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Abstract

Microlocal Analysis of Certain Imaging Problems

by Ashwin T.A.N

Microlocal analysis is concerned with the study of propagation of singularities under the
action of various operators. In this thesis, we introduce certain techniques from microlo-
cal analysis and apply them to some problems from Synthetic Aperture Radar imaging.
Chpater 1 provides a rapid overview of distribution theory and Fourier transforms, in-
cluding Schwartz kernels and the concept of a wavefront set. In the next chapter, we
present (for the most part without proofs) some elements of the theory of pseudodiffer-
ential operators. Their significance in imaging stems from the fact that the action of a
pseudodifferential operator on a distribution does not introduce any new singularities.

Chapter 3 introduces a more general class of operators called the Fourier integral
operators. We show how Fourier Integral operators correspond naturally to certain
Lagrangian submanifolds, which leads to the global theory of FIOs. Chapter 3 concludes
with a brief discription of classes of distributions associated to two cleanly intersecting
Lagrangians (denoted by IP! where p and [ are real numbers).

Finally, in Chapter 4, we consider two of problems from SAR imaging. In the first
problem, the transmitter and receiver are combined into one device, and move along a
circular trajectory at a constant height above the ground.The scattering operator F' is
known to be an FIO. The standard technique in imaging problems is to “back-project”
the scattered data and thus we wish to understand the composition F*F. It is a known
result that F*F belongs to an IP! class. We outline the standard proof, and also give
a new proof (Theorem 4.5) that is based on a characterization of I”! classes due to
Greenleaf and Uhlmann. In the second problem, the transmitter and receiver move
along a circular trajectory, but separated by a fixed distance at all times. This problem
is more complicated, and we present a new result (Theorem 4.6) that under certain

restrictions, F*F belongs to an IP! class.
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Chapter 1

Distributions and Fourier

Transforms

We begin by fixing some notation. If f is a continuous function on an open set 2 C R",
the support of f, denoted by supp f, is defined as the closure (in ) of the set {x €
Q| f(x) # 0}. We let C*(Q) denote the set of all complex valued functions on € which
have continuous partial derviatives of all orders < k (The function itself is included as
the 0-th order derivative). C>°(Q2) = NLC*(Q) is the set of all complex valued functions
on €2 that have continuous partial derivatives of all orders. Moreover, the set of functions
in C*(Q) (resp. C°°(9)) whose supports are compact subsets of € is denoted by C¥(9)
(resp. C2°(€2)). It is easily seen that all these sets are vector spaces.

If n € N, an n - multi-index is an n - tuple of non-negative integers a = (a1, ..., q,) €
7. The length of o is defined as |a| = oy + -+ - + . If § is another n-multi-index, we
define a + B = (a1 + f1, ..., an + Brn). We say that < o if §; < a; for every j, and in
that case we can define o — 8 = (a1 — B1,...,0n — Bn). If f € CF(Q) and |af < k, we
denote by 0“f the partial derivative 8|°‘|f/6§‘11 - 0gn. We also set a! = aq!--- !, and

if z € R", 2% =z --- 28", Thus, the formal statement of Taylor’s theorem becomes

0 f(x)

al

flw+h)=>" h

a>0

1.1 Test Functions and Distributions

We call elements of C°(Q2) as test functions on Q. C2°(92) has the structure of a
Fréchet space, which is an example of a topological vector space. Instead of describing

the topology of C2°(£2) in detail, we just note when a sequence in CZ°(2) converges to



an element in CZ°(€2), which will be sufficient for our purposes.

Definition 1.1 ([1], p. 8). Let Q be an open subset of R™. We say that a sequence
¢On € CX(Q) converges to ¢ € C°(Q) if there is a fixred compact set K C Q such that
supp ¢n C K for every n, and for every multi-index o, 0%¢, — 0% uniformly.

Now, if f € L] (), we can define a linear functional (also denoted by f) on C°(92)
by

(f.6) = / fodr Vo e X

It can be shown that (f,-) is sequentially continuous, and the right hand side of the
above equation vanishes for all ¢ if and only if f = 0 a.e. Thus, we may view every
locally integrable function as a sequentially continuous linear functional on C2°(Q2) in a

unique way.

Definition 1.2 ([1], p. 7,9). Let Q be an open subset of R™. We say that a linear
functional u : C°(Q) — C is a distribution if whenever ¢, — ¢ in C(Q), (u, dp) —
(u,d). FEquivalently, u is a distribution if for every compact K C ), there exists a

non-negative integer N and Cx > 0 such that

(@) <Cx D sup|d9| Vo€ CX(K)
|| <Nk
where CX(K) = {¢ € CX(Q)| supp w C K}. Estimates like the one above are called

semi-norm estimates.

Note. If we can take a single N = Nk for all compact K C €, u is said to be a
distribution of finite order and the least such NN is called the order of the distribution w.
If u is a distribution of order k, it can be extended to a sequentially continuous linear
functional on C*(Q). (A sequence ¢, — ¢ in C¥(Q) iff there is a fixed compact set K
containing supp ¢,, for all n and 0%¢,, — 0%¢ uniformly for all a with |a| < k.)

An example of a distribution not given by a locally integrable function is the Dirac
delta distribution, defined by (dz,,¢) = ¢(x0). The set of all distributions on £ is
denoted by D'(€2). It is equipped with the weak * topology.

Definition 1.3 ([1], p.13). A sequence u, — u in D'(Q) if for every ¢ € C°(Q),
(un, ¢) = (u, ).
Let Y C X be open sets in R™. Note that there is a canonical inclusion C°(Y) —

CX(X) (extend ¢ € C°(Y) by 0). Thus, if u € D'(X), (u, ¢) is well defined for every
¢ € CX(Y). We define the restriction of u to Y by uly : ¢ — (u, ¢) for all ¢ € C°(Y).



It is easy to see that uly is a distribution on Y. Using the following theorem, one can
show that we can recover the distribution u from its restrictions to a family of open sets

that covers the whole space.

Theorem 1.1 (Partition of Unity, [1], p. 11). Let X C R"™ be open and let K be a
compact subset of X. Let X1, ..., X, be open subsets of X such that K C X1U---UX,,.
Then there exist functions ¢; € C°(X;) (1 <i <m) such that 0 < ¢; < 1 for every i,

m m
Z ¢; <1 on X, Z ¢; = 1 on a neighbourhood of K
i=1 i=1
Corollary 1.1 ([1], p. 12). Let X C R" be open and let X; C X, j € J be open subsets
such that X = Ujc;X;. Suppose that for each j € J, there is a distribution uj € D'(X;)
such that
uj = u; on X;NX;, Vi, 5 €J

Then there exists a unique u € D'(X) such that u|x, = uj for every j.

As an application of this corollary, we can now define the support of a distribution
u € D'(X). Let X; be the family of all open subsets of X such that u|x; = 0. Then by
the above corollary u = 0 on Y = U;X;. Note that Y is the largest open subset of X

on which u is 0. The complement of Y is called the support of u.

Definition 1.4. Let X C R" be open and u € D'(X). Then the support of u is defined
as

supp u = ({x € X|u =0 on a neighbourhood of x})¢

Note that if u is a continuous function, the above definition of the support of u
coincides with the previous definition. Similarly, we can define the singular support of
a distribution u € D'(X) as

sing supp v = ({x € X|u € C* on a neighbourhood of z})¢

The class of distributions with compact support in Q is denoted by £'(Q). A distri-
bution u € D'(2) is in £'() if and only if it can be extended to a sequentially continuous
linear functional on C*°(€2) ([1], p. 34-35).

Definition 1.5 ([1], p. 34). A sequence ¢; € C*°(R2) is said to converge to ¢ € C>(Q)

if for every multi-index o, 0%¢; — 0“¢ uniformly on all compact subsets of €.

We conclude this section by noting that the class of distributions is in a sense se-

quentially closed.



Theorem 1.2 ([1], p. 15). Let & C R™ be open and let u; be a sequence in D'(2) such
that (uj, ¢) converges for every ¢ € C°(). Define u on C°(Q2) by

<U, ¢> = lim <U]’, ¢>7 ¢ € CCOO(Q)

Jj—00

Then uw € D'(Q) and uj — u in D' ().

1.2 Operations on Distributions

Suppose f € C*(Q) and ¢ € C°(2). By integration by parts, we can see that for every

multi-index « with |a| < k,

(01, 6) = / (0% f)pde = (~1)! / F(0%0) dx = (~1)l°l (1, 0%¢)

But the last expression would still make sense for any distribution f. This allows us to

extend the notion of a derivative to any distribution wu.

Definition 1.6 ([1], p. 17). Ifu € D'(Q) and « is a multi-index, we define 0*u € D'(Q)
by (0°u, ¢) = (=1)*N(u, 0%¢) for all ¢ € CZ(Q).

Moreover, it is easy to see that 9% : D' — D’ is a sequentially continuous linear map.
In general, if 1 : C°(Y) — C2°(X) is a linear map that takes sequences converging to 0
to sequences converging to 0, the transpose ‘i can be extended to a map D'(X) — D'(Y)
by setting ([1], p. 29)

('pu, @) = (u,u¢),  ueD(X),¢eCE(Y)

Another such important operation on distributions is multiplication by a smooth func-
tion: If ¢ € C°(X), the map p : ¢ — ¢ is sequentially continuous from C°(X) —
C>*(X). The map p is self-adjoint and if v € D'(X), we define ¢pu € D'(X) by
(fu, ) = {u, ¢up) for all ¢ € C(X).

Consider a polynomial in £ € R™ whose co-effecients are smooth functions of x € R",
given by P(z,§) = 3 <) da(@)”. We denote by P(z,0) the linear partial differential
operator ), <, @a(x)0% By the previous discussion it is easy to see that P(x,0) :
D’ — D’ is sequentially continuous.

The next operation we consider is the pullback by a diffeomorphism. Let X and Y be
open subsets of R™ and let f : X — Y be a diffeomorphism. If v € C*°(Y"), it pullback
is defined by (f*u)(z) = u(f(z)). If ¢ € C°(X), the change of variable formula shows



that
(Fruo) = [ulr)o) ds
= [t st detdg(y) dy
where g = f~1. Now, if u € D'(Y), its pullback f*u € D'(X) is defined by

(ffu, ) = (u(y),g"o(y)| det dg(y)]), V¢ € C°(X)

Another important operation that we want to extend to distributions is the convo-

lution of two functions.

Definition 1.7 ([2], p. 16). Let f and g be two continuous functions on R™, at least one
of which has compact support. Then we define the function f* g on R™ by (f x g)(x) =

[ Fx—y)g(y) dy.

The following properties of convolution are easily verified.

Proposition 1.1. Let f,g,h € C(R™), at least two of which have compact support.
1. fxg=g=x*f.
2. fx(g*xh)=(fxg)*h.

3. m(f*xg) = (thf) x g = f* (1ng) for all h € R™, where T, is the translation map
Tho(y) = d(y — h).

4. If f € C7 and g € CF, then 0°FP(f x g) = (0°f) * (0°g) whenever |a| < j and
Bl < k.

5. If f and g both have compact support, supp f*g C supp f + supp g

The 4th property in the above proposition implies that convolution with smooth
function leads to a smooth function. Convolutions can be used to approximate a general
function (or even a distribution) with smooth functions. Let p € C2°(R™) be such that
supp p C {|z| <1}, p > 0 and [ pdx = 1. Define pc(z) = € "p(x/e). It is clear that

each p¢ is a non-negative function whose integral is equal to 1 and supp pe C {|z| < €}.

Proposition 1.2 ([1], p. 6). Let f € C¥(R") for some k > 0. Then f. := f * p. €
C®(R™) for every e and fo — f in C*(R™).



Let 7, : C°(R™) — C°(R™) be the translation map 7,¢(y) = ¢(y — z). Evidently,
this can be extended to D'(R™) by (r,u, ®) = (u, 7_¢). Similarly the self-adjoint opera-
tion ¢ — ¢ where ¢(y) = ¢(—y) can also be extended to distributions by (u, ¢) = (u, @).

The definition of convolution says that

(1.1) (f*9)( /f r—y)g(y) dy = (f, 729)

This immediately suggests an extension: If f € D'(R™) and g € C°(R") or if f € &'(R™)
and g € C*°(R"), we define f * g as a function through the equation 1.1.

Proposition 1.3 ([2], p. 88). Let f and g be as above. Then fx g € C°(R™) and for

any multi-index «,
OU(fxg) =(0%f) g = [=(0%)

If f and g both have compact support, we still have supp f *xg C supp f + supp g.
Also, if pe is the sequence defined above, then for any distribution u € D/(R™), u * p.
is a sequence of C*° functions that converges to u in D'(R™). Now, let us define the
convolution of two distributions at least one of which has compact support. Notice that
if u € D'(R™), the map ¢ — u * ¢ is a continuous linear map from C°(R") — C*°(R")

and commutes with translations. In fact, the converse is also true.

Theorem 1.3 (2], p. 100). If p: CX(R™) — C*(R™) is a continuous linear map that
commutes with translations, there exists a unique u € D'(R™) such that u = u* 1 for
all p € C°(R™).

Now let u1, ug be two distributions on R”, at least one of which has compact support.
It is easy to see that uj * (ug * ¢) is well defined for every ¢ € C°(R"™) and that the
map ¢ +— up * (ug * @) is sequentially continuous. We define u; * ug to be the unique
distribution on R™ such that

(ur *ug) x =y * (ug * @), Vo € C(R")

Properties 1,2,3 and 5 of Proposition 1.1 continue to hold for any f € D'(R"™), g € £'(R™).
Also, 0%(u1 * uz) = (0%uq) * ua.

We conclude this section by defining tensor products of distributions. Let X C R™
and Y C R" be open. If f € C(X) and g € C(Y), the tensor product f ® g is the
function on X x Y defined by pointwise multiplication: (f ® g)(x,y) = f(x)g(y). As a
distribution, this is given by

(f®g,x) = //f x(x,y) dxdy Vx € CF(X xY)



We want to define tensor products for distributions. If we take y = ¢ ® ¥ with ¢ €
CX(X) and ¢ € CX(Y), we get

(1.2) (fog,0@9)=(f0)9,%)

We want our definition of tensor product of distributions to still satisfy this identity.

Theorem 1.4 ([1], p. 44). The subspace of C°(X x Y) generated by functions of the
form ¢ @, ¢ € CX(X), ¢ € CX(Y) is dense in C°(X xY).

Thus, equation 1.2 already determines the required distribution on a dense sub-
space of C2°(X x Y'). The next theorem says that this can be uniquely extended to a
distribution on X x Y.

Theorem 1.5 ([1], p. 45). Let u € D'(X) and v € D'(Y). Then there exists a unique
distribution on X X Y, called the tensor product of u and v and denoted by u ® v such
that

(u®@v,p @) = (u,9)(v,9), Vo e CF(X),p e C(Y)

1.3 Schwartz Kernels

Let X € R® and Y C R™ be open sets. If £k € D'(X xY), we can define a map
i+ C(Y) = DI(X) by

(1.3) (e(V),0) = (ko @) Vi € CF(Y), ¢ € CF(X)

or, to use the integral notation,

/X (1) () () dr = /X /Y k(e 90 (y)d(z) dy da

If k£ is a locally integrable function, this is simply the integral transform

s n()() = /Y Kz, y)i(y) dy

The distribution k is called the distribution kernel or Schwartz kernel of the map ug.
The Schwartz kernel theorem says that a very large family of operators C°(Y) — D'(X)

can be respresented in the form 1.3.

Theorem 1.6 (Schwartz kernel theorem, [2], p. 128). A linear map p : C°(Y) — D'(X)
is sequentially continuous if and only if there exists a k € D'(X x Y') such that for all
b€ C2(X) and ¥ € CX(Y),

(1.4) (1), ) = (k; o @ 1))

Morevover, the kernel k is uniquely determined by p.



Remark. If k € D'(X x Y) is a distribution kernel, the associated map from C°(Y) to
D'(X) is also usually denoted by k.

Definition 1.8. If k € D'(X x Y), its transpose 'k € D'(Y x X) is defined by
("kox) = (k'x)  Yx€CX(Y x X)

where *x(z,y) = x(y, x).

If k is actually a function, then ‘k(y,z) = k(x,y) and so the above definition is
consistent. Note that the maps k and 'k are also adjoints of each other: if ¢ € C2°(X)
and 1 € C°(Y), then by definition,

(1.5) (ko v) = (k. @ ¢) = (k, o @) = (kv), §)

Theorem 1.7 ([1], p. 73). Let k € D'(X xY). If 'k is a continuous linear map of
CX(X) into C®(Y), then k can be extended to a map E'(Y') — D'(X) that is sequentially
continuous in the following sense: if uj is a sequence in E'(Y') such that u; — u in D'(Y)

and supp u; are all contained in a fived compact set K, then kuj — ku in D'(X).
Remark. Usually, the extension map £'(Y) — D/(X) is also denoted by k

Definition 1.9. If a Schwartz kernel k € D'(X x Y) is such that both k : C°(Y) —
C®(X) and 'k : CX(X) — C(Y) are sequentially continuous linear maps, k is called

a regqular kernel.

Corollary 1.2. If k is a reqular kernel, the maps k and 'k extend to sequentially con-
tinuous linear maps E'(Y) — D'(X) and E'(X) — D'(Y) respectively
1.4 Fourier Transforms and Tempered Distributions

Let f € L'(R™). The Fourier transform of f is defined as the function
FIO =1 = [ @i veer

It is easy to see that f is a bounded continuous function with [f(€)] < ||f||;1 for every
£ e R

Proposition 1.4 ([1], p. 92). Let f,g € L'(R").

1. [ f@)g(z)de = [ f(€)g(€)de.



2. The convolution (f * g = [f(z (y)dy is defined for a.e. x € R™ and
fxge L' (R"). Also, f*g(ﬁ) f(é)g(f)

If g € C°(R™), 1 determines the distribution associated to f in terms of f. But one
can not use this equation to define the Fourier transform for an arbitrary f € D'(R"),

since the Fourier transform does not map CZ° to C2°.

Definition 1.10 ([1], p. 93). A function ¢ € C>°(R") is said to be rapidly decreasing
if for every pair of multi-indices a, 3,

sup |#P9%(z)| < oo
z€R™

The space of all rapidly decreasing functions on R™ is called the Schwartz space on R™

and is denoted by S(R™).

S(R™) also has a Fréchet space structure. A sequence ¢; € S(R™) converges to 0 if
for every pair of multi-indices «, /3, sup,cgn \xﬁao‘qﬁj(xﬂ — 0 as j — oo.

It is easy to see that S(R™) C L!'(R") so that we can define the Fourier transform
of any rapidly decreasing function. Also, if ¢ € S(R"), z;¢,0;¢0 € S(R") for every
j, so that S is closed under differentiation and multiplication by polynomials. The
importance of the class S is due to the following result ([2], p. 160-161). Let us denote
by D the operator —i0, so that D; = —id; and D* = (—3)leloe,

Theorem 1.8. Let ¢ € S(R™). Then
FD9)(E) = €6(¢)
F@®9)(€) = (—=1ID(¢)

and consequently F : S(R™) — S(R") is a continuous linear map. Its inverse, called the

Inverse Fourier transform is also continuous and is given by

“1g(z) = dx) = /&“ma%

1
(2m)"

Remark. The equation

1 A
_ 1x-& d
@) = e [ €010 de
is sometimes called the Fourier Inversion formula.

Note that if P is a polynomial, F(P(D)¢)(¢) = P(£)¢(£). Thus, if a distribution f

extends to a continuous linear functional on S(R™), we may define its Fourier transform.



Definition 1.11. We define S'(R™) as the space of those distributions on R™ which
extend to sequentially continuous linear functionals on S(R™). Elements of S'(R™) are

called tempered distributions. A sequence uj € S'(R™) is said to converge to u € S’'(R™)
if (uj, @) — (u, @) as j — oo for every ¢ € S(R™).

Definition 1.12 ([1], p. 97). If u € S'(R"), its Fourier transform 4 is defined by
(i,0) = (u,6) Vo€ SR)

It can be verified by simple computations that Theorem 1.8 can be extended to

tempered distributions.

Proposition 1.5 ([1], p. 99). Let f € S'(R™). Then

A~

F(DUf)E) = €2/ (&)
F@*f) ) = (-DlDf(g)

Also, the Fourier transform F is a continuous linear map from S'(R") — S'(R™) and

its inverse is also continuous.

We conclude the section by noting that if u € &'(R™), its Fourier transform is actually

a C*° function.

Lemma 1.1 ([1], p. 101). If u € &' (R™), @ is a C* function given by u(§) =
(u(z),e""¢).

Theorem 1.9. Let u € 8'(R™) and let v € E'(R™). Then uxv € S'(R™) and

Fluxv)(§) = a(§)0(E)

1.5 The Wavefront Set

Consider a distribution u € &'(R™). Then we know that its Fourier transform is a
smooth function, and v € C°(R™) if and only if 4(§) is a rapidly decreasing function
of . For a general u € £'(R™), it is interesting to look at those directions in which 4 is

not rapidly decreasing. More specifically, we make the following definition:

Definition 1.13 ([1], p. 145). We say that { ¢ X(u) if there exists a conic neighbour-
hood V' 3 &y such that

A < Cy(1+¢)™N  VEEeV,NeN

where C1,Csy, ... are positive constants.

10



It can be easily seen that u € C2°(R") iff X(u) = 0. X(u) gives us the directions of
the singularities of the distribution u. To find the directions of singularities of u at g,

we localize v by multiplying by a cut-off function that is non-zero near x.

Definition 1.14 ([1], p. 145). Let u € D'(Q). We say that (x0,&) € Q x (R™\ 0) s
not in the wavefront set of u, denoted by WF (u) if there exists ¢ € C°(Q) such that
d(x0) # 0 and & ¢ X(ou).

The wavefront set gives us the positions as well as the directions of the singularities
of a dstribution. The following proposition shows that it is a refinement of the concept

of singular support.

Proposition 1.6 ([1], p. 146). Let u € D'(Q2) and let m : @ x (R"\ 0) — Q be the
projection map (x,&) — x. Then

sing supp u = (W F(u))

Ezxample. Let Q 3 xg be an open set in R"™. Consider the Dirac delta distribution d,,
given by (dz,, @) = (o) for ¢ € C°(2). It can be shown that WF(05,) = {zo} x (R™\
0).

We now present some results on how the wavefront set transforms under various
operations on distributions.

Let X be an n-dimensional manifold. Consider its cotangent bundle T*X. If
r1,%2,...,ZTy are local coordinates defined on an open set U of X, then we get cor-

responding local co-ordinates on T*U by

((z1, 22, ... xn), (SGrdxy + Sodag + ... + &udy)) = (21, ... 2p, &1, 6n)

(x1,... 20, &1, ..., &) are called canonical local co-ordinates on T*(X). If (y1,...yn) is
another system of local co-ordinates, it can be easily verified that the resulting canonical

local cordinates (y,n) are related to (z,&) by

_ [0z
O <8y)§

where (%) denotes the usual Jacobian matrix (g;;) .
,L’]

Theorem 1.10 ([1], p. 152). Let X and Y be open subsets of R™ and let f: X — Y be
a diffeomorphism. If uw € D'(Y),

WE(f*u) = {(z," dfon) | (f(x),1) € WF(u)}

11



Thus, under diffeomorphisms, the wavefront set transforms like a subset of the cotan-
gent bundle. So, the wavefront set of u € D'(X) can be naturally viewed as a subset of
T*X \ 0. Henceforth, we always regard the wavefront set to be a subset of the cotangent
bundle.

The concept of wavefront sets can be used to extend many operations on distribu-
tions. For example, if v and v are distributions with disjoint singular supports, we know
how to define the product uv. The next theorem shows that this can be done in some

cases even if their singular supports are not disjoint.

Theorem 1.11 ([1], p. 153). Let u,v € D'(R™) be such that (x,§) € WF(u) implies
(z,—&) ¢ WF(v). Then the product uv can be defined and

WF(uv) C WFEF(u)UWF()U{(z,£+n)|(z,) € WF(u) and (z,n) € WF(v)}

If u,v are compactly supported, then one shows that the integral [@(£ —n)d(n)dn
is absolutely convergent, and then takes the Inverse Fourier transform of this function
to define uv. The definition is extended to general distributions by a partition of unity.

We conclude with some results that relate the Schwartz kernel of an operator to its
action on wavefront sets. We first fix some notation. If C1 C T*X xT*Y and Cy C T*Y.
We define

CyoCy={(x,&) € T*X |3(y,n) such that (y,n) € Co, (z,&,y,n) € C1}

i.e., C1 is viewed as a relation between T*X and T*Y and Cj o (5 is the image of Cy
under this relation. If C3 C T*Y x T*Z, (1 0 (3 is defined as a composition of relations.

Cl o C’3 - {(xangae) ‘ B(yﬂ?) such that (:1:7571/777) € Cla (y7777270) € 02}
Also, if A CT*X x T*Y, we define

Ax = {(z,8)|(z,&y,0) € A for some y € Y}
Ay = {(y,n)|(x,0,y,n) € A for some z € X}

A/ = {(%5,%77)’(-"5’5»@/7_77)614}

Theorem 1.12 ([2], p. 268). Let X C R™ and Y C R™ be open and let K € D'(X xY')
be a Schwartz kernel. Then K can act upon u € E'(Y) to give Ku € D'(X), provided
(y,m) € WF(u) implies (z,0,y,—n) ¢ WF(K) for any x, and we have

WF(Ku) ¢ (WF(K))x UWF' (K)o WF(u)

12



Theorem 1.13 (Hormander-Sato Lemma, [2], p. 270). Let K1 € D'(X xY) and
Ky € D'(Y x Z) be Schwartz kernels. Suppose that the projection supp Ko 3 (y,2) — z
is a proper map and WF'(K1)y NWF(Ks)y = 0. Then we can form the composition
of the corresponding operators Ky o Ko : C°(Z) — D'(Z) is well defined and

WF/(Kl o KQ) - WF,(Kl) o WF’(KQ) U (WF(Kl)X X J X {0})
U(X X {0} X WF/(KQ)Z)

13



Chapter 2
Pseudodifferential Operators

Consider the linear partial differential operator P(z, D) = 3, <) da(z)D" where aq

are C* functions on R”. If u € S(R™), we may use the Fourier Inversion formula to

write
1 .
(2.1) P(z,D)u(z) = aq(z) D" — [ e la(g) dé
3 00" (s f -Sutere)
1 .
(2.2) = aa(x) — [ e a(€)En de
3 0o (o | )
= 1 eTEP(z, )i
(23) = Gy [ P o) de

The polynomial P(z,¢) is called the symbol of the operator P(z, D). Pseudodifferential
operators are generalizations of differential operators, in the sense that they are given
by expressions of the form 2.3 where P(x,§) is allowed to belong to a larger class of

functions. We begin by defining this class.

Definition 2.1 ([3], p. 1). Let Q be an open set in R™ and m € R. We define S™(Q x
R™N) to be the set of all functions P € C(QxRN) which satisfy the following estimates:
given any compact set K C Q and multi-indices « and (3, there exists a constant ¢ =
co(K,a,B) >0 such that

sup |00¢ P(w, )] < e(1+ gl
xTEe

for all ¢ € RN, Elements of S™(Q x RY) are called symbols of order m on Q x RN .

Note that if m < m/, S™(Q x RV) ¢ 8™ (Q x RN). So it is natural to define
50 x RY) = Uper S™(Q x RY) and §7°°(Q x RY) = (N,,cp S™(2 x RY).

meR
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Remark. If P € §™ and Q € S™ it is easy to see that P + Q € S™ax(m1m2) and an
application of Leibniz formula will show that PQ € S™ ™2  Further, if P € S™, it
follows immediately from the definition that 8%6? P(z,¢&) e S™8I,

Remark. If N = dim (2, we simply write S™(Q2) for S™(Q x RY).

Definition 2.2. Suppose P(z,£) € S™(2). Then we define the operator P(x, D) by

(2.4) P(z,D)u(x) =

1 .
”CfP N
gy | POl de
P(z, D) is called the pseudodifferential operator (VDO for short) associated to the sym-
bol P(x,&). If P(x,§) is of order m, then we say P(x,D) is also of order m. The set
of all pseudodifferential operators of order m on Q is denoted by W™ (). As before, we
also set U°(Q) = J,,,er ¥"(2) and U=°(Q) = ,,cr ¥ ().

Consider P(z,£) = 3| <), a(2)§" where aq are C* functions on (2. It is easy to see
that this is a symbol of order k£ on €. Further, by equation 2.3, the pseudodifferential op-
erator associated to it is precisely P(z, D) =}, <f @a(x)D*. Thus pseudodifferential
operators are generalizations of differential operators.

Note that the integral in 2.4 converges whenever u € S(R"), as P(z, -) has polynomial
growth. However, it is more natural to view P(x, D) as acting on functions on € and we
usually restrict the domain of P(x, D) to C2°(€2). The following lemma is easily proved
by differentiating under the integral.

Lemma 2.1. Let P(z,D) be a ¥DO on Q. Then P(x,D) : C*(Q) — C>®(Q) is a

continuous linear map

2.1 Kernels of Pseudodifferential Operators

Consider a pseudodifferential operator P(x, D) on Q. If u,v € C°(Q), we have

1

(P.Dyuta).ola)) = e [[ <P (o) e da

_ (271071///ei(x_y)fP(x,f)u(y)v(x) dy dé dz

Let P, denote the Inverse Fourier transform of P(x, &) with respect to & (in the sense of

distributions). Then the above equation reduces to
(Pla, Dyulz),o(@) = [ Falao = puly)o(a) dyda

15



From this, we can easily see that the Schwartz kernel of P(z, D) is given by K(z,y) =
Py(x,z —5). Also, its transpose 'K (z,y) = Py(y,y — x) gives rise to the map

(2.5) *P(x, Dyu(x) = (;) / / U EP(y, €yuly) dy dé

which, as we can easily see, is again a continuous linear map from CZ°(€2) to C*°(Q).
Thus, K is a regular kernel, and by Corollary 1.2, both P(x, D) and !P(x, D) extend to

sequentially continuous linear maps from £'(Q) to D'(Q). In fact, we can say more.

Definition 2.3 ([4], p. 11). A regular Schwartz kernel k(xz,y) € D'(Q x Q) is said to
be very regular if it is a C*° function outside the diagonal A = {(z,z)|z € Q}.

We will see that the kernel of any WDO is very regular. An important property of

very regular kernels is the so-called pseudolocal property.

Definition 2.4. An operatorT : £'(Q) — D'(Q) is said to be pseudolocal if sing supp Tu C
sing supp u for every u € £'(Q).

Theorem 2.1 ([4]). If a Schwartz kernel K(z,y) € D'(2 x Q) is very reqular, then the
associated map K : £'(Q) — D'(Q) is pseudolocal.

Theorem 2.2 ([5], p. 273). Let P € S™(Q) and let K(x,y) be the kernel of the ¥ DO

associated to P.

1. The function fu(x,2) = 22Py(x, 2) is in CI(Q x R™) for all multi-indices a with
la] >m+n+j. If Ais a compact subset of Q, f, and all its derivatives of order
< j are bounded on A x R™.

2. If la] >m+n+j, (x —y)*K(z,y) € C/(Qx Q). In particular, K(z,y) is C> on
QO x Q\ Ag.

The basic idea of the proof is that z*Ps(z, z) is the inverse Fourier transform of
DgP(z,€£) (up to a scalar multiple). Since differentiation in the § variables reduces the
order of P(x,&), for |a| sufficiently high, the Inverse Fourier transform can be interpreted
in the classical sense as an integral. So, 1 follows by arguments involving differentiating

under the integral. Now 2 follows from 1 since K (z,%) = Py(z,z — ).
Corollary 2.1. Every pseudodifferential operator is pseudolocal

Corollary 2.2. If P € S7°(Q), then P(x,D) maps £'(Q) — C>*(Q).
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Proof. Theorem 2.2 implies that the kernel K of P is in C®°(2 x ). Let u € &'(Q).
Approximating u by a sequence of C2° functions, we get that Pu is the smooth function
given by Pu(z) = (u(y), K(z,y)). O

Remark. Operators that map £'(Q2) — C°°(Q) are called smoothing operators. We have
shown that every P € U~°°(2) is smoothing.

Note that since a pseudodifferential operator maps C°(2) — C*°(Q2) and £'(Q) —
D'(Q), it does not in general make sense to compose two WDOs. However, this can be

easily overcome by adding a simple condition on the kernels of the ¥DOs.

Definition 2.5 ([3], p. 28). Let X C R™ and Y C R™ be open sets, and let w1 : X XY —
X and mo : X XY — Y be the projection maps onto the first and second co-ordinates
respectively. We say that a closed set W C X x 'Y is proper if for all compact subsets
K CX,K'CY, the sets 7, "(K) "W and 75, ' (K') N W are also compact.

Definition 2.6. Let T : C°(Y) — C*°(X) be a continuous linear map with Schwartz
kernel K. T is said to be properly supported if supp K is a proper subset of X x Y.

Proposition 2.1 ([5], p. 276). Let T : C°Y — C*°(X) be properly supported. Then
T maps C(Y) — C®(X) and E'(Y) — E'(X). Furthermore, T can be extended to
continuous linear maps C*(Y) — C*°(X) and D'(Y) — D'(X).

Thus, it makes sense to speak of SoT' if at least one of them is compactly supported.

It can also be shown that if both S and T" are compactly supported, then so is SoT.

2.2 Action on Sobolev Spaces

Let © be an open set in R™ and let s € R. The Sobolev space H(f?) is defined by
@) = {uee@| [ariepria@Pd < |

with norm defined by |[[u|lzs = ([(1 + |£?)%|a(¢)[?d€)"/2. Tt is a known fact that
E'(Q) = Uger HE (). The following Theorem says that if P € U(Q) , the action of P

on u reduces the order of regularity (measured by s) by at most m.

Theorem 2.3 ([5], p. 295). If P € ¥™(Q), then P is a continuous linear map from
HZ(Q) — H} ™ (Q) for all s € R. That is, given any ¢ € CZ(2), there exists Cy g > 0
such that

|¢Pullgrs-m < Csg

|w)| rs Yu € HZ(Q)
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2.3 The Symbolic Calculus

Suppose m; is a sequence of real numbers strictly decreasing to —oo and P; € §™(Q x
RYN) for all j > 0. Since the orders are decreasing, the terms of the series are in a
sense getting smaller and smaller. Though the series > ;° P; need not converge, the
following notion of asymptotic sum is very useful: We say that the formal sum > " P;
is an asymptotic expansion of P € S™0 (2 x RY), and write P ~ Y ¢° P; if

E—1

P-Y PeS™QxRY) Vk>0

j=0
Proposition 2.2 ([3], p. 8). Let m; be a sequence of real numbers strictly decreasing
to —oo and let Pj € S™i(Q x RN). Then there exists P € S™(Q x RY) such that
P ~ %"0° P;. Furthermore, if Q is another such symbol, P — Q € S™°°(Q x RM).

Remark. Operators in ¥~°°(Q2), and smoothing operators in general, are regarded as in
a sense negligible. Thus, while considering an operator P € ¥ ({2), we are generally

only interested in its equivalence class in W™ (Q) /¥ ~>°(Q).

Definition 2.7 ([4], p. 32). A symbol P € S™(Q) is said to be classical if P admits an

asymptotic expansion of the form

(2.6) P(@,€) ~ 3 X()F(,)

Jj=0

Here x is a smooth function such that x(§) =0 for |§| < 1/2 and x(§) =1 for || > 1,
and Pj(x,£) € C(2 x (R™\ 0)) is positively homogeneous of degree m — j , that is,

Pj(x,t&) =t™ I P(x,6)  VYx€Q, E€R"\0, andt >0

It can be checked that x (&) Pj(x, &) € S™9(Q). ¥DOs associated to classical symbols
are called classical pseudodifferential operators. Note that all linear partial differential
operators are classical ¥WDOs, since any polynomial in £ with C° coefficients in z is

classical.

Definition 2.8. If P is a classical symbol with an asymptotic expansion as in equa-
tion 2.6, Py(x,§) is called the principal symbol of P.

We now move on to computing the transposes, adjoints and compositions of WDOs.
Recall that if P(x, D) is a ¥DO, its transpose is given by (equation 2.5)

'P(e. Dyu(z) (;r)n / / e DEP(y, —e)u(y) dy d
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This indicates that the class of ¥DOs can be profitably extended by allowing the symbols
to depend on both z and y.

Definition 2.9. Let X C RP and Y C R" be open sets and let m be a real number.
We denote by S™(X x Y x RN) the set of all a € C®(X x Y x RN) that satisfy the
following estimates: given a compact subset K C X xY and multi-indices o, 3,7, there
exist positive constants C' = Ck o g~ such that
sup [950,00a(x,y,&)| < C(L+[¢)> P ve e RN
(zy)eK
If Q is an open set in R™, we denote A™(Q2) = S™(Q2 x Q x R™) and their elements are

called amplitudes of order m.
Given a € A™(Q), we define P, : C°(2) — C*(R2) by

1

Pyu(x) = G

// e @S q(z,y, E)uly) dy dE

Integration must be carried out in the indicated order. The kernel K of P, is given by
K(z,y) = as(z,y,x —y), where az denotes the Inverse Fourier transform of a in the
third variable.

Proposition 2.3 ([5], p. 285). If a € A™(Q), there exists b € A™(Q2) such that Py is
properly supported and P, — P, is a smoothing operator.

Recall that if an operator T' : C°(Y) — C°°(X) is properly supported, it can
be extended to a continuous map from C*(Y) — C*°(X). The next theorem shows
that the class of properly supported P,’s exactly coincides with the class of properly
supported ¥YDO’s.

Theorem 2.4 ([5], p. 286). Let a € A™() be such that P, is properly supported.
Define

(2.7) P(z,8) = e_iz'gPa(em{)

Then P € S™(Q2) and P(x, D) = P,. Furthermore, we have the asymptotic expansion
1
P&~ Y o DYale,y, Ol
CIE

Corollary 2.3. If a € A™(Q), there exists a properly supported @ € V™ (Q) such that
P,—Q is a smoothing operator. Moreover, if a € S™(S2), there exists a properly supported
Q € U™(Q) such that a(x,D) — Q € U=°(Q).
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Remark. In general, different symbols can give rise to the same WDO. However if P € U™
is properly supported, equation 2.7 gives us a canonical choice for the symbol of P. We

denote it by op.

If S and T are linear maps from CZ°(Q2) to C*°(Q2), we say that S is the adjoint
of T and write S = T* if (Tw,v) = {(u,Sv). T* has distribution kernel K*(x,y) =
m. It follows that if 7" is properly supported then so are !T" and T*. Also, if
P € S™(Q), equation 2.5 shows that ‘P(z, D) = P, where a(x,y,£) = P(y,—£) and a

similar computation shows that P(z, D)* = P, where b(z,y,£) = P(y,£). Moreover, by

an application of the previous theorem, we can conclude the following:
Theorem 2.5 ([5], p. 291). If P € V™ (Q) is properly supported, then 'P, P* € ¥™(Q)

and

_1)lal
o) ~ 3 T e pagy (s, —g),

ol
|a|>0
1 a0 ¢
O'P*(x7§) ~ Z Jaﬁon-P(x7§)
la|>0

Theorem 2.6 ([5], p. 291). If P € U™(Q) and Q € U™ () are properly supported, then
QP := Qo P e " (Q). Moreover, QP = P, where a(x,y,&) = oq(z,8)op(y, —§)

and

oar(e,6) = 3 —0oq(n,€) - Diop(r,&)

lal>0
2.4 Propagation of Singularities

We have seen that pseudodifferential operators are pseudolocal: If P € ¥*°(Q2) and
u € &'(Q), sing supp Pu C sing supp w. This result can be further refined .

Theorem 2.7 ([5], p.307). If P € ¥*°(Q) and u € £'(),
WF(Pu) C WF(u)
Remark. This property of pseudodifferential operators is called microlocality

There is a class of pseudodifferential operators for which the reverse inclusion also

holds.

Definition 2.10 ([5], p. 297). A symbol P € S™(Q2) and its corresponding operator
P(z,D) € U™(Q) are said to be elliptic of order m if for every compact set K C §,

there exist positive constants ci,ri such that

|P(z,8) = cxlg|™  Voe K, [§| =k
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Remark. If P(x,&) is a classical symbol with principal symbol Py(z,§), P is elliptic iff
Po,€) # 0 for € # 0.

Elliptic ¥DOs are invertible in U>° /¥ ~,

Theorem 2.8 ([5], p. 298). If P € U™ () is elliptic, there exists a Q € V~"(Q) such
that QP — 1 € U=°(Q) and PQ — I € ¥~>°(QQ). Here I is the identity operator. Q is

called o parametrix for P.

Corollary 2.4 (The Elliptic Regularity Theorem). If P is an elliptic VDO, W F(Pu) =
WF(u).

Proof. By Theorem 2.8, there exists a WDO @ such that QP — I € $~°°. This implies
that WF(u) = WF(QPu) C WF(Pu) since @ is YDO. This along with Theorem 2.7
implies that WF'(Pu) = WF(u). O

Ezample. If a distribution u satisfies the Cauchy-Riemann equations (in the sense of
distributions) in Q C R2, the above theorem implies that « must in fact be an analytic

function in €.
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Chapter 3
Fourier Integral Operators

Fourier Integral Operators are extensions of YDOs, in the sense that they are given by

expressions of the form
Aua) = [ @09 a(a,y.€)uly) dy dé

where a(z,y,£) € S and the function ¢ satisfies certain properties.

Definition 3.1 ([3], p. 9). Let Q be an open set in R™. A function ¢ € C=(Q x (RV \
{0})) is called a phase function if for all (z,£) € Q x (RN \ {0}),

1. Im ¢(z,§) 2 0
2. ¢(x,AE) = Ap(x,&) for all X >0
3. Vaep(x,8) #0
where V¢ denotes the operator (Oy,,...,0z,,0¢,-..0cy).

Note. From now on, we will denote R \ {0} by RY.

For example, ¢ = (x — y) - £ € C°(Q x 2 x R™) is a phase function, and for this ¢,
A is nothing but the pseudodifferential operator P, (up to a scalar multiple). Note that
the kernel of A is given by

Alz,y) = / TV a(x,y, €) de

which, clearly, need not be absolutely convergent. In the case of ¥DOs, such integrals
were interpreted as Inverse Fourier transforms of tempered distributions. We begin by

interpreting the above integral in the general case of ¢ being a phase function.
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3.1 Oscillatory Integrals

Suppose ¢ € C®(Q x RN) is a phase function and a(z,£) € S™(Q x RY). Then if

m < —N, it makes sense to define

(3.1) I(a, 6)() = / 9O a(z, €) de

In fact, if m + k < —N, k € N we may differentiate under the integral k£ times and
see that I(a,¢) € C¥(Q). Note that due to the positive homogeneity condition on @,
0So(z,€) € O(1 + [€]) for any multi-index a.

There is a way of extending this definition to interpret I(a, ¢) as a distribution for
any a € S®(Q x RMY).

Lemma 3.1 ([7], p. 89). Let ¢ € C(Q x RN) be a phase function. Then there exist
a; € SO x RY) and bj,c € S7HQ x RN) such that the differential operator

L= Za]xf +Zb mf + c(z,€)

satisfies ' L(e'?) = '®.

Proof. The function

n

=1

29 |°
ox.

is # 0 for € # 0 and is positively homogeneous of degree 2 with respect to £. Let
x(€) € C(RN) be a cutoff function that is equal to 1 in a neighbourhood of 0, and
define

o (1=x(9)
L= “Bed jZ&F

= Za](% Zb’——l—c

Then we have ‘L(e?®) = €' and aj € So,bg € S~ ¢ € 7. Note that L = *('L) =
ajza%j—&-bjza%j—i—cwhere

0¢; (95 Z 8:5] ax] +x(9)

aj =—aj, bj=-V, c=c =) 0d;/05;—Y 0;/ox; €S
Thus, L has all the required properties. O
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If m < —N, and u € C(2), we have

(3.2) (I(a,6),u) = // @ Oa(a, )u(r) de d

(3.3) — [V at utw) de o

(3.4) = / / e LF(a(x, )u(x)) de da

Now, it can be easily verified that if a € S™, L*(au) € S™*, so that for any value of m,
the last integral converges absolutely if we take k large enough. Thus, for any a € 5,

3.4 defines I(a, ¢) as a distribution on €. By convention, we write

I(a,6)(x) = / 9D a(z, €) de

no matter what the order of a, with the understanding that I(a, ¢) is to be interpreted
as a distribution as in equation 3.4. Note that I(a, ) is a distribution of order < k if
m—k+ N <O0.

Definition 3.2 ([3], p. 12). Let a € S®(Q x RY) and let ¢ € C®(Q x RN) be a phase
function. Then, I(a, @), as defined above, is called the oscillatory integral or the Fourier

integral distribution associated to the symbol a and phase function ¢.

Note. This definition is independent of L. In fact, This is the unique way of extending
the definition of I(a, ¢) such that the map S™ 3> a — I(a, ) € D'(Q) is continuous for
every m € R . For details see [3], Theorem 1.11 or [7], Proposition 1.2.2.

Definition 3.3. Let ¢ € C*°(Q x RN) be a phase function. We define the critical set
of ¢ as Cy = {(z,€) € @ x RN[dgg(x,€) = 0}

Note that when ¢ = (z—y)-£ € C°(Q2x Q2 xR") as in the kernels of ¥DOs, Cy = A,
the diagonal set in  x . The singularities of I(a, ¢) are determined by the behavior

of a near Cj.

Proposition 3.1 ([3], p. 12). Let ¢ € C®(Q x RN be a phase function. If a €
Sm(Q x RY) wanishes in a conical neighbourhood of Cy, then I(a,¢) € C®(R).

Corollary 3.1. Let I(a,¢) be defined as above and let 7 be the projection map QxRN >
(z,€) — x. Then

sing supp I(a, ) C m(Cy)
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Remark. Let V. C Q x RY is a conic open set. If ¢ € C°°(V) satisifies conditions 1-3
in Definition 3.1, it is called a phase function in V. Moreover, we can define I(a, ¢) as
above for all a € S™(Q x R™) whose support is contained in a conic open subset of V,

and the obvious analogues of the above results continue to hold.

A Fourier integral operator is an operator whose Schwartz kernel is a Fourier integral

distribution:

Definition 3.4 (Preliminary). Let X C R™ and Y C R™ be open sets. Suppose a €
S®°(X xY xRY) and ¢ € C®°(X x Y x RN) is a phase function. Let K(z,y) =
I(a,¢)(x,y) be the Fourier integral distribution as defined above. We may now define
A:CX(Y)—D(X) by

(3.5) (Au(z),v(x)) = (K(z,y),v(z) @u(y))  weC(Y)veCF(X)
Operators such as A are called Fourier integral operators.

We will make some modifications to this definition later.
Theorem 3.1 ([3], p. 13). Let A be defined as in equation 3.5.

1. If for fized x, (y,&) — é(x,y,€) is a phase function, then A : CX(Y) — C*(X)

15 continuous.

2. If for fived y, (x,€) — ¢(x,1y,€) is a phase function, then LA : CX(X) — C>®(Y)

is continuous and A has a continuous extension £'(Y) — D'(X).

If both 1 and 2 hold, K(z,y) is evidently a regular kernel.

3.2 The Method of Stationary Phase

Let © be an open set in R" and let u € C°(2). Let ¢ € C*>(Q2) be real valued. We

want to investigate the behaviour of integrals of the form

I\ = /ei)‘"ﬁ(x)u(x) dx

as A — oo. Note that if ¢(x) = x - £ for some £ € R™, I()\) is rapidly decreasing as
A — oo (as the Fourier transform maps S(R") — S(R™)). The same is in fact true for

a larger class of functions ¢.
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Lemma 3.2 ([3]). Let I(\) be defined as above, and suppose that V¢ # 0 on supp u.
Then for every N € N there exists a constant C such that

I < [ oy S suplooul | AN
lal<N

Proof. Consider the operator

1 o O
tL - - T
’L)\‘V(bp Z 81‘j a.%'j

Clearly, !L(e*?) = ¢"*?. Then, by integration by parts, we have for every N € N,
IN) = / CLYN (e u(z) da
= /ei/\‘z’LN(u(:c))dx

from which the result immediately follows. O

This indicates that the asymptotic behaviour of I()) is determined by the behavior

of ¢, u near points = where V¢(z) = 0. Such points are called critical points of ¢.

Definition 3.5. Let ¢ € C*(f2). We say that ¢ has a non-degenerate critical point
at xg € Q if Vo(xo) = 0 and det D>¢(xq) # 0. Here D?¢ denotes the Hessian matriz
82
(Bxia(icj )7'7.7 :
If ¢ has only non-degenerate critical points, we have the following result regarding

the asymptotic behaviour of I(\).

Theorem 3.2 (Stationary Phase asymptotics, [3], p. 22). Let ¢ be a real-valued C'*
function on  such that ¢ has a non-degerate critical point at ro € Q and V¢ # 0
everywhere else. Let I(\) be as defined above. Then there exist differential operators
Py, of order < 2k such that for every compact K C Q and N € N, we have

N-1
I(\) — <Z(P2kU)(on)>\_k_”/2> iA6(w0)

k=0

< Cr A~ N/2 Z sup [0%u
la|<N

for allu € C*°(K), A > 1. Furthermore, we have

(27.‘.)71/261% (sgnD2¢(z0))

eC
| det D2¢(xo) |1/

(e

Note. For a regular symmetric matrix ) with r positive and n — r negative eigenvalues,

sgn Q :=r—(n—r).
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3.3 Symplectic Geometry of the Cotangent Bundle

In this section we record some facts about the cotangent bundle T*X, where X is an

open subset of R™. T*X has a global parametrization

((1’1,1‘2, .. .,xn),&dml —|—§2d.%'2 —+ ... +§ndxn) — (a:l, - ,{L‘n,fl, - ,fn)

This is sometimes called the canonical parametrization of 7% X. We define the canonical
1-form on T*X by

W = Zﬁjdmj
j=1

and the canonical 2-form o on T*X by o = dw, that is,

n
o= d¢Ndx,
j=1
Suppose p € T*X. Consider t = >77_, tzja%j + 20 nga%j € T,(T*X) and s =
it Sas g + g1 Se 5 € Tp(T7X). Then

n
op(t,s) = Ztgjsxj — ta;S¢;
j=1

from which we can see that o, is a non-degenerate bilinear form. 7% X along with the

canonical 2-form o is an example of what is called a symplectic manifold.

Definition 3.6 ([3], p. 60). A submanifold A C T*X is called a Lagrangian submanifold
if dimA = dim X and o|py = 0, that is, for every p € A and s,t € T,A we have
op(s,t) =0.

Definition 3.7 ([3], p. 100). Let X and Y be open subsets of R™ and let ox and oy
represent the canonical 2-forms on T*X and T*Y respectively. A C* map x : T*X —

T*Y is called a canonical transformation if x*oy = ox.

Moreover, x is called a homogeneous canonical transformation if for A > 0, we
have x(z,§) = (y,n) = x(z,A§) = (y,A\n). The following proposition gives a useful

alternative characterization of canonical transformations.

Proposition 3.2. A C® map x : T*X — T*Y is a canonical transformation if and
only if the graph of x, 'y = {(p,x(p))|p € T*X} is a Lagrangian submanifold of
T*X xT*Y with respect to the 2-form ox —oy, i.e, I'y is a 2n-dimensional submanifold
of T*X x T*Y and (ox — oy)|r, = 0.
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3.4 The Global Theory of Fourier Integral Distributions

Let V € X x RY be a conic open set.

Definition 3.8 ([3], p. 119). A real valued phase function ¢ € C*(V) is said to be
non-degenerate if whenever deg(x,&) = 0, the vectors vx,f(%): 1 <i < N are linearly

independent at (x,§).

If ¢ is a non-degenerate phase function, the Submersion Level Set Theorem implies
that Cy = {(z,€) € V|deg(z,€) = 0} is an n-dimensional submanifold of X x RV,

Henceforth, we only consider non-degenerate phase functions. Now consider the map
Lemma 3.3. djy is injective at every point of Cy

Since every immersion is locally an embedding, we can shrink V' such that j : Cy —

J(Cy) is a smooth diffeomorphism. In fact we have

Proposition 3.3 ([3], p. 119). Ay = js(Cy) is a conic Lagrangian submanifold of
T*X\ 0

Corollary 3.1 can now be extended as follows:

Proposition 3.4 ([7], p. 123). Let V C Q x RN be a conic open set and let ¢(x, &) be
a non-degenerate phase function in V. If a € S™(X x RN) is such that its support is

contained in a conic open subset of V , then
WE(I(a,)) C Ag

Proposition 3.5 ([3], p. 120). Let A C T*X \ 0 be a conic Lagrangian submanifold and
let (x0,&0) € A. Then there exists a non-degenerate phase function ¢ such that A = Ay
in a neighbourhood of (x¢,&p).

Theorem 3.3 ([3], p. 121). Let Vi € X x RN and Vo € X x R™2 be conic open sets
and let ¢p1 € C®(V1) and ¢2 € C®(Va) be non-degenerate phase functions. Assume
also that jg, maps (zo,6;) € Cy, to (v0,&0) and that Ay, = Ag,. Then for every conic
neighbourhood Uy C Vo of (xg,02), there exists a conic neighbourhood Uy C Vi of (x¢,61),
such that for every a; € Sm+”/4*N1/2(X X RNl) that has its support in Uy, there exists
ag € STH/A=N2/2( X 5 RN2) with support in Uy such that I(a1,¢1) = I(ag, ¢z) modulo
.
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Proposition 3.5 and Theorem 3.3 now lead to the following “global” definition of

Fourier Integral distributions.

Definition 3.9 ([3], p. 122). Let A C T*X \ 0 be a conic Lagrangian submanifold and
let m € R. Then we define I™(X,A) as the set of all u € D'(X) such that

1. WF(u) C A.

2. If (x0,&) € A and if ¢ € C®°(V) is a non-degenerate phase function, with V C
X xRN an open cone, such that Ay = A in a neighbourhood of (xo,&), there exists
a € STHANI2(X 5 RN with support in a cone CC V such that u = I(a, )
modulo C*°.
Definition 3.10 ([3], p. 126). C C T*(X xY)\ 0~ (T*X \ 0) x (T*Y \ 0) is called a
canonical relation if it is a Lagrangian submanifold for the symplectic form ox — oy.
Define
C" = {(=, &y, —n)l(z,&y,m) € C}
Then C is a canonical relation iff ¢’ is a Lagrangian manifold with respect to the
standard symplectic form ox +o0y. Note that the graph of any canonical transformation
x : T*X — T*Y is a canonical relation. The class of Fourier Integral operators of order

m associated to C is by definition the set of those operators whose distribution kernels
K(z,y) € I"(X x Y,C"). Also, by Theorem 1.12, it follows that

Proposition 3.6. Let C C (T*X \ 0) x (T*Y \ 0) be a canonical relation and let
K(z,y) € I"™(X xY,C"). Let A be the operator associated to the Schwartz kernel K.
Then

WF(Au) C CoWF(u) Vu e D'(Y)

We conclude this section by computing the canonical relation of the adjoint of an
FIO. Let A be an FIO associated to the canonical relation C' C (T*X \ 0) x (T*Y \ 0).
If A is locally given by

= [[ eerOaoy Qutydyds we CEw)

then C' is locally given by (z,d,¢,y, —dy®). Now

v = [[ ey e drds v e )

so that its canonical relation is locally given by (y, —dy¢,x,d,¢). It follows thatA* is

also an FIO with canonical relation

Ct = {(21777»9575)’ ('Ccagay:n) € C}
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3.5 Composition of Fourier Integral Operators

Let C; € (T*X \0) x (T*Y \ 0) and Cy C (T*Y \ 0) x (T*Z \ 0) be two canonical
relations and let Fy € I"™(X xY,C}), Fy € I (Y x Z,C}). The Hérmander-Sato lemma
(Theorem 1.13) shows that the wavefront set of the kernel of Fj o F satisfies

WF/(KFloFQ) C CyoChy

We are interested in finding out when the composition of two FIO’s is again an FIO.

Definition 3.11 ([8], p. 490). Two submanifolds M and N of a smooth manifold X

are said to intersect transversally if
T,N+T,M =T,X Vpe MNN

If M and N intersect transversally, M NN will be a submanifold with codim M NN =
codim M+ codim N.

Theorem 3.4 (Hormander [7], p. 178). Let C; C (T*X \ 0) x (T*Y \ 0) and Cy C
(T*Y'\0) x (T*Z \ 0) be conic canonical relations such that

1. Cy x Cq and A" := (T*X \ 0) X A(pey\o) X (T*Z \ 0) intersect transversally.
2. The natural projection C; x Co N A" — T*(X x Z) \ 0 is injective and proper.

Then C10Cy € (T*X \0) x (T*Z \ 0) is a conic canonical relation. If Ay € I™ (X x
Y,C1) and Ay € I™2(X x Y, CY%) are properly supported Fourier Integral Operators, then
Al ¢} A2 g [mitm2 (X X Z7 (Ol o 02)/)

Duistermaat and Guillemin [10] and Weinstein [11] extended this result to the case

of clean intersection.

Definition 3.12 ([8], p. 490). Two submanifolds M and N of a manifold X are said

to intersect cleanly if M N N is also a submanifold and
T,(MNN)=T,MNT,N Vpe MNN

Transverse intersection is a special case of clean intersection. It can be shown that
if M and N intersect cleanly, codim M-+ codim N = codim M N N + e, where e is
a non-negative integer, called the excess of the intersection. The clean intersection is

transverse if and only if e = 0.

Theorem 3.5 (Duistermaat and Guillemin [10], Weinstein [11], Ref: [9], p. 21). Let

C1 and Ca be conic canonical relations as before. Suppose
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1. C1 x Cy and A" := (T* X \ 0) X Apey\o) X (T*Z\ 0) intersect cleanly with excess

e.
2. The projection C1 x Co N A" — T*(X x Z)\ 0 is injective and proper.

Then C1o0Cy € (T*X \0) x (T*Z \ 0) is a conic canonical relation. If Ay € I™ (X x
Y,C}) and Ay € I"2(X x Y, CY) are properly supported Fourier Integral Operators, then
Ay 0 Ag € Tt mate/2(X x 7 (C o Cy)')

Let C C (T*X \ 0) x T*Y \ 0) be a canonical relation and let 77, and 7 denote the
canonical projections of C' into T*X and T™*Y respectively. If either one of 7y and wg
is a local diffeomorphism, then it can be shown that so is the other and C is what is

called a local canonical graph [18].

Definition 3.13 ([13], p. 462). A homogeneous (conic) canonical relation C C (T*X \
0) xT*Y'\0) is called a local canonical graph if every (z,&,y,n) € C has a neighbourhood
of the form Vi xVy where Vi,V are conic open sets in T*X\0 > (x,£) and T*Y'\0 3 (y,n)
respectively, such that CN'Vy x Vy is the graph of a canonical transformation from Vi to
Va.

If either one of C; C T*X xT*Y and Cy C T*Y x T*Z is a local canonical graph, it
can be shown that the transverse intersection condition holds ([13], p. 464). In the next
chapter, we consider an FIO F with associated canonical relation C, where both 77, and
mr have singularities, and the clean intersection condition does not hold. We will show
that the Schwartz kernel of F*F is in a class of distributions associated to two cleanly
intersecting Lagrangians introduced by Guillemin and Uhlmann [14]. Before we define

this class, we note that any two pairs of cleanly intersecting Lagrangians are equivalent.

Theorem 3.6 ([14]). Let A1,Ao C T*X and A3, Ay CT*Y be two pairs of Lagrangians
cleanly intersecting in codimension k. Then for every p1 € AiNAs and pa € AsNAy, there
exists a canonical transformation x : T*X — T*Y and neighbourhoods T*X D Vi 3 p1
and T*Y D Vo 3 pa such that x(Vi) = Va, x(p1) = p2, x(Vi N A1) = Von Az and
X(Vl N AQ) =VonAy.

Let Ay = TER™ = {(x,&)|x = 0} and let Ay = {(z,§)|z" = & = 0} where we write
' = (x1,...,2x) and 2" = (41, .., z,) and similarly for &.
Definition 3.14. We define SP!(m,n, k) to be the set of all a(z,&,0) € C®(R™ x R™ x
Rk) such that for every compact K C R™ and multi-indices o € Z'', 3 € 7'} ,y € VA

there is a positive constant Ck o g such that

029207a(2,6,0)] < cxas(l+ [E)P L +1o) D V(. 6,0) € K x B x RS
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Set m =n +k and let z = (z, s) denote an element in R™ = R™ x R* and let £, o be

dual co-ordinates to x, s.

Definition 3.15 ([14]). We define IP(R™, A1, Ay) to be the set of all distributions u

such that v = uj + ug with uy € C° and uz given by the oscillatory integral
Uy = / (@' =s) &+ 50) (1 € o) dE do ds

where a € SPV (n + k,n, k) where p) =p—n/4+k/2 and ' =1 —k/2.

Using ]\vl, A as a model case, we define IP! classes for any pair of cleanly intersecting

Lagrangians.

Definition 3.16 ([14]). Let A1 and As be a pair of Lagrangian submanifolds in T*X \ 0
cleanly intersecting in codimension k. Then we say v € IPY(X, A1, Ag) if u = uy +
ug + S v where uy € IPY(A1\ Ag),uz € IP(Ag \ A1), the sum > wv; is locally finite and
v; = Fw;, where ' is a zero-order FIO associated to a conic canonical transformation
x:T*R"\ 0 — T*X \ 0 and w; € IPY (R, A1, Ay).
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Chapter 4

Applications to Some Imaging

Problems

In this chapter, we will apply some of the concepts and tools developed so far to some
problems from Synthetic Aperture Radar (SAR) imaging. In SAR imaging, a region
on the surface of the earth is illuminated by electromagnetic waves sent from a moving
platform (such as an airplane or a satellite). The waves scatter off the terrain and
these backscattered waves are measured by a receiver, which is then used to image
the surface. Under certain linearizing approximations, the operator F' that relates the
ground reflectivity function and the scattering data is a Fourier Integral Operator [16].
The conventional method of recovering the image is to“back-project” the scattered data,

and thus we wish to understand the operator F*F.

In the first problem we consider, the transmitter and receiver are colocated (called
monostatic SAR), and move along a circular trajectory at a constant height above the
ground. We will first outline a proof originally due to Nolan and Cheney ([12]) and
Felea ([18]) that the Schwartz kernel of F*F belongs to an IP! class. The proof is
based on the fact that the canonical relation C of F' is what is called a two sided fold,
and a result of Melrose and Taylor [17] that such two-sided folds can be locally put
into a relatively simple form. In the next section, we give an alternative proof which
does not use this result of Melrose and Taylor. Finally, in section 3, we consider the
more complicated problem where the transmitter and receiver move along a circular

trajectory, but separated (bistatic SAR) by a fixed distance at all times.
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4.1 The Monostatic Case

Let the earth’s surface be modelled as the z-y plane in R3. Suppose the radar moves
along a circular path of radius R, centred at (0,0, k), at a constant height h above the
ground. We will use the model from [12]: the operator that maps the ground reflectivity
function f(z,y) to scattering data F'f(«,t) is an FIO given by

Ff(a,t) = / ¢tV Reos P H=Rein 00 o (o 1,y ) f (2, y) e dy doo

where a € S™(R? x R? x R). Here F f(a,t) measures the scattered waves received at

the point (Rcosa, Rsina, h) at time t. Consider the function

o(a,t,z,y,w) = —w(t — 2y/(x — Reosa)? + (y — Rsina)? + h2)
Note that ¢ is real valued, positively homogeneous of degree 1 in w and V¢ # 0 on
R2 x R? x (R\ 0). So ¢ is a phase function. Also it is easy to see that V3,¢ # 0, so

that ¢ is also non-degenerate.
We begin by analyzing the canonical relation C of F. By definition, C C T*R? x T*R?

is given by
_ 09 9 ~ 0¢ 09\ 9% _ (0¢ 09 99 09
C_{<a’t’8a’8t’x’y’ oz’ 8y> 8w_o’(8a’8t>7éo’( oz’ ay>7éo}
Note that
¢

% =0=1t=2y/(r— Rcosa)? + (y — Rsina)? + h?

We will parametrize C as follows: Define

G(z,y,o,w) = (G1,Ga,...,Gg)

where

Gi = «

Gy = t=2/(x— Rcosa)?+ (y — Rsina)? + h2

G. — [ 2wR(ycosa — xsina)

57 da V/(z — Rcosa)? + (y — Rsina)? + h?
o¢

G4 == E = —Ww

G5 = X

Ge =y
0¢ 2w(x — Rcos )

G7 = e
Ox V/(z — Rcosa)? + (y — Rsina)? + h?
0¢ 2w(y — Rsina)

Gy = —2——

Oy V/(z — Rcosa)? + (y — Rsina)? + h?
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Since (G1,G4,G5,Gg) = (o, —w, x,y), G is clearly an injective immersion. Let us remove
points of the form (z,y) = (R cos «, Rsin«) from the domain space (z,y, a,w). Then G

is a paramterization of C.

Definition 4.1 ([15], p. 109-111). Let M and N be smooth manifolds of the same
dimension. Suppose f: M — N is a smooth map such that

1. f has full rank everywhere except on a submanifold ¥ C M where it drops rank by
1.

2. The determinant of the Jacobian of f vanishes to exactly first order on X.

3. For everyp € X
T,% Nker(df (p)) = {0}

then we say that f is a fold.

Theorem 4.1 ([12], [18]). The canonical relation C of F is a two-sided fold, that is,
both the canonical left and right projections, mp : C — T*R? that maps (y,n,x,§) to
(y,n) and wg : C — T*R? that maps (y,n,z,€) to (z,£) are folds.

Proof. Step 1: Let us first consider 7, : (z,y, a,w) — (G1,G2,G3,G4) . We have

0 0 10
080Gy 090Gy
(dTrL)(xvyva7w) = ﬁ & *
ox oy
0 0 01
So that
0Gy  9Go
det(drp)(z,y, a,w) = det ( ﬁ ﬁ )
ox oy
Now,
oGy 2(z — Rcos )
oz V/(x — Reosa)? + (y — Rsina)? + h2
oGy 2(y — Rsina)
oy V/(z — Rcosa)? + (y — Rsina)? + h?
0Gs _ 4wR(((z — Rcos a@)? + (y — Rsina)? + h?)(—sina) — (ycosa — xsina)(z — Rcosa))
ox ((x — Rcosa)? + (y — Rsina)? + h?)3/2
0Gs _ 4wR(((z — Rcos a)? + (y — Rsina)? + h?)(cosa) — (ycosa — zsina)(x — Rcosa))
oxr ((x — Rcosa)? + (y — Rsina)? + h2)3/2
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We finally get

dwR(xz cosa+ ysina — R)

K(z,y,o,w) :=det(drr)(z,y, ,w) = — (z — Rcosa)? 4+ (y — Rsina)? 4+ h?

Let ¥ be the submanifold x cosa+ysina = R. det(dnz) = 0iff xcosa+ysina—R =10
so that w7, has full rank everywhere except on X. It is also easy to see that m; drops

rank exactly by 1 on X. We also have

0K  4wR(((x — Rcosa)? + (y — Rsina)? + h?) cosa — 2(z cos a + ysina — R)(z — Rcos )
o ((x — Rcosa)? + (y — Rsin)? + h?)?
—4wR
" (z— Rcosa)?+ (y — Rsina)? + h?2 cosaron X
0K  4wR(((x — Rcosa)® + (y — Rsina)? + h?)sina — 2(z cosa + ysina — R)(y — Rsina))
oy ((x — Rcosa)? + (y — Rsin)? + h?)?
—4wR

— i by
(x — Rcosa)? + (y — Rsina)? + h? s on

Since w and R are both non-zero, (%—f, %—I;) is of the form (A cos «, Asin ) with A # 0.

So, G vanishes to exactly first order on X.

Now suppose p = (z,y, a,w) € 3. The tangent space of ¥ at p is given by
T,> = ker(cos , sin o, y cos — x sin v, 0)
that is, all tangent vectors orthogonal to the gradient vector at p of the function x cos a+
ysina — R.

0G2

ker(dmr)(p) = {(a, b,0,0))(a,b) € ker ( 03753 88Gy3 () ) }

D (p) By (p)

Suppose (a,b,0,0) € T,X Nker(dry,)(p). Then acosa + bsina = 0 which implies that

(a,b) = (—tsina, tcosa) for some t. Next, note that

ker( %(p) 88—(;2(]9) )  er < z— Rcosa y— Rsina )

%(p) aTC;S(p) —sina oS o

(the second matrix was obtained from the first by elementary row operations) and thus

r— Rcosa y— Rsina —tsina B 0
—sin« Ccos & tcos « 0
= tcos’a+tsina = 0

==t = 0
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which proves that 7,X Nker(dry,)(p) = {0} for every p € 3. Thus, 7y, has a fold singu-
larity along 3.

Step 2: Next, consider 7g : (x,y, o, w) — (G5, Gg, G7,Gg). We have

10 O 0
01 0 0
(drgr)(z,y, o, w) = . % % %
Now,
0Gr _ 2wR((y — Rsina)(zcosa+ysina — R) + h? sin o)
da ((x — Reosa)? + ((y — Rsina)? + h2)3/2
oGy 2(x — Rcos )
ow V/(z — Rcosa)? + (y — Rsina)? + h?
0Gs  2wR((x — Rcosa)(zcosa + ysina — R) + h? cos @)
oo ((x — Recosa)? + ((y — Rsina)? + h?)3/2
oGs 2(y — Rsina)
ow V/(z — Rcosa)? + (y — Rsina)? + h?

dwR(x cosa+ ysina — R)
(x — Rcosa)? + (y — Rsina)? + h?
= —det(dr)(z,y,0,w)

= det(dmg)(z,y, q,w) =

Thus, we see that mr has full rank everywhere except on % where it drops rank by 1.
Further, since det(dry) = — det(drg), by repeating the same arguments made for 7y,
we can conclude that det(dmg) vanishes to exactly first order on 3.

Now consider p = (z,y, a,w) € X. As before,
T,> = ker(cos , sin o, y cos @ — x sin v, 0)

and

9Gr 9G7
ker(drg)(p) = {(O,O,C, d)‘(c, d) € ker ( oo (p) St(p) )}

Gap) Fp)
Now suppose (0,0, ¢,d) € T,X Nker(drgr)(p). Then ¢(ycosa —zsina) = 0. For fixed o,
ycosa — xsina = 0 is the line through the origin in the z-y plane making an angle «
with positive z-axis. It’s intersection with ¥ is the single point (R cos «, R sin ) which
is not in the domain. So clearly ¢ = 0. Next,
(0,0,0,d) € ker ( G0’ (0) G ) )

G 8G
Tas (p) an (p)
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implies that (x — Rcosa)d = 0 and (y — Rsina)d = 0 which implies d = 0. Thus,
T,X Nker(mr)«(p) = {0}
So mgr has a fold singularity at p. Thus, we can conclude that C is a two-sided fold. [

Now, by appealing to the following theorem of Felea, we can conclude that F*F' is

in an IP! class.

Theorem 4.2 (Felea [18]). Let X and Y be open subsets of R™ and let C C (T*X \0) x
(T*Y '\ 0) be a two-sided fold. If G is a properly supported FIO of order m associated to
C, G*G € I?™O(Aqey, C) where C C (T*Y \ 0) x (T*Y \ 0) is another two-sided fold
that cleanly intersects Apsy.

The main ingredient of the proof is the following result of Melrose and Taylor.

Theorem 4.3 (Melrose and Taylor [17]). Let X and Y be open subsets of R™ and
C C(T*X\0) x (T*Y \0) be a canonical relation. Suppose the canonical left and right
projections 7y, and wr have fold type singularities at p = (x,&,y,m). Then there exist
conic neighbourhoods U of (x,&) and V' of (y,n), and homogeneous canonical transfor-
mations x1 : U — T*R™ and x2 : V — T*R? such that (x1 X x2)(C N (U x V)) C Cy
near & # 0, where Co = N*{xgo —y2 = (21 — y1)%; 1 = 43,3 < i < n}.

4.2 An Alternative Proof
Let F* denote the L? adjoint of F. Then

Fgley) = [ Paloya.tw)gla,t) dudads

From this, we can easily see that the Schwartz kernel of F*F is given by

KF*F(ZU,y,LE',y') _ /eiw(t—Q\/(:ﬁ’—Rcosa)2+(y’—Rsina)2+h2)—i0(t—2\/(z—Rcosa)2+(y—Rsina)2+h2)

aadw dO dt do

Define

d = (w—0)(t—2y/(xr—Rcosa)?+ (y— Rsina)? + h?)
—2w(y/(2' — Rcosa)? + (3 — Rsina)? + h2 — \/(x — Rcosa)? + (y — Rsina)? + h?)

We first perform integration in 6,¢. Set b(x,y, 2, vy, o, w) =

/ e ®aa do dt
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Now put 8 = Aw. The Phase function ® is now homogeneous of order 1 in w. Now
apply stationary phase asymptotics in terms of powers of w. 0)® = 0 implies ¢t =
2y/(z — Recosa)? + (y — Rsina)? + A2 and 9;® = 0 implies A = 1. Now we get the

simplified expression

KF*F(xa v, SU/, y/) _ / 6—2iw(\/(m’—R cos a)2+(y’ —Rsin a)2+h2—\/(m—Rcos a)2+(y—Rsin a)2+h?)

a(x,y, 2y, a,w)da dw

plus lower order terms. Here,

a = a(@,y, 0w 2v/(x — Rcosa)? + (y — Rsina)? + h2) x
a(x,y, o, w,2v/(x — Reosa)? + (y — Rsina)? + h2)

The Hormander-Sato lemma states that W F(Kpg«p) C Ct o C where C! is given by

T 9x” Oy’ 7 T 0a’ Ot ) | 0w

This implies that

99

0 0
CtOC: x1, Y1, _gﬁ(avt)xl7ylaw)7 _£(a7t7x17ylvw);
T2, Y2, —£(a:t,$27927‘«0)7 —Cny(Oé,taany%W)

=2,/(z2 — Rcosa)? + (yo — Rsina)? + h2
Y2 COS ¥ — T9 SN ¥ = Y1 COS¥ — T1 Sin «

t =2y/(z1 — Rcosa)? + (y; — Rsina)? + h2 }

The conditions defining C* o C in the above equation mean the following. For a fixed
a and w, (r1,y1) and (z2,y2) lie on the same circle centred at (R cos«, Rsin ) and, if
the two points are different, the chord joining them makes an angle o with the positive

x-axis. So this means that either (z1,y1) = (x2,y2) or

ro = x1—2(z1cosa+ysina — R)cosa

Y2 = y1—2(zr1cosa+ yrsina — R)sinaw

So, CtoC C AUC where C corresponds to the part of Cf oC where the above two equaions
hold, and A(diagonal) corresponds to the part where (x1,y1) = (z2,y2) . We will show

that C is also a two-sided fold. We first parametrize C as follows:
H(z,y,a,w) = (Hy, Ha, ..., Hs)
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where

Hy = z—2(xcosa+ysina— R)cosa

Hy = y—2(zcosa+ysina— R)sina

I 2w(z — 2(zcosa + ysina — R) cosa — R cos a)
3 = -

V/(z — Rcosa)? + (y — Rsina)? + h?

2w(y — 2(xcosa+ysina — R)sina — Rsina)

Hy, =
V/(z — Rcosa)? + (y — Rsina)? + h?
H5 = X
He =y
2w(x — Rcosa)
H = -
V/(z — Reosa)? + (y — Rsina)? + h?
2w(y — Rsin )
Hy = —
V/(z — Rcosa)? + (y — Rsina)? + h?
We have
x x a
* *x b 0
ok %k
T, Y, q,w) =
Y 1000
0100
¥ %k C
* x x d
where
0H, . . .
« = - = —2(xcosa+ysina — R)(—sina) — 2(y cosa — zsin o) (cos a)
o
0H, . . .
b = 8—:—Q(xcosa—kysma—R)(cosa)—2(ycosa—xsma)(sma)
a
. - OH7; 2(z — Rcos )
Oow V/(z — Rcosa)? + (y — Rsina)? + h?
J = OHg 2(y — Rsina)

Ow V/(x — Reosa)? + (y — Rsina)? + h2

Since (z,y) # (Rcosa, Rsin «r), the vector (¢,d) # 0. Also,

b\ ) cosa  sino rcosa+ysina— R
a —sina  cos« ycosa — rsina
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which is a rotation matrix operating on a vector that is non-zero whenever (x,y) #
(Rcosa, Rsina). So at least one of a and b is non-zero. This proves that rank dH = 4
and thus H is an immersion.

Next we show that H is injective. Suppose (Hi, Ha, ..., Hg) are given. Then we
know x,y,2’ = z—2(zcosa+ysina— R) cosa and ¢y = y—2(x cosa+ysina— R) sin a.
Suppose that (z,y) # (2/,9'). Then the (unique) perpendicular bisector of the line
segment joining (z,y) and (2,y’) gives us the line z cosa + ysina — R = 0, and from
this, we can determine « uniquely. If (z,y) = (2,%’), both points are on the tangent
and drawing a line through this point in the direction (H7, Hg) # 0 gives us the line
xcosa + ysinaw — R = 0 and again « can be uniquely determined. Finally using the
formula for H7 or Hg (at least one of which is non-zero), we can determine w. This

proves that H is injective.
Proposition 4.1. C is a two-sided fold.
Proof. Let 7 and n; denote the canonical left and right projections of C. We have

2w(x — Rcos ) 2w(y — Rsina)

77, = z,Y,— )
R ( Y V/(z — Rcosa)? + (y — Rsina)2 +h2 \/(z — Recosa)? + (y — Rsina)? + h2

But this is exactly the same as mg, the canonical right projection of C. So we can
immediately conclude that 7, has a fold singularity along the submanifold ¥ given by
xcosa + ysina — R = 0 and has full rank everywhere else.

Now consider the map
T:(z,y,a,w) = (x—2(xcosa+ysina—R) cosa,y—2(xcosa+ysina— R) sina, a, w)

The left projection m is simply the composition nf o T. T has the following two

properties:
1. Ty is the identity map on X.

2. T is a diffeomorphism with

—cos2a —sin2a *x %
AT (z,y, 0,w) = —sin2a  cos2a %
0 0 1 0
0 0 0 1
det(dT(z,y,a,w)) = -1
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Since (dr}) = (dnly) o dT, we can conclude that 7} has full rank everywhere except on
the submanifold ¥ where it drops rank by 1. It also follows that the determinant of
(dmp) vanishes to exactly first order on .

Finally, suppose p € ¥. Since T is the identity map of X, dT'(p) is the identity map
on T,X and thus, T,X Nker(dn))(p) = TpX Nker(dn’y)(p) = {0}. So, 7 also has a fold
singularity along ¥. This proves that C is a two-sided fold. O

For the sake of convenience we will henceforth change notation as follows:

(x,y) +— x=(x1,22)

(@) = y=(y1,12)

The final step is to show that F*F is in IP!(A, C ). The proof will depend on the following

theorem, which gives a sufficient condition on a distribution u to be in an I class.

Theorem 4.4 (Greenleaf and Uhlmann [19]). Let Ay and A1 be two cleanly intersecting
Lagrangian submanifolds of T*X x T*Y. Ifu € D'(X xY), then u € IP!(Ag, A1) if
there is an s, € R such that, for all first order classical pseudodifferential operators with

principal symbols op, vanishing on Ag U A1, we have PyPy--- Pou € HY? .

Note that sg is independent of r. To use this result, we need to show that A and
C intersect cleanly, and find the ideal of smooth functions vanishing on A U C. We will
follow the procedure found in [18]. Suppose M and N are codimension n submanifolds

that intersect in codimension k, and there exist smooth functions f;, g; such that

M = {fi=fo=fi="[fet1="-fn=0} and
N = A{n=9=g=fir1="fn=0}

Then, M and N intersect cleanly if {Vf;|1 < i < n} and {Vg;, Vfii;|l <i < k1<
j < n — k} are linearly independent [18]. Also, the following proposition is an easy

consequence of the implicit function theorem and the fundamental theorem of calculus.

Proposition 4.2 (Felea [18]). The ideal of smooth functions vanishing on M U N is
generated by { frj11 < j <n—k} and {figj|1 <i,j <k}.

We claim that

A = {(yn28 e T'R*x T*R?|fy = fo = fs = f4 =0} and

C = {(yn2.8) eT'R*XT'R?|f1 = fo = f3=gs = 0}
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where

fi = 011+ 0202

fo = 6Brwy + Ows

f3 = wif2 —wabh — 2102 + 2201

fi = (wi1by — waby — 2109 + 2001)% — AR (92 + 3)
g1 = (2102 — 2201 — w12 + wapr)® — AR* (67 + 63)

where we have used the change of variables

z=y+x
w=Yy—x
0=¢8+n
p=E—1

First of all, note that on A, w = ¢ = 0, so that we immediately have f| = fo = f3 =
fa = 0. Conversely, if f1 = fo = f3 = f4 = 0, we have

fi=0 = go%—l—go%:O:Mo:O,also

fo=0 = 01w+ 6bwr=0
f3=0 = wily —wl =0
= w=0

This proves that A = {f; = fo = f3 = f4 = 0}. Next, it can be easily verified using the
parametrization H that every point of C satisfies fi = fa = f3 = g4 = 0. Conversely,
suppose (y,n,x,&) € C. Then if z # y, the perpendicular bisector of the line joining x
and y is tangent (at say the point P) to the circle of radius R with center at the origin.
If x = y, they must lie on a tangent to the same circle. Further, £ and 1 must be of
the same magnitude and point in the direction from x to P and y to P respectively. It
can be proved that we must have f; = fo = f3 = f4 = 0. We skip the calculations.
Also, it can be easily verified that {Vf;|]1 < ¢ < 4} and {Vg4,Vfi|]1 < i < 3} are
linearly independent. Thus, A and C intersect cleanly, and the ideal of smooth functions
vanishing on A U C is generated by J = {f1, fo, f3, fa94}

Theorem 4.5. There exist real numbers p and | such that F*F € IPY(A,C)

Proof. The proof will use the iterated regularity condition of Theorem 4.4. It is enough
now to check that Pi Py -+ P Kp«p € ]'1T1500C where the P; are first order classical ¥ DOs
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with principal symbols being multiples of functions in J. The idea of the proof is from

[18]. We will use the following facts for the proof:

(a) ([6], p. 105) If P is a WDO with principal symbol p and u(z) = [ e @Da(z, 0)do
then Pu(z) = [ e™®@a(x,0)p(x, d,1))d0 plus lower order terms.

(b) If a € S then u(z) = [pn eV @Da(z,0)dd € HY, for some sy = so(m, N,n) € R

where n is the dimension of the variable z.

Let P, be a classical pseudodifferential operator with principal symbol p1 = ¢ fi
where ¢; is a homogeneous function of degree —1 in (£, 7) variables (so that P is of first
order). By (a),

PlKF*F = /eiq)(x’y’a7W)fd($7y7aﬂw)pl(xa _al‘q)ay7ayq))da dw

where

® =2w(y/(y1 — Rcosa)? + (y2 — Rsina)2 + h2—+/(z; — Rcosa)? + (x5 — Rsina)? + h2)

Let us define

X = /(z; — Rcosa)?+ (3 — Rsina)2? + h2
Y = /(y1 — Rcosa)? + (y2 — Rsina)? + h?

then clearly,

b = (Y —X)
0, = 2(Y — X)

0a® = 2wR
“( Y X

y1sina —yscosa xysina — o cosa>

0®  2w(x; — Rcosa) 09  2w(xz — Rsina)
COry X © Ow X

0P  2w(yr — Rcosa) 0P  2w(y2 — Rsina)

Ay1 X T Oys X
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Now,

fily,m,2,8) = brp1 + O2p2
= & +& —ni —nj so that

fi(y, 0,®@,1,-0,®) = 4w’ [(xl — Rcosa)® + (z2 — Rsina)? (n ~ Rcosa)? + (y2 — Rsina)?
)y Y Ey T =

X? Y2
= 4w? [1—;22—14{;22
= %(X—FY)(X -Y)
272
So P; Kp+«p becomes
P Kp«p = /e@a(l’, Y, o, W) (_QClw;?;)(/f + Y))ﬁwi)da dw

By integration by parts, this integral becomes

. - 200wh? (X +Y
i/e_z(baw (a(x,y,a,w) aw X2(Y2+ )> do dw

Now since a is a symbol of order 2m and ¢; is homogeneous in w of degree —1, it is
easy to see that d, (E%#) is again a symbol of order 2m. Thus by (b), we
conclude that Py Kp+«p € H for some so € R.

Next, suppose Ps is a classical ¥ DO with principal symbol cs fo where ¢ is a smooth
function homogeneous of degree 0. Now, fo = 61wy + 02wy = (y1 — x1) (&1 +m1) + (y2 —

x2)(&2 + m2). Thus we have

f2<y,ay(b,l', _833q)) =

2w[(y1 —x1)(71 — Reosa) + (y2 — x2)(z2 — Rsina)
X

(y1 —x1)(y1 — Reosa) + (y2 — z2)(y2 — Rsina)]

_l’_

+
Y

(r1 — Rcosa)? + (v3 — Rsina)?  (y; — Rcosa)? + (y2 — Rsina)?
= 2w|— +
X Y
. . 1 1
+ ((y1 — Rcosa)(xy — Rcosar) + (y2 — Rsina)(z2 — Rsina)) <X — Y)]

" [y =X + (1 — Reosa)(z1 — Reosa) + (y2 — Rsina)(zz — Rsina) + hz)(;lc B ;ﬂ

~ wfi+ (y1 — Rcosa)(z1 — Reosa) + (y2 — Rsina)(za — Rsina) + h? 0,
XY
= wk(z,y,a)0,P

45



Again applying (a) we get

P Kpp = eiiq’(m’y’o"w)a(x, Y, o, w)p2(x, =0, P, y, 0, P)da dw

= /e_iq)&“cgwkﬁwq)da dw
= —i / e""®9,,(@cawk)do dw by integration by parts

Since a is a symbol of order 2m and c¢s and k are independent of w, we conclude that
O, (acowh) is again a symbol of order 2m and hence by (b), PoKp«p € H}0.

Next let Ps be a classical W DO with principal symbol c3 f3 where c3 is a homogeneous
smooth function of degree 0. Since f3 = w10y — wab — 2192 + 2201 = 2(y1M2 — Yo —

x1&2 + x2&1), we get

y1(y2 — Rsina) — ya(y1 — Rcosa)  x1(xe — Rsina) — x2(z1 — Rcos o)

Y X
yrsina —yacosa  xpsina — xacosw
Y X

f3(y7 ay@,x, _8x(I)) = 4(.U|: _

= —4wR [
= =20,
Thus, applying (a) we get

PgKF*F = /6i¢)a(—263)aa(1) do dw

= Qi/e_iq)@a(zic?,) do dw

by integration by parts. Since Oq(acs) is a symbol of order 2m, we again get that
PsKp«p € H, 50

loc®
Finally, we consider a classical pseudodifferential operator Py with principal symbol

c4fa94, where ¢4 is homogeneous of degree —3. Let us first analyze f; and g4. We have

fa(y,m,2,€) = (w10 — waby — 2109 + 2001) — AR (67 + 3)
= A(y1me — yam — 21&2 + 22&1)? — AR*((61 — m)* + (&2 — m2)?)

so that

f4(y7 (9y<1),a:, _836‘@) =

. . 2
Y1 SIN (v — Y2 COS & 1SN — T COS
16w?R? [ <

Y X
r1 — Rcosa  y; — Rcosa 2 9 — Rsina  y2 — Rsina 2
X Y X Y
+yssinaa— R xycosa+ rasina — R 2
“ < Y X
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Similarly,

91(y,m,2,6) = (2102 — 2261 — w12 + waep1)? — AR*(67 + 63)
= d(y1me — yam + 71&s — 1261)? — AR (& +m)E + (&2 +m2)?)

which implies

v X
m1—Rcosa+y1—Rcosa 2 x2—Rsina+y2_RSina 2

X Y X v

—  _16w2R2 <y1cosa —l—gfgsina—R n xlcosa+§2sina_R>2

Thus, multiplying f4 and g4, we get

919 yrcosa + yosina — R 2 ricosa+ xosina — R 2
16w“R v — X

2

Now, notice that

yrcosa+yasina — R\>  (y1 — Reosa)® + (y2 — Rsina)? — (y; sina — ya cos a)?
Y B Y2
h2 . _ 2
= 1- Ve <y1 Sma Yy2 COSQ) and, similarly
z1cosa + rosina — R\ 2 A — Rcosa)? + (z2 — Rsina)? — (21 sina — x5 cos a)?
X N X2
_ 1 fi 1 Sin o — 9 cos o 2
N X2 X
So that
Yy cosa + yasina — R 2 ricosa+ rosina — R 2
Y X
Y1 sina — ypcosa  xpsSina — T Ccos y1sina — yacosa  Tpsina — T COS
N Y X Y X
1 1
2
h (X? B yz)
R2(X +Y) 1 y1sina —ygcosa  x1sina — o cos «
= <5<, Ow - + aaq)
2X2Y? 20R Y X

Substituting this in the expression for fig4 we get,

f4(y7 ayq)a z, 76:6(1))94(3/) ayq)) x, *am(b) = w4kl (:Ca Y, a)@wq) + WSkZ(xa Y, a)aaq)
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Thus, (a) now implies that
P Kpsp = / e*i(b504f4(y, Oy®,x, —0,P)gs(y, 0y®, x, —0,P) do dw
= / e ®acqwk10,® do dw + / e s ka0, ® do dw

= —i/e_iq’aw(504w4k1)da dw—i/e_iq)8a(504w3k2) do dw

by integration by parts. Note that a is a symbol of order 2m, ¢4 is homogeneous of
degree —3 in w and ky, ks are independent of w. Thus, 9, (acsw*ky) and O, (acsw3ks)
are both symbols of order 2m. Thus, applying (b), we conclude that PyKp«p € H .

Note that in the above proof, we have only used the fact that @ is a symbol of order
2m, and have shown that for ¢ = 1,2,3,4, P, Kp+p = fe*iq’gda dw where b is again
a symbol of order 2m. Thus, it is easy to see that the iterated regularity condition of
Theorem 4.4 is satisfied and F*F € IP(A,C) for some p and [. O

4.3 The Bistatic Case

Suppose now that the transmitter and receiver still move along a circular path, but
are separated by a fixed angle 2« at all times, i.e., at tims s, the trasmitter is at
(cos(s — a),sin(s — «v)) and the receiver is at (cos(s + ), sin(s + «)). Note that we have
taken R = 1 and h = 0 for simplicity. Using the model from [12], the scattering operator
Fis an FIO given by

Ff(s, t) _ / e—iw(t—\/(;r—cos(s—a))2+(y—sin(s—a))2—\/(:L’—cos(s-i-oz))2+(y—sin(s+a))2)af(x7 y)d:ndydw

where a is of order m. Here F' f(s,t) measures the scattered waves received at the point
(cos(s + a),sin(s + «v)) at time ¢. Set

A=/(z —cos(s —a))2+ (y —sin(s — a))2, B=/(z—cos(s +a))?+ (y —sin(s + a))2

It can be easily verified that
¢p=—-w(t—A—-B)

is a non-degenerate phase function. Now, let us consider the canonical relation C of F'.

By definition,

- 8¢ 0o 9¢ 99\ |9¢ _ (99 99 _9¢ _0¢
c_{<a,t,(%,&,x,y7—m;—3y> &J—O’(ag’a»#o’( Ox’ 3y>7é0}
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Note that

%:Oﬁt:fl-i—B
Oow

We parametrize C as follows:
G(:U7y7 S,Lu') = (G17 G27 e 7G8)

where

Gy = s
Gy = t=A+1B
0 (x — cos(s — a)) sin(s — o) — (y — sin(s — a) cos(s — )
G3 = ST =w
Os A
+(x—cos(s+a))sin(s—|—a)—(y—sin(s+a)cos(s—|—a)
B
.
Go = %=
G5 = X
Ge =y
. 9¢  Jw—cos(s—a) x—cos(s+a)
Gr = or w[ A B
09  Jy-—sin(s—a) y-—sin(s+a)
Gs = 3y w[ 1 + i

Since (G1,G4,G5,Gg) = (s, —w,x,y), G is an injective immersion. If we remove

points (x,y, s,w) such that w = 0 or

(x—cojs—a)+(aﬁ—co;(s+a)>:0 i <y_sirjs_a)+y—sirgs+a>>:0

from the domain of G, then G is a parametrization of C.

Let a = cosa and b = sina. Let us restrict the range of F' to only those (s,t) such
that ¢ > 2a/b. With this restriction,we can show that C is a two-sided fold. Note that
when a = 0, 2a/b = 0, so that this generalizes Theorem 4.1.

Theorem 4.6. C, if restricted as described above, is a two-sided fold
Proof. Step 1: Let us first consider the canonical left projection
7TL(:'U’ Y, va) = (Gla G2a G37 G4)
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We have

0 0 1 0

T—Ccos(s—a T—Ccos(s+a —sin(s—a —sin(s+a
w ((yfslnjgs:;a)) + (yfsml(as;ra)) ) W ((zfcoslgifa)) + (xfcosés;ra)) ) %
0 0 0 -1

where

C =xcos(s —a)+ysin(s —a) — 1 D = zcos(s+ )+ ysin(s+a) — 1

so that det(dﬂ'L)(.’L‘, Y. s, w) _ wCBAQ;_BDZAQ 1+ (zfcos(sfa))(xfcos(era)I)L‘E(yfsin(sfa))(yfsin(era))
Second term vanishes iff (x_cojs_o‘), y_Siigs_o‘)) = — x_c"%”a), y_ShjE(erO‘) . But

this means that both phase variables of mr are 0 and this is excluded. So det(dry,)
vanishes on the submanfold ¥ given by CB? + DA% = 0. Also, if dn;, = 0, both the
phase variables of mg are 0, so that det(dw) drops rank exactly by 1 on .

Next, suppose p = (z,y, s,w) € 3. Let

'\ coss sins x
Y —sins coss Yy

and define f(x,y) = (bx — 1)[y? + a® + (b — x)?] + 2a®y?. Then it can be verified that
CB? 4+ DA? = f(z',9'). We have,

gf = by?+a’+ (b—2)]+2( —b)(bz' —1)
RCIORLE)
g—f = 2(bx’ — 1)y + 4a?y
Yl () @)
Now, dyf = 0 implies y/ = 0 or 2’ = 175“2. Suppose ' = 0. Then f(2/,y') = 0

implies ' = 1/b which implies 9, f # 0. Next, suppose 2/ = #. Then f(2/,y') =
2

—2a’ [aQ + (b— %) } # 0. So, Vy v f(2',y) # 0. This proves that det(dry)

vanishes to exactly first order on X..

Next, we claim that T,X N (ker(dn)(p)) = {0}. Let v = (v1,v2,v3,v4) € T2 N
(ker(dmr)(p)). Clearly, v = vg = 0. As before, we define

V] coss sins v
vh —sins coss Vo

20
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Now, v € ker(drr)(p) implies

T —cos(s — a T — cos(s + « —sin(s — « —sin(s + «
(£montem)  amenlira) yositemo) | yoier ) () g
' —cosa ' —cosa Yy +sina Yy —sina
(4.1) ;s( Tt o t g -(vh,v3) =0
where

A= (@ =2+ +a)?  B'=(@ b2+ (y —a)?
Next, V(CB? + DA?) - v = 0 implies

(1.2 S (). 00+ 5 (0),/ ()0 = 0

If we prove that (”‘J_X?so‘ + 2 T ﬂma + 4 751““) and (g{,, g—;) are not scalar
multiples of each other, we must have (vl, vh) = 0 and we are done.

Consider the curve (bz — 1)(y% + a® + (b — x)?) + 2a?y? = 0. This curve has the
following properties:

e The maximum value of x on the curve is 1/b and this is attained at (1/b,0).

e z increases monotonically as a function of y when y € (—o00,0), decreases mono-
tonically when y € (0,00), and = > b iff y € [—a, a].
e touches the unit circle tangentially at (b,a) and (b,-a).

e has a vertical asymptote x = 1_5‘12 as y — oo and y — —o0.

Since t > 2a/b, we consider only larger ellipses A’ + B’ = ¢ where ¢ > 2a/b, i.e.,
ellipses with foci (b,a) and (b, —a) and semi-minor axis > 1/b — b. It can be easily
verified that the right half of this ellipse can not intersect the above curve. So, it follows
that 2’ < b and x;l_,b + x;_;,b < 0. Also g—i(m’,y’) > 0. We also have

/ : / :
y +sina Yy —sina af
T T <0, 8—( y') < 0 when ¢y < —a
P ;.
y +sina ¢y —sina af ., , ,
o + 5 > 0, 8—y(a: y') >0 when ¢y > a

A7 B’ 5

from which it follows that (x/_coso‘ + #'—cosa y +Sm°‘ + ¥ Sma) and (%, %’) can not
be scalar multiples of each other. This proves that 7, is a fold.
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Step 2: Consider 7r(z,y, s,w) = (G5, Ge, G7,Gs). We have

1 0 0 0
0 1 0 0
drg = v % —w ((y—sin}&z—a))c’ + (y—sinéss-l—oz))D) . x—coigs—oz) + w—cosés—i—oz)
£ % w ((w—cos;gi—a))C + (a:—cosésg—f—a))D) . (y—sirigs—a) + y—sirés—f—a))
Note that det(dng)(x,y,s,w) = —det(drr)(x,y,s,w). Thus repeating the same ar-

guments as in the case of dwp, we can conclude that wr drops rank by 1 on ¥ and
det(dmr) vanishes to exactly first order on . Finally, suppose p = (z,vy, s,w) € ¥ and
let v = (v1,v2,v3,v4) € TyXN(ker(dng)(p)). Clearly, vy = v = 0. Let (2/,3’) be defined

as before. Since v € T,,X, we must have

ai(CB2 + DAz =0

Now, 2(CB? + DA?)(p) =

(ycos(s — a) — xsin(s — a))[(z — 2cos(s + a))? + (y — 2sin(s + a)? — 1]
+(y cos(s 4+ a) — xsin(s + a))[((z — 2cos(s — a))? + (y — 2sin(s — a)? — 1]
— b+ dalle — 202 + (¢ — 20)2 1] + [y'b — a2’ — )2 + (5 + 20)* — 1]

As before, since we only consider large ellipses A" + B’ = ¢ where ¢ > 2a/b, we
must have 0 < 2’/ < b and |y/| > a, and each of the terms within the square brackets in
the above expression is positive. Thus, %(C’B2 + DA?) > 0 which means that vz = 0.
Finally, since v € ker(drg)(p), we get

x —cos(s—a) x—cos(s+ a)
( 2 + B ) vy = 0
_(y-—sin(s—a) y—sin(s+a)
< ) + I vg = 0

and since both the phase variables can’t vanish, v4 = 0 and thus 7y is also a fold. This

completes the proof. O

Finally, by an application of Theorem 4.2 we conclude that

Corollary 4.1. If F is the FIO restricted as described above, F*F € I?™(A,C) where
A C T*R? x T*R? is the diagonal Lagrangian and C is a two-sided fold that cleanly

intersects A.
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