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Abstract

Erdos-Ko-Rado and Kruskal Katona Theorems
for Discrete Structures

by Sourajit Basu

The project we have undertaken concerns extremal combinatorics. Two
core concepts in extremal set theory are intersecting families and shadows. A
family of subsets of a given set X whose members have size k and pair wise
intersect is called an intersecting family. The main results for intersecting
families are the Erdos-Ko-Rado and Hilton-Milner theorems, which give an
upper bound on the maximum size of intersecting families. Shadow is a
property of a family of k-element subsets of a set X. It consists of all (k−1)-
element subsets of the set X contained in at least one member of the family.
The principal result for shadows is the Kruskal-Katona theorem, which gives
a lower bound on the size of a shadow. This thesis aims to further understand
analogs of Erdos-Ko-Rado, Hilton-Milner and Kruskal-Katona Theorems for
other discrete structures such as vector spaces and multisets.

vii





Contents

Acknowledgement v

Abstract vii

1 Introduction 1

1.1 Outline of Thesis 1

1.2 Results 2

1.2.1 Outline of Thesis 2

1.3 Discrete Structures 3

1.3.1 Sets 3

1.3.2 Multisets 4

1.3.3 Vector Spaces 7

1.3.4 Hypergraphs 8

2 Results from Extremal Combinatorics 12

2.1 Erdos-Ko-Rado Theorem 12

2.2 Kruskal-Katona Theorem 17

2.3 Hilton-Milner Theorem 22

2.4 Vector Space Analogs 23

ix



2.5 Multiset Analog 24

3 t-intersecting k-multisets: special case t = 2 28

4 Conclusion 40

Bibliography 41

x



Chapter 1

Introduction

The aim of this thesis is to study results from the field of extremal combina-
torics, specifically extremal set theory questions and their analogs for other
discrete structures like multisets and vector spaces. While studying results
of extremal set theory, we see the use of certain tools from algebra and prob-
ability and also great potential for finding analogous results in other discrete
structures.
In general, given a finite set X, extremal combinatorics ask how large or
small a family of subsets of X can be if it certain restrictions are satisfied.
Two core concepts in extremal set theory are intersecting families and shad-
ows. A family of subsets of a given set X whose members have size k and
pair wise intersect is called an intersecting family. The main results for inter-
secting families are the Erdos-Ko-Rado and Hilton-Milner theorems, which
give an upper bound on the maximum size of intersecting families. Shadow
is a property of a family of k-element subsets of a set X. It consists of all
(k − 1)-element subsets of the set X contained in at least one member of
the family. The principal result for shadows is the Kruskal-Katona theorem,
which gives a lower bound on the size of a shadow.
This thesis further aims at understanding of shadows and intersecting fami-
lies in other structures, primarily multisets and vector spaces. In the latter
case, the goals are to study analogs of the Erdos-Ko-Rado, Hilton-Milner,
and Kruskal-Katona theorems and understand the techniques to their proofs.
In the former case, however, in addition to studying analogs of the Erdos-
Ko-Rado and Kruskal-Katona theorems, we explore the special case of a
conjecture, which is an extension of the Erdos-Ko-Rado in multisets.

1.1 Outline of thesis

We now present an outline of this thesis. First, we present some results
in Section 1.2. Then in 1.3, we introduce some theory about sets, multisets,
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vector spaces and hypergraphs.
In Chapter 2, we discuss some literature of combinatorial results from ex-
tremal set theory. We then look at analogous results on vector space over
finite fields, particularly Erdos-Ko-Rado theorem and Lovszs version of the
Kruskal-Katona theorem. We also look at Erdos-Ko-Rado theorem for mul-
tisets.
In Chapter 3, we show a construction technique for multisets proving a one
way inequality for the Erdos-Ko-Rado theorems extension to t-intersecting
k-multisets for the case of t = 2.
Finally, in Chapter 4, we present the conclusions and scope for further study.

1.2 Results

The main problem we have worked on is the extension of Erdos-Ko-Rado
analog to the t-intersecting k-multisets for the case t = 2. Erdos, Ko and
Rado proved that given an [n]-set, with certain constraints on an integer k,
the size of the largest pairwise intersecting k-subset family is bounded above
by a function of k and n. Meagher and Purdy [12] extended this notion to
pairwise intersecting k-multiset family from an [m]-set, where the intersec-
tion of two multisets is the multiset containing all elements common to both
multisets with repetitions. They showed that an upper bound exits on the
size of largest such family which is a function purely of k and m.

1.2.1 t-intersecting k-multisets

A further extension to the notion of pairwise intersecting k-multiset fam-
ily from an [m]-set is that of pairwise t-intersecting k-multisets of an [m]-set,
where the size of intersection for every pair of multisets is atleast t.
An open problem on this notion is stated as a conjecture in the same paper
[12]. The proof to the limit on size and structure of the pairwise intersecting
k-multiset family is based on the existence of a graph homomorphism from
a Kneser graph K(n, k) to its multiset analog M(m, k). These concepts of
Kneser graph and its analog can generalized as: K(n, k, t) be the graph whose
vertices are the k-subsets of [n] where two vertices A and B are adjacent if
| A ∩ B |< t and M(m, k, t) be the graph whose vertices are the k-multisets
of [m] whose vertices C and D are adjacent of | C ∩ D |< t. If a bijective
homomorphism from K(n, k, t) to M(m, k, t) exists, it could be used to prove
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the bound.
We could not establish such a bijective homomorphism. We tried, instead,
to argue by principles of construction - starting from any intersecting pair
of k-multisets, construct the largest possible family of pairwise intersecting
k-multiset family. By using a particular method of construction, which we
will describe in detail in later chapter, we could only show a trend in the
growth in the size of the family which tended to the bound proposed as a
limiting case. It further seemed to agree with the additional condition stated
at the end of the conjecture.

1.3 Discrete Structures

We recall the relevant definitions and concepts from the literature related
to sets, multisets, vector spaces and hypergraphs.

1.3.1 Sets

Definition 1.
A set is a well defined collection of distinct elements.

Given a set X and an element ε, one of the two must be true:
(i) ε ∈ X
(ii) ε /∈ X

Definition 2.
Given a set X, a subset Y ⊂ X is a set with every element of Y being an
element of X.

Definition 3.
Given two sets X and Y, the union set denoted by X ∪ Y is the set of all the
elements which are members of either X or Y.

Definition 4.
Given two sets X and Y, the intersection set denoted by X ∩ Y is the set of
all the elements which are members of both X and Y.
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Definition 5.
A set having no element is called a null set and is denoted by φ.

Definition 6.
Given two sets X and Y, the cartesian product denoted by X × Y is the set
of all ordered pairs (x, y) with x ∈ X and y ∈ Y.

Counting Sets
We will generally be working with an [n]- set which we will denote by X.

X = {1, 2, . . . , n}

If we want to choose a k-subset (a subset with k elements, k ≤ n )from the

set X, the number of distinct subsets is denoted by

(
n

k

)
which is defined as

(
n

k

)
=

n!

(n− k)!(k)!

(1.1)

The following is called Pascal’s Identity:(
n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
(1.2)

1.3.2 Multisets

Definition 7.
A multiset is defined as a 2-tuple (A,m) where A is some set and m : A→ N
is a function from A to the set {1, 2, . . . , n, . . . } of positive natural numbers.
The set A is called the underlying set of elements. For each a ∈ A, the mul-
tiplicity of a is the number m(a).

Multiplicity Function

The set indicator function of a subset A of a set X is the function

IA : X → {0, 1}
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(1.3)
defined by

IA(x) =

{
0 x /∈ A
1 x ∈ A

Some important set indicators:

IA∪B(x) = max{IA(x), IB(x)}

(1.4)

IA∩B(x) = min{IA(x), IB(x)}

(1.5)

A ⊆ B ⇔ ∀x, IA(x) ≤ IB(x)

(1.6)

IA×B(x, y) = IA(x) · IB(x)

(1.7)

| A |=
∑
x∈X

IA(x)

(1.8)
Allowing the set indicator function to take values {2, 3, . . . }, the new func-
tion called multiplicity function is defined for a multiset. The concepts of
union, intersection, subset, cartesian product and cardinality are defined by
the above formulae.

The multiplicity of multiset sum is:

IA]B(x) = IA(x) + IB(x)

(1.9)
The multiplicity of multiset difference is:

IA\B(x) = max{0, IA(x)− IB(x)}
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(1.10)
The scalar multiplication of a multiset by a natural number is:

In⊗A(x) = n · IA(x)

(1.11)
Example. Different multiset operations are illustrated below:

{1, 1, 1, 3} ∩ {1, 1, 2} = {1, 1}

{1, 1} ∪ {1, 2} = {1, 1, 2}

{1, 1} ] {1, 2} = {1, 1, 1, 2}

{1, 1} ⊆ {1, 1, 1, 2}

| {1, 1} |= 2

{1, 1} × {1, 2} = {(1, 1), (1, 1), (1, 2), (1, 2)}

Counting Multisets

The number of multisets of cardinality k, with elements taken from a fi-
nite set of cardinality m, is called the multiset-coefficient or multiset-number
and is denoted by ((

m

k

))
The value of the multiset coefficient can be written explicitly as:((

m

k

))
=

(
m+ k − 1

k

)
(1.12)

The following is a recurrence relation for counting multisets:((
m

k

))
=

((
m

k − 1

))
+

((
m− 1

k

))
(1.13)
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1.3.3 Vector Space

Definition 8.
A vector space is a nonempty set V of objects, called vectors, on which are
defined two operations, called addition and multiplication by scalars (real
numbers), subject to the ten axioms below. The axioms must hold for all
u, v, w ∈ V and for all scalars c and d.

1. u+ v ∈ V
2. u+ v = v + u
3. (u+ v) + w = u+ (v + w)
4. There is a vector, 0̂ ∈ V such that u+ 0̂ = u
5. For each u ∈ V , there is a vector −u in V satisfying u+ (−u) = 0
6. c · u is in V
7. c · (u+ v) = c · u+ c · v
8. (c+ d) · u = c · u+ d · u
9. (cd) · u = c(d · u)
10. 1 · u = u

Definition 9.
A subspace of a vector space V is a subset H of V that has three properties:

a. The zero vector, 0̂, of V is in H.
b. For each u and v are in H, u+ v is in H.
c. For each u in H and each scalar c, c · u is in H.

Counting Vector Subspaces

We let V denote an n-dimensional vector space over the finite field GF (q).
For k ∈ Z+, we write [Vk ] to denote the family of all k-dimensional subspaces
of V . For a, k ∈ Z+, define the Gaussian binomial coefficient by

[ak] :=
∏

0≤i<k

qa−1 − 1

qk−1 − 1

(1.14)
A simple counting argument shows that the size of [Vk ] is [nk ].
If two subspaces of V intersect in the zero subspace, then we say they are
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disjoint or that they trivially intersect; otherwise we say the subspaces non-
trivially intersect. A family F ⊂ [Vk ] is called intersecting if any two k-spaces
in F non-trivially intersect.

1.3.4 Hypergraphs

Let X = {x1, x2, . . . , xn} be a finite set.

Definition 10.
A hypergraph H = (E1, E2, . . . , Em) on X is defined to be a family of subsets
of X satisfying the following properties:

Ei 6= φ,∀1 ≤ i ≤ m

(1.15)⋃
i

Ei = X

(1.16)
The subsets E1, E2, . . . , Em are called the edges of the hypergraph and the
elements x1, x2, . . . , xn are called the vertices. Note that the first condition
excludes all the empty subsets and the second condition excludes all the iso-
lated vertices from further discussions on hypergraphs.
A hypergraph is also called a set system or a family of sets drawn from the
universal set Ω. The difference between a set system and a hypergraph is not
well defined and depends on the questions being asked. Hypergraph theory
tends to ask questions similar to those of graph theory, such as connectiv-
ity and colorability while the theory of set systems tends to ask non graph
theoretic questions, such as Sperner theory. We now recall some relevant
definitions and concepts from the literature.

Definition 11.
A simple hypergraph (Sperner family) is one in which no edge is a subset of
other. If H = (E1, E2, . . . , Em) is a simple hypergraph, then

Ei ⊂ Ej =⇒ i = j
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(1.17)
Definition 12.
The dual of a hypergraph H = (E1, E2, . . . , Em), on X is a hypergraph H∗ =
(X1, X2, . . . , Xn) whose vertices e1, e2, . . . , em correspond to the edges of H
and with edges X1, X2, . . . , Xn

Xi = {ej/xi ∈ Ej in H}

(1.18)
Definition 13.
The order of a hypergraph H is defined as the number of elements of X and
is denoted by n(H).
The number of edges of a hypergraph H is denoted by m(H).

Definition 14.
The rank r(H) of a hypergraph H is

r(H) = max
j
| Ej |

(1.19)
Definition 15.
The anti-rank s(H) of a hypergraph H is

s(H) = min
j
| Ej |

(1.20)
Further, if r(H) = s(H), all the edges have the same cardinality and the
hypergraph is said to be uniform.

Definition 16.
Let J ⊂ {1, 2, . . . ,m}. Then the family H ′ = (Ej/j ∈ J) is called the partial
hypergraph of H generated by J .

Note that a partial hypergraph contains some of the edges of the hypergraph.

Definition 17.
Let A ⊂ X. Then the family

HA = (Ej ∩ A, 1 ≤ j ≤ m, | Ej ∩ A |6= 0)

9



is called the subhypergraph of H induced by the set A.

Definition 18.
For x ∈ X, the star of x, H(x) is defined as the partial hypergraph formed
by edges containing x.

The number of edges of H(x), denoted by m(H(x)), is called degree of x.

dH(x) = m(H(x))

The maximum degree of the hypergraph H is always denoted as ∆(H).
Thus,

∆(H) = max
x∈X

dH(x)

Definition 19.
A hypergraph in which all vertices have the same degree is said to be regular.

Also note that ∆(H) = r(H∗), and that the dual of a regular hypergraph is
uniform.

Definition 20.
Let r, n be integers, 1 ≤ r ≤ n. Then, the r-uniform complete hypergraph on
order n (or the r-complete hypergraph) is defined to be a hypergraph, denoted
by Kn

r and containing all the r subsets of the set X of cardinality n

Definition 21.
Let H be a simple hypergraph on X of rank r and let k ≤ r be an integer.
The k-section of the hypergraph, [H]k is defined to be a hypergraph with edges
F ⊂ X satisfying either | F |= k and F ⊂ E, for some E ∈ H or | F |< k
and F = E, for some E ∈ H. Note that [H]k is a simple hypergraph of rank k

Definition 22.
Let G = (V,E) be a graph with vertex set V and edge set E. A graph ho-
momorphism f from G = (V,E) to a graph G′ = (V ′, E ′) is a mapping
f : V → V ′, from the vertex set of G to the vertex set of G’ such that

{u, v} ∈ E =⇒ {f(u), f(v)} ∈ E ′

10



Also, notice that if f : G→ G′ is a graph homomorphism from G to G′, then
we have

α(G) ≥ α(G′)

where α(G) is the size of the largest independent family of G.
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Chapter 2

Some Results from Extremal Combi-
natorics

Let X denote the set [n] := {1, ..., n}, which is the underlying set we work
with. Let 2X denote the family of all subsets of X. In extremal set theory, we
look at maximum or minimum size of a family F ⊆ 2X that satisfies certain
restrictions. We shall, for the most part, restrict ourselves to the family of
k-uniform subsets; that is, all sets in the family have size k. We use the

symbol

(
X

k

)
to denote the family of all k-subsets of X.

The sections of this chapter fall into three major themes. The first topic
is the essential theorems on intersections and shadows viz., Erdos-Ko-Rado,
Hilton-Milner and and Kruskal-Katona theorems. Next, we discuss exten-
sions of the above mentioned theorems to vector spaces. Finally, in the last
part, we discuss extensions of the Erdos-Ko-Rado theorem to multisets. The
aim of this chapter is to give an overview of the literature studied covering the
various results from extremal combinatorics. In the next chapter we describe
the construction technique to form a intersecting family and the results we
obtained while attempting to solve the conjecture on pairwise t-intersecting
k-multisets for the special case t = 2.

2.1 Erdos-Ko-Rado Theorem

Given a hypergraph H, an intersecting family is defined as the set of edges
having non-empty pair wise intersection. A set of edges A = {E1, E2, . . . , Ek}
is an intersecting family if Ei ∩ Ej ≥ 1 for all i, j ∈ {1, 2, . . . , k}. For any
vertex x in a hypergraph H, the star of x, H(x) is an example of an inter-
secting family. The size of the largest intersecting family of a hypergraph H
is always denoted by ∆0(H) and satisfies:

∆0(H) ≥ max
x∈X
| H(x) |= ∆(H)

(2.1)
Theorem 2.1.1 [3] Every hypergraph H of order n, with no repeated edge
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satisfies
∆0(H) ≤ 2(n−1)

(2.2)
Further, every maximal intersecting family of a hypergraph of subsets of an
n-set has cardinality 2(n−1)

Proof. Let A be a maximal intersecting family of subsets of a set X, where
| X |= n.
If B1 /∈ A, then ∃ A1 ∈ A such that A1 ∩ B1 = φ (This follows from the
maximality of A, else we could add B1 to A and get a bigger intersecting
family). Thus, we have A1 ⊂ X −B1 and hence, A1 ∩ (X −B1) 6= φ. Again,
the maximality of A ensures that (X −B1) ∈ A.
Further, if X −B1 ∈ A, then B1 /∈ A.
Hence, B → X −B is a bijection between P (X)− A and A, where P (X) is
the power ser of X. Also, the bijection ensures that

| P (X)− A |=| A |
Thus, we have

| A |= | P (X) |
2

= 2n−1

(2.3)

Lemma 2.1.2 (Greene, Katona, Kleitman) [3] Let x1, x2, . . . , xn be
points on a circle in that order and let A = (A1, A2, . . . , Am) be a family of
circular intervals of points satisfying the following properties:

(1) | Ai |≤ n
2
∀i ∈ {1, 2, . . . ,m}

(2) | Ai ∩ Aj |6= 0 ∀i, j ∈ {1, 2, . . . ,m}
(3) Ai 6⊂ Aj ∀i ∈ {1, 2, . . . ,m}.
Then
(4) m ≤ mini | Ai | and
(5) Σi | Ai |−1≤ 1
Equality in (5) is attained iff A is a family of circular intervals of cardinality
m and each having a point in common.

Proof. Let A1 be a circular interval of minimum size. Then,
(a) From (2), | A1 ∩ Ai |6= 0 ∀i 6= 1.
(b) And, from (1) and (3), all other intervals have only one of their ends
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coinciding with an end of A1.
(c) Also, from (3), the intervals A1 ∩ Ai are all different.
Thus, the number of possible intervals of this form is ≤ (2 | A1 | −1).
We claim two sets Ai ∩ A1 and Aj ∩ A1, i 6= j, i 6= 1 and j 6= 1 cannot
constitute a partition of A1. As, if they constitute a partition of A1, they
will have to coincide with opposite sides of A1. But if they coincide with
opposite sides of A1, then | Ai ∩ Aj |= 0, (1) requires (| Ai |≤ n

2
) and thus

they will violate (2). Hence, Ai and Aj cannot constitute a partition of A1.
Thus, out of all the total cases, only half of them are possible, i.e,
m− 1 ≤| A1 | −1.
Hence, we get m ≤| A1 |, which completes the proof for (4).
Also, we have ∑

Ai∈A

| Ai |−1≤
m

| A1 |
≤ 1

(2.4)
which gives us (5).
Also, equality in (5) implies

1 =
∑

1≤i≤m

| Ai |−1≤
m

| A1 |
≤ 1

(2.5)
So, we have | Ai |=| A1 |= m, 1 ≤ i ≤ m. Thus, the Ai’s are intervals of
length whose intital end points are m successive points on a circle.
Conversely, if the Ai satisfy (1), (2), (3) and have lenght m, then obviously
we have an equality in (5).

Theorem 2.1.3 (Erdos-Ko-Rado) [3] Let H be a simple hypergraph of
order n and rank r ≤ n

2
. Then

∑
E∈H

(
n− 1

| E | −1

)−1
≤ 1

(2.6)
and

m(H) ≤
(
n− 1

r − 1

)
14



(2.7)
Further, we have equality in (2) when H is a star of Kn

r (and if r < n
2
).

Proof. Let X = {x1, x2 . . . , xn} be the vertex set of H and for any
permutation π of 1, 2, . . . , n denote by Hπ the set of edges of H which are
circular intervals of the circular sequence xπ1 , xπ2 , . . . , xπn , xπ1
Also, for E ∈ H, put

β(E) =| {π/E ∈ Hπ}

(2.8)
Also note that from Lemma 2.1.2.∑

E∈Hπ

1

| E |
≤ 1

(2.9)
We have then∑

E∈H

β(E)

| E |
=
∑
E∈H

∑
π|E∈Hπ

1

| E |
=
∑
π

∑
E∈Hπ

1

| E |
≤ n!

(2.10)
Let E0 be an edge of H with | E0 |= h and let x0 be an element of E0. Since
E0 is also an edge of the hypergraph H ′ = Kh

n(x0) and from Lemma 2.1.2 we
have equality in both the equations above for H ′. Thus we have

β(E0)

| E0 |
=

1

m(H ′)

∑
E′∈H′

β(E ′)

| E ′ |
=

n!

m(H ′)
= n!

(
n− 1

| E0 | −1

)−1
(2.11)

or, ∑
E∈H

(
n− 1

| E | −1

)−1
=

1

n!

∑
E∈H

β(E)

| E |
≤ n!

n!
= 1

(2.12)
Thus we have the first part of the Erdos-Ko-Rado bound.
For the secong part, note that every E ∈ H satisfies | E |≤ r ≤ n

2
. Thus, we

have

m(H)

(
n− 1

r − 1

)−1
≤
∑
E∈H

(
n− 1

| E | −1

)−1
≤ 1

15



(2.13)
With the previous two results, we have completed the proof.

The intersecting family is further generalized by the concept of t-intersecting
family. For a hypergraph H = (E1, E2, . . . , Em), a t-intersecting family A is a
set of edges that intersect in t or more vertices. Thus, if A is a t- intersecting
family, then we have

| Ei ∩ Ej |≥ t,∀Ei, Ej ∈ H

(2.14)
For example, the familyA= {(1, 2, 3, 4), (2, 3, 4, 5), (1, 2, 3, 5)} is a 3-intersecting
family on X = {1, 2, 3, 4, 5}.
Erdos-Ko-Rado theorem for t-intersecting families is an important result,
which is stated below without giving a proof.

Theorem 2.1.4 (Erdos-ko-Rado Theorem for t-intersecting families)
[13] Let n ≥ k ≥ t ≥ 1, and let A be a family of k-uniform, t-intersecting
subsets of the set n = {1, 2, . . . , n}. If n ≥ (k − t+ 1)(t+ 1), then

| A |≤
(
n− t
k − t

)
(2.15)

Moreover, if n > (k− t+ 1)(t+ 1), then this bound is achieved by a trivially
t-intersecting system, that is by a family A containing all the k-subsets of
the set n that contain a fixed t-subset from the set n.
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2.2 Kruskal-Katona Theorem

The Kruskal-Katona theorem gives a tight lower bound on the size of r − 1
section of an r- uniform hypergraph.

Theorem 2.2.1 (Kruskal, Katona) [3] Let H be an r-uniform hyper-
graph with

m(H) = m =

(
ar
r

)
+

(
ar−1
r − 1

)
+

(
ar−2
r − 2

)
+ · · ·+

(
as
s

)
(2.16)

and
ar > ar−1 > · · · > as ≥ s ≥ 1

(2.17)
Then,

m(Hr−1) ≥
(

ar
r − 1

)
+

(
ar−1
r − 2

)
+

(
ar−2
r − 3

)
+ · · ·+

(
as

s− 1

)
(2.18)

The proof of Kruskal-Katona theorem presented here was given by Frankl.
This proof requires two lemmas which are stated and proved first before
starting with the proof of the theorem. We now prove a lemma that demon-
strates that every positive integer m has an r-binomial representation

Lemma 2.2.2 [3] Let m and r be positive integers. Then there exist integers
ar, ar−1, . . . , as such that

m =

(
ar
r

)
+

(
ar−1
r − 1

)
+

(
ar−2
r − 2

)
+ · · ·+

(
as
s

)
(2.19)

and
ar > ar−1 > · · · > as ≥ s ≥ 1

(2.20)
Further, the ai’s are uniquely defined by (2.19) and (2.20) and ar is the
largest integer such that

m−
(
ar
r

)
≥ 0
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Proof. The proof proceeds by induction on r. For any given m, with r = 1

the decomposition exists trivially and is unique, as m =

(
m

1

)
. We assume

that for any m > 0, the decomposition exists with r−1 and is unique. Let ar

be the largest integer such that m−
(
ar
r

)
≥ 0. Then from our assumption,

a decomposition of m−
(
ar
r

)
with r − 1 exists, i.e.

m−
(
ar
r

)
=

(
ar−1
r − 1

)
+

(
ar−2
r − 2

)
+ · · ·+

(
as
s

)
(2.21)

with
ar−1 > ar−2 > · · · > as ≥ s ≥ 1

(2.22)
We must have ar > ar−1, else we would have

m ≥
(
ar
r

)
+

(
ar−1
r − 1

)
≥
(
ar
r

)
+

(
ar

r − 1

)
=

(
ar+1

r

)
(2.23)

which is not in accordance with our assumption. Hence, the existance of the
decomposition is proved.
For proving uniqueness, let us assume two distinct decompositions exist:

m =

(
ar
r

)
+

(
ar−1
r − 1

)
+

(
ar−2
r − 2

)
+ · · ·+

(
as
s

)
=

(
br
r

)
+

(
br−1
r − 1

)
+

(
br−2
r − 2

)
+ · · ·+

(
bs
s

)
(2.24)

where the bi’s also satisfy the same equations as ai’s.
Now, observe that

m ≤
(
ar
r

)
+

(
ar − 1

r − 1

)
+

(
ar − 2

r − 2

)
+ · · ·+

(
ar − r + 1

1

)
=

(
ar + 1

r

)
(2.25)

If ar < br, then

m ≤
(
ar + 1

r

)
≤
(
br
r

)
≤ m

18



(2.26)

This implies m =

(
ar + 1

r

)
, which violates the definition of r. Thus ar = br

and hence, the decomposition is unique. This decomposition of m is also
called the r-binomial representation of m.

Lemma 2.2.3 [3] Let H be an r-uniform hypergraph on X = {x1, x2, . . . , xn}.
Let H(x1) be the star of the vertex x1. Then there exists an r-unifrom hyper-
graph H ′ on X with m(H ′) = m(H), m([H ′]r−1) ≤ m([H]r−1) which satisfies

F ∈ [H ′ −H ′(x1)]r−1 =⇒ F ∪ {x1} ∈ H ′

(2.27)
Proof. For a vertex xj ∈ X, xj 6= x1, put

σxj(E) =

{
(E − xj) ∪ x1 ifxj ∈ E, x1 /∈ E, (E − xj) ∪ x1 /∈ H

E otherwise

(2.28)

Also, σxj(H) = {σxj(E)/E ∈ H}. We claim, [σxj(H)]r−1 ⊂ σxj [H]r−1.
We have shown that A ∈ [σxj(H)]r−1 =⇒ A ∈ σxj [H]r−1
First, suppose that A = σxj(A).
If B ∈ [σxj(A)]r−1, then B ∈ [A]r−1 (asA = σxj(A)). Thus, A = B∪{xi}, for
some i ≤ n. Now, it suffices to prove that σxj(B) = B, as this would imply
B ∈ σxj [H]r−1.
case 1. If i = j, xj /∈ B, then σxj(B) = B.
case 2. If i = j, xj ∈ B, then (B−{xj})∪{x1} = A−{xj} ∈ [A]r−1. Thus,
σxj(B) = B.
case 3. If i = 1, xj /∈ B, then σxj(B) = B.
case 4. If i 6= 1, i 6= j, then σxj(B) = B, unless xj ∈ B and x1 /∈ B. But in
this case, xj ∈ A and x1 /∈ A. Also, we have σxj(A) = A, so we must have
(A−{xj})∪{x1} ∈ H. Thus (B−{xj})∪{x1} ∈ [H]r−1, and so σxj(B) = B.
Next, assume that A 6= σxj(A). Then xj ∈ A, x1 /∈ A and σxj(A) =
(A − {xj}) ∪ {x1}. Now, if B ∈ [σxj(A)]r−1 and x1 /∈ B, then B∗ =
(B − {x1}) ∪ xj ⊂ A and so B∗ ∈ [H]r−1. If B /∈ [H]r−1, then σxj(B∗) = B
so that B ∈ σxj [H]r−1. If finally, B ∈ [H]r−1, xj /∈ B so that B = σxj(B).

Thus, the proof is complete.
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Now we can move on the proof of Kruskal-Katona Theorem.

2.2.4 Proof to Kruskal-Katona Theorem [3]
Assume that H satisfies

F ∈ [H −H(x1)]r−1 =⇒ F ∪ {x1} ∈ H

(2.28)
Also, let

H1 = {E − {x1}/E ∈ H(x1)}
Then,

m([H]r−1) ≥ m(H1) +m([H1]r−2)

(2.29)
The theorem holds trivially for r = 1 and m = 1. We proceed by induction
on m and r.
Suppose that

m(H1) ≥
(
ar − 1

r − 1

)
+ · · ·+

(
as − 1

s− 1

)
(2.30)

From the induction hypothesis, for the hypergraph H1, we get

m[H1]r−2 ≥
(
ar − 1

r − 2

)
+ · · ·+

(
as − 1

s− 2

)
(2.31)

Thus, from (2.29) we get

m[H1]r−1 ≥
(
ar − 1

r − 1

)
+ · · ·+

(
as − 1

s− 1

)
+

(
ar − 1

r − 2

)
+ · · ·+

(
as − 1

s− 2

)
(2.32)

or,

m[H]r−1 ≥
(

ar
r − 1

)
+ · · ·+

(
as

s− 1

)
(2.33)

Now suppose that

m(H1) <

(
ar − 1

r − 1

)
+

(
ar−1 − 1

r − 2

)
+ · · ·+

(
as − 1

s− 1

)
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(2.34)
Thus,

m(H −H(x1)) = m(H)−m(H1) >

(
ar
r

)
+ . . .

+

(
as
s

)
−
(
ar − 1

r − 1

)
−
(
ar−1 − 1

r − 2

)
− · · · −

(
as − 1

s− 1

)
(2.35)

or,

m(H −H(x1)) >

(
ar − 1

r

)
+ · · ·+

(
as − 1

s

)
(2.36)

But, we have

m(H1) ≥ m(H −H(x1)) ≥
(
ar − 1

r − 1

)
+ · · ·+

(
as − 1

s− 1

)
(2.37)

which contradicts (2.34)
This completes our proof.

Corollary 2.2.5 [3] Let H be an r-uniform hypergraph and let k be an

integer with r > k ≥ 2. If a is the largest integer such that m(H) ≥
(
a

r

)
,

then

m([H]k) ≥
(
a

k

)
(2.38)

Proof. Let H1 be a partial hypergraph of H with m(H1) =

(
a

r

)
. From the

Theorem (2.2.4),

m([H1]r−1) ≥
(

a

r − 1

)
(2.39)

Further, let H2 be a partial hypergraph of [H1]r−1 with m(H2) =

(
a

r − 1

)
.

From Theorem (2.2.1),

m([H2]r−2) ≥
(

a

r − 2

)
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(2.40)
Continuing, we get

m([Hr−k]k) ≥
(
a

k

)
(2.41)

Since [Hr−k]k ⊂ [Hk], we have

m([Hk]) ≥
(
a

k

)
(2.42)

which completes our proof.

2.3 Hilton-Milner Theorem

Theorem 2.3.1 (Hilton, Milner) [4] Let F ⊂
(
X

k

)
be an intersecting

family with k ≥ 2, n ≥ 2k+ 1, and such that there does not exist x ∈ X such

that F ⊂ {f ∈
(
X

k

)
: x ∈ f}. We then have

| F |≤
(
n− 1

k − 1

)
−
(
n− k − 1

k − 1

)
+ 1.

(2.43)
Equality holds if and only if

(i) F = {| f |} ∪ {| g | ∈
(
X

k

)
: x ∈ g, f ∩ g 6= φ} for some k-subset f and

x ∈ X\F .

(ii) F = {F ∈
(
X

3

)
:| F ∩D |≥ 2} for some 3-subset S if k = 3.

We have stated the Hilton-Milner Theorem above without providing the
proof.
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2.4 Vector Space Analogs

We will now present the Vectos Space analogs of the three primary theorems
without stating the proofs (Erdos-Ko-Rado, Kruskal-Katona and Hilton-
Milner).

A family F ⊂ [Vk ] is called 2-wise intersecting if ∀ f1, f2 ∈ F we have

2⋂
i=1

fi 6= φ

We define the shadow of F , denoted ∂F , to consist of those (k − 1) di-
mensional subspaces of V, contained in at least one member of F.

We will say that F is an HM-type family if:

F = {W ∈ [Vk ] : E ≤ W,dim(W ∩ U) ≥ 1}
⋃

[E+U
k ]

for some E ∈ [V1 ] and U ∈ [Vk ] with E 6⊆ U.

For any family F ⊂
(
X

k

)
, the covering number τ(F ) is the minimum size of

a ser that meets all f ∈ F .

Theorem 2.4.1 (Erdos-Ko-Rado Theorem for Vector Spaces) [5]
Suppose F ⊂ [Vk ] is 2-wise intersecting and n ≥ 2k. Then

| F |≤ [n−1k−1 ]

(2.44)

Theorem 2.4.2 (Kruskal-Katona Theorem due to Lovasz for Vector
Spaces) [5]
Let F ⊂ [Vk ] and let y ≥ k be the real number defined by | F |= [yk]. Then

| ∂F |≥ [yk−1]

(2.45)
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Theorem 2.4.3 (Hilton-Milner Theorem for Vector Spaces) [4]

Theorem. Suppose k ≥ 3 and either q ≥ 3 and n ≥ 2k + 1, or q = 2 and
n ≥ 2k + 2. For any intersecting family F ⊂ [Vk ] with τ(F ) ≥ 2, we have
| F |≤ f(n, k, q).

f(n, k, q) := [n−1k−1 ]− qk(k−1)[n−k−1k−1 ] + qk

(2.46)
Equality holds if and only if
(i) F is an HM-type family,
(ii) F = F3 = {f ∈ [Vk ] : dim(s ∩ f) ≥ 2} for some s ∈ [V3 ]ifk = 3

Furthermore, if k ≥ 4, then there exists an ε > 0 (independent of all n, k, q)
such that if | F |≥ (1 − ε)f(n, k, q), then F is a subfamily of an HM type
family.

If k = 2, then a maximal intersecting family F of k-spaces with τ(F ) > 1
is the family of all 2-subspaces of a 3-subspace, and the conclusion of the
theorem holds.

2.5 Multiset Analogs

We will now present the Multiset analog of the Erdos-Ko-Rado Theorem.

Theorem 2.5.1 (Erdos-Ko-Rado Theorem for Multisets) [12]
Let k,m be positive integers and with m ≥ k + 1. If A is an intersecting
collection of multisets of [m], then

| A |≤
(
m+ k − 2

k − 1

)
(2.47)

Moreover, if m > k + 1, equality in the above equation is achieved if and
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only if A is a collection of all the k-multisets of [m], each containing a fixed
element from [m].

Proof.
The proof of this theorem uses a homomorphism from a Kneser graph to a
graph whose vertices are the k-multisets of [m].
A Kneser graph K(n, k), over a set [n] is defined to be a graph whose vertices

are all the k-sets of the set [n], denoted by

(
[n]

k

)
, and two vertices are ad-

jacent if and only if the k-sets they correspond to are disjoint. We represent
by α(K(n, k)) the size of largest independent set in K(n; k). Note that an
independent set of vertices in K(n, k) is an intersecting k-set system.
We now define a multiset analogue of the Kneser graph. Let k,m be positive
integers. Then M(m, k) is defined to be a graph with vertices the k-multisets

of the set [m], denoted by

(
[m]

k

)
, and two vertices of this graph are adjacent

if and only if the multisets they correspond to are disjoint. Thus an inde-
pendent set in M(m, k) is an intersecting family of k-multisets on the set
[m]. We denote by α(M(m, k)) the size of the maximum intersecting family

of M(m, k). Also, the number of vertices in M(m, k) is

(
m+ k − 1

k

)
.

Further, let n = m + k − 1. Then K(n, k) has the same number of vertices

as M(m, k) and ∀ B ∈
(

[n]

k

)
, B ∩ [m] 6= φ.

For a set A ⊆ [m] of cardinality a where 1 ≤ a ≤ k, the number of k-sets, B,
from [n] such that B ∩ [m] = A will be equal to(

n−m
k − a

)
=

(
k − 1

k − a

)
. (2.48)
Similarly, the number of k-multisets from [m] that contain all of the elements
of A and no others will be equal to((

a

k − a

))
=

(
a+ (k − a)− 1

k − a

)
=

(
k − 1

k − a

)
(2.49)

Hence there exists a bijection, f :

(
[n]

k

)
→
((
m
k

))
, such that for any B ∈
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(
[n]

k

)
, the set of distinct elements in f(B) will be equal to B ∩ [m].

If A,B ∈
(

[n]

k

)
are two adjacent vertices in the Kneser graph, then (A ∩

[m])
⋂

(B∩ [m]) = φ and hence f(A)∩f(B) = φ. Therefore f(A) is adjacent

to f(B) if A is adjacent to B and so the bijection f :

(
[n]

k

)
→
((
m
k

))
is a

graph homomorphism. In fact, K(n, k) is isomorphic to a spanning subgraph
of M(m, k). Thus,

α(M(m.k)) ≤ α(K(n.k))

. (2.50)
From the Erdos-Ko-Rado Theorem, we have that if n ≥ 2k,

α(K(n.k)) =

(
n− 1

k − 1

)
Thus, for m ≥ k + 1,

α(M(m.k)) ≤
(
n− 1

k − 1

)
=

(
m+ k − 2

k − 1

)
. (2.51)
An intersecting collection of k-multisets from [m] consisting of all k-multisets

containing a fixed element from [m] will have size

(
m+ (k − 1)− 1

k − 1

)
=(

m+ k − 2

k − 1

)
. Therefore,

α(M(m.k)) =

(
m+ k − 2

k − 1

)
(2.52)

which gives the upper bound on A.
To prove the uniqueness statement in the theorem, let m > k + 1 and let

A be an intersecting multiset system of size

(
m+ k − 2

k − 1

)
. With the homo-

morphism defined above, the pre-image of A will be an independent set in

K(n, k) of size

(
n− 1

k − 1

)
. Since m > k+ 1 and n = m+ k− 1, it follows that
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n > 2k so, by the Erdos-Ko-Rado theorem, f−1(A) will be a collection of all
the k-subsets of [n] that contain a fixed element from [n]. If the fixed element,
x, is an element of [m], then it follows from the definition of f that every
multiset in A will contain x. Thus A will be a collection of all the k-multisets
from [m] that contain a fixed element from [m] as required. If x /∈ [m], then
f−1(A) will include the sets A = {1,m + 1, ..., n} and B = {2,m + 1, ..., n}
since m > k+ 1 implies that m > 2. But f(A)∩ f(B) = φ which contradicts
our assumption that A is an intersecting collection of multisets. Therefore,
when m > k + 1, if A is an intersecting collection of multisets of the max-
imum possible size, then A is the collections of all k-multisets containing a
fixed element from [m].
The case when m = k+1 is analogous to the case when n = 2k in the Erdos-
Ko-Rado Theorem. The size of the largest possible intersecting collection is

equal to

(
m+ k − 2

k − 1

)
but collections attaining this bound are not limited

to those having a common element in all k-multisets.
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Chapter 3

t-intersecting k-multisets : size and struc-
ture for the special case t = 2

In this chapter, we consider an open problem stated in [12] by Meagher and
Purdy.

Conjecture. Let k, m and t be positive integers with t ≤ k and m ≤
t(k − t) + 2. If A is a collection of t-intersecting k-multisets of [m], then

|A| ≤
(
m+ k − t− 1

k − t

)
(3.1)

Moreover, if m > t(k − t) + 2, equality holds if and only if A is a collection
of all the k-multisets from [m] that contain a fixed t-multiset from [m].

We will restrict ourselves to the case of t = 2, that is, where A is a collection
of 2-intersecting k-multisets of [m].
2-intersecting k-multisets are the collection of of multisets which are pairwise
intersecting and the size of the intersection for every pair is atleast 2.
The problem thus reduces to:
Let k, m be positive integers with 2 ≤ k and m ≥ 2k− 2. If A is a collection
of 2-intersecting k-multisets of [m], then

|A| ≤
(
m+ k − 3

k − 2

)
(3.2)

Moreover, if m > 2k − 2, equality holds if and only if A is a collection of all
the k-multisets from [m] that contain a fixed 2-multiset from [m].

I. Collection of all the k-multisets from [m] that contain a fixed
2-multiset from [m]
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If A is a collection of all the k-multisets from [m] that contain a fixed 2-
multiset from [m], then we fix any 2-multiset from [m]. The k-multiset can
be formed by filling in the remaining k − 2 places by any (k − 2)-multiset
from [m]. So, the size of such an intersecting family would be same as the
number of distinct (k− 2)-multisets which can be generated from [m], which
is

|A| =
((

m

k − 2

))
=

(
m+ k − 3

k − 2

)
II. A method of constructing an intersecting family.

The intersecting family described in (I) looks like:

a)
i.e. if {Ai} ∈ A, i ∈ α, then

⋂
Ai= fixed 2-multiset for any α′ ∈ α
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However, 2-intersecting families can also look like:

b)

c)

Construction:
We know that for a fixed k, m ≥ 2k − 2.
Take m = 2k − 2.

Consider two k-sets (not multisets) such that their union set is [m]. These
two sets will have two elements in common (by Pigeonhole principle). Let
these sets be γ∗ and δ∗.

In (I) we have seen the case if all the k-multisets have the same 2-multiset
in common.

We now want to construct an intersecting family such that we account for
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intersecting families of the form described in figures (b) and (c).

The sets γ∗ and δ∗ defined above have the property:

γ∗ ∩ δ∗ = {2− set} = {t1, t2}

We now construct two sub-families Θ and Λ as:

Table 1: Intersecting sub-families Θ and Λ

Θ Λ

Θ is a collection of k-multisets Λ is a collection of k-multisets
from [m] and satisfies from [m] and satisfies

the following properties: the following properties:
(i) Fix element t1 in all k-multisets of Θ. (i)Fix element t2 in all k-multisets of Λ.

(ii) Element t2 does not belong to (ii) Element t1 does not belong to
any k-multiset of Θ any k-multiset of Λ

(iii) From the remaining (k − 2) (iii) From the remaining (k − 2)
elements of γ∗ ( i.e. γ∗\{t1,t2} ) elements of γ∗ ( i.e. γ∗\{t1,t2} )

and the (k − 2) elements and the (k − 2) elements
of δ∗ ( i.e. δ∗ \ {t1, t2}), of δ∗ ( i.e. δ∗ \ {t1, t2}),

take the Cartesian Product take the Cartesian Product
of the two sets to obtain of the two sets to obtain

(k − 2)2 ordered pairs (k − 2)2 ordered pairs
with one element from γ∗ with one element from γ∗

and one element from δ∗. and one element from δ∗.
From these (k − 2)2 elements From these (k − 2)2 elements

choose any one and call it {p1, p2} choose any one and call it {p1, p2}
with p1 ∈ γ∗ and p2 ∈ δ∗. with p1 ∈ γ∗ and p2 ∈ δ∗.

Assign p1, p2 to all elements to Θ. Assign p1, p2 to all elements to Λ.

Thus, Θ contains k-multisets Thus, Λ contains k-multisets
which look like which look like

{t1, p1, p2, . . . (k − 3)-blank spaces . . . } {t2, p1, p2, . . . (k − 3)-blank spaces . . . }
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Let us note some of the properties of the classes Θ and Λ that we have
constructed:

i) If θ ∈ Θ and λ ∈ Λ, then

| θ ∩ γ∗ | ≥ 2 ∀ θ ∈ Θ
| λ ∩ γ∗ | ≥ 2 ∀ λ ∈ Λ
| θ ∩ δ∗ | ≥ 2 ∀ θ ∈ Θ
| λ ∩ δ∗ | ≥ 2 ∀ λ ∈ Λ

| θ ∩ λ | ≥ 2 ∀ θ ∈ Θ and λ ∈ Λ

So γ∗, δ∗, Θ and Λ together satisfy the properties of a 2-intersecting k-
multiset family.

ii)

| Θ |=| Λ |=
((
m− 1

k − 3

))
(3.3)

Since t1 does not belong to Λ and t2 does not belong to Θ, we have only
m− 1 elements to choose from in each case. From these m− 1 elements, we
choose any (k − 3)-multiset to complete Θ and Λ as k-multisets.

We now construct two sub-families Γ and ∆ as:
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Table 2: Intersecting sub-families Γ and ∆

Γ ∆

Γ is a collection of k-multisets ∆ is a collection of k-multisets
from [m] and satisfies from [m] and satisfies

the following properties: the following properties:

(i) t1 and t2 belong to (i) t1 and t2 belong to
every multiset of Γ every multiset of ∆

(ii) p1 ∈ every multiset of Γ (ii) p2 ∈ every multiset of ∆
and p2 /∈ any multiset of Γ and p1 /∈ to any multiset of ∆

Thus, Γ contains k-multisets Thus, ∆ contains k-multisets
which look like which look like

{p1, t1, t2, . . . (k − 3)-blank spaces . . . } {p2, t1, t2, . . . (k − 3)-blank spaces . . . }

Let us note some of the properties of the classes Γ and ∆ that we have
constructed:
i) If γ ∈ Γ and δ ∈ ∆, then

| γ ∩ γ∗ | ≥ 2 ∀ γ ∈ Γ
| δ ∩ γ∗ | ≥ 2 ∀ δ ∈ ∆
| γ ∩ δ∗ | ≥ 2 ∀ γ ∈ Γ
| δ ∩ δ∗ | ≥ 2 ∀ δ ∈ ∆

| γ ∩ θ | ≥ 2 ∀ γ ∈ Γ, θ ∈ Θ
| δ ∩ θ | ≥ 2 ∀ δ ∈ ∆, θ ∈ Θ
| γ ∩ λ | ≥ 2 ∀ γ ∈ Γ, λ ∈ Λ
| δ ∩ λ | ≥ 2 ∀ δ ∈ ∆, λ ∈ Λ
| δ ∩ γ | ≥ 2 ∀ δ ∈ ∆, γ ∈ Γ

So γ∗, δ∗, Γ, ∆, Θ and Λ together satisfy the properties of a 2-intersecting
k-multiset family.

ii)

| Γ |=| ∆ |=
((
m− 1

k − 3

))
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(3.4)

Since t1 does not belong to Λ and t2 does not belong to Θ, we have only
m− 1 elements to choose from in each case. From these m− 1 elements, we
choose any (k − 3)-multiset to complete Θ and Λ as k-multisets.

Finally, we construct a family Ψ as follows:
Ψ is the collection of k-multisets such that the elements {t1, t2, p1, p2} are
fixed in every element ψ ∈ Ψ.
We can see that Ψ along with γ∗, δ∗, Γ, ∆, Θ and Λ satisfy all the properties
of a 2-intersecting k-multiset family.

| Ψ |=
((

m

k − 4

))
(3.5)

Ψ contains k-multisests which look like
(t1, t2, p1, p2, . . . (k − 4)− blankspaces . . .).
The remaining k-4 spaces can be filled in any way from [m].
Further notice that Ψ , Γ, ∆, Θ and Λ are disjoint, and γ∗ and δ∗ are, each,
special cases of Γ and ∆ respectively.

III. Combinatorial comparison of size of construction

| Θ |=| Λ |=| Γ |=| ∆ |=
((
m− 1

k − 3

))
=

(
m+ k − 5

k − 3

)

| Ψ |=
((

m

k − 4

))
=

(
m+ k − 5

k − 4

)
We have established that Ψ , Γ, ∆, Θ and Λ are disjoint (by construction).

So,

| Θ | + | Λ | + | Γ | + | ∆ |= 4

((
m− 1

k − 3

))
= 4

(
m+ k − 5

k − 4

)
(3.6)
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and,

| Θ | + | Λ | + | Γ | + | ∆ | + | Ψ |= 4

((
m− 1

k − 3

))
+

((
m

k − 4

))

= (4 +
k − 3

m− 1
)

(
m+ k − 5

k − 4

)
(3.7)

From (I),

| A |=
((

m

k − 2

))
=

(
m+ k − 3

k − 2

)
Now, consider the following inequality:

η

(
m+ k − 5

k − 3

)
≤
(
m+ k − 3

k − 2

)
(3.8)

or,

η
(m+ k − 5)!

(k − 3)!(m− 2)!
≤ (m+ k − 3)!

(k − 2)!(m− 1)!

or,

η ≤ (m+ k − 3)(m+ k − 4)

(k − 2)(m− 1)

We had started with a restriction on k as m = 2k -2

So,

η ≤ (3k − 5)(3k − 6)

(2k − 3)(k − 1)

(3.9)

For the inequality to hold, we investigate the function of k, f(k), defined
as.

f(k) =
(3k − 5)(3k − 6)

(2k − 3)(k − 1)
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This is an increasing function for k ≥ 3

Taking limiting condition of k →∞ on both sides of equation, we get

η ≤ 9

2

(3.10)
Note that if we take m > 2k − 2 the upper bound on η also increases.

Now we go back to equation (3.6) and (3.7). Remember that γ∗ and δ∗

are special cases of Γ and ∆.
So,

| Θ | + | Λ | + | Γ | + | ∆ | + | Ψ |= 4

((
m− 1

k − 3

))
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= (4 +
k − 3

m− 1
)

(
m+ k − 5

k − 4

)
(3.11)

Take

η′ = 4 +
k − 3

m− 1

(3.12)
and once again use the constraint m = 2k − 2
We get

η′ = 4 +
k − 3

2k − 3

(3.13)
Taking limiting condition of k →∞ on both sides of equation, we get

η′ = 4 +
1

2
or

η′ =
9

2

(3.14)

We see that the size of the intersecting family defined by Γ ∪∆ ∪Θ ∪Λ ∪Ψ
is limited by the same as the size given in the conjecture.
If we take m > 2k − 2, then a strict inequality holds, which seems to agree
with the additional condition of ”moreover, if m > t(k− t)+2, equality holds
if and only if A is a collection of all the k-multisets from [m] that contain a
fixed t-multiset from [m]”.

IV. Example

Let k = 5, m = 2k − 2 = 8 and t = 2 and

[m] = {1, 2, 3, 4, 5, 6, 7, 8}

γ∗ = {1, 2, 3, 4, 5}

δ∗ = {4, 5, 6, 7, 8}.
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Note that t1 = 4, t2 = 5

| A |=
(

8 + 5− 3

5− 2

)
=

(
10

3

)
= 120

So, γ∗\{4, 5} × δ∗\{4, 5} = {(1, 6), (1, 7), (1, 8), (2, 6), (2, 7), (2, 8), (3, 6), (3, 7), (3, 8)}
We choose p1 = 1 and p2 = 6 and generate Θ, Λ, Γ and ∆

| Θ |=| Λ |=| Γ |=| ∆ |=
((

7

2

))
=

(
8

2

)
= 28

Θ = {(4,1,6,1,1), (4,1,6,2,2), (4,1,6,3,3), (4,1,6,4,4), (4,1,6,6,6), (4,1,6,7,7),
(4,1,6,1,2), (4,1,6,1,3), (4,1,6,1,4), (4,1,6,1,6), (4,1,6,1,7), (4,1,6,2,3), (4,1,6,2,4),
(4,1,6,2,6), (4,1,6,2,7), (4,1,6,3,4), (4,1,6,3,6), (4,1,6,3,7), (4,1,6,4,6), (4,1,6,4,7),
(4,1,6,6,7), (4,1,6,8,8), (4,1,6,1,8), (4,1,6,2,8), (4,1,6,3,8), (4,1,6,4,8), (4,1,6,6,8),
(4,1,6,7,8)}

Λ = {(5,1,6,1,1), (5,1,6,2,2), (5,1,6,3,3), (5,1,6,5,5), (5,1,6,6,6), (5,1,6,7,7),
(5,1,6,1,2), (5,1,6,1,3), (5,1,6,1,5), (5,1,6,1,6), (5,1,6,1,7), (5,1,6,2,3), (5,1,6,2,5),
(5,1,6,2,6), (5,1,6,2,7), (5,1,6,3,5), (5,1,6,3,6), (5,1,6,3,7), (5,1,6,5,6), (5,1,6,5,7),
(5,1,6,6,7), (5,1,6,8,8), (5,1,6,1,8), (5,1,6,2,8), (5,1,6,3,8), (5,1,6,5,8), (5,1,6,6,8),
(5,1,6,7,8)}

Γ = {(1,4,5,1,1), (1,4,5,1,2), (1,4,5,1,3), (1,4,5,1,4), (1,4,5,1,5), (1,4,5,1,7),
(1,4,5,1,8), (1,4,5,2,2), (1,4,5,2,3), (1,4,5,2,4), (1,4,5,2,5), (1,4,5,2,7), (1,4,5,2,8),
(1,4,5,3,3), (1,4,5,3,4), (1,4,5,3,5), (1,4,5,3,7), (1,4,5,3,8), (1,4,5,4,4), (1,4,5,4,5),
(1,4,5,4,7), (1,4,5,4,8), (1,4,5,5,5), (1,4,5,5,7), (1,4,5,5,8), (1,4,5,7,7), (1,4,5,7,8),
(1,4,5,8,8)}

∆ = {(4,5,6,2,2), (4,5,6,2,3), (4,5,6,2,4), (4,5,6,2,5), (4,5,6,2,6), (4,5,6,2,7),
(4,5,6,2,8), (4,5,6,3,3), (4,5,6,3,4), (4,5,6,3,5), (4,5,6,3,6), (4,5,6,3,7), (4,5,6,3,8),
(4,5,6,4,4), (4,5,6,4,5), (4,5,6,4,6), (4,5,6,4,7), (4,5,6,4,8), (4,5,6,5,5), (4,5,6,5,6),
(4,5,6,5,7), (4,5,6,5,8), (4,5,6,6,6), (4,5,6,6,7), (4,5,6,6,7), (4,5,6,7,7), (4,5,6,7,8),
(4,5,6,8,8)}

so,

| Θ | + | Λ | + | Γ | + | ∆ |= 4

((
7

2

))
= 4

(
8

2

)
= 112
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We now generate Ψ:

Ψ = {(1,4,6,5,1), (1,4,6,5,2), (1,4,6,5,3), (1,4,6,5,4), (1,4,6,5,5), (1,4,6,5,6),
(1,4,6,5,7), (1,4,6,5,8)}

| Ψ |= 8

We see that,

| Θ | + | Λ | + | Γ | + | ∆ | + | Ψ |= 120 =| A |

i.e., the construction has yielded the desired intersecting family whose size is
bounded by the bound proposed in the conjecture.
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Chapter 4

Conclusion

This thesis aims to further understanding of shadows and intersecting fami-
lies in sets and other discrete structures.

In Chapter 2, we present Erdos-Ko-Rado and Kruskal-Katona theorems for
sets, vector spaces and multisets.

In Chapter 3, we give a technique to construct a collection of 2-intersecting
k-multisets of [m]. We see that the 2-intersecting family we constructed has a
size which tends to the bound proposed in the conjecture. Further, it meets
the bound only in the case of m = 2k − 2 and if m > 2k − 2 then, it is
strictly below the bound. It would be interesting to prove that the size of

2-intersecting k-multiset family is at most

(
m+ k − 3

k − 2

)
.
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