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Abstract.

We consider the Weil restriction of a connected reductive algebraic group
over a number field to the rational numbers. For a level structure in the
group of its adèlic points, we form an adèlic locally symmetric space. A
finite-dimensional, algebraic, irreducible representation of the group of real
points of the Weil restriction induces an associated sheaf on this space.

Raghuram and Bhagwat found certain necessary conditions for
non-vanishing of the cuspidal part of the respective sheaf cohomology in case
of the general linear group under some additional assumptions on the
number field and the weight of the representation. Motivated by this, we
estimate the growth rate of cuspidal cohomology with varying level structure
as well as weight in case of automorphic induction from GL(1) over
imaginary quadratic fields to GL(2) over the rationals and also that of
symmetric square transfer from GL(2) to GL(3); both over the rationals.

We also present bounds on the dimension of the total sheaf cohomology
which apply to an arbitrary connected reductive algebraic group with varying
level structure or weight. The bounds thus obtained are consistent with the
classical dimension formulae as well as several known results.
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Chapter 1

Introduction.

1.1 Motivation.

The far-sighted conjectures of Langlands on functoriality have given an
impetus not only to modern number theory but also to many other areas of
mathematics. These conjectures have made allowence for the application of
techniques of Representation Theory, Algebraic Geometry as well as Anal-
ysis to number theoretic problems. Automorphic forms, together with the
analytic theory of L-functions, lie at the heart of these conjectures. These
forms are constituents of automorphic resperentations. The notion of an au-
tomorphic representation and the associated automorphic form for a general
algebraic group over a number field has been studied extensively due to this.

The well-known correspondence of Eichler-Shimura for modular cusp forms
permits us to interpret cuspidal automorphic representations cohomologi-
cally. More precisely, it relates the cohomology with appropriate coefficients
of a certain adèlic locally symmetric space to classical holomorphic modular
forms. One can deduce the existence or vanishing of cusp forms with pre-
scribed parameters by studying this cohomology and also prove finiteness or
multiplicity one results for the corresponding automorphic representations.
Such results have deep number theoretic implications.

It is, then, natural to ask how the dimension of the space of cusp forms
grows when we vary the parameters involved therein. More generally, we
may ask the same question in case of the group of real points of a connected,
reductive linear algebraic group. The corresponding adèlic locally space can
be compactified in order that this problem becomes amenable to geometric
and analytic methods. Several such compactifications have been constructed
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and used depending on the purpose, such as the Borel-Serre compactification.

This work was motivated by a result by Raghuram and Bhagwat (see [2]).
They found the conditions on the weight of an irreducible representation of
the general linear group (over a totally real or a CM field) which ensure the
non-vanishing of the cuspidal cohomology for some level structure. With the
additional hypothesis of the weight being parallel, they generalised the result
to an arbitrary number field.

Based on this result on existence of cusp forms, it is interesting to find the
dimension of the space of automorphic forms for varying level structure or as
the irreducible representation varies. This is the problem we have attempted
to address in the current work. We present estimates on the dimension of
the total cohomology complex as either of the representation and the level
structure varies.

One can also ask how the cuspidal part of the cohomology grows with the
representation or the level structure. Therefore, in a similar vein, we also
investigate how cuspidal automorphic representations are related to those
obtained by Langlands transfer from groups of lower rank under certain L-
homomorphisms. This is carried out for automorphic induction from GL1/E
to GL2/Q, (where E/Q is an imaginary quadratic field) and also for sym-
metric square transfer from GL2/Q to GL3/Q. The results obtained are
consistent with some of the known bounds and provide a good idea of the
exact growth rate of the dimension of the space of those automorphic cusp
forms.

1.2 Statement of the problems.

1.2.1 The case of GL2/Q.

Consider a quadratic extension of the field of rational numbers. We form
the group of idèles over this field. The characters of this group can be canon-
ically related to classical Hecke characters (also known as grossencharacters)
of the quadratic extension.

In accordance with Langlands functoriality, every algebraic Hecke char-
acter yields an automorphic form for GL2(AQ) by automorphic induction.
Under certain conditions, one obtains a Maass form when the extension is
real and a holomorphic modular form for an imaginary quadratic extension.
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Furthermore, this modular form is a cusp form whenever the inducing alge-
braic Hecke character is Galois regular (and an Eisenstein series, otherwise).

Fix a weight and a level structure for GL2(AQ). The space of cusp forms
for this weight and level is finite dimensional. Each imaginary quadratic
extension of Q may potentially contribute some cusp forms via automorphic
induction of its algebraic Hecke characters. We ask the following question
about these cusp forms:

Question 1. How much of the cuspidal cohomology of GL2/Q is obtained
by automorphic induction?

We shall find estimates for this total dimension for a fixed weight as the
level varies. Also, we shall estimate the growth rate of the total with a fixed
level as the weight varies.

1.2.2 The case of GL3/Q.

Consider a cuspidal automorphic representation of GL2(AQ). One may
construct an L-homomorphism (termed as the symmetric square transfer)
from GL2(AQ) to GL3(AQ) using its Langlands parameters placewise. By
Langlands Functoriality, one obtains an automorphic representation ofGL3(AQ)
for each cuspidal automorphic representation of GL2(AQ). We ask the fol-
lowing:

Question 2. How much of the cuspidal cohomology of GL3/Q is obtained
by symmetric square transfer from GL2/Q?

We shall estimate for the above number as either of the weight and the
level structure varies.

1.2.3 The case of a connected, reductive linear alge-
braic group.

Consider a connected, reductive linear algebraic group over a number
field. For a finite dimensional irreducible representation of the group of its
real points, we may consider vector-valued automorphic forms. We also con-
sider a level structure for the group and form the corresponding adèlic locally
symmetric space. The inclusion of cusp forms (with coefficients in the vec-
tor space of the irreducible representation), into the space of vector-valued
smooth functions on the group of adèlic points of the algebraic group was
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considered by Borel. He proved that this inclusion produces an injection into
the cohomology with the pertinent coefficients. We shall term the latter as
cuspidal cohomology.

Raghuram and Bhagwat ([2]) considered the general linear group over a
totally real or a CM field. They found that for certain highest weights, the
cuspidal cohomology is non-vanishing for some level structure. Motivated by
this, we ask the following similar and quantitative question about the total
dimension of the respective cohomology complex:

Question 3. For a connected, reductive linear algebraic group G/F, how
does the cohomology complex grow with varying level structure as well as the
weight of representation?

We shall find the growth rate of the total dimension as either of the finite
dimensional representation and level structure varies.

1.3 An outline of the approach.

We maintain the terminology of the previous section.

1.3.1 The strategy for GL2/Q.

We use the well-known criterion for cuspidality of automorphic induction
mentioned in the previous section, that only the Galois regular Hecke char-
acters of a fixed, compatible infinity-type yield cusp forms on automorphic
induction to GL2/Q. Hence, we need to estimate the former in order to ob-
tain bounds.

To begin, consider a fixed imaginary quadratic extension of the rational
numbers. We have a classical relation between an algebraic Hecke character
and the induced modular form, which shows that its weight and level are
both determined completely by that of the infinity-type of the Hecke char-
acter and the norm of the conductor, respectively. We count the number
of such characters with an appropriate conductor and sum over all possible
imaginary quadratic extensions. More precisely, we obtain bounds on the
order of growth of the total number of such characters as the norm of the
conductor varies.

Next, we note that the Galois regular Hecke characters are precisely those
which do not factor through the idèlic norm map while other Hecke characters
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are compositions of the idèlic lifts of Dirichlet characters with the said map.
The total number of Dirichlet characters of the corresponding conductor is
easy to compute. We subtract this from the total number of Hecke characters
computed above. Summing over all imaginary quadratic fields and estimating
this difference gives us the bounds.

1.3.2 The strategy for GL3/Q.

We use the criterion for cuspidality established by Gelbart and Jacquet ([18])
for the case of symmetric square transfer. The criterion asserts that a cusp-
idal automorphic representation of GL2(AQ) which is not induced from any
algebraic Hecke character of a quadratic field yields a cuspidal automorhic
representation of GL3(AQ).

Hence, we may draw upon the upper bound obtined in the previous case.
More precisely, we estimate the difference between the total number of new-
forms of a fixed weight as well as level and the total number of algebraic
Hecke characters with the relevent conductors computed previously.

We also carry out out similar estimation for constant level structure but
varying weight of the resulting respesentation. Note that under certain con-
ditions, the weight of the modular form being transferred completely deter-
mines the infinity type of the cusp form for GL3(AQ).

1.3.3 The strategy for a connected, reductive linear
algebraic group.

So far, we have used Langlands Functoriality to obtain bounds on the
dimension of cuspidal cohomology. It would be neither tractable nor com-
putationally feasible to employ this technique for the transfer by each L-
homomorphism from every lower rank group to the group under consider-
ation. Therefore, we consider the total cohomology and adopt a different
strategy (at the cost of sharpness of the bounds).

Consider a connected, reductive linear algebraic group over an arbitrary
number field. Each topological connected component of the adèlic locally
symmetric space corresponding to a fixed level structure of the adèlic points
of the group is an orbifold (i.e., quotient of a manifold by a proper group
action). If the level structure is deep enough, each of these connected compo-
nents is a locally symmetric space and corresponding arithmetic groups are
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all torsion-free. More interestingly, each of these manifolds is an Eilenberg-
MacLane space, with the only non-vanishing homotopy group being the fun-
damental group. Therefore, the cohomology with coefficients in a local sys-
tem of complex vector spaces coincides with the group cohomology (with the
respective coefficients) of the corresponding arithmetic groups.

This is precisely the fact which we shall exploit. By comparison with the
level structure for reference and some elementary considerations, we deduce
the growth rate of the cohomology with varying volume and also the dimen-
sion of the irreducible representation of the coefficient system.

Now, we fix a level structure supporting cohomology (with coefficients in
the corresponding vector space) for reference. For each level structure which
is deeper than the reference structure but has finite index in it, we consider
the pertinent adèlic locally symmetric space. We relate its sheaf cohomology
with the group cohomology by means of elementary topology.

Using Shapiro’s Lemma, this can be compared with the cohomology of
the adèlic locally symmetric space for reference. In doing so, we use the
fact that the degree of a finite covering map between the locally symmetric
spaces under consideration equals the index of the corresponding arithmetic
subgroup. This, in turn, is cast in terms of volume of the total adèlic locally
symmetric space for convenience (note that by classical finiteness results,
each of these has finite volume).

1.4 Statement of the results.

1.4.1 The bounds in case of GL2/Q.

Notation 1. For integers k,N ≥ 1, let Ck(N) denote the number of cusp
eigenforms of normalised Hecke operators for Γ1(N) ⊆ SL2(Z) having weight
k which are obtained by automorphic induction from Hecke characters of
every possible imaginary quadratic extension of Q.

Notation 2. For an integer N ≥ 1, define

N̂ :=
∏
p|N

p. (1.1)

Firstly, we show that lim inf Ck(N) = 0 when either of k or N approaches
infinity while the other is fixed. This bears out the necessity of passing to
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deeper level structures in order to find nontrivial lower bounds thereon.

When k ≥ 2 is fixed, we have the following lower bound:

Theorem 1.4.1. Every positive integer n has a fixed multiple N0 = N0(n)
such that we have

Ck(NN0)�k,ε,N0 N
1−εN̂1/2−ε ∀ε ∈ (0, 1/2) (1.2)

as N → ∞. Here, the implied constant depends upon the chosen values of
k,N0 and ε.

Remark 1.4.2. Note that when k ≥ 2, each cusp form obtained by au-
tomorphic induction from some Hecke character of an imaginary quadratic
field corresponds to a cohomological cuspidal automorphic representation
of GL2(AQ).

Theorem 1.4.3. Let k,N ≥ 1 be integers. Let Ck(N) be as above. We have

Ck(N)�k N · N̂3/2−ε ∀ε ∈ (0, 1/2) (1.3)

as N →∞.

Remark 1.4.4. By Lemma 5.3.2, we have

dimC Sk(Γ1(N)) ∼k N2.

Thus, the above theorem implies that when N is divisible by large powers of
several primes, only a negligible fraction of the holomorphic cusp forms
in Sk(Γ1(N)) is obtained by automorphic induction from Hecke characters.

This fraction, however, can be rendered nonzero by passage to a deeper
level structure by virtue of the lower bound obtained earlier.

1.4.2 The bounds in case of GL3/Q.

For each finite place p of Q and integer n ≥ 0, we define

Hp(n) = {x = (xij)3×3 ∈ GL3(Zp) : x31, x32 ∈ pnZp}. (1.4)

Let N =
∏r

i=1 p
ni
i be a positive integer. Set

Hf (N) :=
r∏
i=1

Hpi(ni). (1.5)
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Definition 1. For each N ≥ 1, we shall refer to the compact open subgroup
Hf (N) ⊂ GL3(Af ) as the level structure corresponding to N .

We shall denote the set of cuspidal automorphic representations ofGL2(AQ)
whose non-archimedean part πf has non-zero Kf -fixed vectors and the in-
finitesimal character of whose finite part π∞ equals λ + ρ, (where ρ denotes
half the sum of positive roots of gl3(C)) by Acusp(GL2, λ,Kf ).
We define Acusp(GL3, µ,Hf ) analogously for GL3/Q.

Notation 3. Set λk := (k/2 − 1, 1 − k/2). Let µk = (k − 2, 0, 2 − k) be the
dominant integral weight for GL(3,R) obtained by symmetric square transfer
from λk. For N ≥ 1, consider the level structure Hf (N).
Define

Dk(N) = {Π ∈ Acusp(GL3/Q, µk, Hf (N)) : ∃π and M ≥ 1 such that

π ∈ Acusp(GL2/Q, λk, Kf (M)), Π = sym⊗2(π)}.

Here, sym⊗2 denotes the symmetric square transfer; see 27 for the definition.

Theorem 1.4.5. Let k ≥ 2 be an even integer. Let p ≥ 2 be a fixed prime.
With Dk(.) as above, we have

#Dk(p
n)�k p

2n as n→∞. (1.6)

Remark 1.4.6. Note that we have considered even values of k merely to
simplify computations. An analogous result can be proved for odd values of
k.

Remark 1.4.7. We could also have contribution to cuspidal cohomology for
GL3/Q from automorphic induction of Hecke characters of cubic exten-
sions of Q. It is well-known that such an extension cannot be totally real
and hence cannot be Galois.

Remark 1.4.8. When N is not necessarily a prime power, we have the upper
bound

#Dk(N)�k N
2 as N →∞, (1.7)

which follows from 3.3.1.

1.4.3 The bounds in case of a connected, reductive lin-
ear algebraic group.

Theorem 1.4.9. Consider a number field F having signature (r1, 2r2). Let G
be a connected, reductive linear algebraic group over F and G := ResF/Q(G)
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be the Weil restriction of scalars to Q. Consider an algebraic, irreducible,
finite dimensional complex representation (π,V) of G(R). Select a neat level
structure K

′

f for reference. Let SG
K
′
f

be the corresponding adèlic locally sym-

metric space such that we have

H•(SG
K
′
f

, Ṽ) 6= 0,

Ṽ being the associated sheaf. Fix a Haar measure on G(AQ). Then, there
exist constants

0 ≤ c = c(G, (r1, 2r2), K
′

f ) and C = C(G, (r1, 2r2), K
′

f )

which depend on G, K
′

f , and (r1, 2r2) such that for every neat level structure
Kf which satisfies

Kf EK
′

f and [K
′

f : Kf ] <∞,

the following bounds hold:

c ≤
dimCH

•(SGKf
, Ṽ)

dimC V · vol(SGKf
)
≤ C, (1.8)

where
H•(SGKf

, Ṽ) =
⊕
q∈Z

Hq(SGKf
, Ṽ).

Remark 1.4.10. Whenever the Borel-Serre compactification S̄G
K
′
f

of SG
K
′
f

has

a connected component with non-vanishing Euler characteristic, the constant
c as above is in fact strictly positive and the lower bound is non-trivial. Using
a result by Dodziuk (see [14]), it can be shown that this occurs whenever
G(R)/K0

∞ is a hyperbolic manifold of even real dimension. This occurs, for
instance, in case of elliptic as well as Hilbert modular forms.

Remark 1.4.11. The above theorem seems to be known to experts. Yet, it
is apparently not available in the literature as stated above to the best of our
knowledge. Also, our proof is elementary in that it does not use the Trace
Formula or any analytic means (unlike the analogous known results).
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Chapter 2

Algebraic and Topological
Preliminaries.

2.1 Notation and Preliminaries.

2.1.1 The number field.

Let F be a finite extension of Q. Let S∞ denote the set of its archimedean
places, which consists of r1 real places and r2 pairs of complex conjugate
places (denoted by Sr and Sc, respectively). The degree of this field exten-
sion is equal to dF := r1 + 2r2.

The completion of F at a place v will be denoted by Fv. For v 6∈ S∞, we
let Ov be the ring of integers of Fv. We shall denote the ring of adeles over
F by AF and its finite part by AF,f . Similarly, AQ and Af will denote the
adeles over Q and the finite adeles over Q, respectively.

2.1.2 Weil restriction of scalars.

Consider the algebraic closure Q̄ ⊂ C of Q. Let Σ be the set of all distinct
field homomorphisms σ : F → Q̄. For an affine F -variety V and a ring R, we
shall denote its R-points of V by V (R).

Definition 2. Let V be an affine F -variety. There exists an affine Q-variety
denoted by ResF/QV and called the Weil restriction of scalars which, for
any commutative Q-algebra A, has the following property:

ResF/QV (A) = V (F ⊗Q A)

17



Such a variety is unique up to a canonical isomorphism over Q and satisfies
the following over Q̄:

ResF/QV × Q̄ =
∏
σ∈Σ

V ×F,σ Q̄ (2.1)

2.1.3 The algebraic group.

Let G be a connected, reductive linear algebraic group over F. Denote its cen-
tre by Z. Choose a Borel subgroup B = TU with its corresponding maximal
torus T and unipotent radical U. Define the following:

G := ResF/Q(G),

B := ResF/Q(B),

Z := ResF/Q(Z),

T := ResF/Q(T).

Let C∞ be the maximal compact subgroup of G(R) corresponding to the
Iwasawa decomposition

G(R) = B(R)C∞. (2.2)

Set
K∞ = Z(R)0C∞, (2.3)

where Z(R)0 is the topological connected component of identity of Z(R).
Similarly, let K0

∞ be the topological connected component of identity of K∞.

2.2 The adèlic locally symmetric space.

Let Kf =
∏

p<∞Kp be a compact open subgroup of G(Af ) = G(AF,f ).
Here, Kp is a compact open subgroup of G(Qp) such that we have

Kp =
∏
v|p

G(Ov) (2.4)

for all but finitely many non-archimedean places p. We call Kf a level struc-
ture. Also, let D denote the symmetric space G(R)/K0

∞.

Now, we embed G(Q) diagonally in G(AQ). It embedds as a discrete sub-
group. Hence, the action of G(Q) on G(AQ) by left multiplication is properly
discontinuous. This action descends to the right coset space D ×G(Af )/Kf

and continues to be properly discontinuous because of the compactness of
both Kf and K0

∞.
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Definition 3. We define the adèlic locally symmetric space with level
structure Kf as the quotient of D ×G(Af )/Kf by the left action of G(Q):

SGKf
:= G(Q)\G(AQ)/K0

∞Kf .

The left action of G(Q) on G(Af )/Kf is known to produce a finite number
of double cosets. Let

G(Af) = q1≤i≤mG(Q)giKf (2.5)

be a set of double coset representatives.

Definition 4. Kf is called neat if the coset stabilisers

Γi := StabG(Q)(giKf ), (1 ≤ i ≤ m) (2.6)

are all torsion-free.

We also note that

Γi = G(Q) ∩ giKfg
−1
i , (1 ≤ i ≤ m). (2.7)

When Kf is neat, SGKf
is the following finite union of manifolds:

SGKf
= q1≤i≤mΓi\D. (2.8)

Each Xi := Γi\D is a locally symmetric space with the simply connected
cover D = G(R)/K0

∞.

2.3 The associated sheaf.

For the algebraic group G/Q and an affine Q-vector space V , consider an
algebraic representation

π : G→ Aut(V). (2.9)

For each open subset U ⊂ SGKf
, consider the functor F defined as follows:

F(U) = {f : p−1(U)→ V ⊗Q C : f locally constant and

f(gu) = π(g−1)f(u) ∀g ∈ G(Q), u ∈ U}

This defines a presheaf of complex vector spaces on SGKf
. Here, p denotes the

quotient by the action of G(Q):

p : D ×G(Af )/Kf � SGKf
. (2.10)

Remark 2.3.1. It is known that F extends to a sheaf F̃ which is nonzero
only if the cental character of π is an algebraic Hecke character of F . We
refer the reader to [22] for details.
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2.3.1 Dominant integral weights.

Let g (resp., b) denote the complexified Lie algebra of G(R) (resp., B(R)).
A dominant integral weight of g with respect to b is of the form

µ = (µv)v∈S∞ , (2.11)

where we have

µv = (µw, µw̄) (2.12)

whenever v = {w, w̄} ∈ Sc and each µv is a dominant integral weight of
G(Fv).

2.3.2 The induced local sytem.

Let µ be a dominant integral weight of G(R) as above. We shall denote by
(πµ,Vµ) the finite dimensional complex representation of G(R) with highest
weight µ. Note that

πµ =
⊗
v∈S∞

πµv , (2.13)

where πµv = πµw ⊗ πµw̄ whenever v = {w, w̄} ∈ Sc.

Definition 5. By a C-local system of rank r on a topological space, we
mean a locally constant sheaf whose stalks are all isomorphic to Cr.

Remark 2.3.2. Set V = Vµ and consider the sheaf F̃ (with the notation as
above). It is noteworthy that when the subgroups Γi are all torsion free (i.e.,
the level structure is neat), the sheaf F̃ defined as above is a C-local system.
We shall denote this local system by Ṽµ.

2.4 Borel-Serre compactification.

We saw that the adèlic locally symmetric space under consideration is a
finite disjoint union of manifolds:

SGKf
=
⋃
i

Xi. (2.14)

Although each Xi is known to have finite volume, it is neither compact nor
symmetric in general. In order that the problem becomes tractable with ge-
ometric methods, we work with the Borel-Serre compactification X̄BS

i .
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This is a compact, connected manifold with corners whose interior is diffeo-
morphic to Xi (see [4]). It may be realised as the quotient

X̄BS
i = Γi\QD̄BS. (2.15)

Here, QD̄
BS is the partial Borel-Serre compactification as in [4].

Remark 2.4.1. The associated sheaf is known to extend to ∂X̄i, which we
shall denote by the same symbol Ṽ. Most importantly, the inclusion i : X ↪→
X̄ is known to be a homotopy equivalence and hence, preserves the de Rham
cohomology of Xi ∀1 ≤ i ≤ m.

Notation 4. Henceforth, we shall denote QD̄
BS by D̄ for brevity. Let D0

denote the connected space G(R)0/K0
∞ (where G(R)0 is the connected com-

ponent of identity in G(R)).

Using the Borel-Serre partial compactification D̄, we observe the follow-
ing:

Lemma 2.4.1. For each 1 ≤ i ≤ m, the symmetric space Γi\D is homotopy
equivalent to a finite CW-complex. Γi\D is the union of connected compo-
nents as follows:

Γi\D = q1≤j≤#π0(D)Yij.

Furthermore, if we set Γij := π1(Yij) (1 ≤ j ≤ #π0(D)), then each of
the connected components Yij is an Eilenberg-MacLane space up to homotopy
equivalence:

Yij ≈ K(Γij, 1), for each 1 ≤ j ≤ #π0(D) and 1 ≤ i ≤ m.

Proof. The compactification

Γi\D 7→ Γi\D̄ (2.16)

is known to be a homotopy equivalence. The first claim follows form [5] as
Γi\D̄ admits a finite triangulation.

Recall that D = G(R)/K0
∞. As K0

∞ is connected, D has the same number
of connected components as G(R). Since G(R)0/K0

∞ is known to be a con-
tractible manifold, it is simply connected. Hence, G(R)0/K0

∞ is the universal
cover of each of the connected components of Γi\D̄ and n ≥ 1.
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Since the higher homotopy groups πn, n ≥ 2 are unaffected on passing to
universal covers, we have the following for each connected component Yij of
Γi\D and n ≥ 1 :

πn(Yij) =

{
Γij if n = 1,
0 for n ≥ 2

(2.17)

(0 denotes the trivial group here). Hence the last assertion of the lemma
follows. �

2.5 Cuspidal cohomology.

It is well-known that the inclusion

C∞cusp(G(Q)\G(A))
ι−→ C∞(G(Q)\G(A)) (2.18)

of automorphic cusp forms into the space of smooth functions on G(Q)\G(A)
induces an inclusion of (g, K0

∞)-cohomology (see [3]). On takingKf -invariants,
this yields an injection i•Kf

as follows:

H•(g,K0
∞)(C∞cusp(G(Q)\G(A))Kf ⊗ Vµ)

i•Kf−−→ H•(g,K0
∞)(C∞(G(Q)\G(A))Kf ⊗ Vµ).

By virtue of the isomorphism

j•Kf
: H•(g,K0

∞)(C∞(G(Q)\G(A))Kf ⊗ Vµ) ≈ H•(SGKf
; Ṽµ),

we may define cuspidal cohomology as follows.

Definition 6. Let Ṽµ be the associated sheaf for the representation (π,Vµ)
defined in the previous section. We define its cuspidal cohomology with
coefficients in Ṽµ as follows:

H•cusp(S
G
Kf

; Ṽµ) := im(j•Kf
◦ i•Kf

)

(i.e., H•cusp(S
G
Kf

; Ṽµ) ≈ H•(g,K0
∞)(C∞cusp(G(Q)\G(A))Kf ⊗ V)).

Remark 2.5.1. Note that whenever Kf is neat, Ṽµ is a local system of rank
dimCVµ.
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Chapter 3

Bounds for a connected,
reductive linear algebraic
group.

We mention that a stronger form of our result to follow was obtained by
Rohlfs and Speh in [33] by means of the Trace formula. Although our result
is a partial rediscovery, its proof is elementary.

3.1 The result by Raghuram and Bhagwat.

As in the previous chapter, let SGKf
denote an adèlic locally symmetric

space for some level structure Kf . Let Vµ,C be the algebraic irreducible rep-
resentation of G(R) having highest weight µ. Let Ṽµ,C denote the associated
sheaf on SGKf

.

When F is either totally real or a CM field, Raghuram and Bhagwat (see
[2]) have ascertained the conditions on µ which ensure the non-vanishing of
the cuspidal cohomology for some level structure, i.e.,

lim−→
Kf

H•cusp(S
G
Kf
, Ṽµ,C) 6= 0. (3.1)

The aim is to estimate dimCH
•
cusp(S

G
Kf
, Ṽµ,C) in terms of dimC Vµ,C and

the volume of SGKf
. (By ’volume’, we mean the measure induced on SGKf

by

a suitable choice of Haar measure on G(AF ) here.)
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3.2 Some well-known auxilliary results.

Here, we state some auxiliary results for the sake of completeness.

Lemma 3.2.1. Consider a finite CW-complex X and a finite dimensional
complex vector space V. Let Ṽ be a local system of C-vector spaces on X with
stalk V. If

X = qiXi (3.2)

are the path components of X, then we have

Hq(X; Ṽ) =
⊕
i

Hq(Xi; Ṽ|Xi
) ∀q ≥ 0. (3.3)

Proof. The assertion of the lemma holds for homology with coefficients in
the dual local system Ṽˇ := Hom(Ṽ ,CX) (see [40], Chap. VI, Thm.3.1,
p.275). Since V is finite dimensional, we render it applicable to cohomology
by means of [13] (Chap.2, (2.1), p.50):

Hq(X; Ṽ) = Hq(X; (Ṽ)ˇ)
ˇ

. (3.4)

�

Lemma 3.2.2. Let Γ be a group and V be a finite dimensional complex Γ-
module. Let Ṽ be a local system of C-vector spaces on K(Γ, 1) with stalk V.
Then we have

Hq(K(Γ, 1); Ṽ) = Hq(Γ;V) ∀q ≥ 0, (3.5)

where H•(Γ;V) denotes the group cohomology of Γ with coefficients in V :

H•(Γ;V) := Ext•Γ(C,V). (3.6)

Proof. This is [40] (Chap. VI, Thm.3.5, p.281) used with complex coeffi-
cients. �

Lemma 3.2.3. Let X be a finite CW-complex with C•(X;C) as its cochain
complex. Consider a local system Ṽ of C-vector spaces having stalk V on X.
Then we have

dimCH
q(X; Ṽ) ≤ dimC V · dimCC

q(X;C) ∀q ≥ 0. (3.7)

If we set

χ(X; Ṽ) :=
∑
q≥0

(−1)q dimCH
q(X; Ṽ)

and χ(X) denotes the Euler characteristic of X, then we also have

χ(X; Ṽ) = χ(X) · dimC V . (3.8)
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Proof. The first assertion is in [13] (Prop. 2.5.4 (i), p.49.). As for the Euler
characteristic, see [13] (Prop. 2.5.4 (i), p.49.). �

Lemma 3.2.4 (Shapiro). If H ≤ G and M is an H-module, then we have a
canonical isomorphism

H•(H,M) ≈ H•(G, co-IndGHM), (3.9)

where
co-IndGHM := HomCH(CG,M). (3.10)

Proof. See [7], Prop.3.3, p.147. �

3.3 An Estimate for the Total Cohomology.

3.3.1 Statement of the Main Result.

We shall present an elementary proof of the following result:

Theorem 3.3.1. Consider a number field F having signature (r1, 2r2). Let G
be a connected, reductive linear algebraic group over F and G := ResF/Q(G)
be the Weil restriction of scalars to Q. Consider an algebraic, irreducible,
finite dimensional complex representation (π,V) of G(R). Select a neat level
structure K

′

f for reference. Let SG
K
′
f

be the corresponding adèlic locally sym-

metric space for such that we have

H•(SG
K
′
f

, Ṽ) 6= 0, (3.11)

Ṽ being the associated sheaf. Fix a normalisation of the Haar measure on
G(AQ) such that vol(SGKf

) = 1. Then, there exist constants

0 ≤ c = c(G, (r1, 2r2), K
′

f ) and C = C(G, (r1, 2r2), K
′

f ) (3.12)

which depend on G, K
′

f and (r1, 2r2) such that for every neat level structure
Kf which satisfies

Kf EK
′

f and [K
′

f : Kf ] <∞, (3.13)

the following bounds hold:

c ≤
dimCH

•(SGKf
, Ṽ)

dimC V · vol(SGKf
)
≤ C, (3.14)

where
H•(SGKf

, Ṽ) :=
⊕
q∈Z

Hq(SGKf
, Ṽ).
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Remark 3.3.2. Whenever SG
K
′
f

has a connected component with non-vanishing

Euler characteristic, the constant c as above is in fact strictly positive and
the lower bound is non-trivial.
Using a result by Dodziuk (see [14]), it can be shown that this occurs whenever
G(R)/K0

∞ is a hyperbolic manifold of even real dimension.

3.3.2 Proof.

The proof will be presented in several small parts.

Proof. Fix a neat level structure K
′

f with the said property. Let Kf EK
′

f be

an arbitrary level structure having [K
′

f : Kf ] <∞.

The level structure Kf EK
′

f .
We begin with the following claim:

Kf EK
′

f and [K
′

f : Kf ] <∞⇒ ∃p : SGKf
� SG

K
′
f

(3.15)

such that p is a covering map and SGKf
is a finite normal cover of SG

K
′
f

.

Let

G(Af ) = q1≤i≤mG(Q)giK
′

f and

K
′

f = q1≤j≤[K
′
f :Kf ]hjKf , (hj ∈ K

′

f ).

Hence,

G(Af ) =
∐

1≤i≤m
1≤j≤[K

′
f :Kf ]

G(Q)gihjKf . (3.16)

Set

Γ
′

i := StabG(Q)(giK
′

f ) (1 ≤ i ≤ m)

and Γij := StabG(Q)(gihjKf ) (1 ≤ j ≤ [K
′

f : Kf ]).

We have

Γij = G(Q) ∩ gi(hjKfh
−1
j )g−1

i (3.17)

because Γ
′
i = G(Q) ∩ giKfg

−1
i . Since Kf is normal in K

′

f , we have

giK
′

fg
−1
i D giKfg

−1
i = gi(hjKfh

−1
j )g−1

i . (3.18)
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Intersecting with G(Q), we infer that

Γij E Γ
′

i ∀1 ≤ i ≤ m, and 1 ≤ j ≤ [K
′

f : Kf ]. (3.19)

Incidentally, this argument shows that the index [Γ
′
i : Γij] is independent of

j (∀1 ≤ i ≤ m) and also that Kf is neat.
This proves the claim, as we have

SGKf
=

∐
1≤i≤m

1≤j≤[K
′
f :Kf ]

Γij\D and (3.20)

SG
K
′
f

=
∐

1≤i≤m

Γ
′

i\D. (3.21)

The locally symmetric spaces.

Since Γ
′
i is discrete and torsionless for each i, we get

Γ
′

i ∩ C0
∞ = {1}, ∀1 ≤ i ≤ m.

As K0
∞ = C0

∞Z(R)0, we see that

Γ
′

i ∩K0
∞ ⊆ Z(R)0. (3.22)

Also, each Γ
′
i has trivial intersection with the group of deck transformations

of the covering map p as above (since the latter is finite and hence torsion).
These considertaions apply verbatim to each Γij, (1 ≤ j ≤ [K

′

f : Kf ]).
Therefore, we may write

SGKf
=

∐
1≤i≤m

1≤j≤[K
′
f :Kf ]

∐
1≤k≤#π0(D)

Γij\D0
k, and (3.23)

SG
K
′
f

=
∐

1≤i≤m

∐
1≤k≤#π0(D)

Γ
′

i\D0
k, (3.24)

where we have denoted diffeomorphic copies of D0 by the suffix k merely for
the sake of keeping a count.

Computation of cohomology.

Now, we compute H•(SGKf
, Ṽ). Note that the connected components of

SGKf
are manifolds (even locally symmetric spaces) because Kf is neat. Thus,
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the connected components coincide with path components and Lemma 3.2.1
applies:

H•(SGKf
, Ṽ) =

⊕
1≤i≤m

1≤j≤[K
′
f :Kf ]

⊕
1≤k≤#π0(D)

H•(Γij\D0
k; (Ṽ)|Γij\D0

k
). (3.25)

Since π1(Γij\D0
k) = Γij, Lemma 2.4.1 applies and we have

Γij\D0
k ≈ K(Γij, 1). (3.26)

We combine this with Lemma 3.2.2 to obtain the following (note that each
Γij is a subgroup of G(Q)):

H•(SGKf
, Ṽ) =

⊕
1≤i≤m

1≤j≤[K
′
f :Kf ]

⊕
1≤k≤#π0(D)

H•(Γij;V). (3.27)

Now, we use Shapiro’s lemma to get

H•(Γij;V) = H•(Γ
′

i; co-Ind
Γ
′
i

Γij
V). (3.28)

Therefore, we obtain

H•(SGKf
, Ṽ) =

⊕
1≤i≤m

1≤j≤[K
′
f :Kf ]

⊕
1≤k≤#π0(D)

H•(Γ
′

i; co-Ind
Γ
′
i

Γij
V). (3.29)

Since dimC V and [Γ
′
i : Γij] are both finite, we can identify the co-induced

modules with induced ones throughout:

co-Ind
Γ
′
i

Γij
V ≈ Ind

Γ
′
i

Γij
V . (3.30)

The total volume.
We may identify the finite index [Γ

′
i : Γij] of each subgroup with the

degree of the corresponding covering map. Furthermore, this degree is the
ratio of the respective volumes. This is because all these locally symmetric
spaces have finite volume under the invariant metric induced by the choice
of the Haar measure on G(AQ):

[Γ
′

i : Γij] =
vol(Γij\D0

k)

vol(Γ
′
i\D0

k)
. (3.31)
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Upper bound.

We have

dimCH
•(SGKf

; Ṽ) =
∑

1≤i≤m
1≤j≤[K

′
f :Kf ]

{ ∑
1≤k≤#π0(D)

dimCH
•(Γ

′

i; Ind
Γ
′
i

Γij
V)

}
(3.32)

By Lemma 3.2.2 and Lemma 3.2.3, we have

dimCH
•(Γ

′

i; Ind
Γ
′
i

Γij
V),≤ dimCC

•(Γ
′

i\D̄0
k;C) · dimC Ind

Γ
′
i

Γij
V ,

dimCC
•(Γ

′

i\D̄0
k;C) ·dimC Ind

Γ
′
i

Γij
V = dimCC

•(Γ
′

i\D̄0
k;C) · [Γ′i : Γij] ·dimC V .

(3.33)

Therefore,

dimCH
•(SGKf

; Ṽ) ≤∑
1≤i≤m

1≤j≤[K
′
f :Kf ]

{ ∑
1≤k≤#π0(D)

dimCC
•(Γ

′

i\D̄0
k;C) · [Γ′i : Γij] · dimC V

}

=
∑

1≤i≤m
1≤j≤[K

′
f :Kf ]

{ ∑
1≤k≤#π0(D)

dimCC
•(Γ

′

i\D̄0
k;C) · vol(Γij\D

0
k)

vol(Γ
′
i\D0

k)
· dimC V

}

≤ (dimC V) ·
(

max1≤i≤m dimCC
•(Γ

′
i\D̄0

k;C)

min1≤i≤m vol(Γ
′
i\D0

k)

)
·
{ ∑

1≤i≤m
1≤j≤[K

′
f :Kf ]

∑
1≤k≤#π0(D)

vol(Γij\D0
k)

}

=

(
max1≤i≤m dimCC

•(Γ
′
i\D̄0;C)

min1≤i≤m vol(Γ
′
i\D0)

)
· dimC V · vol(SGKf

)

But the fraction above depends solely on SG
K
′
f

, which in turn depends on

G, (r1, 2r2) and the reference level structure K
′

f for a fixed V . This establishes
the upper bound with

C = C(G, (r1, 2r2), K
′

f ) :=
max1≤i≤m dimCC

•(Γ
′
i\D̄0

k;C)

min1≤i≤m vol(Γ
′
i\D0

k)
. (3.34)
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Lower bound.
By the hypotheses of the theorem, the total cohomology is non-vanishing

for K
′

f and hence for Kf . The Euler characteristic

χ(S̄GKf
; Ṽ) =

∑
q≥0

(−1)q dimCH
q(SGKf

; Ṽ) (3.35)

provides a lower bound on the total dimension as follows:

dimCH
•(SGKf

; Ṽ) ≥ |χ(S̄GKf
; Ṽ)|. (3.36)

By Lemma 3.2.3, we have

χ(S̄GKf
; Ṽ) = dimC Vµ · χ(S̄GKf

). (3.37)

But for each covering Γij\D̄0
k � Γ

′
i\D̄0

k, we have

χ(Γij\D̄0
k) = [Γ

′

i : Γij] · χ(Γ
′

i\D̄0
k). (3.38)

Hence, we obtain

|χ(S̄GKf
)| = |

∑
i,j,k

vol(Γij\D0
k)

vol(Γ′i\D0
k)
· χ(Γ′i\D0

k)| (3.39)

≥ (
min1≤i≤m |χ(Γ′i\D0)|
max1≤i≤m vol(Γ′i\D0)

) · vol(SGKf
). (3.40)

Hence, we get

dimCH
•(SGKf

; Ṽ) ≥ |χ(S̄G
K
′
f

)| · dimC Vµ · vol(SGKf
). (3.41)

This establishes the lower bound with

c = c(G, (r1, 2r2), K
′

f ) :=

(
min1≤i≤m |χ(Γ′i\D0)|
max1≤i≤m vol(Γ′i\D0)

)
(3.42)

whenever χ(S̄GKf
) 6= 0. �

As a simple consequence of the above result, we mention the following:

Corollary 3.3.1. With the same assumptions and notation as in the preced-
ing theorem, we have

dimCH
•
cusp(S

G
Kf

; Ṽ)� vol(SGKf
) as vol(Kf )→ 0 (3.43)
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for a fixed V. Furthermore, if there exists a level structure K
′

f such that
χ(S̄G

K
′
f

) 6= 0, then

dimCH
•(SGKf

; Ṽ)� vol(SGKf
) as vol(Kf )→ 0 (3.44)

for a fixed V.
We also have

dimCH
•
cusp(S

G
Kf
, Ṽ)� dimC V as dimC V → ∞ (3.45)

for a fixed neat level structure Kf EK
′

f as V varies.

3.4 Nontriviality of the Lower bound.

For a fixed V , our results imply that dimCH
•(SGKf

; Ṽ) grows almost lin-

early with volume whenever SGKf
has nonvanishing Euler characteristic. Here,

we show that an instance of this occurs whenever the common real dimension
of the constituent locally symmetric spaces is even and D0 is a symmetric
space of the non-compact type.

3.4.1 A result by Dodziuk.

Theorem 3.4.1 (Dodziuk). For a hyperbolic closed Riemannian manifold
M of dimension 2m and its universal cover M̃ , the following holds true for
the L2- Betti numbers (q ≥ 0):

b(2)
q (M̃) =

{
0 if q 6= m,
> 0 for q = m

The above result is proved in [14]. Since the Euler characteristic of M̃
computed with L2- Betti numbers (see [29]) is known to coincide with the
topological Euler characteristic of M , it follows that

(−1)mχ(M) > 0. (3.46)

Whenever the universal cover D0 of each connected component of SGKf
is

a complete hyperbolic manifold and D0 is even dimensional, the result is
applicable. (This occurs in case of elliptic as well as Hilbert modular forms
where dimRG/K

0
∞ is even.)
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Chapter 4

Comparison with known
bounds.

Our bounds serve to explain why most dimension formulae and bounds
are of the form ’dimension times volume’ up to the first order. We have
shown that the dimension of cohomology grows at most linearly with either
of volume and dimension when the other is kept fixed.

Remark 4.0.1. As mentioned in the previous chapter, Rohlfs and Speh (see
[33]) obtained a stonger form of our bounds for a general connected reduc-
tive algebraic group. This was accomplished by means of the Trace formula.
Our method, on the other hand, is topological and does not rely on analytic
arguments.

4.1 Classical Dimension Formulae.

4.1.1 Elliptic Modular Forms.

Consider the space Mk(Γ1(N)) of holomorphic modular forms of weight
k for the congruence subgroup Γ1(N) ⊂ SL2(Z) consisting of matrices which
are unipotent modulo N ∈ N. We assume that k ≥ 3 and N ≥ 5 in order to
simplify the dimension formula (as in [36], p.96, Prop. 6.6.6). In this case,

dimC(Mk(Γ1(N))) = (1/2)(k − 1)(2g(N) + c(N)− 2) + c(N)/2, (4.1)

where g(N) is the genus of the Bailey-Borel compactification and c(N) is the
number of cusps added.
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We have used the Borel-Serre compactification for estimation instead of
this. The Borel-Serre compactification is homeomorphic to the surface ob-
tained on adjoining c(N) circles (instead of adding c(N) cusps) the Bailey-
Borel compactification. Being a compact surface with boundary, its Euler
characteristic χN is readily computable:

χN = 2− 2g(N)− c(N). (4.2)

We compare this with our lower bound here (with G = GL2/Q and the level
structure corresponding to Γ1(N)). We get the following:

(k − 1)|χN | ≤ 2 dimC(Mk(Γ1(N))). (4.3)

Note that the lower bound falls short of the exact dimension of holomorphic
modular forms by c(N)/2.

For a discrete subgroup Γ ⊂ SL2(R) for which

vol(Γ\SL2(R)/SO(2)) <∞,

We have the following upper bound as in [8] (see Chap.1, Prop.3, p.12)

dimCMk(Γ) ≤ k ·
(vol(Γ\SL2(R)/SO(2))

4π

)
+ 1. (4.4)

This also resembles our upper bound.

4.1.2 Hilbert Modular Forms.

Let G = SL2/F where F/Q is a totally real extension of degree n. Con-
sider a discrete subgroup Γ ⊆ SL2(R)n which is not co-compact. Under the
assumption of irreducibility of Γ (see [17],Chap.I, p.31 for the definition), it
can be shown that the total dimension of the space [Γ; (2r, ..., 2r)]0 of Hilbert
cusp forms with parallel weight (2r, ..., 2r), (r > 1) equals the following
(see [17],Thm.3.5, p.110):

dimC[Γ; (2r, ..., 2r)]0 = vol(Γ\(SL2(R)/SO(2))n) · (2r − 1)n

+lower order terms in vol and r.

The above formula, obtained by means of the Selberg trace formula, is con-
sistent with 3.3.1. (We only need to recognise that (2r − 1)n as the rank of
the local system involved therein.)
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4.1.3 Siegel Modular Forms

Similar considerations apply in case of Siegel modular forms as 3.3.1 is
also applicable to the symplectic group. In particular, the explicit dimen-
sion formulae for vector valued Siegel modular forms (given in Wakatsuki
([38],Thm.3.2) and Tsushima ([37]) both follow the same pattern (namely,
that the total dimension grows almost linearly with weight of the involved
representation as well as the volume of the pertinent locally symmetric space).

4.2 Analogy with Lück’s Approximation The-

orem.

Consider the cohomology with constant coefficients (in C) in the setting
of 3.3.1. Due to the topological methods used in the proof, the main result
bears a striking resemblance with a result by Lück. We define the notion of
residual finiteness of a group first.

Definition 7. A discrete group Γ0 is said to be residually finite whenever
there is a descending sequence of normal subgroups Γi E Γ0, [Γ0 : Γi] < ∞
with trivial intersection: ⋂

i≥1

Γi = 1. (4.5)

Betti numbers with constant coefficients are usually not multiplicative
under finite covering maps. However, it was conjectured by Gromov (and
proved by Lück) how Betti numbers grow asympotically.

Theorem 4.2.1 (Lück). Consider a connected CW-complex X of finite type
with universal cover X̃. Assume that Γ0 := π1(X) is residually finite so that
there is a descending chain of normal subgroups of finite index as follows:

Γ0 ⊃ Γ1 ⊃ . . .Γn ⊃ . . . (4.6)

Let Xn denote the [Γ0 : Γn]-sheeted cover of X for each n ≥ 1. Then the
following holds true for the Betti numbers b•:

lim
n→∞

bq(Xn)

[Γ0 : Γn]
= b(2)

q (X̃) ∀q ≥ 0, (4.7)

where b
(2)
• denotes the respective L2-Betti number.
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(See [29] for the definition of L2-cohomology and the proof.)
Consider the setting of Thm. 3.3.1. All the connected components of SGK′f

=

qΓij\D0 are locally symmetric spaces whenever a level structure K ′f chosen
for reference is neat. We may choose a descending chain of its compact open
normal subgroups of K ′f having finite index with trivial intersection. (This
is possible because 1 ∈ G(Af ) has a neighbourhood basis of compact open
subgroups.) The corresponding descending chain of arithmetic subgroups
will also have trivial intersection. For such a K ′f , all the groups are thus
residually finite.
Furthermore, existence of the Borel-Serre compactification implies that each
Γij\D̄0 is finite. Therefore, Lück’s result is applicable to each Γij\D0. In
particular, the constants c and C in 3.3.1 are related to the L2-Betti numbers
with constant coefficients.

4.2.1 Samet’s Upper Bound.

Samet ([34]) has obtained an upper bound on the sum of the Betti num-
bers (with coefficients in an integral domain of characteristic zero in case of
a Hadamard manifold (i.e., a simply connected, complete Riemannian mani-
fold of non-positive sectional curvature bounded below by −1). In particular,
his result applies to symmetric spaces G/K for a semisimple Lie group with
trivial centre and without compact factors (K being its maximal compact
subgroup). For a discrete group Γ of isometries of G/K, he shows that the
sum of Betti numbers of Γ\G/K is bounded above by a constant times its
volume. This is in keeping with our upper bound.

4.3 Comparison with known bounds on Cus-

pidal Cohomology.

4.3.1 The result by Donnelly

Donnelly ([15], Thm. 1.1) has obtained an upper bound for the cuspidal
eigenfunctions of the Laplacian over a locally symmetric space. It is inter-
esting to compare our bounds with this for the case of GL2/Q. Since cusp
forms of weight k are eigenfunctions of the Laplacian corresponding to the
eigenvalue 4π(k/2)(k/2 − 1), Donnelly’s bound is in keeping with 3.3.1 for
varying weight as well as volume.
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4.3.2 The bounds by Calegari and Emerton.

Calegari and Emerton [10] have considered the case of a semisimple alge-
braic group over a general number field. They prove the bound

dimCH
q
cusp(S

G
Kf
, Ṽµ)� vol(SGKf

)1− 1
dim G(R) ∀q ≥ 0 (4.8)

under certain assumptions and for a fixed dominant integral weight µ. Our
upper bound 3.3.1 (on the total dimension of the pertinent cohomology ring)
is coarser by an exponent of 1

dimG(R)
than this.

4.3.3 The Case when F is imaginary quadratic:

The experimental data of [16] and [1] indicates that for GL2/F , the rate of
growth of the total dimension of the space of cusp forms of a parallel weight
(d, d) with a fixed level structure is actually ∼ d. [30] and [24] have obtained

the upper bounds � d
5
3

+ε and � d
3
2

+ε, respectively. Our upper bound 3.3.1
gives � d2, which is coarser than these.

4.3.4 The Case when F is totally real:

Shimizu ([35]) proved the formula

dimCH
•
cusp(S

G
Kf
, Ṽµ) ∼ dimC Vµ (4.9)

for the total dimension of the space of cusp forms with a fixed level structure
for a totally real field. If there exists a level structure K

′

f with χ(SG
K
′
f

) 6= 0,

then our bound 3.3.1 for a fixed level structure applies to GL2/F and is in
accordance with Shimizu’s result.

4.3.5 Grobner’s bound.

The case when G = Sp(n, 1), n ≥ 2 has been considered by Grobner
(see [20], Thm.4.1). We see that Grobner’s result is consistent with our
estimate 3.3.1, since the formal degree computed therein is proportional to
the dimension of the relevent representation.
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Part II

Estimation of Cuspidal
Cohomology.
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Chapter 5

An overview of automorphic
forms.

5.1 Generalities on Automorphic Forms.

Let F be a number field and AF be the ring of adeles of F . Denote the
completion of F at a place v by Fv. If v is non-archimedean, denote the
ring of integers in Fv by Ov and let pv denote the maximal ideal in Ov. Set
F∞ :=

∏
v infinite Fv. We shall denote the ring of finite adeles by AF,f .

Let G be a connected reductive linear algebraic group over F . Set G∞ :=
G(F∞). Denote the complexified Lie algebra of G∞ by g∞. Let Z(g∞) be
the centre of its universal enveloping algebra. Also, let K∞ be the maximal
compact subgroup of G∞.

Definition 8. By a level structure in G(AF,f ), we mean a compact open
subgroup Kf satisfying

Kf ⊆ G(
∏

v finite

Ov).

Let θ denote the Cartan involution of G with respect to K∞. For g ∈ G,
define its Hilbert-Schmidt norm as

‖g‖ := Tr(Ad(θg−1)Adg)1/2. (5.1)

Definition 9. A function f : G → C is said to be of moderate growth
(or slowly increasing) whenever there exists n ∈ N such that

|f(g)| � ‖g‖n ∀g ∈ G.
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We shall call a function f : G(AF )→ C smooth if it locally constant at
the non-archimedean places and infinitely differentiable at the archimedean
places of G(AF ).

Definition 10. A smooth function f : G(AF ) → C is said to be an auto-
morphic form relative to Kf whenever it satisfies the following conditions:

1. f is K∞-finite on the right (i.e., the span of the right translates of f
by elements of K∞ is finite-dimensional),

2. f(gk) = f(g) ∀k ∈ Kf ,

3. f is Z(g)-finite,

4. f is of moderate growth.

Remark 5.1.1. The third condition above is equivalent to the existance of
an ideal J ⊆ Z(g) having finite codimension. Thus, we may speak of an
automorphic form relative to the pair (J,Kf ).
Note that we may further impose the condition f(zg) = ω(z)f(g) ∀z ∈
Z(AF ), where ω is a quasicharacter of Z(F )\Z(AF ).

Example 1. A Hecke characters χ : A×F/F× → C× is a basic example of
automorphic form for GL1/F. Also, a holomorphic modular eigenform can
be adelised into an automorphic form for GL2/Q.

Definition 11. An automorphic form f ∈ A(J,Kf ) is called a cusp form
if for the unipotent radical NP of every proper parabolic subgroup P ⊆ G, we
have ∫

NP(F )\NP(AF )

f(ng)dn = 0 ∀g ∈ G(AF ).

5.2 Hecke characters.

5.2.1 Idèlic Hecke characters.

We are interested in algebraic Hecke characters of imaginary quadratic
fields. Therefore, we begin with a brief discussion of both classical and idèlic
Hecke characters.

Definition 12. Let E be a number field. An idèlic Hecke character χ of E
is a continuous quasicharacter

χ : A×E/E
× → C×.
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Remark 5.2.1. By the term quasicharacter, we mean that χ is not neces-
sarily unitary. However, every idèlic Hecke character χ factorises as

χ = χ0 ⊗ ‖‖r,

for some r ∈ R. Here, we have denoted the character determined by the idèlic
norm by ‖.‖. That is,

‖x‖ :=
∏
v

|xv|v, (5.2)

with |.|v being the normalised valuation at place v.
Therefore, no loss of information incurs when we restrict to unitary Hecke
characters. We shall work with unitary Hecke characters from now on.

The character χ factorises over all the places v of E as

χ =
⊗
v

χv. (5.3)

Definition 13. The character χ is said to be unramified at an non-archimedean
place v if χv|O×v is the trivial character and ramified otherwise.

We have,

O×v ⊆ ker(χv) ∀v 6∈ F . (5.4)

except for a finite set F of non-archimedean places. This is because of the
inductive limit topology imposed on idèles.

Let x = (xv)v ∈ A×E. At each unramified place w 6∈ F , we have tw ∈ C
such that

χw : xw 7→ |xw|tww . (5.5)

However, at each place v ∈ F , there will be a smallest positive integer fv ∈ Z
such that pfvv ⊆ kerχv.

Definition 14. The ideal

f :=
∏
v∈F

pfvv ⊆ OE

is termed as the conductor of χ.
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5.2.2 Classical Hecke characters.

Consider an imaginaryquadratic field E. Let m a proper integral ideal of
the ring OE of its algebraic integers. Let Im denote the group of fractional
ideals of E coprime to m.Denote the subgroup of Im consisting of the principal
fractional ideals coprime to m by Pm.

Definition 15. The quotient group Hm := Im/Pm is called the ray class
group modulo m.

The group defined above is known to be of finite order, which we shall
denote by hE(f).

Definition 16. Let m be an integral ideal of OE. Given a character α : Hm →
C×, let f be the smallest divisor f|m such that there exists α′ : Hf → C× which
restricts to α on Hm. The ideal f is termed as the conductor of α.

The conductor of α is thus the largest ideal f ⊇ m such that α can be
regarded as a Hecke character for Hf.

Notation 5. Let

Um := {u ∈ O×E : u ≡ 1 (mod m)}.

Thus, Um is the group of units of E which are invertible modulo m.

Definition 17. A classical Hecke character ψ modulo m for E is a quasichar-
acter of Im for which there exists a pair (χ∞, χ) of unitary characters of C×
and (OE/m)×, respectively, which satisfies the following for every a ∈ OE
which is invertible modulo m :

ψ(aOE) = χ∞(a)χ(a) (∗).

Remark 5.2.2. This pair is completely determined once we specify ψ. This
is because the elements invertible modulo m are dense in C× and thus fix
χ∞ by continuity. The character χ∞, in turn, fixes χ by the condition (∗)
specified above.
However, a pair (χ∞, χ) satisfying the above condition determines ψ only u
pto a character of the class group; thereby corresponding to exactly hE Hecke
characters (we shall denote the class number of E by hE.)

Definition 18. When E is an imaginary quadratic field and χ∞is unitary,
there exists l ∈ Z and s ∈ R such that

χ∞ : z 7→
(z
z̄

)−l|z|is. (5.6)

We shall refer to l as the -type of the Hecke respective character.
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With this in mind, we quote the following formula (as in [32], Thm.
3.25(i), p.109):

Theorem 5.2.3. Let f be a non-zero integral ideal of OE. Let ψE(f) denote
the number of residue classes modulo f which can be represented by units of
OE. We have

hE(f) =
hEΦE(f)

ψE(f)
, (5.7)

where we have set ΦE(OE) = 1 and

ΦE(f) := NE/Q(f)
∏

p|f,p prime

(1−NE/Q(p)−1). (5.8)

Next, we shall show how to relate an idèlic Hecke character to a classi-
cal one. Let a character χf : Im → C× and another character χ∞ of the
archimedean part of A×E be given. Assume that these satisfy the following:

Um ⊆ ker(χ∞), and (5.9)

χ−1
∞ (a) = χf (aOE), ∀a ∈ E×. (5.10)

Now, E× has the weak approximation property among the finitely many
places v ∈ F of A×E where pv|m. Hence, the above conditions determine an
idèlic Hecke character χ = χ∞ · χf once we let

χw($w) = χf (pw) ∀w 6∈ F . (5.11)

Remark 5.2.4. If χf is primitive of conductor f, χ will also have conductor
f.

5.2.3 Algebraic Hecke Characters.

For a number field F , we shall deal with a particular type of Hecke char-
acter of GL1(AF )/F×. We define this type here.

Let Sr (resp., Sc) denote the union of the real (resp., complex) places of
F. Set S∞ := Sr ∪ Sc. For x = (xv)v ∈ A×F , define x∞ := (xv)v∈S∞ . Also, let
|.|∞ be the restriction of the idèlic norm map to S∞.

For a complex number z = x+ iy ∈ C, x, y ∈ R define

|x+ iy|C = x2 + y2, (5.12)

|x+ iy|R =
√
x2 + y2. (5.13)
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Every character of C× is of the form

z 7→ (
z

|z|R
)−a|z|bC where a ∈ 1

2
Z, b ∈ C. (5.14)

Hence, for

χ∞ :=
∏
v∈S∞

χv, (5.15)

we must have

χ∞(x∞) = |x∞|s∞ ·
∏
v∈Sr

(
sgn(xv)

−av · |xv|iαv
v

)
·
∏
w∈Sc

(( xw
|xw|R

)−aw · |xw|iαw
w

)
,

(5.16)
for some s ∈ R. Here, av ∈ {0, 1} ∀v ∈ Sr and αu ∈ R ∀u ∈ S∞.

Not every idèlic Hecke character χ : A×F/F× → C× is the restriction of a
homomorphism of algebraic groups (ResF/QGm)(AQ)→ Gm(C). The charac-
ters which satisfy this condition will play an important role in automorphic
induction.

Definition 19. Let F/Q be an imaginary quadratic extension. A unitary
idèlic Hecke character χ : A×F/F× → C× is said to be algebraic with parallel
weight whenever there exists an integer a ∈ Z such that

χ∞(z) =

(
z

|z|R

)−a
. (5.17)

5.3 Modular forms.

Classical modular forms are certain automorphic forms for GL2/Q. Al-
though modular forms can be defined over an arbitrary number field, we shall
restrict to the relevent case of Q in this section.

Modular forms are intimately connected with the representations ofGL2(Qp)
for each place p ≤ ∞ of Q. In order to state the main results of this chapter,
we shall review these representations briefly.

5.3.1 Representations of GL2(R).

Firstly, note that GL2(R) is generated by R×+ and its subgroup SL±2 (R)
consisting of matrices having determinant ±1. The latter contains SL2(R)
as a subgroup of index two. Every irreducible representation of SL2(R) can
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be induced to SL±2 (R) to obtain at most two irreducible representations. We
may then construct representations of GL2(R) by tensoring these with the
characters of R×+. Therefore, it suffices to focus on the representations of
SL2(R).

5.3.2 The notion of Admissibility.

Following [19], we shall call a unitary irreducible representation of SL2(R)
admissible if its restriction to SO(2) contains each irreducible representa-
tion of the latter group at most finitely many times. This means that the
SO(2)-finite vectors in the underlying vector space span a dense subspace
and leads to the notion of a (g, K) module in general. We shall concentrate
on such representations from now on.

Definition 20. For the finite places p, admissibility of an irreducible uni-
tary representation of GL2(Qp) means that the following conditions are sat-
isfied:

• Every vector in the underlying vector space is fixed by some compact
open subgroup of Kp ⊆ GL2(Zp),

• The space of vectors fixed by each such Kp is finite dimensional.

5.3.3 Hecke Algebra.

For p ≤ ∞, it is possible to construct an algebra Hp, the simple modules
of which are the admissible irreducible unitary representations of GL2(Qp).
This algebra is called the Hecke algebra for the group over the respective
local field (see [19] for a detailed description).

At archimedean places, this algebra serves as a substitute for the universal
enveloping algebra of the underlying (complexified) Lie algebra. Its product
structure is given by convolution of certain distributions. For example, the
Hecke algebra of SL±2 (R) is given by

H(SL±2 (R)) = U(sl2(C))⊕ δ ∗ U(sl2(C)), (5.18)

δ being the Dirac distribution supported at diag(−1, 1) ∈ GL2(R).

For non-archimedean Qp, the corresponding Hecke algebra is the con-
volution algebra of locally constant and compactly supported functions on
GL2(Qp). These conditions are imposed due to the totally disconnected na-
ture of GL2(Qp).
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5.3.4 Irreducible Admissible Representations.

Consider the Borel subgroup B ⊆ GL2(R) consisting of the upper tri-
angular matrices. Each pair of quasicharacters of R× may be regarded as
a representation of B. In order to construct representations of GL2(R), we
induce each such pair to it. In fact, every irreducible unitary representation
of GL2(R) occurs as a subquotient of the induced module for some such pair
of characters. These representations are further classified into the principal,
discrete, continuous and complementary series according to the ratio of and
the parameters defining the involved characters. By contrast, GL2(C) has
no discrete series.

Some of the admissible irreducible representations of GL2(Qp) (for finite
p) are obtained in a similar manner- the principal series and special represen-
tations are examples of this. There also exist (pre-unitary) continuous and
complementary series when the involved pair of characters is not unitary.
However, there exist supercuspidal representations in addition to these.
Being supercuspidal is also equivalent to having each matrix coefficient com-
pactly supported modulo the centre of the respective group. This means
that the matrix coefficient vanishes outside the product of the centre with a
compact subset of GL2(Qp).

5.3.5 A brief overview of modular forms.

Let H denote the complex upper half plane:

H := {z ∈ C : =(z) > 0}. (5.19)

The group SL2(R) acts on H by fractional linear transformations as follows:

γ =

(
a b
c d

)
, z 7→ γ · z :=

az + b

cz + d
. (5.20)

Consider a discrete subgroup Γ ⊂ SL2(R) such that we have

[SL2(Z) : (Γ ∩ SL2(Z))] <∞ and [Γ : (Γ ∩ SL2(Z))] <∞. (5.21)

( We may take Γ to be a subgroup of finite index in SL2(Z)).

Definition 21. Let Γ be as above and k ∈ Z. A modular form of weight
k is a holomorphic function f : H → C which satisfies the following:

f(γ · z) = det(γ)1−k(cz + d)kf(z) ∀γ ∈ Γ, z ∈ H.

We shall denote the space of all modular forms for Γ having weight k by
Mk(Γ).
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In particular, a modular form yields an automorphic form for GL2(AQ)
on adelisation; so the definitions of the first section of this chapter apply. We
refer the reader to [19] (Chap. 1-5) for details and also for the definitions of
Petersson inner product as well as newforms.

Furthermore, we note that the unipotent radical of the upper triangular
Borel subgroup of GL2(AQ) is isomorphic to the additive group AQ. Hence,
we may formulate the condition of being a (holomorphic) cusp form in terms
of vanishing of the constant term in its the Fourier expansion. We shall de-
note the space of all cusp forms for Γ having weight k by Sk(Γ).

5.3.6 Counting the dimension of the space of cusp forms.

For N =
∏r

i=1 p
ni
i ∈ N, set

Kf (N) =
∏
p

{
(
a b
c d

)
∈ GL2(Zp) : c ∈ pni

i Zp}. (5.22)

If normalise the Haar measure of GL2(Af ) so that vol(GL2(Zp)) = 1 ∀p <
∞, then we have

vol(Kf (N))−1 =
r∏
i=1

[GL2(Zpi) : {
(
a b
c d

)
∈ GL2(Zpi) : ordpic ≥ ni}],

= ψ(N), (5.23)

where
ψ(N) := N

∏
p|N

(1 + p−1) (= [SL2(Z) : Γ0(N)]). (5.24)

Define the convolution of the Euler totient function ϕ with itself as follows:

(ϕ ∗ ϕ)(N) =
∑
d|N

ϕ(d)ϕ(N/d). (5.25)

We shall denote the number of prime divisors of an integer N ≥ 2 by σ0(N)
and define σ0(1) = 1. For N ≥ 5 and k ≥ 3, the dimension formula given in
[Stein, Prop.6.6, p.96] simplifies to the following:

dimC Sk(Γ1(N)) = (
(k − 1)ϕ(N)ψ(N)

24
)− (ϕ ∗ ϕ)(N)

4
. (5.26)

In order to estimate the total number of cusp forms with character corre-
sponding to a particular weight and level, we shall need the following lemma.
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Lemma 5.3.1.

(ϕ ∗ ϕ)(N) ≤ σ0(N)ϕ(N) ∀N ≥ 1. (5.27)

Proof. The inequality holds trivially for N = 1; so we may assume that
N ≥ 2. We call an arithmetic function f multiplicative if

f(mn) = f(m)f(n) whenever gcd(m,n) = 1. (5.28)

Since ϕ is multiplicative, so is ϕ ∗ ϕ. Hence, both the sides of the claimed
inequality are multiplicative. Therefore, it suffices to prove the inequality
when N = pn, (n ≥ 1) for some prime p.

For such N = pn, we have

(ϕ ∗ ϕ)(pn) =
n∑
i=0

ϕ(pi)ϕ(pn−i),

= pn
{ n−1∑

i=1

(1− 1/p)2 + 2(1− 1/p)

}
,

= ϕ(pn)

{
(n− 1)(1− 1/p) + 2

}
,

≤ ϕ(pn){(n− 1) + 2} = σ0(pn)ϕ(pn).

�

Lemma 5.3.2. We have

dimC Sk(Γ1(N))

N2
= (

k − 1

4π2
) + o(1) as N →∞.

Proof. The standard formulae for ϕ(N) and ψ(N) yield the following:

ϕ(N)ψ(N) = N2
∏
p|N

(1− 1/p2) ≥ N2
∏

p prime

(1− 1/p2) = (
6

π2
)N2.

Hence, we have

dimC Sk(Γ1(N))/N2 = (
(k − 1)ϕ(N)ψ(N)

24N2
)− (ϕ ∗ ϕ)(N)

4N2
,

≥ (
k − 1

4π2
)− (ϕ ∗ ϕ)(N)

4N2
.
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But the standard asymptotic formula for the divisor function σ0 (see [23],
Thm. 315, p. 343), when combined with the trivial estimate ϕ(N) ≤ N,
shows that

σ0(N)ϕ(N) = O(N1+ε) ∀ε > 0. (5.29)

In view of the preceeding lemma, this implies

(ϕ ∗ ϕ)(N)

4N2
= o(1) as N →∞, (5.30)

and thus the assertion of the lemma follows. �

We shall also require estimates on the dimension of the space of newforms.

Lemma 5.3.3. Let n ≥ 1 be an integer and p ≥ 2 be a prime. We have

dimC S
new
k (Γ1(pn))

p2n
= (

k − 1

4π2
)(1− 1

p2
)2 + o(1) (5.31)

as n→∞.

Proof. For each M ∈ N, define

µ̄(M) :=

{
0 if p3|M for some prime p,∏

p||M(−2) otherwise,
(5.32)

where empty product is understood to be 1.
By [36] (Prop. 6.6, p.96), we have

dimC S
new
k (Γ1(M)) =

∑
d|M

µ̄(M/d) dimC Sk(Γ1(d)). (5.33)

For M = pn, the above sum contains exactly three terms. Adding these with
aid of the previous Lemma, we obtain the desired expression. �
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Chapter 6

Use of Langlands Functoriality.

6.1 An overview of Langlands Functoriality.

Let F be a number field. Consider a linear algebraic group G/F . Assume
that G is connected, reductive and split over F . This means that it has a
maximal torus isomorphic to Gr

m over F for some integer r ≥ 1.

6.1.1 Characters of T.

Let B be a Borel subgroup of G over F , i.e., a maximal connected solv-
able subgroup. Select a maximal split torus T in B so that B = TU for the
unipotent radical U of G. Denote the character group of T by X∗(T) and
the set of its cocharacters by X∗(T) (both over F ).

We observe that U determines a set ∆ of simple roots as well as a set ∆̌
of simple coroots. Thus, for each α ∈ ∆, we have α̌ ∈ ∆̌ normalised so that

α(α̌(t)) = t2. (6.1)

6.1.2 L-groups.

Definition 22. By the root datum for G, we mean the quadruple Ψ(G) :=
(X∗(T),∆, X∗(T), ∆̌).

By Chevalley’s theorem, there exists a connected reductive group Ǧ over
C such that

Ψ(Ǧ) = (X∗(T), ∆̌, X∗(T),∆). (6.2)
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Note that we may define an action of Gal(F̄ /F ) on Ǧ by dualising that on
∆ to ∆̌. This can be done by virtue of the split exact sequence

1→ Int(G)→ Aut(G)→ Aut(Ψ(G))→ 1 (6.3)

.

Definition 23. The L-group of G is defined as

LG = ǦoGal(F̄ /F ).

Note that Ǧ = LG0, where LG0 denotes the connected component of the
identity in the respective group.

6.1.3 The Principle of Functoriality.

Now, let H be another connected reductive algebraic group over F .

Definition 24. An L-homomorphism φ : LH → LG is a continuous ho-
momorphism over Gal(F̄ /F ) whose restriction to LH0 is holomorphic.

When G is quasi-split over F , Langlands’ principle of functoriality
predicts a transfer of every automorphic representation of H to that of G
associated with each such L-homomorphism φ. Automorphic induction and
symmetric square transfer are special instances of this.

6.2 Automorphic Induction.

We shall restrict the discussion to the relevent case of GL(2) over a local
field.

6.2.1 Weil Representation.

We shall outline the construction of Weil representation over a local field
F here. This representation provides concrete examples of supercuspidal
representations and will be required for our considerations on automorphic
induction.

Observe that the construction of principal series is carried out by induc-
tion of a pair of quasicharacters of the diagonal torus which are regarded
as being defined for the Borel subgroup of upper triangular matrices. This
construction neglects the unipotent radical of the Borel subgroup (recall that
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the Borel subgroup is its semidirect product with the diagonal torus). Hence,
there could exist irreducible representations of GL2(F ) which are not ac-
counted for even by the subquotients of the principal and the special series.

For instance, choose an additive character ψ of F and regard it as a
character of the unipotent radical of the standard Borel subgroup of up-
per triangular matrices. Induce it to the whole group. The vector space of
the induced representation is related to the corresponding Whittaker model.
These models enjoy the property of uniqueness for non-archimedean F , which
is crucial in proving the multiplicity one theorem for cuspidal automorphic
representations of GL2/Q.

Further, recall the Iwasawa decomposition of GL2(F ): it is the product
of its centre, the diagonal torus, the unipotent radical and the corresponding
maximal compact subgroup. The maximal compact subgroup determines a
symmetric bilinear form, which is a quadratic form q over F .

But now q determines a quadratic extension E/F such that the norm one
subgroup of E× coincides with the maximal compact subgroup above. Define
an action π on the Schwartz-Bruhat class functions on GL2(F ) as follows:

π(

(
1 u
0 1

)
)f(x) = ψ(uq(x))f(x), (x ∈ GL2(F ), u ∈ F ). (6.4)

This action, when modified suitably with the nontrivial character of E×/F×,
is independent of ψ over GL2(F ). The corresponding representation is re-
lated to the sought Weil representation. For non-archimedean F , this is
supercuspidal whenever a certain character of E× is ramified (and one of
the principal or special series otherwise).

At archimedean places, however, the Weil construction produces principal
or discrete series representations. The non-existence of supercuspidals at the
archimedean places may be attributed to the fact that we have neither small
subgroups nor ’ramified’ characters at these places.

6.2.2 Automorphic Induction from GL(1)/E to GL(2)/Q.

Definition 25. Let E/F be a finite extension of an algebraic number fields.
The idèlic norm map

NE/F : A×E → A×F (6.5)
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is the continuous homomorphism determined placewise as follows:

a 7→
(

(
∏
v|w

NEv/Fw(av))w

)
, (a = (av) ∈ A×E). (6.6)

6.2.3 A criterion for cuspidality.

Consider a place v of Q. We set πv to be the principal series representation
induced by (χw, χw′) if v splits in E with w,w′|v and the Weil representation
corresponding to χu otherwise, with u lying over v. Define

π(χ) :=
⊗
v

πv. (6.7)

Denote the central character of π(χ) by ω.

Now, Thm. 7.11 on p.148 in [19] states that π(χ) is cuspidal whenever

χ 6= δ ◦ N (6.8)

for any Hecke character δ : A×Q/Q× 7→ C× (i.e., a Dirichlet character with
some conductor). Here, NE/Q : A×E → A×Q is the idèlic norm map. This
condition is equivalent to

χ 6= χσ, (6.9)

where σ is the nontrivial element of the Galois group of E/Q. As E is an
imaginary quadratic extension, σ is the restriction of the complex conjuga-
tion on C.

In view of Remark 7.7 on p.142 in [19], the infinity component π(χ)∞
must be a discrete series representation. More precisely, if

χ∞ : z 7→
(z
z̄

)k−1
for some k ∈ Z,

then there exist l ∈ C such that π(χ)∞ is isomorphic to the irreducible
quotient of the representation induced by the pair of characters

(t→ |t|lRtk−1, t→ |t|lRsgn(t)). (6.10)

6.3 Automorphic representations of GL3(Q).

6.3.1 The level structure.

For each finite place p of Q and integer n ≥ 0, we define

Hp(n) = {x = (xij)3×3 ∈ GL3(Zp) : x31, x32 ∈ pnZp}. (6.11)
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Let N =
∏r

i=1 p
ni
i be a positive integer. Set

Hf (N) =
r∏
i=1

Hpi(ni). (6.12)

For each N ≥ 1, we shall refer to the compact open subgroup Hf (N) ⊂
GL3(Af ) as the level structure corresponding to N .

6.3.2 The associated idèlised Dirichlet character.

Let (Π,W ) = (
⊗

p≤∞Πp,
⊗

p≤∞Wp) be a cuspidal automorphic repre-
sentation of GL3(AQ). Its central character ΩΠ factorises over the places of
Q as

ΩΠ =
⊗
p≤∞

Ωp. (6.13)

For each p, Ωp determines a character Ω′p of GL3(Qp) as follows:

Ωp(x) = Ω′p(x33) (x = (xij) ∈ Hp(n)), (6.14)

where pn‖cond(Ωp).

6.3.3 The conductor of Π.

Notation 6. For an integer M ≥ 0 and each finite place p <∞ of Q, define

W
Hp(M),Ω′p
p := {w ∈ Wp : Πp(x)w = Ω′p(x33)w ∀x = (xij)3×3 ∈ Hp(M)}.

It is well-known that there exists an integerM0 ≥ 0 such thatW
Hp(M),Ω′p
p 6=

0 for each M ≥M0 (see [27]).

Definition 26. The smallest integer c(Πp) ≥ 0 for which W
Hp(c(Πp)),Ω′p
p 6= 0

is termed as the conductor of Πp. We shall also refer to

NΠ :=
∏
p<∞

pc(Πp)

as the conductor of Π.
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6.3.4 The conductor of π.

Now, we define a level structure of GL2(AQ) as follows:

Notation 7. For an integer n ≥ 0 and each prime p <∞, define

Kp(n) = {
(
a b
c d

)
∈ GL2(Zp) : ordp(c) ≥ n}.

Also, if N =
∏r

i=1 p
ni
i is the prime factorisation of an integer N ≥ 1, then

set

Kf (N) :=
r∏
i=1

Kp(ni) ·
∏

q-N, q prime

GL2(Zq) (6.15)

Remark 6.3.1. Kf (N) is precisely the level structure corresponding to Γ0(N)
defined in the previous chapter.
Further, if ωπ := ⊗p≤∞ωp denote the central character of π, there exists a
unique primitive Dirichlet character ε whose idèlisation (denoted by ε̃) equals
ωπ.

Note that for each prime p < ∞ and n ≥ 0, the Dirichlet character ωp
defines a character of Kp(n) as follows:(

a b
c d

)
7→ ωp(d), ∀

(
a b
c d

)
∈ Kp(n). (6.16)

We shall denote this character by ω′p : Kp(n)→ C×.

Next, define

V
Kp(n),ω′p
p := {v ∈ Vp : πp(k)v = ω′p(k)v ∀k ∈ Kp(n)}. (6.17)

We quote the following with the notation as above (see [11]):

Theorem 6.3.2 (Casselman). There exists a minimal integer c(πp) ≥ 0
(termed as the conductor of πp) such that

dimV
Kp(c(πp)),ω′p
p = 1. (6.18)

Furthermore, we have
pc(πp) ≥ cond(ωp), (6.19)

where cond(ωp) is the conductor of the Dirichlet character ωp in the usual
sense.

Remark 6.3.3. For example, we have c(πp) ≥ 2 whenever πp is supercuspidal
(see [26] for details).
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6.4 Langlands Transfer in case of the Sym-

metric Square.

Let π = ⊗p≤∞πp be a cuspidal automorphic representation of GL2(AQ),
each πp being an irreducible admissible representation of GL2(Qp). Thus, π
is an irreducible subspace of

L2
cusp(GL2(Q)\GL2(AQ), ωπ) (6.20)

(the space of square-integrable cusp forms with central character ωπ).

Next, letWp denote the Weil group at p =∞ and the Weil-Deligne group
for finite p. (See [39] and [12], resp., for the definitions of these groups.) By
the local Langlands correspondence for GL2(Qp), there exists a semisimple
representation

σ(πp) :Wp → GL2(C) (6.21)

associated with each πp.

If πp is unramified and its Hecke matrix is diag(ap, bp), we form the 3× 3
matrix diag(a2

p, apbp, b
2
p).

When πp is ramified at p, we consider the map sym⊗2 : GL2(C→ GL3(C.
The composite map

sym⊗2 ◦ σ(πp) :Wp → GL3(C) (6.22)

defines a representation of GL3(C. Now, using the local Langlands correspon-
dence for GL3(Qp), we obtain a representation of GL3(C which we denote
by sym⊗2(πp). (Its Hecke matrix is given by diag(a2

p, apbp, b
2
p) for unramified

pip.)

Definition 27. The restricted tensor product representation

sym⊗2(π) := ⊗′p≤∞sym⊗2(πp)

is said to be obtained by symmetric square transfer of π.

Remark 6.4.1. By the Langlands principle of functoriality, Π := sym2(π)
ought to be an automorphic representation of GL3(AQ). Gelbart and Jacquet
(see [18]) showed that it is indeed isomorphic to an irreducible subquotient of

Lcusp2 (GL3(Q)\GL3(AQ), ω6
π),

provided that π is not obtained by automorphic induction of a Hecke charac-
ter.
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6.4.1 Cohomological representations.

Consider the finite dimensional irreducible representation of GL3(R) cor-
responding to a dominant integral weight µ. We shall denote the under-
lying C-vector space by Vµ. Let Π = Π∞ ⊗ Πf be a cuspidal automor-
phic representation of GL3(AQ), where Π∞ and Πf are its archimedean
and non-archimedean parts, respectively. For each compact open subgroup

Kf ⊆
∏

p<∞GL3(Zp), we consider Π
Kf

f , the subspace of Kf -fixed vectors of
Πf .

Definition 28. Π is said to be cohomological with coefficients in Vµ for
the level structure Kf if the following holds for the relative Lie algebra coho-
mology:

H•(gl3(C),R×+ · SO(3,R); Π∞ ⊗ Vµ)⊗ Π
Kf

f 6= 0. (6.23)

We denote this by
Π ∈ Coh(GL3, µ,Kf ),

where Coh(GL3, µ,Kf ) is the set of all cohomological cuspidal automorphic
representations so defined.
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Chapter 7

Bounds for Automorphic
Induction.

We shall consider the case of automorphic induction from GL1 over a
quadratic field to GL2/Q in this chapter.

7.1 Notation and Preliminaries.

Notation 8. For an integer N ≥ 1, let Sk(Γ1(N)) denote the space of cusp
forms for the congruence subgroup Γ1(N), where we define

Γ1(N) := {X ∈ SL2(Z) : X ≡
(

1 ∗
0 1

)
(mod N)}.

For the congruence subgroup

Γ0(N) := {X ∈ SL2(Z) : X ≡
(
∗ ∗
0 ∗

)
(mod N)},

we define Sk(Γ0(N)) analogously.

Remark 7.1.1. Note that

Sk(Γ1(N)) =
⊕

ε:(Z/NZ)×→C×
Sk(Γ0(N), ε),

where ε ranges over all Dirichlet characters modulo N and Sk(Γ0(N), ε) de-
notes the subspace of holomorphic cusp forms having character ε.
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The aim is to investigate how much of cuspidal cohomology is obtained
by automorphic induction from the Hecke characters of various imaginary
quadratic fields. Quantitatively, we shall find bounds on the number of eigen-
forms of normalised Hecke operators in Sk(Γ1(N)) which are obtained in this
manner.

Remark 7.1.2. Note that the irreducible cuspidal automorphic representa-
tion corresponding to such an eigenform is cohomological.

Notation 9. For integers k,N ≥ 1, let Ck(N) denote the number of cusp
eigenforms of normalised Hecke operators for Γ1(N) ⊆ SL2(Z) having weight
k which are obtained by automorphic induction from Hecke characters of
imaginary quadratic extensions of Q.

Let E = Q(
√
−d) be a quadratic extension where d > 0 is an arbitrary

squarefree integer. We note that the discriminant of E/Q equals

DE/Q :=

{
−d if d ≡ 3(mod 4),
−4d otherwise;

(7.1)

The prime 2 ramifies only in the latter case. Also, let A×E denote the idèles
over E.

Notation 10. For functions f, g on N taking non-negative real values, we
shall write f � g if there exists a constant C such that f(n) ≤ C · g(n) for
all sufficiently large values of n.
We shall also write f ∼ g when f � g and g � f .

The following result connects the conductor and∞-type of a Hecke char-
acter to the level and weight of the modular form obtained by automorphic
induction.

Theorem 7.1.3 (Hecke). Let k ≥ 2 be an integer. Let E = Q(
√
−d) be an

imaginary quadratic extension where d > 0 is an arbitrary squarefree integer.
Assume that χ is a Hecke character of E with conductor f ⊆ OE and ∞-type
(k − 1) which yields a cusp form

fχ ∈ Sl(Γ0(N), ε)

on automorphic induction (for a certain Dirichlet character ε). Then

l = k and NE/Q(f) · |DE/Q||N.
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7.2 The number of unitary Hecke characters.

In this section, we recall some facts about Hecke characters. We use these
facts to estimate the total number of unitary Hecke characters of a given∞-
type for an ideal f ⊆ OE. This will be required to obtain bounds on Ck(N).

Notation 11. For an ideal f ⊆ OE, let ψE(f) denote the number of residue
classes modulo f representable by the units of E, i.e.,

ψE(f) := #{u+ f : u ∈ O×E}.

Note that since E = Q(
√
−d) is an imaginary quadratic field, 1 ∈ O×E

is the only unit both of whose embeddings in C are positive. (1 is clearly
invertible modulo every ideal f ⊆ OE.) Therefore, the order hE(f) of the ray
class group modulo f coincides with that of the narrow ray class group
modulo the same. The former is given by the following formula in [32] (Thm.
3.25(i), p.109), where hE is the class number of E.

hE(f) = hEΦE(f)/ψE(f) (7.2)

As 1 ∈ O×E no matter what f is, we have ψE(f) ≥ 1. Hence,

hE(f) ≤ hEΦE(f), (7.3)

with ΦE as in 5.2.3.

Remark 7.2.1. Once the ∞-type of a unitary Hecke character modulo f is
fixed, it corresponds to a character of the narrow ray class group modulo the
same ideal (see [32], Prop. 7.7.7, p.330). Conversely, every character of the
narrow ray class group modulo f along with a consistent choice of the ∞-type
defines a Hecke character.

7.3 Upper Bound.

For M ∈ N, let ϕ0(M) denote the number of primitive Dirichlet characters
of conductor M. Using the Möbius inversion formula for the equation

ϕ(N) =
∑
d|N

ϕ0(d) (7.4)

(see [25], Chap.3, p.46), we get

ϕ0(M) = M
∏
p||M

(1− 2

p
)
∏
p2|M

(1− 1

p
)2, (7.5)
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whenever M ≥ 2.

We shall need the following result in the sequel:

Lemma 7.3.1. Let n ≥ 1 be an integer and r ∈ (0, 1). We have∏
p|n

1

1− p−r
�ε n

1−r−ε (7.6)

for each 0 < ε < min{r, 1− r} as n approaches infinity.

Proof. See [21], Eq.(29). �

Keeping the criterion 6.8 in mind, we describe the strategy in short.

Remark 7.3.1. An upper bound on the total number of normalised Hecke
eigenforms for Γ1(N) of weight k ≥ 2 obtained by automorphic induction is
clearly provided by the total number of pertinent Hecke characters (whether
those factor through the norm or not).

Notation 12. For an integer N ≥ 1, define

N̂ :=
∏
p|N

p.

Theorem 7.3.2. Let k,N ≥ 1 be integers and Ck(N) be as in 9. We have

Ck(N)�k,ε N · N̂3/2−ε ∀ε ∈ (0, 1/2) (7.7)

as N →∞.

Remark 7.3.3. By the dimension formula for cusp forms, we have

dimC Sk(Γ1(N)) ∼k N2.

The upper bound shows that Ck(N) is only a negligible fraction when N is
divisible by large powers of primes.

Proof. By Hecke’s theorem, the∞-type of each Hecke character contributing
to Ck(N) equals (k − 1).

For each ideal d ⊆ OE, let h0
E(d) denote the number of unitary Hecke

characters having conductor exactly d. The number of characters of the
narrow ray class group modulo d ⊆ OE equals hE(d). Each such character
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will have a conductor f|d. Thus, with Remark 7.2.1 of the previous section
in mind, we also see the following:∑

f|d

h0
E(f) ≤ hE(d). (7.8)

We need to estimate the sum∑
d|N

d squarefree

{ ∑
E=Q(

√
−d)

NE/Q(f)| N
|DE/Q|

h0
E(f)

}
(7.9)

over various conductors f in order to find an upper bound on Ck(N).

So, let M = M(d) be the smallest positive integer for which MN
|DE/Q|

is

a perfect square. If we replace the condition NE/Q(f)| N
|DE/Q|

above by the

weaker NE/Q(f)| MN
|DE/Q|

, we sum over a larger number of conductors. This

increases the inner summand for each E = Q(
√
−d) as follows:{ ∑

NE/Q(f)| N
|DE/Q|

h0
E(f)

}
≤
{ ∑
NE/Q(f)| MN

|DE/Q|

h0
E(f)

}
(7.10)

Set MN
|DE/Q|

= M̄2. We observe the following for every integer l ≥ 1 and each

prime ideal p|f, the following holds:

pl|NE/Q(pl)⇔ pl|plOE. (7.11)

In particular, if p2l‖NE/Q(M̄OE) = M̄2 and p|pOE, then pl|M̄OE. Therefore,
if we substitute NE/Q(f)| MN

|DE/Q|
by the still weaker condition f|M̄OE, we get{ ∑

NE/Q(f)| N
|DE/Q|

h0
E(f)

}
≤
∑

f|M̄OE

h0
E(f) = hE(M̄OE). (7.12)

Summing over various E, we obtain the following upper bound:

Ck(N) ≤
∑
d|N

d squarefree

hE(M̄OE) (7.13)

Using the bound hE(f) ≤ hEΦE(f), we get

Ck(N) ≤
∑
d|N

d squarefree

hEΦE(M̄OE). (7.14)
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We have

ΦE(M̄OE) =
MN

|DE/Q|
∏

p|M̄OE

(1−NE/Q(p)−1) (7.15)

where p ranges over prime ideals. Since M |N̂ , it follows that

Ck(N) ≤ NN̂ ·
∑
d|N

d squarefree

hE
|DE/Q|

. (7.16)

As d is squarefree for each summand, we have

d|N ⇔ d|N̂ . (7.17)

Thus,

Ck(N) ≤ NN̂ ·
∑
d|N̂

d squarefree

hE
|DE/Q|

(7.18)

Now, we shall use the following asymptotic formula for class number (see
[32], Cor.1 to Thm.8.14, p.434):

log hQ(
√
−D) = (1/2 + o(1)) log |D| as |D| → ∞. (7.19)

This implies
hE
|DE/Q|

�ε |DE/Q|−(1/2)+ε. (7.20)

for each ε ∈ (0, 1/2). Now,∑
d|N̂

d squarefree

|DE/Q|−(1/2)+ε ≤
∑
d|N̂

d squarefree

d−(1/2)+ε, (7.21)

=
∏
p|N̂

(
1 +

1

p1/2−ε

)
(7.22)

This product is less than∏
p|N̂

1

1− (1/p)1/2+ε
�ε N̂

1/2−ε, ε ∈ (0, 1/2). (7.23)

Here, we have used Lemma 7.3.1. We conclude the proof as this yields the
desired upper bound:

Ck(N)�ε (NN̂) · N̂1/2−ε = NN̂3/2−ε (7.24)

�
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7.4 Lower Bound.

We begin with a lemma in order to emphasise the necessity of passing to
deeper level structures in order to get reasonable lower bounds.

Lemma 7.4.1. Let {pn}∞n=1 be an increasing sequence of primes each of
which satisfies pn ≡ 1 (mod 4). Then

Ck(pn) = 0 ∀n ≥ 1 and k ≥ 2. (7.25)

Proof. Let E = Q(
√
−d) be an imaginary quadratic extension with d > 0

squarefree. Consider an id́elic Hecke character χ : A×E/E× → C× of E.
Assume that χ yields a modular cusp form fχ (with some Dirichlet character
ε) by automorphic induction. We have already observed that the ∞-type of
χ must be

χ∞ : z 7→ (z/|z|R)k−1. (7.26)

Let α be the classical Hecke character determined by χ and f be its conductor.
Define

Ef :=
{a
b
∈ E× : a, b ∈ OE, a ≡ b (mod f) and (abOE, f) = 1

}
. (7.27)

Since χ is trivial on E×, we have

α(cOE) = χ−1
∞ (c) ∀c ∈ E×. (7.28)

Therefore,

kerχ∞ ⊇ Ef ∩ O×E . (7.29)

(This holds because each unit u of E which is invertible modulo f must satisfy
α(uOE) = 1).

Fix a value of n. Consider an arbitrary Hecke character χ of E having
conductor f ⊆ OE and ∞-type (k − 1). If χ were to yield a cusp form
fχ ∈ Sk(Γ1(pn)) on automorphic induction, then we would have

NE/Q(f) · |DE/Q||pn. (7.30)

This is impossible as |DE/Q| = −4d is even and pn is odd (note that the only
permissible values of d are 1 and pn).
Therefore, no imaginary quadratic extension can contribute to cuspidal co-
homology even as n→∞ and regardless of k. �
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Remark 7.4.1. As a consequence, we see that lim inf Ck(N) = 0 when either
of k or N approaches infinity while the other is fixed. Hence, we must allow
replacement of N by its sufficiently large multiples in order to get reasonable
bounds. Such a replacement amounts to choosing a deeper level structure.

With the above remark in mind, we give effect to the following strategy:

Remark 7.4.2. We need to find a lower bound on the number of normalised
Hecke eigenforms corresponding to a level structure for GL2(AQ) and a fixed
weight. This can be accomplished by subtracting an upper bound on the num-
ber of Hecke characters factor through the idèlic norm from a lower bound
on the total number of pertinent Hecke characters.

Firstly, we find an upper bound on the number of idèlic Hecke characters
of which factoring through the idèlic norm map

NE/Q : A×E → A×Q. (7.31)

These are precisely the characters of the type δ̃ ◦ NE/Q for the idèlisation δ̃
of some Dirichlet character δ.

To this end, we define the following:

Notation 13. For N ∈ N, let

∆k(N) := #

{
χ : A×E/E

× → S1 : χ = δ̃ ◦ NE/Q for some Dirichlet

character with cond(δ)|N and some E = Q(
√
−d), d > 0

}
.

Here, (̃) denotes idèlisation of the respective Dirichlet character and NE/Q is
the idèlic norm map.

Lemma 7.4.2. For each E = Q(
√
−d), write N

|DE/Q|
= M2 · M̄, where M =

M(E) depends on E and M̄ is squarefree. Then

∆k(N) ≤
∑
d|N

d squarefree

hEϕ(M). (7.32)

Proof. Consider a Dirichlet character δ having conductor f ≥ 2. Let
f =

∏r
i=1 p

fi
i be its factorisation into distinct primes. For an imaginary

quadratic field E, the idèlic character δ̃ ◦ NE/Q is a Hecke character for E
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only if its ∞-type satisfies satisfies the constraint 7.29. The total number of
such characters, therefore, exceeds that of the Hecke characters for A×E/E×.
We proceed to estimate the former in order to find an upper bound on ∆k(N).

Firstly, we investigate the relation between the conductor of δ and that
of the finite part of δ̃ ◦ NE/Q. For each 1 ≤ i ≤ r, let

f ′i :=

{
fi if pi|DE/Q,
2fi otherwise

(7.33)

If χ is the character of the narrow ray class group associated with δ̃ ◦ NE/Q
(see the Remarks 2.2.1 and 2.2.3), then we get

cond(χ) = f ′OE, (7.34)

where f ′ =
∏r

i=1 p
f ′i
i . (Here, we have considered whether or not a prime pi

ramifies in E).

Hence, if NE/Q(cond(χ))| N
|DE/Q|

, then clearly f 2| N
|DE/Q|

.

But

f 2| N

|DE/Q|
⇔ f |M. (7.35)

(Note that M = M(E) is dependent on E).

As there are ϕ0(f) such characters for each E = Q(
√
−d), we get

∆k(N) ≤
∑
d|N

d squarefree

( ∑
E=Q(

√
−d)

f2| N
|DE/Q|

hEϕ0(f)
)
. (7.36)

Substituting the condition on the inner sum by the equivalent f |M, we get

∆k(N) ≤
∑
d|N

d squarefree

hE
( ∑
E=Q(

√
−d)

f |M

ϕ0(f)
)

(7.37)

=
∑
d|N

d squarefree

hEϕ(M). (7.38)

This is precisely the upper bound claimed. �
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Theorem 7.4.3. Let k ≥ 1 be an integer. Define Ck(.) as in 9. Every
positive integer n has a fixed multiple N0 = N0(n) such that we have

Ck(NN0)�k,ε,N0 N
1−εN̂1/2−ε ∀ε ∈ (0, 1/2) (7.39)

as N → ∞. Here, the implied constant depends upon the chosen values of
k,N0 and ε.

Proof. Given an integer n ≥ 1, select a fixed multiple N0 = N0(n) of n such
that

4N̂0|N0 and 6ϕ(Ň0) < Ň0. (7.40)

This is possible as we have

lim inf
r→∞

ϕ(r)/r = 0. (7.41)

For N ∈ N, consider a positive squarefree divisor d of NN0. Set E = Q(
√
−d).

Further, assume that d 6= 1, 3 so thatO×E = {1,−1}. This assumption ensures
that for an ideal f ⊆ OE, the following relation is satisfied whenever f - 2OE:

(−1) 6∈ Ef ∩ O×E , (7.42)

with Ef as in 7.29. The constraint 7.29 is satisfied trivially under these as-
sumptions. Hence, whenever d 6= 1, 3 and f - 2OE, every character of the
respective narrow ray class group is a Hecke character for E.

As we are omitting certain ideals by the above conditions, we clearly have

Ck(NN0) + ∆k(NN0) ≥
∑
d|N

d squarefree
d6=1,3

( ∑
E=Q(

√
−d)

NE/Q(f)| NN0
|DE/Q|

h0
E(f)

)
(7.43)

with h0
E(f) as in the proof of the upper bound.

Write NN0

|DE/Q|
= M2M̄, where M̄ = M̄(E) is squarefree. If we substitute

the condition on the inner sum by the stronger f|MOE (whereby counting
over fewer conductors), we get the following lower bound:

Ck(NN0) + ∆k(NN0) ≥
∑
d|N

d squarefree
d6=1,3

( ∑
E=Q(

√
−d)

NE/Q(f)|MOE

h0
E(f)

)
, (7.44)

≥
∑
d|N

d squarefree
d6=1,3

( ∑
E=Q(

√
−d)

NE/Q(f)|MOE

f-2OE

h0
E(f)

)
. (7.45)
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Here, we have further omitted each ideal dividing 2OE from the sum. Since
there are at most two such ideals, we may neglect those without affecting the
order of the lower bound. Doing so, we obtain∑

E=Q(
√
−d)

NE/Q(f)|MOE

f- 2OE

h0
E(f) ≈

∑
E=Q(

√
−d)

NE/Q(f)|MOE

hE(f) ≥ hEΦE(MOE)/6, (7.46)

(because ψE(f) ≤ 6 trivially). Subtraction of the upper bound on ∆k(N)( as
in Lemma 7.4.2) from this yields the following:

Ck(NN0)�k,N0

∑
d|N

d squarefree
d6=1,3

hE{ΦE(MOE)− 6ϕ(M)} (7.47)

=
∑
d|N

d squarefree
d6=1,3

hEM
{
M

∏
p|MOE

(1−NE/Q(p)−1)− 6ϕ(M)/M
}

(7.48)

Here, we have noted that NE/Q(MOE) = M2.

But for each prime ideal p|MOE, we have NE/Q(p) = p or p2 for a prime
integer p|M. Therefore, we get

Ck(NN0)�k,N0

∑
d|N

d squarefree
d6=1,3

hEϕ(M)(M − 6). (7.49)

As N →∞, M →∞. The condition 7.40 on N0 then ensures that M � 6.
Also, note that the formula (see [23], Chap. 18, Thm. 328, p.352)

lim inf
r→∞

ϕ(r) log log r

r
= e−γ (7.50)

(where γ = 0.57721 . . . denotes the Euler’s constant) implies that

ϕ(M)�ε M
1−2ε ∀ε ∈ (0, 1/2). (7.51)

Therefore,

Ck(NN0)�k,N0,ε

∑
d|N

d squarefree
d6=1,3

hEM
2−2ε ≈ (NN0)1−ε ·

∑
d|N

d squarefree
d 6=1,3

hE/|DE/Q|.

(7.52)
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We may estimate the latter sum exactly as in the proof of Thm. 7.3.2. If we
use Lemma 7.3.1 along with the Siegel bound

hE �ε |DE/Q|1/2−ε, (7.53)

the expression simplifies further to

Ck(NN0)�k,N0,ε N
1−εN̂1/2−ε. (7.54)

This is the lower bound claimed. �

Remark 7.4.4. We have kept the weight of the modular form fixed so far.
We shall consider a fixed congruence subgroup as weight varies for the sake
of completeness below.

Let Γ be a fixed congruence subgroup of SL(2,Z). There exists a fixed
integer N = N(Γ) such that

Ck(N)�N k as k →∞ (7.55)

and for which both the following indices are finite:

[Γ : Γ ∩ Γ1(N)], [Γ1(N) : Γ ∩ Γ1(N)] <∞ (7.56)

To deduce this upper bound, we simply recall the dimension formula

dimC Sk(SL(2,Z)) ∼ k (7.57)

as k →∞. As Γ has finite index in SL(2,Z) too, we have

Ck(N)�N k as k →∞ (7.58)

trivially.
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Chapter 8

Bounds for Symmetric Square
Transfer.

Our aim is to find the growth rate of the size of the set of automorphic
representations of GL3(AQ) which are obtained by symmetric square transfer
from modular forms.

8.1 Bounds for GL(3)/Q.

We maintain the same notation as in 2 to express our result.

By [18], a cuspidal automorphic representation π of GL2(AQ) yields a cus-
pidal automorphic form for GL3(AQ) on symmetric square transfer precisely
when it is not induced from any Hecke character of a quadratic extension of
Q. We restate this criterion as a theorem here:

Theorem 8.1.1 (Gelbart-Jacquet). Let π =
⊗

p≤∞ πp be an irreducible cus-

pidal automorphic representation of GL2/Q. Then sym⊗2π is a cuspidal
automorphic representation of GL3/Q precisely when

π 6= πχ (8.1)

for any Hecke character of a quadratic extension of Q.

We use the above criterion to deduce the following:

Lemma 8.1.1. Let π =
⊗

p≤∞ πp be an irreducible cuspidal automorphic
representation of GL2(AQ). Denote its conductor by Nπ. Assume that the
infinitesimal character of π∞ corresponds to the weight

λk := (k/2− 1, 1− k/2),
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where k ≥ 2 is an even integer. Assume that

π ∈ Coh(GL2/Q, λk, Kf (n)) ∀n ≥ 0.

Let Π := sym⊗2π be the representation of GL3(AQ) obtained by symmetric
square transfer. Denote its conductor by NΠ and the highest weight corre-
sponding to Π∞ by µk. Then, we have

Π ∈ Coh(GL3/Q, µk, Hf (NΠ)), (8.2)

µk = (k − 2, 0, 2− k), (8.3)

NΠ · N̂Π|N2
π and (8.4)

Nπ|NΠ · N̂2
Π. (8.5)

Proof. The first assertion is proved in [28]. It follows from the result in [6]
(Chap. II, Prop 6.12 (i),p.46) which states that µk must be equal to its
twist by the Cartan involution for π∞ to be cohomological. Thus, it has the
following form:

µk = (a, b, c) a ≥ b ≥ c a, b, c ∈ Z (8.6)

with a+ c = b = 0. If the newform associated with π has even weight k ≥ 2,
we have λk = (k

2
− 1, 1 − k

2
). On symmetric square transfer, this becomes

µk = (k − 2, 0, 2− k).

We use a formula by Bushnell, Henniart and Kutzko (see [9],Thm. 6.5(i))
in order to compute the conductor of the symmetric square transfer. With
the notation as in the previous section, we have the following for each prime
p|NΠ:

c(Πp) = 2c(πp)− c(ωp)− 2/ep, (8.7)

where 1 ≤ ep ≤ 2 is a certain ramification index and pc(ωp) = cond(ωp).

Now, the result by Casselman quoted in the previous section implies that
0 ≤ c(ωp) ≤ c(πp). Also, we clearly have 1 ≤ 2/ep ≤ 2. Combining these, we
obtain the following:

c(Πp) + 2 ≥ c(πp) and c(Πp) + 1 ≤ 2c(πp) (8.8)

The claim follows now from the definition of the conductor when we multiply
over all primes p|NΠ. �

For the dominant integral weight µk = (k − 2, 0, 2 − k) as in Lemma
8.1.1, we define the following.
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Notation 14. For N ≥ 1, consider the level structure Hf (N). Define

Dk(N) := {Π ∈ Acusp(GL3/Q, µk, Hf (N)) : ∃π and M ≥ 1 such that

π ∈ Acusp(GL2/Q, λk, Kf (M)), Π = sym⊗2(π)},

which is the set of cuspidal automorphic representations of GL3(AQ) which
are obtained by symmetric square transfer from holomorphic cusp forms.

We shall consider the case when k as above is even for the sake of sim-
plicity. We restate our result with the notation as above.

Theorem 8.1.2. Let k ≥ 2 be an even integer. Let p ≥ 2 be a prime. We
have

#Dk(p
n)�k p

2n as n→∞, (8.9)

with the implied constant depending only on k.

Remark 8.1.3. By Lemma 5.3.2, we also have the obvious upper bound

#Dk(p
n)�k p

2n as n→∞.

Thus, the above theorem implies that the holomorphic cusp forms in Sk(Γ1(pn))
which yield a cuspidal automorphic representation of GL3(AQ) on symmetric
square transfer constitute a substantial fraction of the total.

Proof. Let Π := ⊗q≤∞Πq ∈ Dk(p
n). Clearly, Πq is unramified except when

q = p. If Π = sym⊗2π, it follows that πq is also unramified unless q = p.
Therefore, it suffices to consider the conductor of πp; call it m.

Next, we use Lemma 8.1.1 to estimate m as follows:

m− 2 ≤ n ≤ 2m− 1⇒ (n+ 1)/2 ≤ m ≤ n+ 2. (8.10)

Further, it is well-known that πp corresponds to a newform (with charac-
ter) in Snewk (Γ1(pm)). The above inequality, thus, shows that a newform in
Snewk (Γ1(pi)) can contribute to Dk(p

n) only if (n+ 1)/2 ≤ i ≤ n+ 2.

Therefore, with Ck(.) as in 9, we have

#Dk(p
n) + Ck(p

n+2) ≥
∑

(n+1)/2≤i≤n+2

dimC S
new
k (Γ1(pi)). (8.11)

But, by Thm. 7.3.2 we have the upper bound

Ck(p
n+2)�k,ε p

n+2p3/2−ε ∀ε ∈ (0, 1/2). (8.12)
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In view of Lemma 5.3.3, we have

dimC S
new
k (Γ1(pi))

p2i
= (

k − 1

4π2
)(1− 1

p2
)2 + o(1) (8.13)

as i→∞.

As p ≥ 2, we trivially have (1− 1/p2) ≥ 3/4. Hence,

dimC S
new
k (Γ1(pi))�k p

2i. (8.14)

The sum in Eq.8.11 above is, therefore, of the order∑
(n+1)/2≤i≤n+2

p2i � p2n+4 (8.15)

as n→∞.

Now, a comparison of the above equation with the upper bound on
Ck(p

n+2) shows that Ck(p
n+2) is negligible as compared to p2n+4 as n→∞.

In effect, we may subtract the upper bound on Ck(p
n+2) from a lower

bound on the sum in Eq.8.11. This produces the claimed lower bound on
#Dk(p

n) for each fixed prime p follows:

#Dk(p
n)�k p

2n+4 (8.16)

as n→∞. �

8.2 Comparison with Marshall’s bound.

By Remark 8.1.3 and Thm. 8.1.2, we may also infer the following for
sufficiently large fixed n:

#Dk(p
n)�p,n k as k →∞. (8.17)

This is consistent with a prediction in [31]; as we shall discuss in this section.

Marshall ([31]) has considered the case of GL3/Q with a fixed level struc-
ture Hf but varying weight µ = (k, 0,−k). He proves the bounds

k �ε,Hf
#Coh(GL3, µ,Hf )�ε,Hf

k3− 4
27

+ε. (8.18)

(Note that dimVµ ∼ k3 by the Weyl dimension formula.) He also predicts
that the exact growth rate is #Coh(GL3, µ,Hf ) ∼ k as k →∞. As Dk(N) ⊆
Coh(GL3/Q, µ,Hf (N)), the consequence our result Eq. 8.17 provides further
evidence in favour of this prediction.
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