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Abstract

Quantum simulations are theorized to be much more e�cient than the clas-
sical simulations. In this thesis,we tried to simulate(quantum mechanically)
two di�erent problems -
1)The statistical properties of "quantum chaos" in kicked rotor system are
studied and numerically simulated.All the simulations are done using 8-qubits
on MATLAB.
2)Franck-Condon factors (FCFs) play an important role in understanding
many vibronic transitions occurring during molecular photoexcitations.In
this article, we describe two general methods for estimating FCFs using a
quantum information processor. We also illustrate the methods by exper-
imentally estimating FCFs with the help of a three-qubit NMR quantum
information processor.We were also able to show quantum tunneling as a
byproduct of estimating FCFs.As can be seen in the corresponding section,the
experimental results are in really good agreement with the theory.
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Chapter 1

Introduction

In early twentieth century people start realizing that physics (classical physics)
as they know, is not quite accurate, as many absurd prediction were made by
the physical theories e.g U-V catastrophe involving in�nite energies, lack of
explanation for stability of an atom (classical physics predicts that electrons
spiral into the nucleus) etc. This leads to the birth of a new physical theory
(Quantum Mechanics) after careful research for a quarter century. Since that
time Quantum mechanics has been tested and applied to almost everything
from structure of atoms, theory of radiation to elementary particles of nature
to nuclear fusion in stars and Sun with high success. Now it has become a
second nature to every person doing Science.
Since INFORMATION IS PHYSICAL - ROLF LANDAUER and physics as
we know now is quantum in nature it is obvious to try to study information
processing tasks using principles of quantum mechanics. This leads to the
birth of quantum computation and information devoted to a big dream of re-
alizing quantum computers which are much much more powerful and e�cient
than their classical parts. Here e�cient means if the problem can be solved
in polynomial time using polynomial resources. Two important aspects of
Quantum mechanics which have no classical counter parts are

1) Entanglement, and

2) Superposition.

These are the two main properties of quantum systems, responsible for ex-
ponential speed up over classical systems[12]. The �rst step towards proving
that Quantum Computers might be more powerful than classical ones was
taken by David Deutsch in 1985 by constructing a toy problem which can be
solved exponentially faster in quantum regime than in classical regime. This
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revolutionary idea was further corroborated by Peter Shor's Algorithm(1994)
which can solve the 'Prime factorization problem' and 'Discrete Logarithm
problem' exponentially faster on a quantum computer, Grover's Search Algo-
rithm(1995) which gives Quadratic speed up over classical algorithms, Seth
Lloyd's Algorithm for solving a system of linear equations. These algorithms
attracted a lot of attention as these problems are still not solvable (e�ciently)
on classical computers. In 1982 Feynman correctly mentioned, pointing out
that doing simulation of quantum mechanical problems on classical com-
puters is not e�cient and sooner or later we might hit a wall in this �eld,
'Nature isn't classical dammit, and if you want to make a simulation of na-
ture, you'd better make it quantum mechanical, and by golly it's a wonderful
problem because it doesn't look so easy '. In 1990s People started developing
this idea of quantum simulation using quantum computer and showed that
using quantum computers it is indeed possible to perform e�cient simula-
tions of problems which have no known e�cient classical simulation, again
proving that Quantum computers might be tremendously more powerful than
classical ones.

Divincenzo gave 5 necessary and su�cient criterias for a system to be a
perfect quantum computer [13].Many quantum systems are shown to satisfy
several (not all) of these criterias e.g. NMR, Ion Traps, SQUIDS, Optics
and photons, Optical cavities etc. NMR involves manipulating and measur-
ing/detecting nuclear spin states using RF electromagnetic pulses. In 1997,
the concept of pseudo pure states in NMR was discovered and since that time
NMR has played a leading role in practical implementation of quantum infor-
mation and computation by implementing almost all quantum algorithms e.g.
Shor's algorithm using 7 qubit NMR processor, Grover's Search Algorithm,
quantum error correcting codes, quantum logic gates, Quantum Simulations
etc. Since nuclear magnetic moment is very small therefore we need a large
number of molecules to get a detectable signal and therefore NMR uses an
ensemble of molecules which makes it di�cult to control and manipulate.
Nuclear Spins are ideal candidates for building a Quantum computer but
LIQUID-STATE NMR technique has two major drawbacks [18] -

1) It is not scalable as it su�ers an exponential loss of signal with increasing
number of qubits. So it can be used as a test bed for Quantum Computing
at a smaller scale but can't be used to build large-scale quantum computer.

2) Preparation of an arbitrary initial pure state is really di�cult owing to
the very small energy gap between the nuclear states at thermal equilibrium.

As RF pulses are quite accurate in implementing unitary operators and can
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be used to implement universal quantum logic gates, NMR has proven it-
self to be a really precise quantum information processor. In this study, we
worked on the problem of quantum simulation of Quantum chaos in chapter
2,successful NMR implementation of Franck-Condon principle and Quantum
tunneling in chapter 3 and now working on using SUSY to experimentally
�nd the wave functions of Hydrogen atom by performing a quantum simula-
tion.
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Chapter 2

Quantum Chaos

2.1 Theory

The term 'Quantum chaos' corresponds to 'quantum study of systems whose
classical analog exhibit chaotic behavior'. Classically, Chaos is formulated
as extreme sensitivity to initial conditions i.e. two arbitrarily nearby initial
points in phase space will diverge exponentially with time,if the system is
chaotic. The rate of exponential divergence is quanti�ed by the largest lya-
punov exponent of the system: if it is positive then the system is chaotic.
Now since classical physics is a limit of quantum physics, it's natural to study
chaos quantum mechanically. In Quantum regime, since the Schrodinger
equation is linear (it corresponds to no hypersensitivity to initial conditions)
and also because of the hermiticity of the Hamiltonian the operators are
unitary which implies that the overlap of two arbitrarily close initial states
won't change with time.This implies the classical de�nition of chaos fails in
quantum regime. Now the question arises: What does it mean to not have
chaos quantum mechanically but classically? Is it that Quantum mechan-
ics is wrong or the correspondence principle/Ehrenfest's principle is wrong?
Ehrenfest's principle states that for large quantum numbers the average po-
sition and momentum in quantum regime should reproduce classical paths.
Ehrenfest also showed that for the di�erence between the 2 averages (quan-
tum and classical) to grow signi�cantly (noticeable) is large enough for all
experimental purposes. But it is only true for regular systems. For chaotic
systems the time scale to notice the di�erences in quantum and classical pre-
dictions is too small.
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2.1.1 Universal Signatures of Chaos

1. Probability distribution of level spacing: The statistical properties of
quasienergy spectrum of quantum systems is highly universal.The distribu-
tion of spacing between the neighboring energy levels is a Wigner-Dyson
distribution for a chaotic system i.e. Se−π/4S

2
the levels are highly correlated

and they repel each other. This result comes from Random Matrix Theory[7].
In short, quantized chaotic systems show level repulsion while regular sys-
tems show level clustering with the PDLS as e−S i.e. poissonian distribution.
[17]
2. Fidelity decay as a signature of chaos: Peres observed that if instead of
perturbing the initial state slightly, we perturb the governing Hamiltonian
slightly and then measure the overlap of time evolution of 2 identical states
under these 2 Hamiltonians, there is a characteristic exponential decay in case
of chaotic systems, given the perturbation is su�ciently strong i.e. Consider
an initial state |ψ〉 evolved under a unitary observable U i.e. |ψu〉 = Un|ψ〉
, n being the number of iterations. Consider another operator Up which is
slightly perturbed from the operator U . Then the evolution of |ψ〉 under this
operator is |ψp〉 = Un

p |ψ〉.The �delity provides the divergence between these
two states.

F (n) = |〈ψp|||ψu〉|2 (2.1)

It will be exponentially decaying in case of chaotic systems [5]

3. In case of kicked rotor, there's one property that arises only because
of quantum treatment of the problem i.e. 'Quantum suppression of classical
chaos'. Here the variance of momentum, hence energy, in classical regime
increases linearly with time while in quantum regime energy initially follows
classical plot but then saturates after a break time. An intuitive picture
of why this happens can be described as: Kicked rotor system is related
to one-dimensional Anderson Model where a particle can hop from site to
site. In Anderson's model, applying Furstenberg's theorem[7] we get that all
eigenstates of this Hamiltonian are localized at the sites. From here one can
reason that the eigenstates of the kicked rotor system are also exponentially
localized in momentum space, as the role of momentum in kicked rotor is
played by sites in Anderson's model. Now if we consider an initial wave
function localized with some �nite width in momentum space, then we can
say that it overlap signi�cantly only with some �nite number of eigenstates
and the overlap is exponentially small for all states outside its initial width.
Since the overlap with an eigenstate is constant over time, as can be seen
from Schrodinger equation, this implies the time evolution of the initial wave
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function is restricted in momentum space. Therefore one can conclude that
initially it'll spread like in classical case but after some time (break time), it
will stop spreading. An in-depth description of this process is given in [17]
[9]. In the next section we present the theory of kicked rotor in quantum and
classical regime.

2.2 Kicked Rotor/Rotator

Kicked Rotor describes a particle constrained to move on a ring or a rotating
stick while experiencing homogenous kicking at �xed interval of time.

2.2.1 Classical model

The hamiltonian for the system is-

H = p2/2I + k cos θδT (t) (2.2)

where p is the angular momentum,I is the moment of inertia and k is the
kick strength and

δT (t) =
∞∑

n=−∞

δ(t− nT ) (2.3)

where T denotes the time period of the kick and n is an integer. We know
from classical mechanics that given a Hamiltoonian H(x,p) the equations of
motion are given by -

dx

dt
=
dH

dp
(2.4)

dp

dt
= −dH

dx
(2.5)

this implies the equations of motion for one time interval T are

dθ

dt
=
dH

dp
(2.6)

θn+1 − θn = Tpn+1 (2.7)

θn+1 = θn + Tpn+1 (2.8)

and (2.9)

dp

dt
= −dH

dθ
(2.10)

pn+1 − pn = k sin θn (2.11)

pn+1 = pn + k sin θn (2.12)
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At �rst,it seems like the equation of motion depends on 2 di�erent parameter
k and T, but if we just de�ne K = kT, the equations will become

θn+1 = θn + Pn+1 (2.13)

Pn+1 = Pn +K sin θn (2.14)

This is also known as standard map or chirikov-taylor mapping in nonlinear
dynamics.This map has been studied thoroughly in nonlinear dynamics and
here we'll mention some of its properties[2] without proving it.

1. The phase space of this mapping is a cylinder with bounded motion in
θ but unbounded motion in P. It can also be seen that this map is periodic
in P with a period of 2π.
2. When K=0 i.e. no kicking, then the phase space is a collection of
straight lines with constant P. As we slowly increase K, the phase space
lines starts to bend and after a critical value the phase space starts becom-
ing chaotic(if the initial points are not in region of quasiperiodic motion).For
kicked rotor,Kcr = 0.9716. If we keep on increasing K > Kcr the regions of
quasiperiodicity reduces and after some point the whole phase space become
chaotic.
3.Our map is di�usive in P space. It can be shown like this

Pn+1 = Pn +K sin θn (2.15)

(Pn − P0)
2 = K2

n−1∑
j,m

sin θj sin θm (2.16)

Now if we consider a large number of trajectories with uniformly distributed
θ and initial momentum P0 = 0 The average momentum will be

〈P 2
n〉 = K2n (2.17)

i.e. it depends linealy on the number of kicks applied. Therefore in classical
case the energy keeps on increasing with the applied number of kicks. In the
next section we provide the details for quantum model of kicked rotor. [9]

2.2.2 Quantum Model

Here the hamiltonian is

H = −~2

2I

d2

dθ2
+ k cos θδT (t), (2.18)

where, δT (t) =
∞∑
−∞

δ(t− nT ) (2.19)
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~ is the reduced planck's constant and k is the kickstrength. Applying
Schrodinger's equation,

i~
dψ

dt
= −~2

2I

d2ψ

dθ2
+ k cos θδT (t)ψ (2.20)

this implies

ψ(θ, t+ T ) = Uψ(θ, t) (2.21)

where, U = exp(−i
t+T∫
t

Hdt) (2.22)

By applying Trotter's approximation we get,

U = exp(iT
~
4I

d2

dθ2
) exp(−ik cos θ

~
) exp(iT

~
4I

d2

dθ2
) (2.23)

(2.24)

This is the time evolution operator over one period of time T. Here we can
rede�ne our parametrs as

τ =
T~
I
, k =

k

~
(2.25)

∴, (2.26)

U = exp(i
τ

4

d2

dθ2
) exp(−ik cos θ) exp(i

τ

4

d2

dθ2
) (2.27)

here, Up = exp(i
τ

4

d2

dθ2
) and Uθ = exp(−ik cos θ) (2.28)

Unlike in classical case where the dynamics depends on 1 parameter K only
,here we have 2 independent parameters τ and k . We can call k to be a purely
quantum parameter.The relation between classical and quantum parameters
is given by

K = kτ (2.29)

We can express our wavefunction in the eigenbasis of unperturbed(k = 0)
kicked rotor hamiltonian

ψ(θ, t) =
∞∑
−∞

Am(t)eimθ (2.30)

The most e�cient way(in term of minimizing the time) to simulate the time
evolution of our wavefunction is by using quantum fourier transform(QFT).Since
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Up is diagonal in moementum basis,Uθ is diagonal in position basis and initial
wavefunction is expressed in momentum basis,we can use QFT to de�ne our
overall evolution operator(for one time interval T ) i.e.

U = UpU
†
QFTUθUQFTUp (2.31)

Using this operator,we can calculate the wavefunction as well as energy after
every kick. Energy in this case is given by

E =
N∑
−N

|Am|2~2
m2

2
(2.32)

where, the basis consists of 2N + 1 eigenfunctions of unperturbed kicked
rotor(because of numerical simulation we have to truncate the basis at some
point).

2.3 Numerical Simulations

In this section,we provide the numerical simulations done on quantum kicked
rotor to explore the universal signatures of chaos. All the simulations are
done using 8 qubits.

2.3.1 Quantum Suppression of Classical Chaos

Here we get that the energy in quantum regime gets saturated after a break
time as per the reason being explained in section 2.1.1.
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Figure 2.1: Quantum suppression of classical chaos for k = 20 and τ =
1
4
, =⇒ the classical parameter K = 5.Simulation was done on matlab using

8-qubits

2.3.2 Fidelity Decay as a Signature of Chaos

Exponential �delity decay can also be used as a signature of chaos. Here we
simulated the quantum kicked rotor with two slightly di�erent kick strength
k1 and k2 �gure2.2.
We have evolved the same state under these two di�erent kick strengths

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TIME STEPS

F
ID

E
LI

T
Y

Figure 2.2: Fidelity decay versus time steps.Here k1 = 15,k2 = 16.01 and
τ = 1/2 is used.Simulation was done on matlab with 8-qubits

and measured the overlap between the two wavefunctions.

12



2.3.3 Probability Distribution of Level Spacing

As mentioned in section 2.1.1,probability distribution of level spacing can be
used as an indicator of chaos. We expect to get Wigner-Dyson distribution
for system in chaotic regime and poisson distribution for regular systems.
Here, we present the numerial simulation of PDLS in case of kicked rotor

Figure 2.3: Probability distribution of levelspacing in kicked rotor with k = 20
and tau = 1 this implies the classical parameter K = 20. Since the system
is completely chaotic for K > 5,therefore we are clearly getting the Wigner-
Dyson distribution here.

in both chaotic and non-chaotic regime.We can clearly see that as we keep
on decreasing K,the distribution becomes more and more poisson like as
expected from RMT.

Figure 2.4: Probability distribution of levelspacing in kicked rotor with k = 20
and tau = 1/4 this implies the classical parameter K = 5. Since the system
is completely chaotic for K > 5,therefore we are clearly getting the Wigner-
Dyson distribution here.
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Figure 2.5: Probability distribution of levelspacing in kicked rotor with k =
20 and tau = 1/5 this implies the classical parameter K = 4. Since the
system partially chaotic for K < 5,therefore we are getting the poisson-like
distribution here.

Figure 2.6: Probability distribution of levelspacing in kicked rotor with k =
20 and tau = 1/10 this implies the classical parameter K = 2. Since the
system partially chaotic for K < 5andK > 0.9716,therefore we are getting
the poisson-like distribution here.
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Chapter 3

Estimation of Franck-Condon

Factors using NMR

3.1 Theory

Electronic transitions in molecules are often associated with vibrational tran-
sitions.Such combined transitions are known as vibronic transitions [8].Owing
to its high mass,nuclear displacement is negligible compared to elctronic dis-
placement,during a vibronic transition. Franck-Condon principle[4] states
that the transition probability between 2 vibrational levels is given by the
overlap between the respective wavefunctions [1].Franck-Condon factors play
an important in understanding the vibronic transitions in photochemical
reactions,photo-induced dissociations etc. In this work,we have used two
di�erent approaches(both of which gives arbirarily high spatial resolution of
probability distribution) to estimate the Franck-Condon Factors(FCFs)-

Method 1) By using a 3 qubit NMR processor [3] we managed to esti-
mate the FCF for all the transitions involving the ground state and the �rst
4 levels of Harmonic oscillator.We used Moussa Protocol(to extract the ex-
pectation values) and translation operator for this experiment. This method
is very robust as shown in the experimental results. We also managed to
show quantum tunneling in this experiment.

Method 2) By using a 3 qubit NMR processor we managed to estimate
the FCF for all the transitions involved in �rst 4 levels of Harmonic oscilla-
tor.Diagonal Tomography is used in this approach.The experimental error is
little higher than the �rst approach but with the same number of qubits we
are getting much more information than the �rst method so it's e�cient(in
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terms of resources needed).
For low-lying vibrational levels,the smooth energy potential surfaces [4]

can be approximated as simple harmonic oscillator. Here we model the lower
vibrational levels as eigenstates of 2 harmonic osicllator,one corresponding
to the electronic ground state(V1) and other to excited elctronic state(V2).

00

01

10

11

00’

01’

10’

11’

Energy

42-2 0

Displacement (x) 

V1 V2

Figure 3.1: A harmonic potential centred at the origin (V1), a displaced
harmonic potential centred at x = 2 and with ∆E = 0 (V2), and their
corresponding wavefunctions. The unshifted eigenfunctions are labelled in
the computational basis and the shifted eigenfunctions are indicated with
primes.

For convenience, we chose V1 =x2/2 and V2 =(x − b)2/2 + ∆E. Now,in

operator basis, a = (x+ip)√
2

and a† = (x−ip)√
2

[15]. Taking mass as well as angular
frequency of the oscillator to be unity,the hamiltonian can be expressed as

H1 = p2/2 + x2/2

= a†a+ 1/2 and,

H2 = p2/2 + (x− b)2/2 + ∆E

= (p2/2 + x2/2) + b2/2− xb+ ∆E

= a†a+ 1/2 + b2/2− (a+ a†)b/
√

2 + ∆E, (3.1)

where ~ is set to unity.
For transitions between vibrational level |m〉 of electronic ground state and
vibratinal level |n′〉 of electronic excited state,the transition probabilityWm,n′

is

Wm,n′ ∝ fm,n′(b) (3.2)
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where,

fm,n′(b) = |〈m|n′〉|2

=
∞∫
−∞

ψ∗m(x)ψn′(x, b)dx
2

. (3.3)

are known as Franck-Condon Factors(FCFs).Since we have chosen similar
potentials with unit mass and angular frequency,FCFs depend on displace-
ment b only. The separation in energy ∆E a�ects only the proportionality
constant in equation above and hence it's chosen to be zero for convenience.

3.2 Estimating FCFs by Using Method 1

Here,estimating FCFs (fm,n′) is equivalent to measuring the expecation value
of a projection operator Pm = |m〉〈m| after preparing the system in excited
state |n′〉

fm,n′ = |〈m|n′〉|2 = 〈n′|m〉〈m|n′〉 (3.4)

= 〈Pm〉n′ (3.5)

The preparation of state |n′〉 can be achieved by �rst preparing the corre-
sponding electronic ground state |n〉 and translating it in position basis to
desired displacement x = b. The translation operator for this purpose is

UT (b) = e−ibP (3.6)

it can be discretized as

Uk
T (b/N) = e−ibPk/N (3.7)

achieving a displacement bk
N
where k ∈ {0 · · ·N}

After preparing the initial state,the next step is to extract the expectation
value of the involved observable A. The direct straightforwad way of doing
that is to use quantum state tomography [12] to get the density matrix ρ and
then evaluate the expectation value of A i.e. 〈A〉ρ = Tr(Aρ).But tomography
requires large number of experiments as well as signi�cant data processing
[16]. An elegant and much simpler method for extracting expectation val-
ues of Unitary Observables(i.e. unitary as well as hermitian operator) was
proposed bt Moussa et al [11]. It is described in the circuit diagram shown
in �g 3.2a. It involves an ancilla initialized in |+〉 state and an initial state
ρ. To measure the expectation value of the unitary observable A,we need
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S

|+ x an = S

eiP

|+ x an +i y an = 1+ P (ei 1)

|+ x an +i y an = exp(i A )

Us eiA

(a)

(b)

(c)

Figure 3.2: Circuits for Moussa protocol (a) and its extensions (b and c).
In all the cases the top qubit corresponds to ancilla and the remaining are
system qubits. In (b) P is a projection observable. In (c) the initial state ρ
is a pure state and the observable A is compatible with it.

to apply the operator on the system controlled by ancilla and measure the
expectation value of σx on ancilla.Then

〈A〉ρ = 〈σx〉ancilla (3.8)

In the next subsection we provide a simple extension of Moussa Protocol so
that it can be used to extract the expectation value of any general observable.

3.2.1 An extention to Moussa Protocol

Consider a projection operator P with P n = P . This operator is hermi-
tian but not unitary, so, to make it unitary, consider S = eiPθ to be our
observable(∵ exponential of a hermitian is unitary).Consider the circuit in
�g.3.2a.It can be shown that

〈σx〉an = 〈S + S†〉ρ/2, and 〈iσy〉an = 〈S + S†〉ρ/2,

so that

〈σx〉an + i〈σy〉an = 〈S〉ρ = 〈eiPθ〉ρ = 1 + 〈P 〉ρ(eiθ − 1),

and hence

〈P 〉ρ =
1− 〈σx〉an
1− cos θ

. (3.9)
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Taking θ = π, we obtain 〈P 〉ρ = (1− 〈σx〉an)/2.
Since any observable can be expressed as a summation of projec-
tion operators in some basis,and the expectation value of a sum
is sum of expectation values of individual entries of that sum,we
can extract the expectation value of any observable using extended
Moussa Protocol(only the number of experiments will increase as
per the dimension of our observable).

3.2.2 Simulations and Experiment

In numerical simulation,there's one inherent problem i.e. we have to trun-
cate the basis at some �nite level.Here are some numerical simulations of
estimatimg FCFs with di�erent number of qubits. For comparison,we have
plotted the theoretical FCFs(for in�nite level harmonic oscillator) also. We
notice that with increasing number of qubits the simulaton results are in
better agreement with the theory.
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Figure 3.3: Simulation

Our expriment corresponds to the 2-qubit simulation in Figure 3.3.We
chose three spin-1/2 F19 nuclei of iodotri�ouroethylene(C2F3I) dissolved in
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acetone-D6 as our 3-qubit NMR quantum processor.All the experiments are
carried out on a 500MHz Brucker NMR spectrometer at an ambient temper-
atur of 300K. The molecular structure and the Hamiltonian parameters of
our system is given in Figure 3.4.
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1

2

3

3

1

2

Figure 3.4: Molecular structure of iodotri�uoroethylene and its Hamiltonian
parameters. The diagonal elements represent relative resonance frequencies
and the o�-diagonal elements represent the strengths of scalar (J) couplings.

In our experiment,We have selected F1 (see Figure 3.4) as the ancilla
qubit and the other two spins to encode the lowest 4-levels of the harmonic
oscillator.The inital state was prepared,as explained above,by �rst preparing
the corresponding state in electronic ground state and then translating it
to the desired position(b) by using the translator operator (UT (b)). Here,
instead of initialiing the system in one single level we make use of "Pair
of Pseudo Pure States"(POPS) [6] which initialies the system in a traceless
psudopure mixture of two states
ρjk = |j〉〈j| − |k〉〈k|,where j, k 6= j ∈ (|00〉, |01〉, |10〉, |11〉) After translation,
the corresponding excited state is

ρj′k′ = |j′〉〈j′| − |k′〉〈k′|.
In the experiment, we have chosen P00 = |00〉〈00| as our observable.By using
the approach in section 3.2.1,we found the overlap of |00〉 of electronic ground
state with |n′(b)〉 of elctronic excited state with respect to variation in b.This
way we can obtain the FCFs f00,k′ with j = |00〉 and k ∈ (|00〉, |01〉, |10〉, |11〉)
The complete circuit for our simulation is given in Figure 3.5

Here,the �rst qubit is the ancilla and the other two are the system(encoding
the harmonic oscillator).As described above,we �rst applied the translation
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eq

ei 00 00

x an = fjk
P
O
P
S

H

Tn

Figure 3.5: The overall circuit for estimating FCFs. The top qubit corre-
sponds to ancilla and the remaining are system qubits.

operator Uk
T = e−ibmaxkp/N to prepare the excited state after preparing the

initial state |+〉〈+| ⊗ ρjk. In our experiment bmax = 4 and N = 11.. The
complete translation operator were realized using amplitude and phase mod-
ulated radio frequency pulses.These pulses were designed using GRadient
Ascent Pulse Engineering(GRAPE) [10] technique with an average Hilbert-
Schmidt �delity of 0.995 over a spatial RF inhomogeneity in the range of
90% to 110% of the nominal �eld.After the translation,the operator eiP00π on
the system qubits controlled by ancilla qubit was applied (so that the overlap
between |00〉 and the excited state |n′(b)〉 can be calculated as explained in
section 3.2.1).The RF pulse designed via GRAPE for this operator had an
average �delity of 0.989 over the same RF inhomogeneity range as the trans-
lation operator.Finally the real part of the ancilla signal that is proportional
to 〈σx〉an is measured by integrating the ancilla transitions. Thus after each
preparation ρ′j,k we can extract the di�erence of FCFs ∆fj,k = f00,j′ − f00,k′ .
In order to determine all individual FCFs of the form f00,k′ , we perform four
di�erent experiments and measure ∆f00,01′ , ∆f00,10′ , ∆f01,11′ , and ∆f10,11′ ,
and solve the four linear equations with the help of an additional constraint
given by the normalization condition

∑
j f00,j′ = F .

The results of the experiment with F = 1 and for various values of
b ∈ [0, 4] are shown in Figures 3.6a and 3.6b. The experimental data points
are shown by symbols. To understand the systematic errors in the experi-
mental data, we have simulated FCF values using lowest four levels of the
computational basis. In Figures 3.6 The simulated curves are shown by lines.
Here a good agreement between the experimental results and the simulated
curves can be observed. The good agreement between the experimental data
points with the theoretically expected values con�rm the successful measure-
ment of FCFs. However, we have also shown the expected FCF curves for
in�nite level systems. As can be readily observed, while the FCF f00,00′ shows
a good agreement between the �nite (4-level) and in�nite cases, the pro�les
of other factors substantially deviate with the in�nite case with increasing
values of b. The deviation between the �nite and in�nite FCFs is due to the
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Figure 3.6: FCFs versus the displacement b. The experimental data points
are indicated by symbols: circles (f00,00′), triangles (f00,01′), squares (f00,10′),
and diamonds (f00,11′). The simulated FCFs for the 4-level system are shown
by smooth lines (f00,00′ and f00,10′) and dashed lines (f00,01′ and f00,11′). The
expected FCFs for in�nite-level system are shown by dotted lines (f00,00′ and
f00,10′) and dash-dotted lines (f00,01′ and f00,11′). The thin dashed lines at
the top of each subplot corresponds to the normalization used. In (c), the
thin vertical lines at b = 2, 2

√
3 mark the beginning of classically forbidden

regions for f00,00′ , f00,01′ respectively.

e�ect of truncation in the basis-set, and can be minimized by increasing the
number of system qubits 3.3.

If one has the prior information on the normalization condition F , it is
possible to get better agreement with the in�nite case. This is illustrated in
Figures 3.6c and 3.6d. The total probability for the �rst four levels in the
in�nite-level case varies with b as

∑
j f00,j = [1 + b2/2 + b4/8 + b6/48] e−b

2/2

and is shown by thin-dashed lines at the top of Figures 3.6c and 3.6d. The
experimental results with this normalization are shown by symbols. With
the latter normalization both FCFs f00,00′ and f00,01′ show considerably good
agreement with the in�nite-level case, while the other levels still deviate
signi�cantly and require larger number of system qubits [14].

An interesting observation can be made by noting the non-zero
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values of FCFs in classically forbidden regions. For example, for
f00,00′ and f00,01′ (which match with the in�nite theory), non-zero
values respectively at b ≥ 2 and b ≥ 2

√
3 (shown by vertical dashed

lines in Figure 3.6c) are due to overlap of tunneling amplitudes.

0 0.5 1
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0.05
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0.15

0.2
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σ ε

Figure 3.7: The average standard deviation of FCFs as a function of noise
amplitude.

Finally to demonstrate the robustness of our protocol, we simulated FCFs
by adding random noise to ancilla expectations. The average standard devi-
ation |σε〉 of FCFs as a function of noise amplitude η is shown in Figure 3.7.
It can be observed that |σε〉 < 0.2 even at η = 1, indicating the robustness
of the overall method.

3.3 Estimating FCFs using Method 2

Here we have used diagonal tomography to extract the expectation value
of the observable.The observables here were (P00, P01, P10, P11).The system
was initialized in elctronic ground state and using the translation operator
Uk
T the excited electronic state was achieved,as explained in section3.2.After

each translation,we extract the diagonal elements of the density matrix of the
system by utilizing tomography.To estimate the FCFs only diagonal elements
are su�cient as can be seen from the calculation below.
Suppose the systems density matrix at any time is ρ and our observable is
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some projection operator P = |n〉〈n| = pijδinδjn with pnn = 1.

〈P 〉 = Tr[ρP ] (3.10)

= Tr[
∑
i,j

pijδinδjnρjk] (3.11)

= pnnρnn (3.12)

= ρnn (3.13)

where, ρnn gives us the FCF corresponding to the initial state and the state
|n〉. This implies that, we just need the diagonal element of the density
matrix to �nd the 〈P 〉,where depending on our choice of operator P and
the initial state,we will get the overlap (and hence FCFs) between the corre-
sponding wavefunctions.

3.3.1 Experiment

We chose three spin-1/2 F19 nuclei of iodotri�ouroethylene(C2F3I) dissolved
in acetone-D6 as our 3-qubit NMR quantum processor.All the experiments
are carried out on a 500MHz Brucker NMR spectrometer at an ambient tem-
peratur of 300K. The molecular structure and the Hamiltonian parameters
of our system is given in Figure 3.4.Since,we don't need an ancilla qubit
here,our experiment here will correspond to the 3-qubit simulation in �gure
3.3. Therefore,we're able to encode 8 lowest-levels of harmonic oscillator and
hence obtained more FCF's than in method 1 with same number of qubits.
In this way,this method is much e�cient as it needs 1 less qubit than the
method 1 to simulate the same problem.
The RF pulses for the translation operator are designed via GRAPE algo-
rithm with an average Hilbert-Schmidt �delity of 0.995 over a spatial RF
inhomogeneity in the range of 90% to 110%. The results are shown in the
�gure3.8.

3.4 Conclusion

We described 2 general procedures for estimating Franck-Condon Factors
(FCFs) in a quantum information processor.
1).First we observed that estimation of FCFs is equivalent to the measure-
ment of certain projection operators on a set of qubits encoding the excited
state of the system.We extended an existing method of measuring expecta-
tion value for this purpose.
2). We also estimated the FCFs using diagonal tomography approach which
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Figure 3.8: FCFs versus the displacement b. The experimental FCFs are
represented by symbols(circles) and theoretical FCFs by solid lines.|n〉 de-
notes the elctronic ground state and |n′〉 denotes the elctronic excited state
in number basis.Left Cube - it presents the f0,0′ , f1,1′ , f2,2′ , f3,3′ ,where fm,n′

represents the FCF for |m〉and|n′〉.Right Cube - it presents the FCFS for
f0,1, f0,2, f0,3, f1,2, f1,3, f2,3. We can see that the experimental FCFs are in
good qualitative agreement with the theoretical FCFs.

is much e�cient than �rst approach in terms of resources needed,but �rst
approach is much robust.
3) We were also able to show the non-zero overlap of wavefunctions in clas-
sically forbidden region,which is a direct implication of Quantum tunneling.
We also noted that an excited state can be prepared by spatially translating
the corresponding ground state. In general, if we have an arbitrary poten-
tial for the excited state, then it is still possible to prepare the �nal state
using adiabatic evolutions.We illustrated these methods using a three qubit
NMR quantum simulator and compared the results with the simulated curves
for �nite and in�nite level systems. We demonstrated that even with only
two/three qubits encoding the system, the FCFs corresponding to the lowest
two/four levels still matched fairly well with the in�nite-level theory.
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Appendix A

Proofs

A.0.1 Finding expectation value of a general unitary

operator using Moussa protocol

Consider a general unitary operator U . To determine its expectation value
we prepare the system in any desired state ρ, ancilla in state |+〉, and apply
the Moussa protocol as shown in Fig. 3.2a. The state of the combined system
evolves under the controlled-U operation as

|+〉〈+| ⊗ ρ U−→ 1

2

{
|0〉〈0| ⊗ ρ+ |0〉〈1| ⊗ ρU † + |1〉〈0| ⊗ Uρ+ |1〉〈1| ⊗ UρU †

}
.(A.1)

After tracing out system, the ancilla becomes

1

2

{
|0〉〈0|+ |0〉〈1|〈U †〉+ |1〉〈0|〈U〉+ |1〉〈1|

}
=

[
1 〈U †〉
〈U〉 1

]
. (A.2)

In an NMR signal obtained with a quadrature detection, the real and imag-
inary parts correspond to the expectation values of σx and σy observables
respectively [Ref]. Thus the real and imaginary parts of the ancilla signal

are proportional to 〈σx〉 = 〈U+U†

2
〉 and 〈iσy〉 = 〈U−U†

2
〉, from which the ex-

pectation value 〈U〉 = 〈σx〉+ i〈σy〉 can be extracted.

A.0.2 Extracting expectation value of a Hermitian op-

erator compatible with a pure-state

The circuit for this measurement is shown in Figure 3.2c. Given the Hermi-
tian operator A to be compatible with a pure state ρ, we can simultaneously
diagonalize both of these using a similarity transformation Us, i.e., Ad =
U †sAUs, ρd = U †sρUs are diagonal, and therefore 〈Ad〉ρd = 〈A〉ρ. As shown

28



above, the complex ancilla signal corresponds to 〈σx〉an + i〈σy〉an = 〈eiAdθ〉ρd .
In the following we prove that 〈eiAdθ〉ρd = ei〈Ad〉ρdθ. Since the system is in a
pure state, we can write ρd = |n〉〈n| and (ρd)ij = δinδjn. Now consider,

〈Akd〉ρd = Tr
[
ρdA

k
d

]
=

∑
i

(ρdA
k
d)ii

=
∑

ij1j2···jk

δinδj1n(Ad)j1j2 · · · (Ad)jki

= (Ad)
k
nn, since Ad is diagonal. (A.3)

For k = 1, we have 〈Ad〉ρd = (Ad)nn, and therefore 〈Akd〉ρd = 〈Ad〉kρd , which
implies, 〈eiAdθ〉ρd = ei〈Ad〉ρdθ. Since 〈Ad〉ρd = 〈A〉ρ, we have 〈σx〉an + i〈σy〉an =
ei〈A〉ρθ.
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