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Abstract

Using ab initio density functional theory, we have studied the electronic and magnetic prop-

erties of graphene and semi-hydrogenated graphene supported on oxygen adsorbed Ni(111)

surface. For the mono-layer coverage of oxygen atoms it is observed that the oxygen in-

tercalation decouples graphene from Ni(111)-O substrate and the Dirac cone at K point

shifted above the Fermi energy. Interaction of semi-hydrogenated graphene is stronger with

Ni(111)-O as compared to clean Ni(111)-O surface. A �ve-fold increase in magnetic moment

of surface Ni atoms is observed. For the half mono-layer coverage of oxygen it is seen that

that induced magnetic moment on graphene increases signi�cantly.
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Chapter 1

Introduction

Magnetism is usually associated with systems having unpaired localized d or f electrons.

However, recent studies have shown that certain modi�ed forms of graphene (s and p elec-

trons) also possess magnetic properties. Graphene is a 2-dimensional sheet of sp2 hybridized

carbon atoms forming a honeycomb lattice. Even though the theoretical studies of graphene

has been going on for quite long, it was only in 2004 that Geim and Novoselov could isolate

the 2-d sheets of graphene with an adhesive tape.[1].

Graphene has two carbon-carbon bonds, namely σ and π. The valance shell con�guration

for carbon atom is 2s2,2p1x,2p
1
y. In the sp2 hybridization, the s, px and py form three σ bonds

in the plane of the sheet and pz orbitals forms a π bond in the direction perpendicular to the

sheet, as shown in Fig.1(a). The σ bond is responsible for the large binding energy and elastic

properties while the π bond gives rise to interesting electronic properties of graphene.The

bonding and anti-bonding orbitals of σ bond has a very large energy gap of ∼ 12 eV. On

the contrary, the bonding and anti-bonding states of π bond have energy levels near Fermi

level( EF ).

Graphene is a semi-metal. The lattice of graphene can be seen as two interpenetrating

triangular lattices with two atoms per unit cell (�g 1(a)). Within the assumption of nearest

neighbor coupling in the tight binding model [2], the dispersion relation for graphene is shown

in �g 1(b). At the K point of the Brillouin zone (BZ) graphene shows a linear dispersion.[3].
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(a) (b) (c)

Figure 1.1: (a) Two-dimensional crystalline lattice of graphene. (b) Band structure of graphene

obtained by means of �rst-principles calculations. The bands are labeled according to their symme-

try. The zero energy corresponds to the Fermi level. (c) Dirac cones of graphene in the hexagonal

Brillouin zone. [ G M Sipahi et al J. Phys.: Condens. Matter 26 104204 (2014) ]

The charge carriers in graphene can travel ballistically over great distances without scat-

tering. Moreover, its unique electronic structure gives rise to exceptional transport and spin-

�ltering properties,[4]. These unusual electronic properties make graphene a promising can-

didate for future nano-electronics. However, graphene is a semi-metal with the conduction

and valence band forming the Dirac cone at the K-point of the Brillouin zone (BZ). To

use graphene as a material for semiconductor spintronics, it is desirable not only to make

graphene magnetic but also to open up the band gap.

Chemical functionalization of graphene is an e�ective way in which the electronic and

magnetic properties of graphene can be modi�ed. For instance, hydrogenating the free-

standing graphene makes it an insulator [5] while semi-hydrogenation of the graphene sheet

turns it into a ferromagnetic semiconductor [6]. Moreover, for any device application of

graphene, making contacts with metals is necessary. In this perspective, growth of graphene

on Ni(111) and Co(0001) surfaces is of particular interest since there is almost perfect lattice

matching between the substrate and the graphene sheet. This minimizes the e�ect of strain

on the supported graphene sheet.

Studies have been done to understand the electronic and magnetic properties of graphene

supported on Ni(111) surface [7] which show that there is a small induced magnetic moment
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on graphene and the band gap at the K point opens up. The graphene becomes ferrimagnetic

with the average magnetic moment of the clean graphene sheet aligned parallel to that of

the surface Ni atoms. Upon hydrogenation of the graphene sheet the magnetic moment of

graphene increases and the band gap at the K point increases further.

The interaction between the graphene sheet and the substrate can be modi�ed by intro-

ducing atoms like Fe, O etc between the graphene sheet and the substrate. Using ab initio

density functional theory calculations we study how intercalation of oxygen e�ects the elec-

tronic properties of the supported graphene and semi-hydrogenated graphene (Graphone).
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Chapter 2

Theoretical Methods

2.1 Introduction

Calculations of the electronic structure of a material give us microscopic insight into its

structural, mechanical and microscopic properties. The structure and properties of a system

can be calculated once we solve the Schrödinger equation which is given as :

HΨ = EΨ (2.1)

where Ψ is the many body wave function and is a function of the positions of the electrons

and nuclei which constitute the system, E is the eigenvalue and H is the Hamiltonian of

the system. Let us denote the position and momentum of the ith nucleus by Ri and Pi,

respectively, and of j th electron by rj and pj. The mass of each nucleus be M and nuclear

charge be Ze. The total Hamiltonian is as follows:

H = -
∑N

i=1
~2
2Mi

∇2
i +

−~2
2m

∑n
j=1 ∇2

j +
(Ze)2

2

∑
i,i′

1
|Ri−Ri′ |

+
∑

j,j′(
e2

2
) 1
|rj−rj′ |

−Ze2
∑

i,j
1

|rj−Ri|

(2.2)
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The �rst two terms correspond to the kinetic energy of the nuclei and the electrons (TN

and Te) respectively. The third and fourth terms are the nuclei- nuclei (VNN) and electron-

electron (Vee) repulsion energy and the last term is the electron-nuclei attractive potential

energy (VeN).

(TN + Te + VNN + Vee + VeN)Ψ(R, r) = EΨ(R, r) (2.3)

where Ψ(R, r) is the many-body wave function.

2.2 The Born-Oppenheimer Approximation

In the Hamiltonian though the KE terms are one-body terms, the potential energy terms

being two-body interactions makes it impossible to solve it exactly. However, the equation

can be simpli�ed by taking advantage of di�erence in masses of electron and nuclei. Since the

nuclei are much more heavy than electrons they move much slower than the electrons(typical

ratio M/m is ∼ 2000 or more). As a result, the nucleus can be approximated to be static

related to electrons and we can consider the electrons as moving in the background �eld of

�xed nuclei. This is called as Born−Oppenheimer or adiabatic approximation.[8]. This

allows the decoupling of nucleus and electron degrees of freedom.The wave function can be

written as product of wave functions of electronic and nuclear components.

Ψ = ψnuclear ∗ ψelec (2.4)

Assuming �rst that the nuclei are �xed we can solve for electron motion. Under this

framework, nuclear kinetic energy can be assumed to be zero and their potential energy

(VNN) is basically a constant for a given con�guration. Hence the electrons move in a static

potential background provided by the static ions.

The Schrödinger equation (electronic part) becomes:

(
−~2
2m

∑n
j=1 ∇2

j +
∑

j,j′(
e2

2
) 1
|rj−rj′ |

− Ze2
∑

i,j
1

|rj−Ri|

)
ψelec(rk) = Eelec(Ri)ψelec(rk)

7



(2.5)

Once the electronic part is solved for a �xed position of ions,the ionic part may now be

obtained from:

(
−

N∑
i=1

~2

2Mi

∇2
i +

(Ze)2

2

∑
i,i′

1

|Ri −Ri′|
+ Eelec(Ri)

)
ψionic(Ri) = Etotψionic(Ri) (2.6)

Here,

Etot = Eelec + Enuc (2.7)

The electronic contribution gives rise to an e�ective attractive potential between ions

which leads to bonding.

2.3 The Hohenberg-Kohn Theorem

The Born-Oppenheimer approximation helps in successfully separating the electronic and

nuclei degrees of freedom. However, the electron-electron repulsion term is still almost impos-

sible to solve in the many-body Hamiltonian. This is where Density functional theory comes

into play. In 1964 Hohenberg and Kohn stated the famous Hohenberg −Kohntheorem

which states that:

�For any system of interacting particle in external potential V(r), the potential V(r) is

determined uniquely, except for a constant, by the ground state particle density n0(r).�[9].

Let there be a many body Hamiltonian H;

H = T + U + V (2.8)

Here T is the kinetic energy, U is the electron-electron interaction and V, the external
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potential. Let the ground state wave function be ψ. The charge density is de�ned as

n(r) = N |ψ(r, r2, r3, .....rN)|2dr2...rN (2.9)

Now,let us consider a di�erent Hamiltonian H ′ as given below and let corresponding

ground state wave function be ψ′.

H ′ = T + U + V ′ (2.10)

V and V ′ do not just di�er by a constant. Another assumption we take is that both

the cases have same ground state density i.e. n(V) = n(V ′). As a consequence we get the

following inequality.

E ′ = 〈ψ′|H ′|ψ′〉

< 〈ψ|H ′|ψ〉

= 〈ψ|H|ψ〉+ 〈ψ|H ′ −H|ψ〉

= E +
∫
drn(r)[V (r)− V ′(r)](2.11)

Similarly we can show that,

E < E ′ +

∫
drn(r)[V (r)− V ′(r)]

(2.12)

Summation of the above two inequalities leads to the contradiction

E + E ′ < E + E ′ (2.13)

Hence the assumption of identical density arising from the two di�erent external potentials

9



is wrong. Thus a given n(r) can only correspond to only one V(r) and, the Hamiltonian and

the wave functions are also �xed by density n(r). Since the wave function is a functional of

density, the energy functional Ev[n] for a given external potential V(r) is a unique functional

of density.

2.4 The Hohenberg-Kohn variational theorem

The kinetic and potential energies can be written as a functional of n(r). Now an universal

functional can be de�ned,

F [n] = 〈Ψ|T + U |Ψ〉 (2.14)

which is valid for any number of any number of particles and any external potential. Now,

for a given external potential v(r) the energy functional is,

Ev[n] =

∫
v(r)n(r)d(r) + F [n] (2.15)

The Hohenberg-Kohn variational theorem states that for every trial density function ntr (r)

that satis�es the conditions,
∫
ntr (r)dr = N and ntr(r) ≥ 0 for all r, the following inequality

holds: E0 ≤ Ev [ntr] (E0 = ground state energy). Since E0 = Ev [ n0], where n0 is the true

ground-state electron density, the true ground-state electron density minimizes the energy

functional Ev [ ntr], just as the true normalized ground-state wave function minimizes the

eigenvalue in a Schrödinger equation.[10].

Consider that ntr satis�es the above stated conditions,
∫
ntr(r)dr = N and ntr(r) ≥ 0

for all r. The Hohenberg-Kohn theorem states that ntr uniquely determines the external

potential vtrand this in turn determines the trial wave function ,Ψtr that corresponds to ntr

. Now the energy corresponding to this wave function Ψtr is,

E = 〈Ψtr|H|Ψtr〉 (2.16)

= 〈Ψtr|T + U +
∑
i

vi(r)|Ψtr〉 (2.17)
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E0 = Ev[n0] (2.18)

Since the kinetic and interaction energies are functionals of the electron density and using

the ground state wave function Ψ0 , we have,

T [ntr] + U [ntr] +

∫
ntrv(r)dr ≥ Ev[n0] (2.19)

Ev[ntr] ≥ Ev[n0] (2.20)

This proves that any trial electron density can not give rise a lower ground-state energy than

the true ground-state electron density.

2.5 The Kohn-Sham equations

The Hohenberg-Kohn theorem tells us about the the ground state properties of a system

given the ground state density n(r). However, it does not address the fact about how to

�nd the ground state energy E0 from the ground state density n0(r) or how to �nd n0(r)

without �rst �nding the wave function. Kohn and Sham addressed this problem and made

the practical application of DFT possible.[11].

In this formulation, the system of interacting electrons is mapped on to a system of non

interacting particles having the same electronic density n0(r) as that of the interacting one.

For such a system the ground state density can be represented as;

n(r) = 2

N/2∑
i=1

|ψi(r)|2 (2.21)

where ψi(r) is the Kohn-Sham orbital

N is the total number of electrons.

The KS orbitals are the solutions of the Schrödinger equation:

(−(~2/2m)∇2 + VKS(r))ψi(r) = εiψi(r) (2.22)

Where VKS is the Kohn-Sham potential. It is the e�ective external potential in which
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the non-interacting electrons move.

Now, let us de�ne a term ∆T as,

∆T [n] = T [n]− Ts[n] (2.23)

which is the di�erence between the K.E. of the real system and the system of non-

interacting electrons which has the same density as the real system.

Also;

∆U [n] = U [n]− 1

2

∫ ∫
n(r1)n(r2)

|r1 − r2|
dr1dr2 (2.24)

Hence, the total energy functional becomes;

E0 = Eν =

∫
n(r)ν(r)d(r) + Ts[n] +

1

2

∫ ∫
n(r1)n(r2)

|r1 − r2|
dr1dr2 +∆T [n] + ∆U [n] (2.25)

Here the functionals ∆T [n] and ∆U [n] together de�ne the exchange correlation function.

Hence, the total energy functional now has the form;

E0 = Eν =

∫
n(r)ν(r)d(r) + Ts[n] +

1

2

∫ ∫
n(r1)n(r2)

|r1 − r2|
dr1dr2 + EXC (2.26)

Here the �rst three are fairly easy to calculate if the ground state density is known and

contributes mostly to the ground state energy. The exchange correlation term however is

very di�cult to calculate and �nding an accurate solution for it has been one of the greatest

challenge in DFT.

2.6 Self consistent nature of Kohn-Sham equations

Given the constraint that the total number of electrons in the system are constant, the

ground state density can be found by varying the electron density so as to minimize the

energy functional. This is the basis of Hohenberg-Kohn variational principle. Hence, the

energy functional for the system of interacting particles is given by the equation (2.15).

This can be minimized using Lagrange multiplier method. So,with the constraint that total
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number of electrons are constant, the Euler-Lagrange equation becomes

δEν [n(r)] =

∫
δn(r)

(
veff (r) +

δ

δn(r)
Ts[n(r)]− ε

)
dr = 0

(2.27)

where

veff (r) = vext(r) +

∫
n(r2)

|r1 − r2|
dr2 + vxc(r)

(2.28)

and

vxc(r) =
δ

δn(r)
Exc[n(r)] (2.29)

This is the exchange-correlation potential. Now, the Eq.(2.27) has the similar form as the

equation for system of non interacting particles with an e�ective potential veff (which is also

called as Kohn-Sham potential). The minimum of the electron density n(r) can be found by

solving single particle Schrödinger equation

[− ~2

2m
∇2 + Veff (r)]ψi(r) = εiψi(r) (2.30)

with

n(r) = 2

N/2∑
i=1

|ψi(r)|2 (2.31)

and e�ective potential given by (2.28). Equations (2.30), (2.31) and (2.28) together form

the set of self- consistent Kohn-Sham equations.[12]. Self-consistency implies that we can

start from an initial guess for the ground state density n(r) and construct the Kohn-Sham

potential from Eq. 17. Then the single particle Schrödinger equations is solved and a new

density, which should be same as initial n(r),is calculated. If not within tolerance limit, the
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new density is fed back as an initial guess and the entire process is performed reiteratively

until the �nal density falls below tolerance limits.

2.7 Periodic Supercells

Previously it was shown that the many-body problem of the interacting electron can be

mapped into a single body problem consisting of non-interacting electrons. However, there

still remains the problem of handling an in�nite number of non-interacting electrons moving

under the in�uence of in�nite number of nuclei or ions. In doing so, two hurdles must be

overcome; there must be a wavefunction for each of the in�nite number of electrons and the

basis set required to expand each such wavefunction is in�nite.

These di�culties can be overcome by using periodic boundary condition and applying

Bloch's theorem for electronic wavefunctions.[13].

Bloch's Theorem

� Bloch's theorem states that in a periodic solid each electronic wave function can be written

as the product of a cell-periodic part and a wavelike part�[13].

ψi(r) = exp[ik · r]fi(r) (2.32)

The cell periodic part can be further expanded;

fi(r) =
∑
G

ci,Gexp[iG · r] (2.33)

Where G the reciprocal lattice vector is de�ned as; G · l = 2πm, for all l where l is a lattice

vector of the crystal and m is an integer. Now, each electron wave function can be written

as a sum of plane waves;

fi(r) =
∑
G

ci,Gexp[i(K +G) · r] (2.34)
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k point sampling

The boundary condition that applies to the bulk solid determines the set of k point for

which the electronic states are allowed. The density of allowed k points is proportional to

the volume of the solid. The Bloch theorem helps in changing the problem of calculating

an in�nite number of wave functions to one which requires calculating a �nite number of

electronic wavefunctions at an in�nite number of k points. The occupied state at each k

point contributes to the electronic potential in the bulk solid. Hence, in�nite number of

calculations are needed to compute this potential. However we use a �nite number of k

points to calculate the electronic potential and the total energy of the solid since it is not

possible to do calculations for in�nite number of k points.

The magnitude of any error in the total energy due to the insu�ciency of the k point

sampling can be reduced by using a denser k point set. As the density of the k point increases

the computed total energy converges and the error approaches zero.

Smearing method

There are several problems associated with metallic system. Brillouin-zone integrals over

functions are discontinues at Fermi level due to partially �lled band. Also, high Fourier com-

ponents and hence, large number of k- points are required. This di�culty is overcome by in-

troducing an arti�cial smearing to the problem. There are several schemes to achieve smear-

ing, each having its own advantages and disadvantages. In order to improve convergence

with number of k-points, the step function is replaced by a smoother function. Few of those

various schemes are Gaussian, Fermi-Dirac, Methfessel-Paxton, Marzari-Vanderbilt.[14].
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2.8 Exchange-Correlation energy: LDA and GGA

2.8.1 Local Density Approximation

In the Kohn-Sham formulation, the Schrödinger Equation takes up the form of N-single body

equations which is given as follows:

(−1

2
∇2 + νKS(r))ψi(r) (2.35)

whereas Kohn-Sham potential is given as

νKS(r) = νext(r) + νH (r) + νxc(r). (2.36)

The last term depends on the electron-electron interaction and is called the exchange-

correlation potential,

νxc(r) =
δExc[n(r)]

δn(r)
(2.37)

The equation presented above is complete with no approximations made so far. How-

ever, the functional form of the exchange-correlation energy is not known and hence ap-

proximations are necessary to get the estimate of the contribution of this term. In 1965,

Kohn and Sham described a simplest method to estimate exchange-correlation energy of

an electronic system and is called as the Local density approximation (LDA).[13]. The

exchange-correlation energy at any point r in the electron gas is assumed to be same as

that of homogeneous electron gas having equal electron density as that of the system in

consideration. Therefore,

Exc[n(r)] =

∫
εxc(r)n(r)d

3r (2.38)

and the potential becomes
δEXC [n(r)]

δn(r)
=
∂[n(r)]εXC(r)

∂n(r)
(2.39)

with εXC(r) = εhomXC [n(r)]

Kohn-Sham, Perdew- Zunger, Vosko and others have given di�erent ways to parametrize

the exchange-correlation energy of a homogeneous electron gas [15], all of which give similar
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result. The most common is that of Perdew and Zunger, who gave simple analytic form

of the former based on the highly accurate quantum-Monto Carlo techniques, founded by

Ceperley and Alder.[16].

The local-density approximation assumes that the exchange-correlation energy is com-

pletely local and it neglects the corrections to the same due to inhomogeneities in the electron

density around the point r. In spite of this crude approximation. the calculations using LDA

so far have been remarkably successful. Further studies have shown that this success is

related to the fact that the LDA gives the correct sum rule for exchange correlation hole.

2.8.2 Generalized Gradient Approximation

Generalized Gradient Approximation is the simplest approximation of inhomogeneity to the

local-density approximation. This is a semi-local method in which the energy of the true

density is approximated by the density which is a function of a constant local density and a

local gradient of the density.[17]. The GGA exchange-correlation energy functional can be

written as

EGGA
xc [n(r)] =

∫
n(r)εhomxc [n(r)]Fxc[n(r),∇n(r)]dr (2.40)

The enhancement factor Fxc is a function of electron density at a point r and of the

gradient of local density ∇n(r). Like LDA, there are many possible parametrizations of

GGA and each one leads to a di�erent enhancement factor. Initially,the acceptance of GGA

has been rather slow due to mixed results. GGA performed better for atomic energies and

binding energies than LDA at relatively modest computational cost. Especially, in case of

Hydrogen, GGA provided a very good description of the hydrogen bonds.

Local density as well as Generalized Gradient approximations are used extensively in the

study of electronic and magnetic interactions of semiconductor materials. However, there are

several problems involved in the estimation of band gap values which may result in incorrect

predictions of the properties of such materials.
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2.9 Hellmann-Feynmann Forces

Hellman-Feynmann theorem relates the derivative of the total energy with respect to some

parameter, to the expectation value of the derivative of the Hamiltonian with respect to the

same parameter.[18]. This allows one to calculate the forces on the atom once the ground

state density of the electron is calculated through self-consistent iterations. In a system of

atoms, the force on the ı th atoms is given by,

F̄ı = − δE

δR̄ı

(2.41)

The ground state energy is given by Ee = 〈Ψ|Ĥ|Ψ〉 As atoms change their positions, the wave

function is changed in such a way that the eigenstates will correspond to the new position

of the atom if the value of the Kohn-Sham energy functional is to remain meaningful. These

changes contribute to the force on the atom. This can be further explained as follows :

Substituting ground state energy equation into (2.41), we get

F̄ı = −〈 δΨ
δR̄ı

|Ĥ|Ψ〉 − 〈Ψ| δĤ
δR̄ı

|Ψ〉 − 〈Ψ|Ĥ| δΨ
δR̄ı

〉 (2.42)

Rearranging the terms,

F̄ı = −E[〈 δΨ
δR̄ı

|Ψ〉+ 〈Ψ| δΨ
δR̄ı

〉]− 〈Ψ| δH̄
δR̄ı

|Ψ〉 = E
δ

δR̄ı

〈Ψ|Ψ〉 − 〈Ψ| δĤ
δR̄ı

Ψ〉

= -〈Ψ| δĤ
δR̄ı

|Ψ〉 = − δE
δR̄ı

(2.43)

This last equation explains that the forces can be computed just by the change in the

Hamiltonian operator. This also shows that the partial derivative of the Kohn-Sham energy

with respect to the position of an atom gives the real physical force on the atom. In practical

problems, it is di�cult to compute energy derivatives numerically. However, the Hellmann-

Feynmann force can be computed e�ciently, which is negative of that derivative.
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2.10 Plane-Wave Basis and Pseudo-potential

Once the periodic boundary conditions (PBC) are implemented in the Kohn-Sham equations,

the equation becomes;

(
− ~2

2m
∇2 + VKS(r)

)
ψnk(r) = εnkψnk(r) (2.44)

where, n is the band index and k is the crystal momentum.

Now, VKS is:

VKS(r) = Vion(r) +

∫
dr′

n(r′)

|r − r′|
+ Vxc(r) (2.45)

and the electron density is given by,

n(r) =
∑
nk

|ψnk|2 (2.46)

Given an explicit VKS, we now have the practical issue of solving these coupled equations

e�ciently.

Plane-Wave basis

Theoretically, in order to solve the Kohn-Sham equations, one needs to choose a basis to

expand the wavefunction ψnk and then to truncate the basis so that calculation time is

�nite.[19]. The most natural choice of basis is the plane wave basis, because of the periodic

part in the Bloch state ψnk, which can be expanded in a Fourier series.

ψnk(r) = eik.runk(r) = eik.r
∑
G

cnk(G)
eik.r√
Ω

(2.47)

Ω is the volume of the unit cell.
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By inserting equation (2.47) in the Kohn-Sham equation (2.44), we �nd that cnk(G)

satisfy:

|K +G|2

2
cnk(G) +

∑
G′

V ′
KS(G−G′)cnk(G

′) = εnkcnk(G) (2.48)

Where V ′
KS is the Fourier transform of VKS.

To get a �nite number of (G) basis, we need to set-up a cuto�,

|K+G|2

2
≤ Ecut (2.49)

By equation (2.48) and (2.49), though in principle any level of accuracy can be reached by

increasing the Ecut, in practice this method is futile. The reason being that in solids the core

electrons are tightly bound to the nuclei. Their wavefunction changes rapidly in the core

region and decay away quickly. In order to describe these wavefunction accurately we need

many plane waves (large G) to expand these functions. However, these core electrons are

so tightly bound to the nuclei that they seldom take part in bonding of solids or molecules.

Therefore, by using plane wave basis we waste a lot of e�ort to describe these electrons which

are not of that importance to us.

Pseudo-potential

As explained in the previous section, the bonding properties of the material is mostly de-

pendent on the valence electrons rather than the core electrons. Therefore, as a good ap-

proximation we treat core electrons to be immobile and stuck to the nucleus, the so called

frozen-core approximation.

Even with the frozen core approximation, the numerical calculation which involve valence

electrons could still be very expensive. The reason is that in order to be orthogonal to the

wave function of the core electrons and other valence electrons, the wave functions of valence

electrons must have nodes in the core region, which leads to rapid oscillations. Describing

rapid oscillations of wave functions in the core region needs many plane wave basis, which

is the hindrance for realistic computation. To �nd a way around this obstacle, we need to

notice that most bonding takes place in the interstitial region rather than in the core region.

20



If we can construct an arti�cial potential which accurately reproduces the wave functions of

valence electrons in the interstitial region but replaces the oscillating part of wave functions

by a smooth one.[13]. Numerous tests show that by implementing the pseudo-potential in

realistic simulations not only reduces the computation cost signi�cantly but also provides

good description of chemical bonding.

There are quite a few di�erent algorithms concerning the generation of a pseudo- poten-

tial, which can be found in the literature [13].
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Chapter 3

Results and Discussions

3.1 Computational Method

Our calculations are performed using density functional theory (DFT) with plane wave

basis set with the code PWscf in the Quantum-ESPRESSO package.[22]. We employ the

generalized gradiant approximation (GGA) based parametrization by Purdew, Burke and

Ernzenhof (PBE)[23] and ultrasoft pseudo-potential. The plane wave basis energy cuto�

and charge cuto� are 35 Ry and 360 Ry respectively. We use Marzari-Vanderbilt smearing

width of 0.01 Ry. The k-grid sampling of the Brillouin zone is done with the 12× 12× 1[24]

k-point mesh. Through our calculations we have obtained the lattice parameter of the Ni

bulk to be 3.52 Å (and hence the lattice parameter of Ni(111) is 2.49 Å) and that of graphene

to be 2.46 Å which are in good agreement with the earlier reported values [25].

Our system is modeled with a symmetric slab of 6 Ni(111) layers. The bottom three

layers are kept �xed while other three are relaxed till the forces are converged to a value

within 0.002 eV/ Å. In all our calculations, the interfaces are along the (001) direction so

that the z axis is perpendicular to the interface. The x and y directions of the simulation

cell are subject to periodic boundary conditions.

The �xed bottom layer is coated with Cu atoms to quench the arti�cial magnetization.

To avoid the interaction between the periodic images, a vacuum of about 15 Å is used.

In practice, when graphene is grown on a substrate, the graphene sheet is strained by the

substrate potential. The amount of strain depends on the degree of lattice mismatch. In the
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case of Ni(111) surface, there is an almost perfect lattice matching with graphene. Hence

the graphene sheet is expected to grow pseudomorphically on the Ni substrate. Therefore,

to study the interactions of graphene sheet with the Ni substrate, both the graphene and Ni

substrate are kept at the Ni(111) lattice parameter of 2.49 Å. Dispersive interactions play an

important role in graphene-transition metal interfaces, which is not taken into account by

conventional PBE exchange correlation functional. Therefore, we have included an empirical

Van der Waals (vdW) correction to account for the dispersive interactions. However, we note

that this is an empirical correction to the total energy and it does not a�ect the magnetic

couplings of the system.

3.2 Oxygen adsorption on Ni(111) slab

The adsorption of O on Ni(111) slab was calculated for the 1ML (mono-layer) uniform

coverage. i.e. the ratio of the number of oxygen atoms to the number of surface Ni atoms in

the unit cell was maintained at 1:1. The binding energy of oxygen on Ni slab is calculated

using the equation (3.1).

∆ENi−O = ENi+O − ENi −
1

2
EO (3.1)

Where, ENi+O is the energy of the con�guration considered.

ENi is the energy of the symmetric Ni-slab.

and, EO is the energy of the oxygen molecule.

It is well known that oxygen prefers to occupy one of the hollow sites (hcp and fcc

site).[ref]. Hence, calculations were carried out for the two hollow sites and it was found

that oxygen atoms prefer to occupy fcc site over the hcp hollow site [�g 3.1(a)]. The binding

energy for the fcc con�guration was found to be -1.42 eV/O atom while the binding energy of

the hcp was -1.27 eV/O atom. [26]. The Ni-O inter-planar distance for the fcc con�guration

was calculated to be 1.14 Å.

Similar calculations were carried out for 0.5 and 0.25 ML coverage of O on Ni(111) slab

using a (2 × 2) super cell. In both the cases, the oxygen atom occupying the fcc-hollow

site was most favored energetically. For the 0.5 ML coverage the binding energy per oxygen
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(a) (b)

Figure 3.1: (a) A schematic diagram depicting the hcp, fcc and top site. (b) Top view of the most

stable Ni(111)-O con�guration (O on the fcc hollow site). Here the O and Ni atoms are denoted by

small red and large blue spheres respectively.

atom of the fcc and hcp case are found to be -2.40 and -2.27 eV respectively while for the

0.25 ML coverage it is -2.87 eV and -2.75 eV respectively. [26].

3.2.1 Addition of Graphene on Ni(111)-O

The carbon atoms on the graphene sheet has di�erent possible sites on the 1 ML coverage

which it can potentially occupy. We have considered six such con�gurations, which are given

below.

(a)top− fcc:One C atom is placed directly above the surface Ni atom and the other C

atom is on the void fcc site

(b)top− hcp: One C atom is placed directly above the surface Ni atom and the other

C atom is on the void hcp site

(c)hcp− fcc: One C atom is on the void hcp site and the other on void fcc site

(d)bridge− hcp: One C atom is in the middle of the adjacent hcp and top site and the

other C atom is in the middle of adjacent hcp and fcc site

(e)bridge− top: One C atom is in the middle of the adjacent top and hcp site and the

other C atom is in the middle of adjacent top and fcc site

(f)bridge− fcc: One C atom is in the middle of the adjacent fcc and hcp site and the

other C atom is in the middle of adjacent fcc and top site
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Here, the binding energy of the graphene sheet is calculated using the equation (3.2).

∆EGr = (ENi+O+C − ENi+O − EGr)/2 (3.2)

Where, ENi+O+C is the energy of the con�guration considered.

ENi+O is the energy of the fcc-O con�guration.

and, EGr is the energy of the free standing graphene.

Table 3.1: The table shows the values of binding energies for di�erent con�gurations of graphene
on Ni(111)-O surface.

Initial con�guration w.r.t Final con�guration w.r.t Binding energy (C-O interplanar
Ni surface Ni surface ∆EGr (eV/C) distance (Å)
Top-fcc Top-fcc -0.095 2.86
Top-hcp Top-hcp -0.100 2.81
Hcp-fcc Hcp-fcc -0.090 2.86

Bridge-top Bridge-top -0.095 2.86
Bridge-hcp Bridge-hcp -0.030 3.42
Bridge-fcc Bridge-fcc -0.120 2.85

From the table (3.1) it is observed that, out of all the possible con�guration of carbon

atoms, the bridge-fcc con�guration is found to be the most stable with a binding energy of

-0.120 eV/C atom and the C-O inter-planar distance in this case is observed to be 2.85 Å.

[�g (3.2).]

(a) (b)

Figure 3.2: (a) A schematic diagram of bridge-fcc con�guration. (b) Side-view of bridge-fcc con-

�guration
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Having obtained the most stable con�guration for graphene on Ni(111)-O, the magneti-

zation density and projected density of states(PDOS) plots were obtained. (�g 3.3(a)). The

magnetization density plot (�g 3.3(b)) shows that there is no induced magnetic moment on

graphene which is in contrast with what was observed without the intercalation of the O-

spacer layer between Ni(111) and graphene. In that case graphene had an induced magnetic

moment of 0.01µB.[27]

When the oxygen intercalated layer is not present between the Ni and graphene, there are

interactions between surface Ni atoms and carbon atoms resulting in an induced magnetic

moment on graphene. Upon intercalation, the interactions between the Ni and carbon atoms

are quenched resulting in zero net magnetic moment on graphene.

The PDOS plot [�g 3.3(a)] shows that there is a weak overlap of C-2p and Ni-3d - states.

The C-p states show negligible exchange splitting.

(a) (b)

Figure 3.3: (a) PDOS plot indicating zero overlap of 2p-C and 3d -Ni states and negligible ex-

change splitting. (b) Magnetic density plot has no iso-surface on the C-atoms indicating no induced

magnetic moment on graphene.

We have also looked into the electronic band structure plots of graphene on Ni-O sur-

face.(�g 3.4) The band structure plot reveals that the Dirac cone is still observed at the K

point of the Brillouin zone (BZ) as seen in the free-standing graphene, only in this case it

is slightly shifted above the Fermi level. This suggests that the graphene is not completely

free from the surface-Ni atoms. Long range Van-der-Waal interactions exist between the

graphene and the surface-Ni which results in the shifting of the Dirac-cone above the Fermi
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level.

Figure 3.4: The K-point resolved projected density of states plot (KPDOS) or the band-structure
plot for the bridge-fcc con�guration shows that the Dirac-cone is shifted slightly above the fermi
energy indicating the presence of weak long range dispersive interaction between graphene and
Ni(111)-O surface.

3.2.2 Semi-hydrogenation of graphene on Ni(111)-O Surface

The graphene sheet on the Ni(111)-O slab is now semi-hydrogenated(graphone). We have

studied this in detail for three di�erent coverages of O atoms .i.e. 1ML, 0.5ML and 0.25ML

coverages. The binding energy of graphone on Ni-O for all the three cases are calculated

using the equation (3.3).

∆EGrH = ENi+O+GrH − ENi+O − EGrH (3.3)

Where, ∆ENi+O+GrH is the binding energy of graphone on Ni-O, ENi+O+GrH is the ground

state energy of the particular con�guration considered and EGrH is the energy of the free

standing graphone.
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1ML coverage of O atoms

For the 1ML coverage the most stable con�guration of O on Ni slab was the fcc-con�guration

as seen previously. The graphene sheet on the Ni(111)-O slab is now semi-hydrogenated(graphone).

There can be twelve such con�gurations depending on the position of the H atoms on

graphene. Table 3.2 summarizes the results obtained.

Table 3.2: The table shows the values of binding energies for di�erent con�gurations of graphone
on Ni(111)-O surface. ∆EGrH is the binding energy of graphone calculated by eq (3.3).

Initial con�guration Initial position Final con�guration Final position ∆EGrH C-O inter-
w.r.t Ni surface of H atom w.r.t Ni surface of H atom (eV)/C planar distance (Å)

Top-hcp top Top-hcp Top -0.36 1.89
Top-hcp hcp Top-hcp Hcp -0.23 2.18
Top-fcc top Top-fcc Top -1.29 1.40
Hcp-fcc hcp Hcp-fcc Hcp -1.15 1.39
Hcp-fcc fcc Hcp-fcc Fcc -0.29 2.37

Bridge-hcp Hcp-top Bridge-hcp Hcp-top 1.45 2.49
Bridge-hcp Hcp-fcc Hcp-fcc Hcp -1.16 1.40
Bridge-fcc Fcc-top Hcp-fcc Hcp -1.17 1.40
Bridge-fcc Fcc-hcp Top-fcc Top -1.29 1.40

From the table 3.2 it can be seen that the most stable con�guration is the top-fcc con-

�guration [�g.3.5(a)]. .i.e. one C atom on O (fcc) and the other C on top site with H atom.

Figure 3.5(b) depicts the magnetization density plot for the most stable con�guration, where

yellow colored iso-surface is seen on the surface Ni atoms which shows the net spin-up mag-

netic moment on the surface Ni atoms. It is indeed seen that the magnetic moment of surface

Ni atom increases from 0.19 to 1.00 µB, a mammoth �ve-fold increase.

To gather more insight into this we performed the charge transfer analysis for the system.

Figures 3.6(a) and 3.6(b) shows the result of our charge transfer analysis, where the blue

iso-surfaces indicate the regions of charge depletion and red iso-surface show the regions of

charge accumulation. Thus we see that the spin up electrons from fcc-C are transferred to Ni

atoms and spin-down electrons are transferred from surface Ni to fcc-C. This charge transfer

is mediated via the oxygen atoms.

To understand the transfer of charges in this particular fashion, we had plotted the
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(a) (b)

Figure 3.5: (a) Most stable con�guration upon hydrogenation (top-fcc) (b) Magnetic density plot

showing yellow iso-surface on the surface Ni atoms indicating net spin-up magnetic moment on

surface Ni atoms .

projected density of state plots (PDOS) for the non-interacting (graphone on Ni-O) and the

interacting cases. [�g 3.7(a) and 3.7(b)]. What we had observed is that for the spin-up case,

the states corresponding to Ni-O peaks at the Fermi energy indicating that the Ni-O states

are partially �lled. The C(without H) states are completely �lled. The Fermi level of the

slab and HOMO of graphone are very close in energy and hence when we place graphone

on Ni-O the up-electrons of the C atom(without H) moves to the half �lled state of Ni-O.

Similarly, after accepting the electrons from the C atom the Ni-O states are occupied and

move below Fermi energy. The down-spin electrons move in a reverse fashion to the up-spin

electrons. Hence, due to the combined e�ect of the movement of charges there is a huge

increase in the magnetic moment of surface Ni atoms.

0.5ML coverage of O atoms

For the 0.5 ML coverage a (2×2) super cell was used and the Brillouin Zone (BZ) integration

is carried out with Monkhorst-Pack k-point grid of 6× 6× 1. All other parameters are kept

same as 1ML case.

All di�erent con�gurations for graphone on this case were considered. The hcp-fcc con-

�guration (with H on the hcp site) is found to be the most stable with a binding energy of

-1.72 eV/C atom. It is seen from �g 3.8(b) that there are three di�erent types of C atoms
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(a) (b)

(c)

Figure 3.6: (a) Charge density transfer plot for spin-up and (b) spin-down electrons. (c) Total

charge transfer plot. The red color shows the accumulation of charge while the blue color depicts

the depletion of charge.
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(a) (b)

Figure 3.7: (a) PDOS plot for the non interacting system. Here the HOMO and LUMO of the free-

standing graphone and the Fermi energy of the Ni-O system is shown. (b) PDOS for the interacting

system. The electrons from the �lled 2p-C1 spin-up state moves to 2p-O and 3d -Ni states making

them fully occupied.

present in this con�guration, one which binds to oxygen, one which binds to hydrogen and

one which is not bound to H or O. The three C atoms in this case are separated by a distance

of 1.41 Å, 1.91 Å and 1.60 Å respectively from the oxygen layer.

The study of the magnetization density plot [�g 3.9(a)] for this case shows yellow iso-

surfaces on surface Ni atoms and the carbon atom which are not bound to H or O atoms

indicating that the magnetic moment of both these atoms are paralelly aligned. It is indeed

observed that the surface Ni atoms have a magnetic moment of 0.72 µB and that of graphene

is 0.31 µB, where the contribution of the moments mainly come from the C atom not bound

to H or O. The magnetic moment of C which does not bind to H or O is found to be 0.65

µB.

The carbon which does not bind to O or H has an increased magnetic moment as its lone

pair is free and hence it contributes in an increased magnetic moment.[�g 3.9(b)]

0.25 ML coverage of oxygen atom

For 0.25 ML coverage of oxygen atom on Ni(111), the hcp-fcc con�guration (with H on hcp

carbon) was found to be most stable. The binding energy of graphone on Ni-O surface was
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(a) (b)

Figure 3.8: (a) The Ni-O slab for the 0.5ML coverage of oxygen where O occupy the fcc site.

(b) The most stable Ni+O+GrH con�guration for the 0.5ML coverage of oxygen. There are three

di�erent types of C atoms present in this con�guration, one which binds to oxygen, one which binds

to hydrogen and one which is not bound to H or O.

found to be -1.52 eV/C atom.[eqn 3.3].

It can be seen from the �g 3.10(b) that the hcp-fcc con�guration consists of three di�erent

types of C atom viz. one which is bound to the H atom, one bound to the O atoms and

another bound to the Ni atom. Another peculiar thing which is observed is the buckling in

the surface Ni atoms. One of the Ni atom is slightly shifted above the others.

The magnetization density plot [�g 3.11(a)] shows yellow iso-surface on the surface Ni

atoms and pink iso-surface on the shifted Ni atoms indicating that the magnetic moments

of these two Ni atoms are anti-parallely aligned.

The average magnetic moment of surface Ni atoms and the shifted atom is found to be

0.62µB while graphene has almost zero induced magnetic moment.
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(a) (b)

Figure 3.9: (a) The magnetization density plot for the hcp-fcc con�guration showing yellow iso-

surfaces on surface Ni atoms and the carbon atom which is not bound to H or O atoms indicating

that the magnetic moment of both these atoms are paralelly aligned.(b) Projected density of states

(PDOS) for this case.

(a) (b)

Figure 3.10: (a) The Ni-O slab for the 0.25ML coverage of oxygen where O occupy the fcc site.

Here we can see that for every four Ni atoms in the unit cell there is one oxygen atom.(b) The most

stable Ni+O+GrH con�guration for the 0.25ML coverage of oxygen. There are three di�erent types

of C atoms present in this con�guration, one which binds to oxygen, one which binds to hydrogen

and one which is bound to Ni atom.
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(a) (b)

Figure 3.11: (a) The magnetization density plot for the hcp-fcc con�guration showing yellow iso-

surfaces on surface Ni atoms and pink iso-surface in the shifted Ni atoms indicating that the magnetic

moment of both these atoms are anti-paralelly aligned.(b) Projected density of states (PDOS) for

this case.
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Chapter 4

Conclusion

We have studied in detail the electronic and magnetic properties of graphene and graphone

supported on oxygen adsorbed Ni(111) surface. Introduction of the oxygen mono-layer spacer

decouples the pristine graphene sheet from Ni(111) substrate making it quasi-free standing.

The Dirac cone again appears in the bandstructure at K point of the Brillouin zone but

only slightly shifted above the Fermi energy because of the weak interactions between the

graphene sheet and the oxygen adsorbed Ni(111) substrate. The semi-hydrogenated graphene

(graphone) sheet binds more strongly to the oxygen adsorbed on Ni(111) substrate . The

magnetic moments on the carbon atoms of graphone are completely quenched due to the

sigma bond formed between C and O. However, there is a �ve-fold enhancement of the

magnetic moment of the surface Ni atoms. With graphone on top, the magnetic moments

of the surface Ni(111) atoms with and without the spacer layer are 1 µB and 0.19 µB,

respectively. For the 0.5 ML case we observe that the induced magnetic moment on graphene

increases to 0.31 µB.
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