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Abstract

Grad Shafranov equation is equilibrium solution of ideal MHD.A variational
moment method is studied to estimate the solution to the Grad-shafranov
equation which is generalized to �nd approximate free boundary solutions to
the grad-shafranov equation.Some ordinary di�erential equation had to be
solved to calculate the poloidal magnetic �ux ψ(R,Z) those were nothing but
Grad-Shafranov equation's moments .Grad-Shafranov equation's moment are
fourier amplitudes of the inverse mapping of R(ψ, θ) and Z(ψ, θ).Numerical
and Analytical solutions of moment equations are constructed whose results
concur well with two dimensional equilibrium code .The main advantage of
the variational moment method is that it signi�cantly reduces the computa-
tional time required to determine two-dimensional equilibria without sacri-
�cing accuracy.In future the code will further be developed to calculate the
�ux surface at separatrix and location of strike points.
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Chapter 1

Introduction

Consumption of electricity increases relentlessly and hence it is necessary to
look for an alternate, safe and e�cient technology to tackle the future power
crisis. Nuclear fusion is one such method. In nuclear fusion, two light ele-
ments undergo an exoergic reaction to form a heavier nucleus. Fusion process
is responsible for the heat production in suns and stars. The possiblity of
self sustained fusion reaction can form the basis for the fusion power reactor.
One of the most promising reactions is the fusion of hydrogen isotopes. The
reactions are :

D2 +D2 =
(
He3 + 0.82 MeV

)
+
(
n1 + 2.45 MeV

)
(1.1)

D2 +D2 =
(
T 3 + 1.01 MeV

)
+
(
H1 + 3.03 MeV

)
(1.2)

D2 + T 3 =
(
He4 + 3.52 MeV

)
+
(
n1 + 14.06 MeV

)
(1.3)

D2 +He3 =
(
He4 + 3.67 MeV

)
+
(
H1 + 14.67 MeV

)
(1.4)

where H,n,D,T and He indicate hydrogen, neutron, deuterium, tritium and
helium respectively. The �rst and second reactions are equally likely, the
reaction 1.3 has about 100 times combined cross-section od reactions 1.1
and 1.2 and reaction 1.4 dominates at very high impact energies above 400
keV. Energy associated with each product particle is shown in MeV. The
reaction no 3 has been shown schematically in �g 1.1 Compared to �ssion
process, fusion have several important potential advantages. First of all,
the deuterium reserves are much more than that of economically recoverable
�ssion reserve, even though the abundance of deuterium is only one part of
6700. Second the products of above reaction other than tritium are stable.
Tritium is radioactive but one can not consider it as a waste.This undergoes
fusion more e�ciently than the deuterium and makes the power economically
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Figure 1.1: Cartoon of Nuclear reaction 1.3

viable. Third, fusion reactors would be inherently fail-safe due to the natural
repulsion among the reactants and hence there will be no runaway situation.

To have a fusion reaction, two atomic nuclei have to be brought closer
against their columb repulsion. This can be achieved by supplying heat
energy to the system. The temperature of such system has to be raised
around 100 million degrees. In addition to high temperature, it is necessary
to have the fusion nuclei stay together for long enough to enable su�cient
number of fusion reactions to occur. Con�ning such a hot plasma (Collection
of charged particle) in the laboratory for controlled fusion is a key challenge.
In the case of stars, the con�nement is done by gravitational force but in
the laboratory, one needs to use magnetic �elds to do the same job. Fusion
power from a reactor depends on the number density (n), the fusion cross-
section (σv) the rate at which the fusion reaction takes place (∝ T ) , the
energy con�nement time (τE) and the plasma volume. Reactor performance
is often characterized by a �gure of merit nτET that takes into account both
the lawson criterion and the temperature dependence of reaction rate cross-
section. To have a viable fusion power reactor, it is essential to maximize all of
the above mentioned parameters so that the ignition condition nτET>3×1024

[m−3seV ] is satish�ed. Any fusion plasma con�nement system must meet
these requirements. Hence, it is essential to study the merits and demerits
of various con�nement systems and try to optimize them for a reactor.

The con�nement of plasma in a toroidal geometry is one of the most ad-
vanced concepts in nuclear fusion research. In the beginning of �fties it was
recognized that linear and open ended plasma devices su�er from plasma
instabilities and end losses. The simplest con�guration with closed �eld lines
was discovered and found to have much better con�nement properties. Re-
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search and developement over the last four decades have strengthened the
belief that tokamak is a leading plasma con�nement concept. A brief de-
scription of toroidal con�nement concept is given in the next section.

1.1 Con�nement Systems

1.1.1 Magnetic con�nement

The need of toroidal con�nement can be understood by realizing that in a
fusion reactor particlesd must be con�ned over more than one second and in
this time, Hydrogen ions of 10 keV travel over a distance of 1000km or run
around a toroidal fusion reactor for 10−4 times. Con�ning these particles in
magnetic mirrors has the danger of destroying the mirror e�ect by collisions
and that the particles rapidly escape from from the con�nement region.

Figure 1.2: Schematic Diagram of Magnetic Mirror

In toroidal con�nement one utilizes the tendency of plasma charge particles
to gyrate round the magnetic �eld lines and to follow the toroidal magnetic
�eld lines freely around the torus. In a simple toroidal �eld with closed
�eld lines one could con�ne these charge particles if there were no magnetic
drift. In the toroidal devices, due to curvature e�ect and inhomogeneity of
magnetic �eld, B, the charge particles do not stay on the �eld lines, instead,
they drift in the direction perpendicular to B and ∇B

vD =
v2
⊥

2π

B×∇B
B2

+
u2

Ω

B× (B · ∇)B

B3
(1.5)

with Ω = eB/mc is the gyro frequency, v⊥ and u are the guiding center
velocities perpendicular and parallel to magnetic �eld respectively. Due to
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this drift the particles rapidly escape from the con�nement volume. The idea
of spitzer was to shape the magnetic �eld in such a way that inspite of this
drift the particles stay inside the vacuum chamber. Under ideal conditions
the particles should stay on the toroidal closed surfaces de�ned by vD ·∇ψD =
0. Those particles which circulate around the torus do not change sign of
parallel velocity and since the gyro radius is very small (of the order of mm)
the drift surfaces of the circulating particles only deviate little from magnetic
surfaces which are de�ned by B · ∇ψ = 0.Therefore, particles in the toroidal
devices are con�ned by toroidally closed magnetic surfaces.

Plasma is a collection of charged particles and hence their motion is af-
fected by the electric and magnetic �elds. In the past few decades, various
devices with magnetic �elds have been used to con�ne hot plasmas for con-
trolled nuclear fusion. These include the stellarator, mirror and tokamak
con�gurations. Con�ne in a linear mirror �eld has advantage overs over a
toroidal system with respect to stability and anomalous di�usion across the
�eld. However, the end losses due to particles leaving along the magnetic
�eld makes this one less attractive for the fusion studies. Since the con�ne-
ment time plays one of the crucial roles in determining the viablity of a fusion
reactor, the toroidal system is widely accepted as being the most successful.

Tokamak is one the toroidal devices used to hold fusion plasmas. It is
characterised by a major radius R0, a minor radius a, plasma current Ip
and an externally produced toroidal magnetic �eld B0. A typical tokamak
device is shown in Fig1.3. In a purely toroidal �eld, ions and electrons
drift in opposite directions because of gradient in the toroidal magnetic �eld.
This charge separation generates an electric �eld which in turn destroys the
con�nement through E × B drift. Such a charge separation is avoided by
having a poloidal magnetic �eld (Bp) along with the toroidal one.In tokamak
this poloidal �eld is produced by the plasma itself. But this current carrying
plasma column tries to expand in the major radial direction because of hoop
force. This has to be balanced by an external vertical magnetic �eld Bz to
maintain equilibrium as shown schematically in Fig 1.3. Such an equilibrium
produces nested magnetic surfaces that reduce transport of particles and
energy towards the boundary.

��������-

6



Figure 1.3: Tokamak equilibrium

1.1.2 The tokamak concept

the word tokamak derived from the russian words for 'toroidalnaya kamera
magnitnaya katuschka'(toroidal magnetic chamber). Its origin came by at-
tempting to bend a linear pinch into a torus and to maintain the toroidal
plasma current by inducing a toroidal loop voltage. An external transformer
primary coils are required in tokamak with the plasma acting as the sec-
ondary windings. A strong toroidal magnetic �eld is required for the plasma
stability. Unfortunately, a pure toroidal �eld is not homogenous and cur-
vature and gradient of magnetic �eld lines lead plasma particles to drift in
perpendicular directions. The resulting electric �eld by charge separation
due to the drift is also perpendicular and causes and outward E × B drift
motion of the plasma. This outward drift is avoided by generating a helical
magnetic �eld lines so that each �eld line passes the upper and lower part
of the torus. A combination of toroidal and poloidal magnetic �eld coils are
used to forma such a con�guration in tokamak. The toroidal plasma current
has the natural tendency of an outward radial expansion in the direction of
major radius due to hoop force. In earlier tokamaks, this was prevented by a
conducting shell surrounding the plasma by the induced image surrents on it.
In modern tokamaks this is achieved by superimposing a vertical magnetic
�eld which provides more control on the position and the vertical stability of
the plasma column.
The magnetic structure in a tokamak consists of various toroidal �ux surfaces
(magnetic surfaces) and the twist of magnetic �eld lines in each surface is
de�ned by safety factor, q

(
= ∆φ

2π

)
, where ∆φ is change in toroidal angle by
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travelling a full poloidal rotation when following the magnetic �eld line. If
magnetic �eld lines joins uo on itself by m toroidal and n poloidal rotations
the safety factor is de�ned by q=m/n. The rational q surfaces play an im-
portant role in tokamak stability.
Recent tokamak experiments suggest that plasma shape in�uences the prop-
erties of plasma stablity and transport. More shaped plasmas have been
shown better plasma properties than circular plasmas. Therefore, many ad-
ditional poloidal �eld coils are used in recent tokamaks to shape plasmas.
Two techniques are used to separate the plasma from the vacuum vessel. The
�rst is to de�ne a plasma boundary by a material limiter while the second
keeps the plasma particles away from the vessel by means of modi�cation of
magnetic �eld to produce the divertor con�guration. It has been shown in
experiments that divertor plasmas are much more pure than limiter plasmas
because divertor plated are far away from the hot plasma region and these
plates are capable to handle the heat �ux.

The toroidal plasma current also heats the plasma due to its resistivity,
η. However, the plasma resistivity η, decreases with the plasma electron
temperature as T

3/2
e and the current density is limited by plasma instabili-

ties. Therefore, plasma heating by the primary winding (called Ohmic trans-
former) becomes ine�cient after a certain plasma temperature. To achieve
plasma temperature of the fusion reactor scale one requires additional heat-
ing techniques. This heating can be performed by launching electromagnetic
waves into the plasma which can be absorbed either by the ions or the elec-
trons or by injecting highly energetic neutral particle into the plasma.

���������

1.1.3 The tokamak

It is mentioned above that the tokamak uses powerful magnetic �elds to
isolate the plasma from the walls of the containment vessel thus enabling
the plasma to be heated to temperatures in excess of 10 keV. We shall now
give a brief description of the device. The tokamak ahs the following major
components

1. The toroidal �eld (Bφ) is around the torus. This is maintained by the
toroidal �eld coils surrounding the vacuum vessel as shown in �g.1.3. In
big machines these �eld coils are built from superconducting materials
so that it can carry large amount of current without dissipation to
produce a large toroidal magnetic �eld.
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Figure 1.4: Essential constituents of torus shaped magnetic con�nement sys-
tem

2. the poloidal �eld (Bθ) it is around the plasma cross-section. It pinches
the plasma away from the walls and maintains the plasma shape and
stability. The poloidal �eld is induced both internally, by the current
driven in the plasma and externally by coils that are positioned around
the perimeter of the vessel.
The typical toroidal and poloidal magnetic �elds variations in a toka-
mak are shown in Fig.1.4. The main plasma current in a tokamak
machine is induced by the action of a large transformer. A current is
passed through the primary coils of the transformer in the center of the
torus, which induces a �ux change through the torus and produces a
toroidal electric �eld that drives the plasma current. In the case of JET
(Joint European Torus) tokamak, the plasma current is about 7 Mega
Ampere (MA). The plasma shape and position are further controlled
by additional toroidal currents in suitably placed coils. It is to be noted
that currently JET is the largest tokamak in the world although the fu-
ture ITER machine that is under design will be even larger. A cutway
diagram of the JET tokamak is shown in Fig.1.5.
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Figure 1.5: Cutway Diagram of Proposed ITER
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Chapter 2

Theory

In tokamak ionised gas particles known as plasma(vaguely) collide with each
other and fuses whose kinetic energy get increased by induced electric �eld
through central solenoid situated at the axis of tokamak and guided by
toroidal and poloidal �eld coils.Before the tokamak there was magnetic mir-
ror where particle used to get con�ne in the container.The achievement of
MHD equilibrium was possible because of in ideal MHD the �uid can not
�ow freely across the magnetic �eld. However, the �uid (or plasma), can �ow
freely along the �eld and this allows the �uid to exit the appratus through the
ends of the cylinder. These inherent end losses have proven to be detrimental
to achieving �uid con�nement in �nite cylinderical geometry.

An ingenious solution to the end loss problem is to connect the ends of
the cylinder to each other, this transforming the cylinder into a torus (that
is tokamak) thus The end losses are completely eliminated moreover all the
magnetic �eld lines remain within the boundaries of the system.

We are thus motivated to study equilibrium in a toroidal con�guration.
With a torus, it is usual to work in a cylindrical coordinate system (R, φ, Z) in
which the cross-sectional area of the �uid lies in the (R,Z) plane (the poloidal
plane) and φ is the angle of rotation about Z-axis. The important in which
all quantities independent of φ is called axisymmetric. This is equivalent
of Z-independence(or translational symmetry) in the straight cylinder. The
radius of the center of poloidal cross-section is called the major radius. The
radius of the outer boundary with respect to the major radius is called the
minor radius which is shown in �gure ?? Unfortunately when a cylinderical
MHD equilibrium is bent into a torus it is no longer an equilibrium. Instead
it tends to expand outward in the major radial direction. There are two
reasons for this. First, a straight cylinder is symmetric about its central
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axis. The pressure force are distributed equally on all parts of the outer
boundary. However, in a torus the outer part of the surface has a larger
surface area (S2 R2) than the inner surface (S1 R1) as shown in the �gure ??

Second, just as parallel currents attract each other by means of the Lorentz
foce whereas anti-parallel currents repel each other. Each current element at
angulat location φ repels (and is repelled by) the current element at angular
location φ+π. This results in a net outward force in the radial (R) direction,

as shown in the �gure ??
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Each of these forces makes the torus expand in major radius. Some exter-
nally supplied currents and �elds are necessary for equilibrium to be main-
tained. The system is now �nite in extent and the virial theorem applies.

One way to provide these required external �elds is to enclose the minor
cross section of the torus in an electrically conducting shell. If the shell is a
perfect conductor,then as the toroidal �uid tries to expand outward the �eld
lines enclosing the �uid will not be able to penetrate the shell and they will be
compressed between the �uid and the shell along the outer (in major radius)
part of the torus (called the outboard side). This will appear as in increase
in magnetic pressure on the outboard side thus opposing the expansion. A
new state of equilibrium will be reached in which the �uid is shifted outward
with respect to the geometric center line, the magnetic axis( the center of
concentric poloidal �eld) no longer coincides with geometric axis. This is
called the Shafranov shift, and its magnitude usually denoted by ∆ Shown

in �gure ??
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Another way to provide the external �eld necessary for toroidal equilibrium
is with current carrying Helmholtz coils that induce a �eld in the Z-direction.
If properly oriented this �eld can interact with the toroidal current (Jφ) in the
�uid to provide an inward Lorentz force that balances the outward expanding
tendency of the torus as shown in the �gure ??

Note that the e�ect of vertical �eld is to amplify the �eld due to the plasma
current on the outboard side and decrease the �eld on the inboard side. It
thus provides the same mechanism as the conducting shell. In the former
case the vertical �eld is produced by image currents �ow in the shell.

In order to proceed beyond these simple cartoons we will have to develop
some more general ideas about toroidal equilibria. From now on we will
assume that the con�gurations are axisymmetric, i.e all quantities are inde-
pendent of the toroidal angle φ.

We have seen that in a straight (in�nitely long) cylinder the pressure is
constant on concentric cylinderical surfaces i.e, p=p(r).Since ∇p = J × B,
we have B · ∇p = 0 that the pressure is constant along the direction of
B.Conversely the �eld lines of B must lie in constant pressure surfaces, i.e,
they must wrap around a cylinderical surface. Since J · ∇p = 0 also, the
current must also lie in these surfaces. However, it need not be aligned
with B if there is a pressure gradient across these surfaces there will be a
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component perpendicular to B also with in the constant pressure surface
that is given by J⊥ = B×∇p/B2.

In an axisymmetric torus these constant pressure surfaces are shifted out-
ward with respect to each other as discussed above. They form nested
toroidal surfaces. However since B ·∇p = 0 the magnetic �eld lines must still
lie completely within these surfaces.These are called �ux surfaces and can be
called 'labelled' by any variable that is constant on them e.g. the pressure,
di�erent surfaces can be identi�ed by their value of pressure.

The equations for a �eld line in cylinderical geometry are

dR

BR

=
Rdφ

Bφ

=
dZ

BZ

(2.1)

Consider a �eld line that begins at coordinates (R0, φ0, Z0). This point will
make an angle θ0 with respect to the center of the concentric surfaces of
constant pressure. Now integrate this �eld line once around the torus i.e.
follow its trajectory until φ1 = φ0 + 2π. In general this will intersect the
poloidal plane at R1 and Z1, which are in general di�erent from R0 and Z0

and which make di�erent angle θ0 + ∆θ0 with respect to the axis. This �eld
line can be said to map the point (R0, Z0) into the point (R1, Z1) as shown

in �gure ??

We know that the pressure at (R1, Z1) must be the same as the pressure
at point (R0, Z0). There are two possible types of trajectory (or mapping)
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for a given �eld line. One is that it �lls the entire volume ergodically. In
that case the pressure must be constant throughout volume. This is not
consistent with con�nement while this can occur dynamically during the
evolution of the magnetoplasma system we will not consider it as part of our
discussion of equilibrium. The second case is that the �eld line maps out a
two dimensional surface which corresponds to a constant pressure surface.
Then there are two further possiblities. The �rst is that the �eld line while
remaining on the surface nonetheless never returns to its original position.
These �eld lines �ll the two dimensional surface ergodically but they do not
close upon themselves. Surfaces on which the �eld lines are ergodic are said
to be irrational. The second possibility is that the �eld line returns exactly
to its initial coordinates (closes upon itself) after N turns around the torus.
These surfaces are said to be rational.

These concepts can be quanti�ed by introducing the rotational transform

i = lim
N→∞

1

N

N∑
n=1

∆θn (2.2)

Where ∆θn is the change in the angle θ during the n
th toroidal circuit. If i/2π

is a rational number, then the �eld line is closed and the surface is rational.
Otherwise, the �eld line is not closed and the surface is irrational. If i is
rational number, it is the number of times the �eld line must transit the torus
in the toroidal φ direction for it to make one complete transit one complete
transit about the surface in the poloidal (R,Z) plane.The quantity q ≡ 2π/i
is called the safety factor. It is important in the theories of equilibrium and
stability of con�ned plasmas.

It is possible to de�ne �uxes based on the poloidal �eld (i.e BR and BZ) and
toroidal �eld (Bφ) components. We de�ne dSt and dSp as surface elements
extending between constant pressure surfaces oriented in the toroidal and
poloidal directions respectively as shown in the �gure ??

The poloidal �ux is de�ned as

ψp(p) =

∫
B · dSp (2.3)

Since ψp is a function of the pressure we can adopt ψp as a surface label.(Any
function f(p)) that is constant on a �ux surface is called a surface function

can equally well be adopted as a surface label). We de�ne the toroidal �ux
as

ψt(p) =

∫
B · dSt (2.4)
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It is useful to also de�ne the toroidal current

It(p) =

∫
J · dSt (2.5)

and the poloidal current

Ip(p) =

∫
J · dSp (2.6)

Since these are app functions of the pressure they are all surface functions
and could serve as surface labels. Finally we can de�ne the volume combined
within a constant pressure surface. It is often useful to use the coordinate
system as shown in �gure ??

The coordinates of a point can be equally well written as (R,Z) or (r, θ)
where

R = R0 + r cos θ (2.7)

and

Z = r sin θ (2.8)

Then ψp(r, θ)=constant de�nes a �ux surface. We assume that an inverse
transformation exists (although it may be di�cult to compute) i.e. the radius

of a �ux surface is given by V (ψ) =
∫ 2π

0
dφ
∫ 2π

0
dθ
∫ r̂(θ,ψ)

0
(R0 + r cos θ)rdr We

now proceed to derive the equation that describe axially symmetric force
balance in a torus.

1. ∇ ·B = 0

2. Ampere's law, µ0J = ∇×B and
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3. Force balance, ∇p = J×B

1. ∇ ·B = 0 The total magnetic �eld is B = Bp + Bφêφ where Bp is the
poloidal �eld containing the R and Z components. Since the system is
independent of φ we have

1

R

∂

∂R
(RBR) +

∂BZ

∂Z
= 0 (2.9)

Since B = ∇×A we have

BR = −∂Aφ
∂Z

(2.10)

and

BZ =
1

R

∂

∂R
(RAφ) (2.11)

If we de�ne the stream function ψ = RAφ then 2.9 will be satis�ed
automatically. The poloidal �eld can be expressed as

Bp =
1

R
∇ψ × êφ (2.12)

The stream function can be related to the poloidal �ux by noting that
the latter is a measure of the �ux of BZ passing through the midplane of
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torus (Z=0) between the shifted center of the surfaces Ra and another
radius Rb > Ra as shown in the �gure ??

Then

ψp =

∫ 2π

0

dφ

∫ Rb

Ra

RdRBZ(R, 0) (2.13)

= 2π

∫
RdR

1

R

∂ψ

∂R
‖Z=0 (2.14)

2πψ(Rb, 0) (2.15)

where we have set ψ(Ra, 0) = 0. Therefore we can and will from now
on label the �ux surface with ψ.

2. Ampere's law, µ0J = ∇×B. Using the identites ∇ · êφ = 0,∇× êφ =

êZ/R and ∇êφ = −φ̂êR/R we have

µ0J = ∇×
(

1

R
∇ψ × êφ +Bφ|hateφ

)
(2.16)

= µ0Jφêφ +
1

R
∇ (RBφ)× êφ (2.17)

where the toroidal current density is

µ0Jφ = −∇ ·
(

1

R
∇ψ
)

(2.18)
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It is customary to de�ne the operator ∆∗ψ as

∆∗ ≡ R∇ ·
(

1

R
∇ψ
)

= R
∂

∂R

(
1

R

∂ψ

∂R

)
+
∂2ψ

∂Z2
(2.19)

so that

µ0Jφ = − 1

R
∆∗ψ (2.20)

3. Force Balance, ∇p = J × B. Since there is no φ dependence we have
Bp · ∇p = 0. Using (2.12) (∇ψ × êφ) · ∇p = 0 or

(∇ψ ×∇p) · êφ = 0 (2.21)

This expression vanished identically if p = p(ψ) as it must since by
construction the pressure is constant on �ux surfaces.

Similarly since J · ∇p = 0 it follows from 2.16 that

[∇ (RBφ ×∇p)] · êφ = 0 (2.22)

so that RBφF (ψ) which we could not anticipate. The function F (ψ) is
related to the total poloidal current (plasma plus coil) �owing between
the major axis of the torus R = 0 and any radius Rb:

Ip =

∫
Jp · dS

=

∫ 2π

0

dφ

∫ Rb

0

RdRJZ(R, 0)

= 2π

∫ Rb

0

RdR
1

R

∂

∂R
(RBφ) ‖Z=0

= 2πRBφ(Rb, 0)

= 2πF (ψ) (2.23)

The expression for force balance ∇p = J×B is then

p′∇ψ =

(
Jφêφ +

1

Rµ0

F ′∇ψ × êφ +Bφêφ

)
(2.24)

where (..)′ denotes di�erentiation with respect to ψ. After some vector
algebra this becomes

p′ = − 1

µ0R2
(∆∗ψ + FF ′) (2.25)
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or

∆∗ψ = −µ0R
2p′ − FF ′ (2.26)

Equation 2.26 is called the Grad-Shafranov equation. It is one of the
most famous equation arising from MHD. It is a second order partial
di�erential equation that given the functions p(ψ) and F (ψ), describes
equilibrium in an axisymmetric torus. The functions p(ψ) and F (ψ)
are completely arbitrary and must be determined from considerations
other than theoritical force balance.

At least in principal, given the functions p(ψ) and F (ψ) along with the appro-
priate boundary conditions (generally that ψ is speci�ed on some boundary
) Equation 2.26 can be solved for ψ(R,Z). This gives the equilibrium �ux
distribution. However it is important to note that functions p and F can
be (and generally are) nonlinear so that these solutions are not guaranteed
to either exist or to be unique, there may be no solution or many solutions
satisfying both (2.26) and boundary conditions.

As an example of the character of the solutions of the Grad-Shafranov
equation, we consider the linear case F=constant (F ′ = 0) and

p′ = constant =
8ψ0

µ0R2
0

(
1 + α2

)
(2.27)

where ψ0 = ψ(R0, 0) and α is a constant. Then it can be veri�ed that the
solution of the equation 2.26 is

ψ(R,Z) =
ψ0R

2

R4
0

(
2R2

0 −R2 − 4α2Z2
)

(2.28)

Surfaces of constant ψ for α = 1 are shown in the �gure ??

The �ux surfaces are closed and nearly circular near the magnetic axis at
R0. They remain closed by become non-circular shaped when ψ/psi0 > 0 and
become open when ψ/ψ0 < 0. The surface ψ/ψ0 = 0 is called a separatrix,
it separates the regions of closed an open �ux surfaces. The constant α
determines the shape of the closed �ux surfaces. As α increases from 1 they
become more elongated and vice versa. The boundary of the plasma is de�ned
as p = 0. The function p(ψ) can be adjusted by adding a constant so that
any surface ψ/ψ0=constant can be the boundary. Finally since F=constant,
Bφ 1/R
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Since the Grad-Shafranov equation is nonlinear there are no general ex-
istence or uniqueness proofs available. There may be one solution, no solu-
tions or multiple solutions depending on the speci�c forms of p(ψ) and F (ψ).
Points in parameter space where solutions coalesce or disappear are called
bifurcation points. I would present a speci�c example of this behavior.

Consider the case of a tall thin toroidal plasma with large aspect ratio.
The plasma is surrounded by a conducting wall as shown in �gure ??
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We assume R0 >> a and L >> a and write ∆∗ψ as

∆∗ψ =
∂2ψ

∂R2
− 1

R

∂ψ

∂R
+
∂2ψ

∂Z2
(2.29)

Since R only varies relatively slightly within the plasma we have ∂/∂R 1/a
,(1/R)∂/∂R 1/aR0 and ∂/∂Z 1/L. Then to lowest order,∆∗ψ ∂2ψ/∂R2 and
equation (2.26) becomes

d2ψ

dR2
= −µ0R

2p′ − FF ′ = −S ′ (2.30)

Where S(ψ) = µ0R
2p(ψ) + F 2(ψ)/2 is a nonlinear function of ψ here chosen

to be

S(ψ) = −C(ψ − ψp) for ψ < ψp

= 0 otherwise (2.31)

The �ux at the plasma boundary is ψp and the �ux at the wall is zero ψ is
negative everywhere;C is constant. This is sketched in the �gure ??

The function S ′ is sketched in the following �gure ??
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Now let x = R−R0. Then Equation 2.31 is

d2ψ

dx2
= 0 ψ > ψp (2.32)

= C ψ < ψp (2.33)

In the vacuum region, ψ > ψp, the solution is

ψ> = αx+ β (2.34)

and in the plasma ψ < ψp, the solution is

ψ< =
1

2
Cx2 + γx+ δ (2.35)

Let the wall be located at xwall = Rwall − R0. The solution must satisfy the
boundary condition ψ> = 0 at x = xwall.Since Equation 2.32 os symmetric
in x, the solution must be symmetric about x = 0. The solution must be
continous at x = xp. Further, Bz = dψ/dx must be continous across the
boundary of the plasma at x = xp. The solution pro�le is sketched in the

�gure ??
Combining these conditions yeilds a quadratic equation for the location

of the plasma boundary xp whose solution is

xp =
xwall

2

[
1±

√
1− 4|ψp|

x2
wallC

]
(2.36)

There are two possible solutions for the location of the plasma/vacuum
boundary. The solution associated with the positive sign is called the deep
solution and the solution associated with the negative sign is called the shal-
low solution. These are sketched below ??

In the shallow solution, the plasma is con�ned in the region 0 6 x 6
xshallow. For the deep solution the con�nement region is 0 6 x 6 xshallow.
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From equation 2.36 we see that when 4|ψp|/x2
wallC > 1 there are no real

solutions and equilibrium is impossible. This occurs when

C <
4|ψp|
x2
wall

(2.37)

The quantity C0 = 4|ψp|/x2
wall is called the bifurcation point for the equilib-

rium. Above this value of C there are two solutions. These solutions merge
at the bifurcation. For values of C below the bifurcation point there are no
solutions. When C → ∞,xdeep → xwall and xshallow → 0 so that the deep
solution survives.
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Chapter 3

Methods

3.1 Introduction

For transport simulations of high beta(poloidal betas on order of the aspect
ratio), non circular tokamak plasmas, it is important to have a computation-
ally fast, yet su�ciently accurate method for determining the �ux surface
geometry. Repeatedly solving the two dimensional grad-shafranov equation
for evolving �ux surface geometry can signi�cantly increase the computer
time and storage requirements of a transport code. Variational method to
�nd approximate solutions to the grad-shafranov equation is studied which is
computationally e�cient. The �ux surface coordinates (R,Z) are expanded
in Fourier series in a poloidal angle θ. Through the use of variational method
the Fourier amplitudes of R and Z are obtained bysolving a set of coupled
ordinary di�erential equationss, which are moments of Grad-Shafranov equa-
tion. The approximation of �ux surface geometry obtained in this way is suf-
�ciently accurate for transport simulations and may also be used to evaluate
magnetohydrodynamic stability criteria.

3.2 Analytical formulation of the inverse equi-

librium problem

3.2.1 Coordinate transformation

In considering a two-dimensional axisymmetric toroidal system with nested
magnetic surfaces, It is convenient to transform the cylindrical coordinates
(R,Z) to the �ux surface representation (ρ, θ) where ρ = ρ(ψ) is a �ux surface
label, θ is a poloidal angle that increases by 2π the short way around the
torus and ψ is poloidal magnetic �ux enclosed between the �ux surface ρ(ψ)
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and the axis of symmetry. The angle θ is arbitrary except that Jacobian
of the transformation is �nite. Assuming that the �ux surfaces up-down
symmetry [Z(ρ, θ) = −Z(ρ,−θ)] it is possible to represent the coordinate
transformation as a Fourier series in θ

R(ρ, θ) =
∞∑
n=0

Rn(ρ) cosnθ (3.1)

Z(ρ, θ) =
∞∑
n=1

Zn(ρ) cosnθ (3.2)

The amplitudes R0(ρ), R1(ρ) and Z1(ρ) describe the shift the minor radius
and the ellipticity of the �ux surfaces respectively whereas the amplitudes
R2(ρ) and Z2(ρ) describe the triangularity of the �ux surfaces.e.g If only the
amplitudes R0(ρ), R2(ρ) and Z1(ρ) are retained, the �ux surfaces are shifted
ellipses.

3.2.2 Variational principle

The fourier series for R and Z may be substituted into the Grad-shafranov
equation expressed in (ρ, θ) coordinates (the inverse of the grad-shafranov
equation) to yield an in�nite system of coupled ordinary di�erential equa-
tions for the expansion coe�cients. In practice, only a �nite number N of
amplitude functions will be retained to obtain an approximate solution for
the �ux surface geometry. Since the inverse grad-shafranov equation is non
linear in R and Z, the resulting harmonic coupling generally yields (for �-
nite N) more equations than the number of fourier amplitudes. Therefore
a method must be determined for selecting the appropriate linear combi-
nation of these equations that will yield the best approximate solution. A
variational principle now be introduced from which the optimum ordinary
di�erential equations for the fourier amplitudes of the inverse mapping may
be obtained. A related approach has been developed by halt and applied to
particular case of shifted elliptical surfaces.
Consider the Grad-shafranov equation

∆∗ψ(R,Z) = −(8π2R)Jφ (3.3)

where Jφ is the toroidal component of the current density

Jφ = 2πcR
[
p
′
(ψ) + FF

′
(ψ)/πc2R2

]
(3.4)

27



F is the poloidal current enclosed between the axis of symmetry and the
magnetic surface of interest and

∆∗ψ(R,Z) = R2∇ ·
(
∇ψ
R2

)
=
∂2ψ

∂R2
− 1

R

∂ψ

∂R
+
∂2ψ

∂Z2
(3.5)

Where p′(ψ) = dp/dψ and F ′(ψ) = dF/dψ
Now consider the volume integral

Q =

∫
V

dRdZL(ψ, ψR, ψZ , R) (3.6)

Where ψR = ∂ψ/∂R, ψZ = ∂ψ/∂Z and L is lagrangian

L = R

(
B2
p

8π
− B2

t

8π
− p(ψ)

)
(3.7)

and integration is over entire plasma volume V .
Here Bp and Bt are poloidal and toroidal magnetic �eld components, respec-
tively

Bp = |∇ψ|/2πR (3.8)

Bt = 2F (ψ)/cR (3.9)

Using the fact that operator R−2∆∗ is self adjoint it may be shown that Q
is stationary with respect to variations of ψ although subject to constraint
δψ=0 for satisfying the grad-shafranov equation. Conversely, the euler equa-
tion

∂L

∂ψ
− ∂

∂R

∂L

∂ψR
− ∂

∂Z

∂L

∂ψZ
= 0 (3.10)

Which reproduces the grad-shafranov equation. Note that B2
p/8π ∝ |∇ψ|2

plays the role of kinetic energy in eq 3.7 and B2
t /8π + p(ψ) is e�ective po-

tential energy. Indeed, the Hamiltonian corresponding to the Lagrangian L
is proportional to the total energy in the equilibrium system.

Now consider the transformation in eq 3.6 of the independent (integration)
variables (R,Z) to (ρ, θ) coordinates

Q =

∫ a

0

∫ 2π

0

dρdθL̃(R,Rρ, Rθ, Zρ, Zθ, ψ, ψρ) (3.11)

Here ρ = a denotes the outermost �ux surface and the subscripts ρ and θ
denote the di�erentiation with respect to these variables . The transformed
lagrangian is

L̃ =
√
g

(
1

32π3

gθθ
g

[ψ′(ρ)]
2 − F 2(ψ)

2πc2R2
− p(ψ)

)
(3.12)
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Where
√
g is the Jacobian of the transformation from (R, φ, Z) to (ρ, θ, φ)

coordinates φ is ignorable toroidal angle

√
g = Rτ (3.13)

τ = RθZρ −RρZθ (3.14)

and gµν for (µ, ν) ∈ (ρ, θ) are the elements of the metric tensor

gµ,ν = RµRν + ZµZν (3.15)

and
gφφ = R2 (3.16)

All other metric elements are zero. In the representation of Q given by eq
3.11, the quantities R, Z and ψ are interpreted as dependent variables.
Unlike the �xed boundary case, the shape of boundary surface is not known
but must be determined self-consistently from the currents in the external
shaping coils which enter into the problem through the boundary condition
at the outermost �ux surface at ρ = a

ψ(a) = ψ̃[r̃(a, θ)] (3.17)

where

ψ̃r̃ =

∫
dr̃′G(r̃/r̃′)Je(r̃

′) +

∫
Ωp

dr̃′G(r̃/r̃′)Jp(r̃
′) (3.18)

Where Je is the toroidal current density due to external shaping coils r̃ =
(R,Z), G(r̃/r̃′) is the Green's function for a toroidal current source.

G(r̃/r̃′) =
4π

c

(RR′)1/2

κ

[
(2− κ2)K(κ)− 2E(kappa)

]
(3.19)

Where K(κ) and E(κ) are complete integrals, and

κ2 =
4RR′

(R +R′)2 + (Z − Z ′)2
(3.20)

G(r̃/tilder′) satis�es the equation

∆∗G(r̃/r̃′) = −8π2R

c
δ(R−R′)δ(Z − Z ′) (3.21)

For a �lament distribution of external sources eqn 3.18 reduces to

ψ̃(r̃) =
M∑
m=1

G(r̃/r̃′em)Iem +

∫
ωp

dr̃′G(r̃/r̃′)Jp(r̃
′) (3.22)
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Where Iem and r̃em denote the current strength and the position of the m
external current �lament, respectively. Making use of surface average pf the
toroidal component of Ampere's law

ψ′(ρ) = −4π

c

I(ρ)〈
gθθ
g1/2

〉 (3.23)

the relationship Jp = −c∆∗ψ/8π2R and equation3.21, the surface integral
appearing in 3.25 may be reduced to a line integral. Here I(ρ) is the toroidal
current enclosed by the �ux surface ρ. For r̃ outside of Ωp equation 3.25 may
be reduced to

ψ̃(r̃) =
M∑
m=1

G(r̃/r̃em)Iem +
I(a)〈
gθθ
g1/2

〉
|a

∫ 2π

0

dθ′

2π

gθθ(a, θ
′)

g1/2
G [r̃/r̃′(a, θ′)] (3.24)

And for r̃ inside ωp equation 3.18 may be reduced to

ψ̃[r̄(ρ, θ)] =
4π

c

a∫
ρ

dρ′
I(ρ′)〈
gθθ
g1/2

〉
+

M∑
m=1

G [r̄(ρ, θ)/r̄em] Iem +
I(a)〈
gθθ
g1/2

〉
|a

2π∫
0

dθ′

2π

gθθ(a, θ
′)

g1/2
G [r̄/r̄′(a, θ′)] (3.25)

Since the surface integral appearing in equation 3.18 is expensive to evaluate
numerically. It is advantageous to use 3.24 and 3.25 instead of equation 3.18
to evaluate ψ̃(r̃)

SinceQ is scaler, its value must be independent of the particular coordinate
representation used in its evaluation. Thus, the form for Q given in eq 3.11
must be stationary with respect to variations of the dependent variables R
and Z which are subjected to the free boundary condition the variation of Q
with respect to these variables yields

δQR =

∫ a

0

∫ 2π

0

dρdθδR

(
∂L̃

∂R
− ∂

∂ρ

∂L̃

∂Rρ

− ∂

∂θ

∂L̃

∂Rθ

)
(3.26)

= −
∫ a

0

∫ 2π

0

dρdθδRRZθĜ (3.27)
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and

δQZ =

∫ a

0

∫ 2π

0

dρdθδZ

(
− ∂

∂ρ

∂L̃

∂Zρ
− ∂

∂θ

∂L̃

∂Zθ

)
(3.28)

=

∫ a

0

∫ 2π

0

dρdθδZRRθĜ (3.29)

where

Ĝ =
ψ′(ρ)

16π3
√
g

[
∂

∂ρ

(
gθθ√
g
ψ′(ρ)

)
− ∂

∂θ

(
gρθ√
g

)
ψ′(ρ)

]
+ p′(ρ) +

FF ′(ρ)

πc2R2
(3.30)

Note that Ĝ = ψ′(ρ)(16π3R2)−1(∆∗ψ + 8π2RJφ/c) is proportional to the
equilibrium operator in 3.3 expressed in (ρ, θ) coordinates. It follows that Q
is stationary is R(ρ, θ) or Z(ρ, θ) satish�es inverse grad-shafranov equation

Ĝ = 0 (3.31)

and that conversely the euler equation

∂L̃

∂R
− ∂

∂ρ

∂L̃

∂Rρ

− ∂

∂θ

∂L̃

∂Rθ

= 0 (3.32)

or

− ∂

∂ρ

∂L̃

∂Zρ
− ∂

∂θ

∂L̃

∂Zθ
= 0 (3.33)

reproduces the inverse grad-shafranov equation. The fact that varying either
R or Z yields the same eqn 3.31 expresses the arbitrariness of the poloidal
angle θ. For example if θ is chosen such that (ρ, θ) coordinates are orthogonal
eq 3.31 together with the orthogonality condition ∇ρ · ∇θ = −τ−2(RρRθ +
ZρZθ) = 0 yield the set of inverse equilibrium equations used by vabisch-
chevich et al. The variational principle given in eqn 1.11 can be generalized
to the free boundary case by introduing a surface term to the functional Q

Q =

a∫
0

2π∫
0

dρdθL̃(R,Rρ, Rθ, Zρ, Zθ, ψ, ψρ)+η

2π∫
0

dθψ̃[r̄(a, θ)]

[
ψ̃[r̄(a, θ)]

2
− ψ(a)

]
(3.34)

Where L is lagrangian from equation 1.7 and η is constant. Unlike the �xed
boundary case, the R and Z variations are now unconstrained. Varying Q
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with respect to the dependent variables R and Z yields

δQ =

a∫
0

2π∫
0

dρdθĜ(−RZθδR +RRθδZ)

+

2π∫
0

dθ

(
B2

8π
(RZθδR−RRθδZ) + η

{
ψ̃[r̄(a, θ)]− ψ(a)

}
(uRδR + uZδZ)

)
ρ=a

(3.35)

Where uR = δψ̃[r̃(a, θ)]/δR and uZ = δψ̃[r̃(a, θ)]/δZ. For simplicity the
boundary surface label a was treated as constant in the variations. Note
that if ˜ψ[˜(a, θ)]r can be expressed explicitly in terms of r̃(a, θ), uR and uZ
are the partial derivatives of ψ̃[r̃(a, θ)] with respect to R(a, θ) and Z(a, θ)
respectively. Secondly although the term RZθδR − RRθδZ = g1/2δρ(R,Z)
vanishes at the boundary ρ = a when R and Z are subjected to the �xed
boundary constraint, it does not in the free boundary case.

Thus the variational principle derived here may be summarised as follows,
In a two-dimensional axisymmetric toroidal system, the equilibrium �ux sur-
face geometry described by ψ(R,Z) or parametrically by R(ρ, θ) and Z(ρ, θ)
is such that the volume integral Q de�ned in eqn 3.6 is stationary

3.3 Moments equations for the inverse map-

ping

3.3.1 Determination of fourier expansion coe�cients

The variational principle provides well de�ned algorithm to calculate the
fourier amplitudes Rn(ρ) and Zn(ρ) when n is �nite by requiring that Q be
stationary with respect to the variations of these amplitudes. Varying Q with
respect to a particular amplitude Rn(ρ) or Zn(ρ) yields the euler equation
describing Rn(ρ) or Zn(ρ)〈

∂L̃

∂Rn

− ∂

∂ρ

∂L̃

∂R′n

〉
= 0 n = 0, 1, ... (3.36)

or 〈
∂L̃

∂Zn
− ∂

∂ρ

∂L̃

∂Z ′n

〉
= 0 n = 1, 2, ... (3.37)
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where the prime denotes the di�erentiation with respect to ρ and 〈A〉 is the
poloidal angle averaging operator de�ned for any vector A as

〈A〉 =

∫ 2π

0

dθ

2π
A (3.38)

This operator is related to the �ux surface averaging operator 〈A〉f
〈A〉f = 〈√gA〉 / 〈√g〉 (3.39)

Although L̃ is de�ned in 3.12 does not depend on the cpprdinate Z whereas it
does depend on the amplitudes Zn through Zθ.These Equations can be shown
to be moments of the inverse grad-shafranov equation with basis functions
MRn = RZθ cosnθ MZn = RRθ sinnθ or their combination depending on the
choice of the poloidal angle θ as in the �xed boundary case discussed above.
Moreover the outer boundary conditions can be shown to be moments of
equation 3.42 with basis functions TRn = uR cosnθ ,TZn = uZ sinnθ or their
combinations, depending on the choice of θ This explains the appearance of
the �rst term in eqn 3.37
By varying all the amplitudes of fourier series R and Z independently, the
euler equations 3.36 3.37 yield〈

MRnĜ
〉

= n = 0, 1, ...nR (3.40)

, 〈
MZnĜ

〉
= n = 1, 2...nZ (3.41)〈

TRn [ψ̃(r̃(a, θ))− ψ̃(a)]
〉

= 0 n = 0, 1...nR (3.42)

and 〈
TZn [ψ̃(r̃(a, θ))− ψ̃(a)]

〉
= 0 n = 1, 2...nR (3.43)

The moment equations 3.40 and 3.41 are the same as those in the �xed bound-
ary cases. However equations 3.42 and 3.43 now replace the �xed boundary
conditions. Generally the term uR and uZ must be evaluated numerically
which is computationally expensive. Noting the fact that δψ̃[r̃(a, θ)] is the
variation of ψ̃[r̃(a, θ)] at r̃(a, θ), a convenient approximation to uR and uZ
can be obtained by taking δψ̃[r̃(a, θ)] to be the ψ variation at r̃(a, θ) then

uR = ψ′(ρ)
RZθ
g1/2

(3.44)

and

uZ = ψ′(ρ)
RRθ

g1/2
(3.45)
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These provide an accurate approximation to the boundary conditions given
in 3.42 and 3.43
where

MRn = RZθ cosnθ (3.46)

and
MZn = RRθ sinnθ (3.47)

Alternatively using the convenient Fourier representation

R(ρ, θ) = R0(ρ)−R1(ρ) cos θ +

nR∑
n=2

Rn(ρ) cosnθ (3.48)

Z(ρ, θ) = E(ρ)

nR∑
n=1

Rn(ρ) sinnθ (3.49)

Where the constraint Zn = ERn was imposed the equations for E(ρ) and
Rn(ρ) are respectively: 〈(

nR∑
n=1

RnMZn

)
Ĝ

〉
= 0 (3.50)

〈
MR0Ĝ

〉
= 0 (3.51)〈(

EMZ1+MR1

)
Ĝ
〉

= 0 (3.52)〈
(EMZn −MRn) Ĝ

〉
= 0 n = 2, ...nR (3.53)

Generally the �ux function F (ψ) varies weakly across the plasma cross-
section |F (ρ = a)−F (0)|/|F (0)| βt << 1, where βt is toroidal beta. The �ux
surface geometry is therefore sensitive to small inaccuracies in the prescrip-
tion of the F (ψ) pro�le. For numerical convenience it has been found useful
to eliminate F (ψ) in the moment equations in terms of the total toroidal
current enclosed by a �ux surfaces I(ρ) =

∫
)0ρJ · ∇φdV . Typically I(ρ)

vanishes at the magnetic axis ρ = 0 and increases monotonically to the value
I0 at the plasma edge, where I0 is the toroidal plasma current. I(ρ) may
be related to the poloidal magnetic �eld through the surface average of the
toroidal component of ampere's law

ψ′(ρ) = −4π

c

I(ρ)〈
gθθ/
√
g
〉 (3.54)
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Furthermore the surface averaged pressure balance equation can be used to
eliminate F in terms of I

FF ′(ψ) =
c

4π

〈
gθθ/
√
g
〉〈√

g/gφφ
〉
I(ρ)

(
πc2 〈√g〉 p′(ρ) +

II ′(ρ)〈
gθθ/
√
g
〉) (3.55)

Substituting eqns 3.54 and 3.55 into inverse equilibrium operator

G̃ =
I

2(ρ)

πc2
√
g〈gθθ/

√
g〉

(
∂

∂ρ

gθθ√
g〈gθθ/

√
g〉
− ∂

∂θ

gρθ√
g〈gθθ/

√
g〉

)
+

II
′(ρ)

πc2〈gθθ/
√
g〉

(
gθθ

g〈gθθ/
√
g〉
− 1

gφφ

)
+ p′(ρ)

(
1−

〈√g〉
gφφ〈
√
g/gφφ〉

)
(3.56)

The green's function G(r̃/r̃′) is singular when r̃ approaches r̃′ which is re-
lated to the self inductance of a toroidal current �lament. To remove this
singularity when θ → θ′ the self contribution to the poloidal magnetic �ux
at the boundary surface ψ̃[r̃(a, θ)] is calculated analytically by expanding
G[r̃(a, θ)/r̃′(a, θ′)] about θ. ψ̃[r̃(a, θ)] as given by equation 3.24 can be ex-
pressed as

ψ̃ [r̄(a, θ)] =
M∑
m=1

G [r̄(a, θ)] Iem +
I(a)〈
gθθ
g1/2

〉
|a

 θ−ε∫
0

+

2π∫
θ+ε


dθ′

2π

gθθ(a, θ
′)

g1/2
G [r̄(a, θ)/r̄(a, θ′)] + ψ̃s (3.57)

Where

ψ̃s =
4I(a)R(a, θ)

c
〈
gθθ
g1/2

〉
|a

gθθ(a, θ)

g1/2
ε

[
ln

8R(a, θ)

ε [gθθ(a, θ)]
1/2
− 1

]
(3.58)

where the moment equations 3.40 3.41 can be written explicitly as

dy10r
′′

0 (x) +

nR∑
n=2

[dy1n − E(x)dy2n] r
′′

n(x)−
nR∑
n=1

rnd
y
2nE

′′
(x) =

− βp0d
y
3

p̂2(x)

Î
2
(x)
− dy4 + dy5 +

nR∑
n=1

2dy2nE
′
(x)r

′

n(x) (3.59)

where x = ρ/a
a is the �ux surface label of outermost �ux surface list of the variables sub-
stituted in 3.59

rn(x) = Rn(ρ)/a (3.60)
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p̂(x) = p(ρ)/p0 (3.61)

Î(x) = I(ρ)/I0 (3.62)

βp0 = πc2p0a
2/I2

0 (3.63)

dy1n =

〈(
GS1n −GS8

〈τ̂GS1n〉
〈τ̂GS8〉

)
My

〉
(3.64)

dy2n =

〈(
GS2n −GS8

〈τ̂GS2n〉
〈τ̂GS8〉

)
My

〉
(3.65)

d3
y = 〈τ̂GS8〉2

〈(
GS3 −GS4

〈τ̂GS3〉
〈τ̂GS4〉

)
My

〉
(3.66)

d4
y =

〈(
SS2 −GS4

〈τ̂SS2〉
〈τ̂GS4〉

)〉
(3.67)

d5
y = CS1

〈(
GS8 −GS4

〈τ̂GS8〉
〈τ̂GS4〉

)
My

〉
(3.68)

where My are basis functions i.e ME and MRn

GS1n =
zθθĝθθ
rτ̂ 3

cosnθ (3.69)

GS2n =
rθθĝθθ
rτ̂ 3

sinnθ (3.70)

GS3 = r (3.71)

GS4 = 1/r (3.72)

GS5 = zθ/r
2τ̂ (3.73)

GS6 =
1

rτ̂ 3
[ĝθθ (rxzxθ − rxθzx) + ĝρθ (rθθzx + rθzxθ − rxθzθ − rxzθθ)] (3.74)

GS7 =
1

rτ̂ 2
(rθrxθ + zθzxθ − rxrθθ − zxzθθ) (3.75)

GS8 = ĝθθ/rτ̂
2 (3.76)

CS1 =
1

〈τ̂GS8〉

〈
ĝθθx√
ĝ
− ĝθθrx

r2τ̂
+

(rxzxθ − rxθzx) ĝθθ
rτ̂ 2

〉
(3.77)

SS2 = GS5 +GS6 +GS7 +GS8
Î

′
(x)

Î(x)
(3.78)

where τ̂ ,
√
ĝ,gµν ,r and z are the corresponding normalized quantites.

Given the plasma pressure and toroidal current p(ρ) and I(ρ) respectively eqn
3.59 de�nes a set of coupled second order ODE's for the Fourier amplitude
functions Rn(ρ) and E(ρ) which is calculated tp solve the set of moment
equations with the boundary conditions varying with respect to external
circuit using a shooting technique.
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3.4 Derived quantities

3.4.1 Volume

The di�erential volume is given by

dV =
√
gdρdθdφ (3.79)

Integrating out the variables lead to

dV

dρ
= 4π2 〈√g〉 (3.80)

3.4.2 Flux tube surface area

The surface area enclosing a �ux tube generated by rotating a given �ux
contour completely around 2π radians in the φ direction is given by

S = 4π2 〈√g|∇ρ|〉 (3.81)

3.4.3 Poloidal �ux

The surface average of the toroidal component of Ampere's law gives

χ′(ρ) = −(4π/c)I(ρ)〈
gθθ/
√
g
〉 (3.82)

where χ is de�ned by
|∇χ(ρ)| = 2πRBp (3.83)

3.4.4 Poloidal current

Similarly, the poloidal current enclosed between the axis of symmetry and
the magnetic surface ρ

F (ρ) =
c

2
RBT (R) (3.84)

can be written in terms of the moments by surface averaging the pressure
balance equation 〈√

gG̃
〉

= 0 (3.85)

to give

F 2(ρ) = F 2
0

1 +
1

q2
0A

4

a∫
ρ

dρ〈√
g/gφφ

〉 [2βp0
〈√

g
〉

p0a2
+

I2′

I2
0

〈
gθθ/
√
g
〉]
 (3.86)
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where

F0 =
c

2
RGBT (RG) (3.87)

q0 = F0/I0A
2 (3.88)

and

A = RG/a (3.89)

3.4.5 Toroidal �ux

Φ(ρ) =
4π

c

ρ∫
0

F (ρ)

〈√
g

gθθ

〉
dρ (3.90)

3.4.6 Toroidal current density

jφ(ρ, θ) = −jφ0

〈
gθθ/
√
g
〉
I0

I(ρ)

[
βT0ap

′
(ρ)[R(ρ, θ)/RG]2

p0

+
aFF′(ρ)

F 2
0

]
RG

R(ρ, θ)
(3.91)

where

jφ0 = F 2
0 /2πaRGI0 (3.92)

and

βT0 = πp0R
2
Gc

2/F 2
G (3.93)

3.4.7 Equivalent Current density

j̃(ρ) = 〈√gjφ(ρ, θ)/R〉 / 〈√g/R〉 (3.94)

where

I(ρ) =

ρ∫
0

j̃(ρ)dA (3.95)

with

dA = 2π 〈τ〉 dρ (3.96)

3.4.8 Safety factor

q(ρ) =
dΦ

dχ
= q0A

2 F̂

Î

〈√
g

gφφ

〉〈
gθθ√
g

〉
(3.97)
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3.5 Numerical Formulation

The set of moment eqn 3.59 is a coupled system of second order ODEs for the
unknown r0(x),rn(x) n ≥ 2 and E(x). A solution requires two boundary con-
ditions for each moment equation.The so called 'Fixed boundary condition'
provides one of these per equation by specifying the shape of the outermost
�ux surface

rn(a) = rna (n = 0, 2, ...) (3.98)

E(a) = Ea (3.99)

The remaining boundary conditions are obtained by requiring that the poloidal
megnetic �ux χ(R,Z) be analytic at magnetic axis.i.e. that the �ux contours
be concentric ellipses near the magnetic axis. They are given by

r0(0) = rm (3.100)

E(0) = Em (3.101)

rn(0) = 0 (n = 2, ...) (3.102)

and
r
′

0 = 0 (3.103)

E
′
(0) = 0 (3.104)

r
′

n(0) = 0 (n = 2, ...) (3.105)

The conditions (3.100)-(3.105) de�ne ρ = 0 as a critcal point of the system
and special numerical steps must be taken to avoid this singularity. The
solution space in ρ is contracted from [0, a] to [δ0a, a] where δ0 is a small
positive number. The analytic properties of the solutions of rn,E near the
origin ρ = 0 are then used to rewrite eqns 3.100-3.105 as

r0(δ0) = rm − λ1δ
2
0 (3.106)

rn(δ0) = rn0(δ
n
0 )2 (n = 2, ...) (3.107)

and
E(δ0) = Em + λ2δ

2
0 (3.108)

Where λ1 and λ2 are arbitrary small positive constants. The solutions ob-
tained are insensitive to exact values of λ1 and λ2.
The corresponding boundary conditions on the derivatives are then

r
′

0(δ0) = 2λ1δ0 (3.109)
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r
′

n(δ0) = 2nrn0δ
2n−1
0 (n = 2, ...) (3.110)

E
′
(δ0) = 2λ2δ0 (3.111)

The set of amplitude functions rn and En is in�nite. To model an equilibrium
plasma at �nite beta, It is useful to consider only a �nite number of amplitude
functions rn. Our experience and that of others indicate that the set r0,r2,E
with nR = 2 is su�cient for most cases. The resulting �nite set of equations
can be written as

Ay
′′

= b (3.112)

Where the elements of matrix A

A =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 (3.113)

are functions of the unknown vector y

y = [r0(x), E(x), r2(x)] (3.114)

and its �rst derivatives.The vector b is a function of y, y′ and the driving
functions p′(x),I(x) and I ′(x)

To solve the system of equations (3.112), `the well known shooting method`
is employed using NAG's subroutine D02AGF . The system is rewritten as
a set of six �rst order ODE's with solution vectors de�ned now as explicit
functions of a parameter vector p̂

ỹ = (y1, y
′

1, y2, y
′

2, y3, y
′

3) = ỹ(x; p̃) (3.115)

Ãỹ
′
= b̃ (3.116)

with the components of p̂ de�ned in terms of the six remaining unknown
boundary conditions. A solution of the ODE system is obtained by solving
a parameter estimation problem for p̂.
The numerical method used to solve the set of moment equations through
3.59 is similar to that used in �xed boundary case which is discussed in detail
in Ref 1 and Ref 2. The moment equation through 1alp through 2alp are
rewritten as a set of �rst order di�erential equations. The �xed boundary at
ρ = a are now replaced by the free boundary conditions given in eqns 3alp
through 4alp and the equations relating the boundary surface label a to the
limiter coordinates. The system of equation is then posed as a parameter
estimation problem and is solved using a shooting technique. The di�erential
equations are integrated using runge-kutta merson method and iterated using
a modi�ed Newton's method
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Chapter 4

Results

Figure 4.1: Flux surface contour in Cylinderical coordinate system

All computational work is done fortran 77 and plotting is done in python.
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(a) caption 1 (b) caption 2
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Chapter 5

Discussion

This code is patched yet to calculate the �ux surfaces while including the
external circuits in the system which will be further extended to calculate
the �ux and other plasma parameter a X point (separatrix) and strike points
that is the location of plasma particle when it hits the divertor plate. It
will be included in 2-D vmoms code and extended to arbitrary order of mo-
ments simultaneously too. The amount of computational time required for
the moment method depends on the number of amplitudes functions being
determined and on the relative error desired so that Fourier amplitudes are
calculated upto order of two . The moment method is faster by a factor of
10 or more in computational speed while reproducing the same equilibrium
with a degree of accuracy su�cient for many purposes.

45



References

[1] V. D. Shafranov, Sov. Phys. JETP 6, 545 (1958).

[2] V. D. Shafranov, Zh. Eksp. Teor. Fiz. 33, 710 (1957).

[3] L.L. Lao,S.P. Hirshman and R.M. Wieland, Phys. Fluids 24 (1981) 1431.

[4] L.L. Lao, R.M. Wieland, W.A. Houlberg and S.P. Hirshman, Copmut.
Phys. Comm. 27, 129 (1982)

[5] Numerical Algorithms Group (NAG) Library Manual, Downer's Grove,
IL, Mark 8 (1981).

[6] J.L. Johnson et. al , J. Comput. Phys. 32, 212 (1979)

[7] A. Portone, Nucl. Fusion 44, 265 (2004)

[8] R. Srinivasan, S. Chaturvedi, S.P Deshpande Fusion. Engine. and Design
70, 269 (2004)

[9] R. Srinivasan, L.L. Lao, M.S. Chu, Plasma Phys. Control. Fusion, 52,
(2010), 035007

[10] J. P. Freidberg, Rev. Mod. Phys. 54, 801 (1982).

[11] L.D. Landau, E.M. Lifshitz, Fluid Mechanics, Second Edition, Volume
6

[12] L.S. Solov'ev, JETP, 6,26 (1968)

46


	Introduction
	Confinement Systems
	Magnetic confinement
	The tokamak concept
	The tokamak


	Theory
	Methods
	Introduction
	Analytical formulation of the inverse equilibrium problem
	Coordinate transformation
	Variational principle

	Moments equations for the inverse mapping
	Determination of fourier expansion coefficients

	Derived quantities
	Volume
	Flux tube surface area
	Poloidal flux
	Poloidal current
	Toroidal flux 
	Toroidal current density
	Equivalent Current density
	Safety factor

	Numerical Formulation

	Results 
	Discussion
	References

