζ(g, χ,W, s)

L(s, χ⊗ π)
ε(s, χ, ψ, π) =

ζ(w1g, ω
−1χ−1,W, 1− s)

L(s, χ−1 ⊗ π̂)
(3.3.19)

where ψ is the fixed non-trivial additive character of F , ω is the central character of

π, ε(s, χ, ψ, π) is independent of g and W and w1 =

(
0 1

−1 0

)

Proof. Refer to Theorem 6.12, §6, [Ge].

Using the above theorem, let us calculate the expression for L(s, π), when π is a

spherical principal series. Suppose that the conductor of the additive character ψ is

O and W0 is the spherical Whittaker function normalized so that W0(1) = 1. There

exists an explicit formula for wm in terms of α1 and α2. Let m = ord(a), and let q

be the cardinality of the residue field O/($). Then

W0

(
a

1

)
:=

{
q−m/2

αm+1
1 −αm+1

2

α1−α2
, if m ≥ 0 ,

0 , otherwise.
(3.3.20)

Thus we may break the integral into a sum over m = 0 to ∞ to obtain

∞∑
m=0

q−m/2
αm+1

1 − αm+1
2

α1 − α2

qm/2−ms = (α1 − α2)−1
(
α1

∞∑
m=0

(α1q
−s)m − α2

∞∑
m=0

(α2q
−s)m

)
.
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Now summing the geometric series, this equals

(α1 − α2)−1(α1(1− α1q
−s)−1 − α2(1− α2q

−s)−1) = (α1 − α2)−1 (α1 − α2)

(1− α1q−s)(1− α2q−s)

= (1− α1q
−s)−1(1− α2q

−s)−1

Hence, if π = B(χ1, χ2) with χ1, χ2 unramified quasicharacters, then

L(s, π) = (1− χ1($)q−s)−1(1− χ2($)q−s)−1 (3.3.21)

3.4 Jacquet-Langlands Theory

We recall the definition of restricted direct product. Let Σ be some indexing set and

for each ν in Σ, let there be a group Gν , and for almost all ν ∈ Σ, let there be given

a subgroup Kν of Gν . Then the restricted direct product of {Gν}ν of {Kν}ν is

G =
{

(aν)ν∈Σ ∈
∏

Gν

∣∣∣ aν ∈ Kν for almost all ν ∈ Σ
}
.

Let F be a number field and for each ν in Σ, the set of places of F, let Fν be the

completion of F at ν. If ν is non-archimedean, let Oν be the ring of integers in Fν .

The adele ring A of F is the restricted direct product of Fν with respect to the Oν .
The ideles A× are the restricted direct product of the F×ν with respect to the O×ν .

Let Af be the ring of “finite adeles”, i.e., those adeles (aν) with aν = 1 at every

archimedean place ν. Let F∞ =
∏

ν∈P∞ Fν , where P∞ is the finite set of archimedean

places of F. We embed F∞ in A by mapping (aν)ν∈P∞ to the adele that matches aν

at every infinite place and that is 1 at every finite place. Then A = F∞Af and also

GL(2,A) = GL(2, F∞)GL(2,Af ).

We fix a positive integer N. Let K0(N) be the following compact subgroup of

GL(2,Af ); K0(N) =
∏

ν /∈P∞ K0(N)ν , where K0(N)ν = GL(2,Oν) if pν - N (pν is the

rational prime corresponding to then non-archimedean place ν), while if pν | N , then

K0(N) is the subgroup of GL(2,Oν) of the form
(
a b
c d

)
where c ≡ 0 modulo N in the

ring Zν of p-adic integers.
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Theorem 3.4.1 (Strong Approximation Theorem).

GL(2,A) = GL(2,Q)GL(2,R)+K0(N). (3.4.2)

Proof. See Theorem 3.3.1, §3.3, [Bu].

Let ω denotes a unitary character of A×/F×. Let L2(GL(2, F )\GL(2,A), ω) be

the space of all functions φ on GL(2,A) that are measurable with respect to Haar

measure and that satisfy

φ
(( z

z

)
g
)

= ω(z)φ(g), z ∈ A×, (3.4.3)

φ(γg) = φ(g), γ ∈ GL(2, F ), (3.4.4)

∫
Z(A)Gl(2,F )\GL(2,A)

|φ(g)|2dg <∞. (3.4.5)

We say φ ∈ L2(GL(2, F )\GL(2,A), ω) is cuspidal if,

∫
A/F

φ
(( 1 x

1

)
g
)
dx = 0 (3.4.6)

for all g.

An automorphic form with central character ω is a function on GL(2,A) satisfying

3.4.3 and 3.4.4, and which is smooth, K-finite , Z-finite and of moderate growth.

We now define these terms.

If F is a number field, then a function f on GL(2,A) is called smooth if for every

g ∈ GL(2,A), there exists a neighbourhood N of g and a smooth function fg on

GL(2, F∞) such that for h ∈ N , f(h) = fg(h∞), where we have factored h = h∞hf

with h∞ ∈ GL(2, F∞) and hf ∈ GL(2,Af ). A function f on GL(2,A) is called K-

finite if its right translates, by elements of K, span a finite-dimensional dimensional

vector space.

If ν is any archimedean place of F, one can define an action of gl(2, Fν) on the



3.4. JACQUET-LANGLANDS THEORY 39

K-finite vectors by

(Xf)(g) =
d

dt
f(g exp(tX))|t=0.

Here gl(2, Fν) is the four dimensional Lie algebra whose underlying space is Mat2(Fν),

with Lie bracket operation [X, Y ] = XY −Y X. It may be shown that if f is K-finite,

then Xf is defined and is also K-finite. This action of gl(2, Fν) is extended to the

universal enveloping algebra U(gl(2, Fν)). The requirement that f be Z-finite means

that f lies in a finite-dimensional vector space that is invariant by Z.

To define moderate growth, we need to define a height function ‖ g ‖ on GL(2,A).

For any field E, We embed GL(2, E) → E5 via g 7→ (g, det(g)−1). First we define

a local height ‖ gν ‖ν on GL(2, Fν) for each place by restricting the height function

(x1, x2, x3, x4, x5) 7→ maxi|xi|ν on F 5
ν . We note that ‖ gν ‖ν≥ 1 and (if ν is non-

archimedean) that ‖ gν ‖ν= 1 if gν ∈ GL(2,Oν). We the define the global height

‖ g ‖ to be the product of local heights. We then say that f is slowly increasing if

there exists constants C and N such that f(g) < C ‖ g ‖N for all g ∈ GL(2,A).

Theorem 3.4.7 (Tensor Product Theorem). Let (π, V ) be an irreducible representa-

tion of GL(n,A), then there exists for each archimedean place ν of F an irreducible

(g∞, Kν)-module (πν , Vν) and for each non-archimedean place ν there exists an ir-

reducible admissible representation (πν , Vν) of GL(n, Fν) such that for almost ν, Vν

contains a Kν fixed vector ξ0
ν such that π is the restricted tensor product of πν.

Proof. See Theorem 3.3.3, §3.3, [Bu].

Theorem 3.4.8 (Existence of Whittaker model for Automorphic Representation).

Let F be a number field, A be its adele ring and let (π, V ) be a cuspidal automorphic

representation of GL(2, F ), so V ⊂ A0(GL(2, F )\GL(2,A), ω) where ω is a character

of A×/F×. If φ ∈ V and g ∈ GL(2,A), let

Wφ(g) =

∫
A/F

φ
(( 1 x

0 1

)
g
)
ψ(−x)dx (3.4.9)

(where ψ is a non-trivial additive character of A/F ). Then the space W of functions

Wφ is a Whittaker model for π. We have the Fourier expansion

φ(g) =
∑
α∈F×

Wφ

(( α

1

)
g
)
. (3.4.10)
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Proof. Define

Fφ(x) = φ
(( 1 x

1

)
g
)
for x ∈ A.

Clearly Fφ is continuous, ∵ φ is automorphic we have, φ(γg) = φ(g) ∀γ ∈ GL(2, F ).

Choose γ =

(
1 a

0 1

)
, where a ∈ F×. Then

Fφ(x+a) = φ
(( 1 x+ a

1

)
g
)

= φ
(( 1 a

1

)(
α

1

)
g
)

= φ
(( 1 x

1

)
g
)

= Fφ(x).

∴ Fφ(x + a) = Fφ(x), ∀a ∈ F . Hence Fφ can be regarded as a continuous function

on the compact group A/F . Therefore one can expand Fφ as a fourier series in terms

of characters of A/F , but we know chracters of A/F are of the form ψa taking x to

ψ(ax) for a ∈ F . So let

φ
(( 1 x

1

)
g
)

=
∑
α∈F

c(α)ψ(αx), (3.4.11)

where,

c(α) =

∫
A/F

φ
(( 1 x

1

)
g
)
ψ(−αx)dx.

If α = 0 then

c(0) =

∫
A/F

φ
(( α

1

)
g
)
dx = 0 (∵ φ is cuspidal)

So we may restrict our summation to α ∈ F×. If α 6= 0, then because φ is automorphic

c(α) =

∫
A/F

φ
(( 1 x

1

)
g
)
ψ(−αx)dx =

∫
A/F

φ
(( α

1

)(
1 x

1

)
g
)
ψ(−αx)dx

=

∫
A/F

φ
(( α αx

1

)
g
)
ψ(−αx)dx.
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Hence

c(α) =

∫
A/F

φ
(( 1 αx

1

)(
α

1

)
g
)
ψ(−αx)dx

=

∫
A/F

φ
(( 1 x

1

)(
α

1

)
g
)
ψ(−x)dx

= Wφ

(( α

1

)
g
)
.

Hence evaluating Fφ(x) at x = 0 using the Fourier expansion we obtain the equality

φ(g) =
∑
α∈F×

Wφ

(( α

1

)
g
)
.

Now

Wφ

(( 1 x̃

1

)
g
)

=

∫
A/F

φ
(( 1 x̃+ x

1

)
g
)
ψ(x̃)ψ(−x̃− x)dx

= ψ(x̃)Wφ(g).

∵ φ is of moderate growth so is Wφ.

Wπ(g̃)φ(g) =

∫
A/F

π(g̃)φ
(( 1 x

1

)
g
)
ψ(x)dx

=

∫
A/F

φ
(( 1 x

1

)
gg̃
)
ψ(−x)dx

= Wφ(gg̃) = π(g̃)Wφ

From the definition it is obvious that φ 7−→ Wφ is injective as well as from eq. (3.4.10)

it is clear that it is onto. Hence the space W of functions Wφ comprises a Whittaker

model for π.
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Theorem 3.4.12. Suppose π =
⊗

πν has central character ω. If π occurs in

L2
0(GL(2, F )\GL(2,A), ω), then L(s, χ⊗π) satisfies the following properties for every

character χ of A×/F×

1. L(s, χ⊗ π) extends to an entire function bounded in vertical strips.

2. L(s, χ⊗ π) satisfies the functional equation

L(s, χ⊗ π) = ε(s, χ, π)L(1− s, χ−1 ⊗ π̃) (3.4.13)

where π̃(g) = ω−1(g)π(g)

Proof. Suppose first that π occurs in L0 and that its represenation space is V. For

each ν choose a function Wν(gν) inW(πν) such that Wν = W 0
ν for almost all ν. Then

W (g) =
∏
ν

Wν(gν)

certainly belongs to W(π) and

φ(g) =
∑
α∈F×

W
(( α

1

)
g
)

(3.4.14)

belongs to the space of K-finite functions in V.

Next consider the Mellin transform

ζ(g,W, χ, s) =

∫
A×/F×

φ
(( x

1

)
g
)
χ(x)|x|s−1/2d×x (3.4.15)

Now φ
(( x

1

)
g
)

= φg

(
x

1

)
(where φg = π(g)φ) and since φg ∈ V , it is

rapidly decreasing as |x| → ∞; which means for any N > 0 there exists constant BN

such that

φg

(
x

1

)
< BN |x|−N

for |x| sufficiently large. Also we claim that φg

(
x

1

)
is rapidly decreasing as
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|x| → 0, which means for any N > 0 there exists a constant B′N such that

φg

(
x

1

)
< B′N |x|N

when |x| is sufficiently small. This can be seen in the following way: since φg is

automorphic

φg

(
x

1

)
= φg

(
1

1

)(
x

1

)
=
(
π

(
1

1

)
φg

)( 1

x

)

= ω(x)
(
π

(
1

1

)
φg

)( x−1

1

)

so the rapid decrease of φg

(
x

1

)
as |x| → 0 follows from the rapid decrease of

(
π

(
1

1

)
φg

)( x−1

1

)

as |x| → ∞ which is already established. Now because φ
(( x

1

)
g
)

is rapidly

decreasing as |x| → ∞ or 0. The integral in eq. (3.4.15) converges for all values of s

and represents an entire function bounded in vertical strips. But w
(( x

1

)
g
)

is

also rapidly decreasing at ∞. Hence

∫
A×

W
(( x

1

)
g
)
χ(x)|x|s−1/2d×x =

∏
ν

ζ(gν , χν , wν , s)

converges for Re(s) sufficiently large and in this range equals ζ(g, χ,W, s). (Here

ζ(gν , χν ,Wν , s) is the local zeta function defined in 3.3.16). Now suppose Wv is

chosen such that

ζ(gν , χν ,Wν , s) = L(s, χν ⊗ πν).
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With this choice of W (g) =
∏
Wν(gν), we have for Re(s) sufficiently large,

ζ(g, χ,W, s) =
∏
ν

L(s, χν ⊗ πν) = L(s, χ⊗ π).

Consequently L(s, χ⊗ π) satisfies condition 1 of the theorem since ζ(g, χ,W, s) does.

To verify (2) first observe that

ζ(g,W, χ, s) =

∫
A×/F×

φ
(( x

1

)
g
)
χ(x)|x|s−1/2d×x

=

∫
A×/F×

φ
(
w1

(
x

1

)
g
)
χ(x)|x|s−1/2d×x

(
w1 =

(
1

−1

))

=

∫
A×/F×

φ
(( 1

x

)
w1g

)
χ(x)|x|s−1/2d×x.

Now substitute x−1 for x and use the invariance of φ under the central quasicharacter

to obtain ∫
A×/F×

φ
(( x

1

)
w1g

)
(χω)−1(x)|x|−s+1/2d×x

So we get

ζ(g,W, χ, s) = ζ(w1g,W, ω
−1χ−1, 1− s)

Consequently by the local functional equations,

ζ(w1g,W, ω
−1χ−1, 1− s)

L(s, χ−1 ⊗ π̂)
=
∏
ν

ζ(w1gν ,Wν , ω
−1
ν χ−1

ν , 1− s)
L(s, χ−1

ν ⊗ π̂ν)

=
∏
ν

ε(s, χν , ψν , πν)
ζ(gν ,Wν , ωνχν , s)

L(s, χν ⊗ πν)

= ε(s, χ, ψ, π)
ζ(g,W, χ, s)

L(s, χ⊗ π)

= ε(s, χ, ψ, π)
ζ(w1g,W, ω

−1χ−1, 1− s)
L(s, χ⊗ π)

and from this the functional equation follows immediately. It can be seen that the

global ε-factor is independent of choice of ψ and hence we may write ε(s, χ, π) for

ε(s, χ, ψ, π).
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3.5 Automorphic forms as functions on Adele group

Let χ be a primitive Dirichlet character mod N . Let ω be the adelization of χ which

means ω =
∏

ν ων is a character of A×/Q× of finite order and if p is a rational prime

not dividing N, if ν is the place of Q corresponding to p and $ν ∈ Oν be a generator

of the maximal ideal in Oν , then χ(p) = ων($ν). It is also known that ω∞ is trivial on

R×+ and if ν is a non-archimedean place not dividing N , then $ν is unramified (that

is, trivial on O×ν ) and if ν is a non-archimedean place dividing N , then ων is trivial

on the subgroup of O×ν consisting of the elements congruent to identity modulo N .

In general, if d is an integer prime to N , then

χ(d) =
∏

ν /∈Sf (N)

ων(dν).

Now because ω =
∏

ν ων is trivial on Q×, we get if (d,N) = 1 then

χ(d) =
∏

ν∈Sf (N)

ω−1
ν (dν). (3.5.1)

We define a character λ of K0(N) by

λ

(
a b

c d

)
=

∏
ν∈Sf (N)

ων(dν) (3.5.2)

Let f ∈ Sk(N,χ). If g ∈ GL(2,A), then strong approximation theorem can be used

to write g = γg∞k0, where γ ∈ GL(2,Q), g∞ ∈ GL(2,R)+ and k0 ∈ K0(N). Define

a function φf on GL(2,A) by

φf (g) = F (g∞)λ(k0) (3.5.3)

where F (g∞) = (f |kg∞)(i).

Let us check that this is well defined. We must show that if g∞, g̃∞ ∈ GL(2,R)+,

γ ∈ GL(2,Q) and k0 ∈ K0 such that g∞ = γg̃∞k0, then

F (g∞) = F (g̃∞)λ(k0).
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Write γ = γ∞γf , where γ∞ ∈ GL(2,R) and γf ∈ GL(2,Af ). Evidently g∞ = γ∞g̃∞

and γf = k−1
0 . The first relation implies that γ∞ has positive determinant and the

second that it is in Γ0(N). Thus we have

F (g∞) = χ(d∞)F (g̃∞), γ∞ =

(
a∞ b∞

c∞ d∞

)
,

so what we require is that λ(k0) = χ(d∞), and because k0 = γ−1
f , this follows from

(3.5.3).

The function φ defined by (3.5.4) is an automorphic form with a central quasichar-

acter ω. It must be checked that if z ∈ A×, then

φ
(( z

z

)
g
)

= ω(z)φ(g) (3.5.4)

But

A× = Q×R×+
∏

ν non−archimedean

O×ν

So using the above equation it is sufficient to check (3.5.4) for individual case, namely

z ∈ Q×, z ∈ R×+, or when z ∈ O×ν for ν non-archimedean which can be done easily.

Theorem 3.5.5. Suppose that f is an eigenfunction of all the Hecke operators Tp

when p - N .Then φ lies in an irreducible subspace of L2
0(GL(2, F )\GL(2,A), ω).

Proof. See Theorem 3.6.1, §3.6, [Bu].

3.6 Hecke L-function versus Jacquet-Langlands L-

function

Now suppose π =
⊗

πp is the representation of GL(2,AQ) generated by the cusp

form f(z) in Sk(SL(2,Z)) and let p = pZp

Proposition 3.6.1. p
k
2
−1π(T (p))(φf ) = φT (p)f

Proof. See Lemma 3.7, §3, [Ge].
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Hence the eigenvalue for T (p) on f(z) is:

ap = p
k−1
2 (ps1 + p−s1).

(Assuming πp ≡ B(|x|s1p , |x|−s1p ).)

By Jacquet-Langlands’ Theory,

L(s, π) =
∏
p≤∞

L(s, πp) = (2π)−s−
k−1
2 Γ(s+

k − 1

2
)
∏
p<∞

(1− ps1p−s)−1(1− p−s1p−s)−1

(3.6.2)

= (2π)−s−
k−1
2 Γ(s+

k − 1

2
)
∏
p<∞

(1− p−s−
k−1
2 ap + p−2s)−1.

(3.6.3)

Hence the L-function L(s, π) which agrees with Hecke’s L-function

Λ(s′, f) = (2π)−s
′
Γ(s′)L(s′, f)

with s′ = s+ k−1
2

. So we have

Theorem 3.6.4. Let f be a holomorphic cusp form of weight k on SL(2,Z) and let

π =
⊗

πp be the representation of GL(2,AQ) generated by f. Furthermore let χ be

the primitive Dirichlet character which corresponds to a Hecke character χ̃. Then

L(s, χ̃⊗ π) = Λ(s′; f, χ) (3.6.5)

where s′ = s+ k−1
2

.
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Chapter 4

p-adic L-function for modular

forms

4.1 Construction of the non-archimedean measure

Let ϕ(z) =
∞∑
n=1

bne
2πinz be a holomorphic cusp form of weight w+ 2 for SL(2,Z). We

assume that ϕ is a normalized Hecke eigenform, i.e., b1 = 1 and ϕ|T (n) = bnϕ for all

n ≥ 1,where T (n) is the nth Hecke operator.

For any Dirichlet character χ we define the twisted L-function

L(s;ϕ, χ) =
∞∑
n=1

χ(n)bnn
−s =

(2π)s

Γ(s)

∞∫
0

ϕχ(iz)zs−1dz (4.1.1)

where ϕχ(z) =
∞∑
n=1

χ(n)bne
2πinz .

Let p be an odd prime and χ be a primitive Dirichlet character modulo pm, m ≥ 0.

We define the Gauss sum attached to χ as follows

G(χ) =
∑

b mod pm

χ(b)e2πi b
pm . (4.1.2)

We will be using the following property of G(χ)

G(χ)G(χ−1) = χ(−1)pm.

For a proof of this see, [Mi] chapter 3, section 1.

49
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Furthermore, we denote by ρ a root of the equation x2 − bpx+ pw+1 = 0.

Theorem 4.1.3 (Manin). There exist numbers ω± ∈ C such that all the values

1

ω±

i∞∫
0

ϕχ(y)ytdy (4.1.4)

are algebraic integers (for t = 0, 1, . . . , w) if the subscript on ω± is same as in the

formula (−1)tχ(−1) = ±1. Moreover, these numbers are rational over the field

Q(χ(Z), G(χ), b1, b2, . . . ).

Proof. Refer to Theorem 1.2, [Ma1].

Definition 4.1.5. Qk(x) =
i∞∫
0

ϕ(z + x)zkdz, x ∈ Q, k ≥ 0 .

We list some of the properties of Qk(x).

1. Qk(x) is well defined.

2. Qk(x+ 1) = Qk(x) for all x.

3.
p−1∑
r=0

Qk(
x+r
p

) = bpp
−kQk(x)− pw−2kQk(px) for all x.

4. Qk(x) +Qk(−x) =

{
2ReQk(x) if n ≡ 1 (mod 2)

2iImQk(x) if n ≡ 0 (mod 2).

For the proofs, refer to [Ma2].

Let K be a finite extension of the field Qp containing the values of the character

χ, ρ, G(χ) and all bn. Let O be the ring of integers in K, and let m be the maximal

ideal in O. Write χ = χ0χ1, where χ0 is the tame component and χ1 is the wild

component, i.e., the conductor of χ0 is relatively prime to p, and the conductor of χ1

is a p-power. Let t = χ1(1 + p)− 1, then t ∈ m, in such a case denote χ1 by χ(t).

Definition 4.1.6. µk(a+ (pm)) = ρ−mpmkQk(
a
pm

)− ρ−(m+1)pmk−k+wQk(
a

pm−1 ) .

Theorem 4.1.7. µk is a K-valued distribution on Z×p and if ρ is a p-adic unit,

then µk(U) is bounded for compact-open subsets U of Z×p and hence µk is a K-valued

measure on Z×p .
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Proof. To see that µk is a distribution, we must check that

µk(a+ (pm)) =

p−1∑
r=0

µk(a+ rpm + (pm+1)).

So, let’s simplify the right hand side and for this we will be using property (1), (3) of

Qk(x).

p−1∑
r=0

µk(a+ rpm + (pm+1)) =

p−1∑
r=0

ρ−(m+1)p(m+1)kQk

(a+ rpm

pm+1

)
−

p−1∑
r=0

ρ−(m+2)p(m+1)k−k+wQk

(a+ rpm

pm

)
= ρ−(m+1)pmk

(
bpp
−kQk

( a

pm

)
− pw−2kQk

( a

pm−1

))
− ρ−(m+2)p(m+1)k−k+(w+1)Qk

( a

ppm

)
= ρ−(m+2)pmk(ρbp − pw+1)Qk

( a

pm

)
− ρ−(m+1)pmk−k+wQk

( a

pm−1

)
= ρ−mpmkQk

( a

pm

)
− ρ−(m+1)pmk−k+wQk

( a

pm−1

)
= µk(a+ (pm)).

For a proof of boundedness of µk when ρ is a p-adic unit we refer to [Ma1].

Now define

Q+
k (x) =

i

ω+
Im Qk(x), Q−k (x) =

1

ω−
Re Qk(x),

From Theorem 1.3 and properties of Qk(x) it follows immediately that for 0 ≤ k ≤ w,

Q±k (x) are algebraic integers over the field Q(b1, b2, . . . ). Therefore, we can construct

two K-valued measures µ±k as:

µ±k (a+ (pm)) = ρ−mpmkQ±k

( a

pm

)
− ρ−(m+1)pmk−k+wQ±k

( a

pm−1

)
. (4.1.8)

Lemma 4.1.9. ϕχ(z) = G(χ)
pm

∑
a mod pm

χ−1(−a)ϕ(z + a
pm

) .
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Proof.

G(χ)

pm

∑
a mod pm

χ−1(−a)ϕ
(
z +

a

pm

)
=
G(χ)

pm

∑
a mod pm

χ−1(−a)
∞∑
n=0

bne
2πinze2πin a

pm

=
G(χ)

pm

∞∑
n=0

bne
2πinz

∑
a mod pm

χ−1(−a)e2πin a
pm

=
G(χ)

pm

∞∑
n=0

χ(n)bne
2πinz

∑
a mod pm

χ−1(−na)e2πin a
pm

=
G(χ)

pm

∞∑
n=0

χ(n)bne
2πinz

∑
ã mod pm

χ−1(−ã)e2πi ã
pm

=
G(χ)

pm
ϕχ(z)G(χ?) (where χ?(a) = χ−1(−a))

= ϕχ(z).

Theorem 4.1.10. For all k = 0, . . . , w, in case ρ is a p-adic unit, we have

pm

G(χ)

1

ω±

i∞∫
0

ϕχ(z)zkdz =
ρm

pmk

∫
Z×p

χ−1(−a)dµ±k (a), (4.1.11)

where the superscripts on ω± and µ±k are taken as in the formula (−1)kχ(−1) = ±1.

Proof. Let’s first evaluate the archimedean integral

pm

G(χ)

i∞∫
0

ϕχ(z)zkdz =

i∞∫
0

(
∑

a mod pm

χ−1(−a)ϕ
(
z +

a

pm

)
zk)dz

=
∑

a mod pm

χ−1(−a)

i∞∫
0

ϕ
(
z +

a

pm

)
zkdz

=
∑

a mod pm

χ−1(−a)Qk

( a

pm

)
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=
1

2

∑
a mod pm

(
χ−1(−a)Qk

( a

pm

)
+ χ−1(a)Qk

(−a
pm

))
= ω±

∑
a mod pm

χ−1(−a)Q±k

( a

pm

)
.

Let’s now calculate the non-archimedean integral, because χ is constant on cosets

modulo pm,the integral will actually be a finite sum, i.e.,

ρm

pmk

∫
Z×p

χ−1(−a)dµ±k (a) =
ρm

pmk

( ∑
a mod pm

χ−1(−a)µ±k (a+ (pm))
)

=
∑

a mod pm

χ−1(−a)Q±k
( a

pm

)
− pw−k

ρ

∑
a mod pm

χ−1(−a)Q±k
( a

pm−1

)
.

claim:
∑

a mod pm
χ−1(−a)Q±k

(
a

pm−1

)
= 0.

This is because one can split the sum on a mod pm into residue classes mod pm−1

and since Q±k has period 1, it is constant on residue classes modulo pm−1, and since

χ is a primitive character mod pm, so is χ? defined by χ?(a) = χ−1(−a). Hence,∑
ã≡a mod pm−1

ã mod pm

χ?(ã) = 0.

So,
ρm

pmk

∫
Z×p

χ−1(−a)dµ±k (a) =
∑

a mod pm

χ−1(−a)Q±k
( a

pm

)
. (4.1.12)

Now the theorem is evident from the above calculations.

4.2 p-adic interpolation of critical values of L(s,∆)

The Ramanujan ∆-function is defined as

∆(z) = q
∞∏
n=1

(1− qn)24 =
∞∑
n=1

τ(n)qn, q = e2πiz, Im(z) > 0

It is, up to scalar multiples, the unique weight 12 holomorphic cusp form for SL(2,Z).

Since S12(SL(2,Z)) is one dimensional, hence by the theory of Hecke operators, the



54 CHAPTER 4. P -ADIC L-FUNCTION FOR MODULAR FORMS

Fourier coefficients τ(n) are multiplicative and hence the L-function of ∆, defined

initially as a Dirichlet series, admits an Euler product:

L(s,∆) :=
∞∑
n=1

τ(n)

ns
=
∏
p

(1− τ(p)p−s + p11−2s)−1, Re(s)� 0.

The reciprocal of the Euler factor at p may be factored as:

1− τ(p)p−s + p11−2s = (1− αpp−s)(1− βpp−s),

with, αp + βp = τ(p) and αpβp = p11.

Now let π(∆) denote the cuspidal automorphic representation of GL(2,A) at-

tached to ∆, where A is the adele ring of Q. Hence,

π(∆) =
⊗
ν≤∞

πν(∆),

where for ν = p <∞,

πν(∆) ≡ B(|x|spp , |x|−spp )

such that τ(p) = p
11
2 (psp + p−sp).

Then from Chapter 2, we know the relation between the Jacquet-langlands L-

function and the classical L-function of ∆. Namely,

L(s, π(∆)⊗ χ) = (2π)(−s− 11
2

)Γ(s+
11

2
)L(s+

11

2
,∆⊗ χ), (4.2.1)

where χ is a primitive Dirichlet charcater.

Now fix an odd prime p, such that one of the roots ρ of the equation x2−τ(p)+p11

is a p-adic unit. Then, the p-adic measure associated with ∆ is given by

µk(a+ (pm)) = ρ−mpmkQk

( a

pm

)
− ρ−(m+1)pmk−k+wQk

( a

pm−1

)
.

Then using 4.1.1 and Theorem 4.1.10, we obatin, for a primitive Dirichlet character

χ mod pm

ik+1pm

G(χ)

Γ(k + 1)L(k + 1,∆⊗ χ)

ω±(2π)k+1
=

ρm

pmk

∫
Z×p

χ−1(−a)dµ±k (a), (4.2.2)
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where the superscripts on ω± and µ±k are taken as in the formula (−1)kχ(−1) = ±1.

This equation is valid for k ∈ {1, 2, . . . , 11}. Now putting k = 5 and using eq.(4.2.1)

along with (4.2.2), we obtain the following

Theorem 4.2.3.

L(1
2
, π(∆)⊗ χ)

ω± G(χ)
= − ρm

p6m

∫
Z×p

χ−1(−a)dµ̃±(a) (4.2.4)

where, χ is a primitive Dirichlet character mod pm, and µ̃±(a+ (pn)) = µ±5 (a+ (pn))

and where the superscripts on ω± and µ̃± are taken as in the formula −χ(−1) = ±1.

Theorem 4.2.5. Let p be an odd prime. Let µ be a bounded K-valued measure on Zp.
Then there exists a unique power series A = Aµ ∈ K[[T ]] convergent for all t ∈ m,

such that for any primitive Dirichlet character χ of conductor pm we have∫
Z×p

χ dµ = Aµ(t) (4.2.6)

where t = χ(1 + p)− 1 .

Proof. See theorem 8.7, [Ma1]. See also the discussion in §2.3 .

Now we want to apply the above theorem under the hypothesis of Theorem 4.2.3,

since in that case χ is a character mod pm, so is χ? (χ?(a) = χ−1(−a)). Let the power

series associated to the measure µ±5 via Theorem 4.2.5 be A±(T ). Then by comparing

eq. (4.2.4) and (4.2.6) we obtain the following

Theorem 4.2.7.

L(1
2
, π(∆)⊗ χ)

ω± G(χ)
= − ρm

p6m
A±(χ?(1 + p)− 1) (4.2.8)

where, χ?(a) = χ−1(−a) and the superscripts on ω± and A± are taken as in the

formula −χ(−1) = ±1.
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