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Abstract

Fluid flows are governed by non-linear partial differential equations and their
solutions exhibit localised features like vorticity and shocks. In spite of many
advances, their accurate computation still remains challenging task. In this thesis,
we review the theory of scalar conservation laws and their numerical solution
techniques. In order to compute shocks accurately, we explore the use of moving
grids that will automatically adapt the grid resolution to the solution features.
We first study finite volume methods on non-uniform grids and then extend the
scheme to moving grid case.
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Chapter 1

Introduction

Conservation Laws occur in many contexts in Physics and these preserve certain
measurable physical quantities of a physical system in time. The very basic laws of
Conservation of Mass, Conservation of Energy, Conservation of Electric Charge,
hold everywhere without any exceptions. The laws of Conservation of Momentum
and Conservation of Angular Momentum also hold under certain conditions and
play very important role in determination of dynamics of physical systems and
thus it is very important to analyse and physically interpret solutions to the
Conservation Laws.

Finite Volume approach has been used to closely analyse the solutions to both
Linear and Nonlinear Conservation Laws. Advection equation which governs the
flow in many physical systems like the flow of heat in a conductor, flow of ink
dropped at the top of liquid, seawater currents in oceans etc. has been considered.
Moreover, important phenomena like formation of Advection Fog is also governed
by Advection equation. Burgers equation which is used to model phenomena like
turbulent flow in a fluid, shock waves around nozzles and jets, vapour deposition
on solid surface etc. has also been studied and its solutions have been analysed.

1.1 Overview

Uniform grid is the simplest one to start with for the numerical implementation of
Conservation Laws. Uniform grid and non-uniform grid, including both smooth
and random grids have been considered in numerical implementation. A certain
types of boundary value problems have been considered. Proper error analysis
has been done considering the difference of numerical solution with the cell av-
eraged value of pointwise solution and different schemes/grids/parameters have
been compared in terms of total error obtained. Various fluxes including first
order Upwind Flux, Lax-Wendroff flux, Lax-Friedrichs Flux, Roe Flux, Godunov
Flux have been compared.
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As the grid is refined, error keeps on decreasing and convergence rate is a mea-
sure of rate decrease of error with decrease in grid width. Different schemes/grids
/parameters have been compared based on the convergence rate obatined. Runge-
Kutta(RK) schemes are used for time-descretization. First, second and third order
Runge-Kutta schemes have been tried. Both Vertex-Centered and Cell-Centered
approaches have been tested. First order and second order schemes spacial scheme
have been tested and second order schemes are found to be far better than first
order schemes. For the second order scheme, MINMOD limiter, which returns
the argument with lowest absolute value, has been used with different-different
values of parameter beta, in order to limit the left and right reconstructed states
for calculating flux through faces.

Moving meshes are being widely used in numerical implementation of Partial
Differential Equations. The focus can be on a subdomian of numerical domain
and thus highly accurate solution can be obtained in the selected regions requiring
more computational effort. There is a need to look for proper velocity for mesh
movement which could render very accurate solution for a general initial condi-
tion. Proper error analysis has been done when different mesh velocity profiles
independent of solution have been used for mesh movement.

If velocity based on the local solution is used for mesh movement, then it is
found that finite volume cells near the discontinuity get compressed very soon in
case of shock wave and thus long-time simulation is not possible. This suggests
the need for a scheme which allows crossing of cells. AREPO moving mesh scheme
was introduced by Volker Springel in 2009. In the present work, based on the idea
used in his paper, AREPO moving mesh code has been implemeted and studied
for Scalar Conservation Laws.

1.2 Objective

The objective of this research is to accurately simulate non-linear partial differen-
tial equations which govern fluid flows. The aim is also to find improved numerical
solution techniques and to compute the shocks accurately.

1.3 Thesis Organization

Chapter 2 describes Conservation Laws including their solutions, important prop-
erties and characteristics.

The numerical study done on Static Meshes is described in Chapter 3. Finite
Volume method used is described in detail. Different numerical flux schemes have
been compared. First and higher order schemes spatial and temporal schemes
have been used and compared based on Convergence studies.
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Chapter 4 deals with moving meshes. Different profiles for mesh movement
have been considered. Proper Converegence Analysis has been done and different
profiles have been compared with each other. Important Numerical Flux schemes
have also been compared. Mesh velocity independent of solution have been used
and mesh velocities based on solution have also been used. Lagrangian velocity
has been tried for mesh movement. Few ways of smoothing the mesh-velocity
profile have also been tried in an attempt to avoid extensive compression of finite
volume cells.

Chapter 5 describes the implemetaion of AREPO moving mesh method based
on the idea originally introduced by Volker Springel. In this method, since cells
used in Finite Volume method for storing solution are allowed to cross each other.
Shock Wave can be seen to be moving in the mesh for long time even if lagrangian
velocity is considered for mesh movement.
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Chapter 2

Conservation Laws

Consider an equation of the following form

∂U
∂t

+
∂f(U)
∂x

= 0 (2.1)

where U is a n-component vector, F is a second rank tensor with entry on i’th
row and j′th column, Fij being the flux of Ui in xj direction. This equation is
known as Conservation Law. Let us consider the 1-D case.

∂u (x, t)

∂t
+
∂f (u (x, t)))

∂x
= 0 (2.2)

This partial differential equation conserves total value of a quantity over space,
+∞∫
−∞

u (t, x) dx in time and thus it is also termed as Conservation Law. Integral form

of Conservation Law can also be obtained from differential form of Conservation
Law (2.2) by integrating it over space and time.

On integrating (2.2) over arbitrary space-time interval [x1, x2]× [t1, t2] ,

x2∫
x1

t2∫
t1

(
∂u (x, t)

∂t

)
dtdx = −

t2∫
t1

x2∫
x1

(
∂f(u (x, t))

∂x

)
dxdt

x2∫
x1

 t2∫
t1

∂u (x, t)

∂t
dt

 dx = −
t2∫
t1

 x2∫
x1

∂f(u (x, t))

∂x
dx

 dt

x2∫
x1

u (x, t)

∣∣∣∣∣
t2

t1

 dx = −
t2∫
t1

f(u (x, t))

∣∣∣∣∣
x2

x1

 dt

x2∫
x1

[u(x, t2)− u(x, t1)] dx = −
t2∫
t1

[f(u(x2, t))− f(u(x1, t))] dt (2.3)

The above equation is the Integral form of the Conservation Law. Test function
φ(x, t) is chosen which is assumed to have compact support in space and time
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which means the function vanishes outside a bounded domain in space and time.
On left multiplying (2.2) by φ(x, t) and integrating over [x1, x2]× [t1, t2],

t=+∞∫
t=0

x=−∞∫
x=+∞

φ(x, t)

(
∂u (x, t)

∂t
+
∂f(u)

∂x

)
dxdt = 0

On following the steps, we are finally left with

⇒
t=+∞∫
t=0

x=+∞∫
x=−∞

[
f(u (t, x))

(
∂φ(x, t)

∂x

)
+ u (t, x)

(
∂φ(x, t)

∂t

)]
dxdt =

t=+∞∫
t=0

(
(φ(x, t)f(u (t, x)))

∣∣∣x=+∞

x=−∞

)
dt+

x=+∞∫
x=−∞

(
(φ(x, t)u (t, x))

∣∣∣t=+∞

t=0

)
dx

First term in RHS vanishes because φ(x, t) has compact support in x. Also
since, φ(x, t) has compact support in t so the upper limit of second term in RHS
is zero. So, the above equation reduces to

t=+∞∫
t=0

x=+∞∫
x=−∞

[
f(u (t, x))

(
∂φ(x, t)

∂x

)
+ u (t, x)

(
∂φ(x, t)

∂t

)]
dxdt

+

x=+∞∫
x=−∞

(φ(0, x)u(0, x)) dx = 0

(2.4)

This is another form of Conservation Law. This equation is satisfied by a
particular kind of solutions called Weak Solutions which may not even be differ-
entiable and they fail to satisfy differential form of Conservation Law (2.4). There
can be infinitely many weak solutions to a given Conservation Law but just one
of them is physically correct. The solution which is physically correct satisfies
Entropy Condition, which is discussed later.

2.1 Basic Solutions

Conservation Laws can be written in differential form as a Partial Differential
Equation(PDE). There are many kinds of solutions to PDE’s. Each type of solu-
tion has its own advantage and importance.

• Classical Solution: Classical solution to any general PDE of order n is an
expression which when substituted back satisfies the equation and is at least n
times differentiable. The classical solution might not be infinitely differentiable.
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• Smooth Solution: These are very nice and well-behaved solution to PDE.
These solutions are infinitely differentiable.

• Weak Solution: Weak solution of PDE might not be differentiable even once
but it behaves nicely under certain conditions. Weak solutions are sometimes very
useful and easy to guess. For some higher order PDE’s, it is very difficult to find
Classical solutions but sometimes it is easy to guess weak solution. There can be
infinitely many weak solutions to a given PDE.

2.2 Rankine-Hugoniot Condition

The jump conditions that are satisfied across any discontinuity are called Rankine-
Hugoniot Jump condition. Integrating (2.2) over x ∈ [xs − δ, xs − δ] where xs is
the position of the discontinuity yields,

d

dt

 xs+δ∫
xs−δ

u (x, t) dx

+ f(u)
∣∣∣xs+δ
xs−δ

= 0 (2.5)

Since integrand is discontinuous at (t, xs), so integral in the first term can be
split into two integrals with integrands continuous in the intervals [xs− δ, xs) and
(xs, xs + δ],

xs+δ∫
xs−δ

u (x, t) dx =

xs∫
xs−δ

u (x, t) dx+

xs+δ∫
xs

u (x, t) dx

Then, (2.5) becomes

d

dt

 xs∫
xs−δ

u (x, t) dx+

xs+δ∫
xs

u (x, t) dx

+ f(u)
∣∣∣xs+δ
xs−δ

= 0

⇒ d

dt

 xs∫
xs−δ

u (x, t) dx

+
d

dt

 xs+δ∫
xs

u (x, t) dx

+ f(u)
∣∣∣xs+δ
xs−δ

= 0

By using Chain Rule of differentiation and Leibnitz Integral Rule, both terms on
LHS can be evaluated and above expression reduces to

⇒

 xs∫
xs−δ

ut(x, t)dx+ u(xs, t)
d

dt
xs − u(xs − δ, t)

d

dt
(xs − δ)


+

 xs+δ∫
xs

ut(x, t)dx+ u(xs + δ, t)
d

dt
(xs + δ)− u(xs, t)

d

dt
xs

+ f(u)
∣∣∣xs+δ
xs−δ

= 0
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Identical terms with opposite signs cancel out and the following expression is left
behind.

⇒

 xs∫
xs−δ

ut(x, t)dx+ u(xs, t)
d

dt
xs − u(xs − δ, t)

d

dt
(xs − δ)


+

 xs+δ∫
xs

ut(x, t)dx+ u(xs + δ, t)
d

dt
(xs + δ)− u(xs, t)

d

dt
xs

+ f(u)
∣∣∣xs+δ
xs−δ

= 0

⇒
xs∫

xs−δ

ut(x, t)dx− u(xs − δ, t)
d

dt
(xs − δ)+

xs+δ∫
xs

ut(x, t)dx+ u(xs + δ, t)
d

dt
(xs + δ) + f(u)

∣∣∣xs+δ
xs−δ

= 0

⇒
xs∫

xs−δ

ut(xs − δ, t)dx+

xs+δ∫
xs

ut(xs + δ, t)dx

(u (xs − δ, t)− u (xs + δ, t))
dxs
dt

= −f(u)
∣∣∣xs+δ
xs−δ

Since limδ→0 (xs + δ)→ xs and limδ→0 (xs − δ)→ xs , first two terms in LHS drop
out. In the shorthand notations limδ→0 (u (xs − δ)) = ul and limδ→0 (u(xs + δ)) =

ur, above equation simplifies to

[u (xl, t)− u (xr, t)]
dxs
dt

= − [f (u (xr, t))− f (u (xl, t))]

⇒ dxs
dt

=
f(u(xr, t))− f(u(xl, t))

u(xr, t)− u(xl, t)

dxs

dt is basically the speed of propagation of discontinuity. It can be written in
more convenient form by dropping t from the above equation.

dxs
dt

=
f (ur)− f (ul)

ur − ul

2.3 Linear Conservation Law: Advection Equa-
tion

The flux function appearing in Conservation Law is linear in u, i.e.f(u) = au, a ∈
R. Then, equation (2.2) reduces to

∂u (x, t)

∂t
+ a

∂u (x, t)

∂x
= 0 (2.6)
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Now, consider du
dt along the straight lines given by dx

dt = a, a ∈ R ,

du

dt
=
∂u

∂t
+

(
∂u

∂x

)(
dx

dt

)
du

dt
=
∂u

∂t
+

(
∂u

∂x

)
a

du

dt
= −a

(
∂u

∂x

)
+ a

(
∂u

∂x

)
= 0

The family of straight lines x = at + k for arbitrary constant k have slope a
and hence the solution is constant along these lines. The solution at any location
at any time can be obtained by tracing the characteristic passing through this
point back in time and then the solution at any position x at time t is same as
the initial value at position x0 at time t0 where x0 = x − a (t− t0). The initial
profile just travels with velocity a towards right if a > 0 and towards left if a < 0.

2.4 Nonlinear Conservation Laws

The flux function f(u) is not linear in u. Nonlinear Conservation Laws are special
in the sense that the solutions to Conservation Laws are not always smooth. There
are many types of discontinuities which can arise in this case.
Consider Conservation Law

∂u (x, t)

∂t
= −∂f(u (x, t))

∂x
(2.7)

This could also be written in the form,

∂u (x, t)

∂t
= −a (u (x, t))

∂u (x, t)

∂x

where a(u (x, t)) = f ′(u).
This form gives some insight in analyzing the evolution of solution with time.

Consider the curve
C :

dx(t)

dt
= a(u (x, t))

where a(u) is some function of u . It can be shown that the solution is constant
along the curve the C.
Proof :

du

dt
=
∂u

∂t
+

(
∂u

∂x

)(
dx

dt

)
⇒ du

dt
=
∂u

∂t
+ a(u)

(
∂u

∂x

)
⇒ du

dt
= −a(u)

(
∂u

∂x

)
+ a(u)

(
∂u

∂x

)
= 0
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Lines of constant solution are called Characteristics which are given by

dx

dt
= f ′(u (t, x)) (2.8)

where f ′ indicates the first order derivative with respect to u. The solution at
time t ≥ t0 and position x is same as that at position x0 at time t0 such that
points (x, t) and (x0, t0) lie on the same characteristic. The analysis of evolution
of the solution with time can be carried out by means of characteristics. Similar
to Advection Equation consideration, in this case too, tracing the characteristics
back in time gives the solution at current time. A frequently occuring non-linear
Conservation Law is Burgers Equation with the flux given by f(u) = u2

2
,

ut +
(
u2/2

)
x

(2.9)

2.4.1 Discontinuities

Consider a nonlinear Conservation Law of the form (2.2). Consider the initial
condition

u0(x)∀x ∈ [a, b] (2.10)

Characteristics originating from some x0 ∈ [a, b] is given by

dx

dt
= f ′(u(x0, 0))⇒ u(x0 + f ′(u(x0, 0)), t) = u0(x0)

SHOCK WAVE:
Consider the case when lines x = u(x1, 0) + f ′(u(x1, 0))t and x = u(x2, 0) +

f ′(u(x2, 0))t intersect, where x1, x2 ∈ [a, b]. In that case, solution does not exist
at the point of intersection. The solution may be continuous on either side of
the point of intersection but is discontinuous at the point of intersection itself.
This type of discontinuity is called shock. The discontinuity propagates with
shock speed give by Rankine-Hugoniot Condition. For simple illustration, con-
sider solving Burgers Equation (2.4.1) for an initial condition given by Riemann
Problem:

u0(x) =

ul, if x ≤ 0

ur, if x > 0
(2.11)

with ul > 0 and ur < 0. The shock speed given by S = dxs

dt = f(ur)−f(ul)
ur−ul

which

is then S = ur
2−ul

2

ur−ul
= ur+ul

2 for Burgers and thus depending on the sign of S,
the wave travels either towards left or right.
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1-1
X

Time(T)

Characteristics from left and right intersect thus giving rise to 
shock discontinuity. Function is discontinuous at the point of 
shock and may be continuous on either side of the shock. 
The characteristics originiating from the region with x<0 have 
correspond to speed 1 while the characteristics originating 
from right correspond to speed being 0.2. Hence the shock 
speed is  0.6 and so the shock travels towards right. 

Shock Wave 

Characteristics 

1

Figure 2.1: A typical shock wave generated when f ′(ul) > f ′(ur) .

RAREFACTION WAVE:

This type of discontinuity arises when the characteristics do not cross but
they do not span the entire space. In this case there can be many weak solutions
but only one of them is physically correct solution, which is vanishing viscosity
solution. For example, for the Burgers Equation , the solution satisfy viscous
Burgers Equation , in the limit as ν → 0 mentioned below.

ut + uux = νuxx

Entropy condition is used to find physically correct solution to the Burgers Equa-
tion which is described later in this section.
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Characteristics 

Rarefaction Wave 

Characteristics from left region are confined to the left region 
since they correspond to zero velocity and the characteristics 
from the right region correspond to velocity 1. In the portion 
which is not touched upon by characteristics, there exist 
infinitely many weak solutions but the solution drawn here is 
the solution which indeed satisfies the entropy condition. 

1-1

1

X

Time(T)

Figure 2.2: Rarefaction front obtained when f ′(ul) = 0 and f ′(ur) = 1 .

In this case, we look for solution which satisfy the integral form of Conservation
Law 2.3 and also the condition (2.4). This can be illustrated by a simple example.
Again consider solving Burgers Equation for an initial condition given by Riemann
problem in interval [−1, 1]

u0(x) =

1, if x ≤ 0

0, if x > 0

Here there are regions which are not spanned by characteristics and there can be
many infinitely many weak solutions. Two of them are shown in fig. 2.3 . How-
ever, Entropy Condition selects the physically correct solution. Here, Solution A
is the physically correct solution.
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Weak Solution BWeak Solution A

X X

T T

Weak Solution in the region not 
spanned by Characteristics

Solution in the region spanned 
by Characteristics

11

Figure 2.3: Two weak solutions in case of rarefaction wave

Entropy Condition: It puts a restriction on physically correct solutions. It
states that a physically correct solution u(x), x ∈ [a, b] must satisfy

f ′(ul) > S > f ′(ur)

where ul is the upstream value of function, ur is the downstream value of function
and S = f(ur)−f(ur)

ur−ul
, is the speed of propagating discontinuity.

2.4.2 Solutions to Riemann Problems for Burgers Equa-
tion

Burgers Equation which has already been introduced is a nonlinear Conservation
Law with the flux given by

f(u) =
u2

2

The velocity with which Characteristics move is given by

f ′(u) =
d
du

(
u2

2

)
= u (2.12)

Solutions to (2.4.1) for an arbitrary initial condition u0(x), x ∈ [a, b], where [a, b]

is the domain of interest, can be obtained by tracing the characteristics back in
time. Characteristics are the curves of constant solution and thus the solution
at any position and time u(x, t) is same as u0(x0) if points (x, t) and (x0, t0)

lie on the same characteristic. For instance, consider the following Initial Value

16



Problem(IVP)

u(x, 0) =

ur, if x ≤ c

ul, if x > c

where c ∈ R. The solution at any position and time u(x, t) can be obtained by
finding x0 which satisfies

x0 + u0(x0)t = x

For the IVP considered, we need to look for x0 satisfying following conditions

C1 : x0 + urt = x for x0 > 0

C2 : x0 + ult = x for x0 < 0
(2.13)

In general, (2.13) can have single, multiple, infinite or no solutions.
Here, various initial conditions are considered in domains [0, 1] and [−1, 1]. In

the equations that follow, the expression on the left is the initial condition and
the expression on the right is the solution at any later time t.

• u(x, 0) =

1, if x ≤ 0

0, if x > 0
u (x, t) =

1, if x ≤ 1
2
t

0, if x > 1
2
t

In the above case, the shock wave travels with speed 1
2

• u(x, 0) =

−1, if x ≤ 0

1, if x > 0
u (x, t) =


−1, if x ≤ −t

x/t, if − t < x ≤ t

1, if x > t

• u(x, 0) =

0, if x ≤ 0

1, if x > 0
u (x, t) =


0, if x ≤ 0

x/t, if 0 < x < t

1, if x > t

• u(x, 0) =

−1, if x ≤ 0

0, if x ≥ 0
u (x, t) =


−1, if x ≤ −t

x/t, if − t < x < 0

0, if x > 0

� Consider the following initial condition,

u(x, 0) =


−1, if x <= 0

1− 2x, if 0 < x < 1
2

0, if x > 1
2

17



It has the following solution

u

(
x, t <

1

2

)
=


x− 1

2

t− 1
2

, if t < x < 1
2

0, if x > 1
2

u

(
x,

1

2
< t < 1

)
=


−1, if x ≤ 0

−1, if 0 < x < 1
2

+ t
2

0, if x > 1
2

+ t
2

� Consider the following initial condition,

u(x, 0) =


−1, if x ≤ 0

1− x, if 0 < x < 1
2

1
2
, if x > 1

2

It has the following solution

u (t < 1) =


−1, if x ≤ t

1
2

+
x− 1

2
− 1

2
t

t−1
, if t < x < 1

2
+ 1

2
t

0, if x > 1
2

+ 1
2
t

u (t > 1) =

−1, if x ≤ 1 + t
2

0, if x > 1 + t
2

In some of the above cases, shock wave gets generated when the characteristics
originating from different points intersect and then there is no unique solution at
points of intersection. For a given initial smooth data, the time after which shock
gets generated can be calculated as follows. In order to calculate the time after
which shock forms in case of smooth initial profile u0(x), x ∈ D(domain), suppose
the characteristics starting from two locations x1, x2 ∈ [a, b] cross each other at
(x, t). Then the following two equations must hold simultaneously.

x1 + u0(x1)t = x

x2 + u0(x2)t = x
(2.14)

⇒ x1 + u0(x1)t = x2 + u0(x2)t

⇒ t = − x2 − x1

u0(x2)− u0(x1)

⇒ t = − 1
u0(x2)−u0(x1)

x2−x1

(2.15)

The smallest time which corresponds to the shock formation is obtained by min-
imizing (2.15) over all pairs of x1 and x2. This is equivalent to maximizing the
denominator of (2.15) over all pairs of x1 and x2. So the problem reduces to
finding the following quantity

Q = min
x1,x2∈D

u0(x2)− u0(x1)

x2 − x1

Since
u0(x2)− u0(x1)

x2 − x1

≥ min
x3∈D

u′0(x3) ∀ x1, x2 ∈ D

18



So
Q = min

x1,x2∈D

u0(x2)− u0(x1)

x2 − x1

= min
x3∈D

u′0(x3)

Thus, (2.15) yields

Tmin = − 1

minx∈D u′0(x)
(2.16)

Thus, for the smooth initial profile, necessary condition for shock generation
is that the space derivative of initial solution is negative somewhere, i.e. u′0(x) <

0 for some x in domain.
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Chapter 3

Finite Volume Method on Static
Mesh

3.1 General Overview

Various time discretisation and space discretisation techniques are used to analyse
the solution of a Conservation Law numerically. The domain is divided into
finitely many cells and the solution obtained in any cell actually represents the
average value in that cell. Consider solving (2.2) in the 1-D domain D := [a, b] for
the some initial condition u0(x) considered. The domain [a, b] under consideration
is divided into cells in the following way:

D = ∪
i∈K

(
xi− 1

2
, xi+ 1

2

)
or D = ∪

i∈K
Ci

where K = {1, 2, ......, N − 2, N} is set of nodes , N being the total number of
cells considered and x 1

2
= a, xN+ 1

2
= b and Ci =

(
xi− 1

2
, xi+ 1

2

)
, i ∈ K are the

cells. The leftmost face is taken to be at the left boundary of the the domain
and the rightmost face to be at the right boundary. Cells are indexed by integers
i ∈ K, and the faces are indexed by half-integers

(
i+ 1

2

)′
s ∀i ∈ {0} ∪ K. The

common face of any two cells, cell i and cell i+ 1 is indexed by
(
i+ 1

2

)
. Solution

on each cell depends on the fluxes coming in and going out. Each cell has two
faces and each face has two adjoining cells. The flux across any face is positive
for one adjoining cell and negative for the other one. So for any cell considered
at random, contribution from one face is added and contribution from the other
face is subtracted.
Consider the differential form of Conservation Law (2.2)

∂u (x, t)

∂t
+
∂f(u)

∂x
= 0

⇒ ∂u (x, t)

∂t
= −∂f(u)

∂x
(3.1)
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Consider finding solution to Conservation Law with given initial condition in
an arbitrary domain Ω

Ω =
⋃
i

[
xi− 1

2
, xi+ 1

2

]
u (x, 0) = u0 (x)

On integrating (2.2) over space-time interval
[
xi− 1

2
, xi+ 1

2

]
× [tn, tn+1] ,

x
i+1

2∫
x
i− 1

2

tn+1∫
tn

(
∂u (x, t)

∂t

)
dtdx = −

tn+1∫
tn

x
i+1

2∫
x
i− 1

2

(
∂f(u (x, t))

∂x

)
dxdt

x
i+1

2∫
x
i− 1

2

 tn+1∫
tn

∂u (x, t)

∂t
dt

 dx = −
tn+1∫
tn


x
i+1

2∫
x
i− 1

2

∂f(u (x, t))

∂x
dx

 dt

x
i+1

2∫
x
i− 1

2

u (x, t)

∣∣∣∣∣
tn+1

tn

 dx = −
tn+1∫
tn

f(u (x, t))

∣∣∣∣∣
x
i+1

2

x
i− 1

2

 dt

x
i+1

2∫
x
i− 1

2

[u (x, tn+1)− u (x, tn)] dx = −
tn+1∫
tn

[
f
(
u
(
xi+ 1

2
, t
))
− f

(
u
(
xi− 1

2
, t
))]

dt

(3.2)
Suppose the average value of solution in cell i is denoted by zi

zni =

x
i+1

2∫
x
i− 1

2

u (x, tn) dx

xi+ 1
2
− xi− 1

2

x
i+1

2∫
x
i− 1

2

u (x, tn) dx = zni

(
xi+ 1

2
− xi− 1

2

)
Further, following approximation is used

tn+1∫
tn

f
(
u
(
xi+ 1

2
, t
))

dt ≈ Fi+ 1
2

(tn+1 − tn)

where Fi+ 1
2

= g
(
uL
i+ 1

2

, uR
i+ 1

2

)
is numerical flux at the face, an approximation

to physical flux, with uL
i+ 1

2

and uR
i+ 1

2

being left and right reconstructed values at
the face.
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Then (3.2) becomes(
zn+1
i − zni

) (
xi+ 1

2
− xi− 1

2

)
= −

[
Fi+ 1

2
(tn+1 − tn)− Fi− 1

2
(tn+1 − tn)

]
(
zn+1
i − zni

) (
xi+ 1

2
− xi− 1

2

)
= −

(
Fi+ 1

2
− Fi− 1

2

)
(tn+1 − tn)

zn+1
i − zni
tn+1 − tn

+
Fi+ 1

2
− Fi− 1

2

xi+ 1
2
− xi− 1

2

= 0

Here
zni = u (xi, tn) ∀x ∈

[
xi− 1

2
, xi+ 1

2

]
, t ∈ [tn, tn+1]

zn+1
i = zni −

tn+1 − tn
xi+ 1

2
− xi− 1

2

(
Fi+ 1

2
− Fi− 1

2

)
(3.3)

zni is an approximation to the solution in i′th cell at any timestep n.

3.2 Space discretisation

3.2.1 First Order Scheme

In the first order schemes, for evaluating numerical flux through the common face
of cell j and cell j + 1, left state is considered to be cell average in j′th cell, unj
and the right state is considered to be cell average in (j + 1)′th cell, unj+1, without
any reconstruction i.e. Fj+ 1

2
=g(ul, ur)=g(unj , u

n
j+1). This is very less accurate

scheme and so mostly more accurate higher order schemes are used in numerical
experiments.

3.2.2 Second Order Scheme

Linear reconstruction is done at the face to construct left and right states. These
reconstructed values can be further limited by use of a proper limiter. One way
of reconstructing left and right states at the face at xj+ 1

2
is by using minmod

limiter,
Left state :

uL
j+ 1

2
= uj +

(
xj+ 1

2
− xj

)
φ

(
β

(
uj − uj−1

xj − xj−1

)
,
uj+1 − uj−1

xj+1 − xj−1

, β

(
uj+1 − uj
xj+1 − xj

))
(3.4)

Right state :

uR
j+ 1

2
= uj+1 −

(
xj+1 − xj+ 1

2

)
φ

(
β

(
uj+1 − uj
xj+1 − xj

)
,
uj+2 − uj
xj+2 − xj

, β

(
uj+1 − uj
xj+1 − xj

))
(3.5)
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where β is a parameter of choice and φ is the minmod function which returns the
argument with the lowest absolute value.

minmod(x1, x2, x3) =

sign(x1) min (min |x1| (|x2| , |x3|)) , if x1x2 ≥ 0, x2x3 ≥ 0

0, otherwise

By using the recontructed states obtained from (3.5) and (3.4), flux across the
face can be calculated and this can be used to finally calculate un+1

j from unj using
(3.3)

3.2.3 More Accurate Scheme: Second Order accurate Cen-
tral Slope

The idea is to look for a first order derivative which is second order accurate.
Starting with the linear combination of left and right slopes sl and sr,

c.sr + d.sl = c

(
uj+1 − uj
xj+1 − xj

)
+ d

(
uj − uj−1

xj − xj−1

)
(3.6)

where c and d are arbitrary coefficients.
Taylor expanding uj+1 upto second order in

(
xj+1 − xj

)
gives

uj+1 = uj +
(
xj+1 − xj

) ∂uj
∂x

+

(
xj+1 − xj

)2

2

∂2uj
∂x2

(3.7)

Taylor expanding uj−1 upto second order in
(
xj − xj−1

)
gives

uj−1 = uj −
(
xj − xj−1

) ∂uj
∂x

+

(
xj − xj−1

)2

2

∂2uj
∂x2

(3.8)

By using (3.7) and (3.8), (3.6) becomes

c.sr + d.sl = c


[
uj +

(
xj+1 − xj

) ∂uj
∂x

+
(xj+1−xj)

2

2

∂2uj
∂x2

]
− uj

xj+1 − xj



+d


[
uj −

(
xj − xj−1

) ∂uj
∂x

+
(xj−xj−1)

2

2

∂2uj
∂x2

]
− uj

xj−1 − xj


(3.9)

⇒ c.sr + d.sl = (c+ d)
∂uj
∂x

+
1

2

[
c
(
xj+1 − xj

)
− d

(
xj − xj−1

)] ∂2uj
∂x2

(3.10)
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Allowing the coefficient of ∂2uj
∂x2

go to zero gives a relation between c and d

c
(
xj+1 − xj

)
− d

(
xj − xj−1

)
= 0

⇒ d = c

(
xj+1 − xj
xj − xj−1

)
Since the coefficients c and d must add up to 1, we get

c =
xj − xj−1

xj+1 − xj−1

, d =
xj+1 − xj
xj+1 − xj−1

Plugging d in terms of c back in (3.10)

c.sr + c

(
xj+1 − xj
xj − xj−1

)
.sl =

(
c+ c

xj+1 − xj
xj − xj−1

)
∂uj
∂x

∂uj
∂x

=
sr + sl

(
xj+1−xj
xj−xj−1

)
1 +

xj+1−xj
xj−xj−1

∂uj
∂x

=
sr
(
xj − xj−1

)
+ sl

(
xj+1 − xj

)(
xj − xj−1

)
+
(
xj+1 − xj

)
∂uj
∂x

=

(
uj+1−uj
xj+1−xj

) (
xj − xj−1

)
+
(
uj−uj−1

xj−xj−1

) (
xj+1 − xj

)
xj+1 − xj−1

∂uj
∂x

=

(
xj−xj−1

xj+1−xj

) (
uj+1 − uj

)
+
(
xj+1−xj
xj−xj−1

) (
uj − uj−1

)
xj+1 − xj−1

∂uj
∂x

=

1
Rj

(
uj+1 − uj

)
+Rj

(
uj − uj−1

)
xj+1 − xj−1

(
Rj =

xj+1−xj
xj−xj−1

)
The resulting first order derivative is second order accurate.

3.3 Basic Finite Volume approches

• Cell-Centered Approach: In this approach, the solution is stored at the
centre of the cell and the stored value is the average value of the numerical solution
in the finite volume cell. The node lies at the geometric centre of the cell. In simple
1D case, mathematically,

xi =
xi+ 1

2
+ xi− 1

2

2
∀ i ∈ {1, 2, ......, N − 1, N}

• Vertex-Centered Approach: In this approach, the solution is stored at the
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vertices. The vertex is equidistant from all the nearby nodes. In simple 1D case,
mathematically,

xi+ 1
2

=
xi + xi+1

2
∀ i ∈ {1, 2, ......, N − 1}

and leftmost and righmost faces being at the leftmost and rightmost boundary
respectively.

3.4 Grids Considered

3.4.1 Uniform Grid

Nodes are equally spaced and their locations are given by

xi = xmin + ih ∀ i ∈ {1, 2, ......, N − 1, N}

where h = xmax−xmin

N is the grid spacing. Faces are also equally spaced and their
locations are given by

xi+ 1
2

= xmin +

(
i− 1

2

)
h ∀ i ∈ {1, 2, ......, N,N + 1}

3.4.2 Smooth Grid

Two types of smooth grids have been considered. In one case, grid points are
clustered in the middle and the spacing is large at the ends. In the other type of
smooth grid, grid points are clustered at the ends and the spacing is large at the
centre.
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Figure 3.1: Smooth Meshes used in Numerical Implementation(Cell-Centered
scheme is considered): Cells are clustered in the middle in one case, and at the
ends in the other case

3.4.3 Random Grid

Random Grid: Generation when implementing Vertex-Centered Scheme

Initially uniformly spaced nodes are generated and then they are perturbed a bit
from their position. The perturbation is random which could be on both left and
right, and the degree of perturbation is controlled by a parameter α , more the
α, more the randomness and vice-verse. Finally cell boundaries are taken to be
at the midpoint of adjacent nodes.
Suppose that total number of cells considered is N and total number of faces is
N + 1. The following steps are followed in the generation of the random mesh.
• Initially, for i’th node,

xi = xmin +

(
i+

1

2

)(
xmax − xmin

N

)
, i ∈ {1, 2, ......., N − 1, N}

where xi denotes location of i’th node, xmin is the left boundary and xmax is the
right boundary.
• Slight perturbation is added

xi = xi + α(1− 2r)h

where h = xmax−xmin
N

is the node spacing in uniform grid, r ∈ [0, 1] is a uniformly
distributed random number and α is a parameter which can be varied as long as
adjacent nodes do not cross each other.
• Faces are then taken to be at the midpoint of nodes of adjoining cells.

xi+ 1
2

=
xi + xi+1

2
, i ∈ {1, 2, ......., N − 1, N,N}

The following plots show the spacing between consecutive grid points.
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The following plots show the spacing between consecutive grid points

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.006

0.007

0.008

0.009

0.01

0.011

0.012

0.013

0.014

Grid Points

G
ri
d

 S
p

a
c
in

g

Grid Spacing in Case of Random Grid of 100 grid points(alpha=0.2)(Vertex−Centered)

(a) Vertex Centered, less randomness

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.008

0.0085

0.009

0.0095

0.01

0.0105

0.011

0.0115

0.012

Grid Points

G
ri
d

 S
p

a
c
in

g

Grid Spacing in Case of Random Grid of 100 grid points(alpha=0.2)(Cell−Centered)

(b) Cell Centered, less randomness

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

Grid Points

G
ri
d

 S
p

a
c
in

g

Grid Spacing in Case of Random Grid of 100 grid points(alpha=0.4)(Vertex−Centered)

(c) Vertex Centered, more randomness

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.006

0.007

0.008

0.009

0.01

0.011

0.012

0.013

0.014

Grid Points

G
ri
d

 S
p

a
c
in

g

Grid Spacing in Case of Random Grid of 100 grid points(alpha=0.4)(Cell−Centered)

(d) Cell Centered, more randomness

Figure 3.2: Random Grids used in Numerical Experiments

Random Grid: Generation when implementing Cell-Centered Scheme

Initially uniformly spaced faces are generated and then the ones at the the interior
are perturbed a bit from their position. The perturbation could be on both right
and left and the degree of perturbation is controlled by a parameter α , more
the α, more the randomness and vice-verse. Finally nodes are taken to be at the
midpoint of adjacent nodes.
Suppose that total number of cells considered is N and total number of faces is
N + 1. The following steps are followed in the generation of the random mesh.
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• Initially, for i’th face,

xi− 1
2

= xmin + (i− 1)

(
xmax − xmin

N

)
, i ∈ {1, 2, ......., N − 1, N,N + 1}

where xi− 1
2
denotes location of i’th face, xmin is the left boundary and xmax is the

right boundary.
• Slight perturbation is added

xi− 1
2

= xi− 1
2

+ α(1− 2r)h, i ∈ {2, ......., N − 1, N,N}

where h = xmax−xmin
N

is the node spacing in uniform grid, r ∈ [0, 1] is a uniformly
distributed random number and α is a parameter which can be varied as long as
adjacent nodes do not cross each other.
• Nodes are taken to be at the midpoint of left and right faces of the cell

xi =
xi− 1

2
+ xi+ 1

2

2
, i ∈ {1, 2, ......., N − 1, N,N}

3.5 CFL Condition

Basic requirement to get convergence to the true solution is that numerical domain
must be contained in physical domain. CourantâĂŞFriedrichsâĂŞLewy(CFL)
condition requires ∣∣∣∣max

i
f ′(uni )

(
dt

∆xi

)∣∣∣∣ ≤ NCFL

where f ′(uni ) = ∂f(u)/∂u at uni . NCFL is called CFL number. It has been
proved that CFL condition has to hold for the numerical solutions to converge
to the actual solution. This is a necessary but not a sufficient condition. If CFL
condition is violated then the numerical solution cannot converge to the actual
solution. CFL number must be less than or equal to one for proper convergence
for First Order scheme.

3.6 Conservative Form

Any Numerical Scheme for Conservation Laws is said to be in Conservative Form
if it can be written in the following form

un+1
j = unj +

tn+1 − tn
xj+ 1

2
− xj− 1

2

[
F
(
uj−a1+1, uj−a1+2, uj−a1+3, ........., uj+a2 , uj+a2+1

)
−F

(
uj−a1 , uj−a1+1, uj−a1+2, ........, uj+a2−1, uj+a2

) ]
(3.11)

where a1, a2 ∈ Z+. The function F used in the above equation is called the Nu-
merical Flux function.
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Properties of Numerical Flux

• Smoothness: Since in conservative form (3.11), total number of arguments
is a1 + a2 + 1, which can be denoted by {z1, z2, ...., za1+a2+1}, zi ∈ R ∀i ∈
{1, 2, ..., a1 + a2 + 1}, then smoothness requires

F (z1, z2, ......, za1+a2+1)→ f(z′) as zi → z′ ∀i ∈ {z1, z2, ......, za1+a2+1}

where f is the physical flux and z′ ∈ R .

• Consistency: Suppose all the arguments of numerical flux are the same then
the it must be the same as physical flux with the same argument.

F
(
z′, z′, ......, z′

)
= f(z′)

where f is the physical flux.

3.7 Total Variation Diminishing Schemes

3.7.1 TVD Property

Suppose unj denotes the numerical solution at (xi, tn), then Total Variation at
any time tn is defined as follows: TV (n) =

∑
j

(
|uj − uj−1|

)
Any Scheme is said to be TVD preserving if Total Variation is monotonically
decreasing function of time.

i.e. if TV (un+1) ≤ TV (un) ∀ n ∈ Z+

3.7.2 Harten’s Lemma

Consider a scheme which can be written in the following form

un+1
i = uni − Cn

i− 1
2
∆ui− 1

2
+Dn

i+ 1
2
∆un

i+ 1
2

(3.12)

with coefficients Cn
i− 1

2

and Dn
i+ 1

2

and where uni denotes the solution at (tn, xi),
∆un

i− 1
2

= ui − ui−1 and ∆un
i+ 1

2

= uni+1 − uni .

Lemma : If the coefficients Cn
i− 1

2

and Dn
i+ 1

2

satisfy the following conditions ∀ n,
• Cn

i+ 1
2

> 0
• Dn

i+ 1
2

> 0
• Cn

i+ 1
2

+Dn
i+ 1

2

≤ 0

then the scheme is TVD
Proof :

Replacing i by i+ 1 in (3.12) yields

un+1
i+1 = uni+1 − Cn

i+ 1
2
∆un

i+ 1
2

+Dn
i+ 3

2
∆un

i+ 3
2

(3.13)
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(3.13) - (3.12) gives

un+1
i+1 − un+1

i = uni+1 − uni − Cn
i+ 1

2
∆un

i+ 1
2

+ Cn
i− 1

2
∆un

i− 1
2

+Dn
i+ 3

2
∆un

i+ 3
2
−Dn

i+ 1
2
∆un

i+ 1
2

⇒ un+1
i+1 − un+1

i = uni+1 − uni − Cn
i+ 1

2

(
uni+1 − uni

)
+ Cn

i− 1
2

(
uni − uni−1

)
+Dn

i+ 3
2

(
uni+2 − uni+1

)
−Dn

i+ 1
2

(
uni+1 − uni

)
⇒ un+1

i+1 − un+1
i = Cn

i− 1
2

(
uni − uni−1

)
+Dn

i+ 3
2

(
uni+2 − uni−1

)
+
(

1− Cn
i+ 1

2
−Dn

i+ 1
2

) (
uni+1 − uni

)
Taking the modulus on both sides and by using the fact that the three terms

in RHS have positive coeffiecients, we get∣∣un+1
i+1 − un+1

i

∣∣ ≤ Cn
i− 1

2

∣∣uni − uni−1

∣∣+Dn
i+ 3

2

∣∣uni+2 − uni−1

∣∣
+
(

1− Cn
i+ 1

2
−Dn

i+ 1
2

) ∣∣uni+1 − uni
∣∣

Further summing over index i on both sides gives

Σi∈K
∣∣un+1
i+1 − un+1

i

∣∣ ≤ Σi∈K{Ci− 1
2

∣∣uni − uni−1

∣∣}+ Σi∈K{Di+ 3
2

∣∣uni+2 − uni−1

∣∣}
+Σi∈K{

(
1− Ci+ 1

2
−Di+ 1

2

) ∣∣uni+1 − uni
∣∣}

⇒ Σi∈K
∣∣un+1
i+1 − un+1

i

∣∣ ≤ −Σi∈K{Cn
i+ 1

2

∣∣uni+1 − uni
∣∣− Cn

i− 1
2

∣∣uni − uni−1

∣∣}
+Σi∈K{Dn

i+ 3
2

∣∣uni+2 − uni−1

∣∣−Dn
i+ 1

2

∣∣uni+1 − uni
∣∣}+ Σi∈K{

∣∣uni+1 − uni
∣∣}

It can be seen that the first and second summation terms in right of inequality
are zero as i loops over all possible values. The above equation thus reduces to

Σi∈K
∣∣un+1
i+1 − un+1

i

∣∣ ≤ Σi∈K
∣∣uni+1 − uni

∣∣
⇒ TV (n+ 1) ≤ TV (n)

3.7.3 MUSCL Scheme on Uniform grid

MUSCL stands for “Monotone Upstream-centered Schemes for Conservation Laws”.
This is a Finite Volume scheme which involves polynomial reconstruction of left
and right values at each interface which used to calculate flux across the interface.
Polynomial reconstruction can be done from the already known cell averages in
previous iteration. This scheme is second order accurate. The function can be
Taylor expanded about the node at xj in j′th cell.

v(x) = v(xj) +
(
x− xj

) ∂v
∂x

∣∣∣
xj

+
1

2

(
x− xj

)2 ∂2v

∂x2

∣∣∣
xj

+O(∆x3) (3.14)

30



Integrating the above equation over
(
xj− 1

2
, xj+ 1

2

)
yields

x
j+1

2∫
x
j− 1

2

v(x)dx = v(xj)

x
j+1

2∫
x
j− 1

2

dx+
∂v

∂x

∣∣∣
xj

x
j+1

2∫
x
j− 1

2

(
x− xj

)
dx+

1

2

∂2v

∂x2

∣∣∣
xj

x
j+1

2∫
x
j− 1

2

(
x− xj

)2
dx+O(∆x3)

vj∆x = v(xj)∆x+
1

2

∂v

∂x

∣∣∣
xj

(
x− xj

)2
∣∣∣xj+1

2

x
j− 1

2

+
1

6

∂2v

∂x2

∣∣∣
xj

(
x− xj

)3
∣∣∣xj+1

2

x
j− 1

2

+O(∆x3)

Second term in the RHS drops out because the grid considered is uniform grid
and the node is at the centre of the grid.

vj∆x = v(xj)∆x+
1

6

∂2v

∂x2

∣∣∣
xj

(
2

(
∆x

2

)3
)

+O(∆x3)

vj∆x = v(xj)∆x+
1

24

∂2v

∂x2

∣∣∣
xj

(∆x)3 +O(∆x3)

v(xj) ≈ vj −
1

24

∂2v

∂x2

∣∣∣
xj

(∆x)2

Using this value of v(xj) in (3.14),

v(x) = vj −
1

24

∂2v

∂x2

∣∣∣
xj

(∆x)2 +
(
x− xj

) ∂v
∂x

∣∣∣
xj

+
1

2

(
x− xj

)2 ∂2v

∂x2

∣∣∣
xj

+O(∆x3)

v(x) = vj +
(
x− xj

) ∂v
∂x

∣∣∣
xj

+
1

2

((
x− xj

)2 − (∆x)2

12

)
∂2v

∂x2

∣∣∣
xj

+O(∆x3)

Using central approximation of first order partial derivative,

v(x) = vj +
(
x− xj

)(vj+1 − vj−1

2∆x

)
+

1

2

((
x− xj

)2 − (∆x)2

12

)(
vj+1 + vj−1 − 2vj

∆x2

)
+O

(
∆x3

)
On introducing parameter κ in the above equation,

v(x) = vj +
(
x− xj

)(vj+1 − vj−1

2∆x

)
+

3κ

2

((
x− xj

)2 − (∆x)2

12

)(
vj+1 + vj−1 − 2vj

∆x2

)
+O(∆x3)

(3.15)

Putting x = xj− 1
2
in (3.15) results in

vR
j− 1

2
= vj −

1

4

[
(1 + κ)δvj− 1

2
+ (1− κ)δvj+ 1

2

]
where δvj+ 1

2
= vj+1 − vj and δvj− 1

2
= vj − vj−1.

Putting x = xj− 1
2
in (3.15) results in

vL
j+ 1

2
= vj +

1

4

[
(1− κ)δvj− 1

2
+ (1 + κ)δvj+ 1

2

]
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3.7.4 TVD Construction

TVD schemes are very useful as they follow very important TVD property. Flux
Limiter function can be used in order to put a limit on left and right reconstructed
states vL

j+ 1
2

and vR
j+ 1

2

at interface of j′th and (j + 1)′th cell. Starting with the
interfacial states reconstructed from solution in j′th cell,

vR
j− 1

2
= vj −

1

4

[
(1 + κ)δvj− 1

2
+ (1− κ)δvj+ 1

2

]
vL
j+ 1

2
= vj +

1

4

[
(1− κ)δvj− 1

2
+ (1 + κ)δvj+ 1

2

]
The expressions for the left and right states can further be written as

vR
j− 1

2
= vj −

1

4

[
(1 + κ)

δvj− 1
2

δvj+ 1
2

δvj+ 1
2

+ (1− κ)
δvj+ 1

2

δvj− 1
2

δvj− 1
2

]

vL
j+ 1

2
= vj −

1

4

[
(1− κ)

δvj− 1
2

δvj+ 1
2

δvj+ 1
2

+ (1 + κ)
δvj+ 1

2

δvj− 1
2

δvj− 1
2

]

Parameter Rj =
δv
j+1

2

δv
j− 1

2

is introduced to simplify the notations. Limiter function

ψ(Rj) is also introduced at this step. The above two expressions can be written
as

vR
j− 1

2
= vj −

1

4

[
(1 + κ)

1

Rj

δvj+ 1
2

+ (1− κ)Rjδvj− 1
2

]
vL
j+ 1

2
= vj −

1

4

[
(1− κ)

1

Rj

δvj+ 1
2

+ (1 + κ)Rjδvj− 1
2

]
We further introduce the limiter function ψ(Rj) and replace the occurances Rj in
the above expression by ψ(Rj) .

vR
j− 1

2
= vj −

1

4

[
(1 + κ)ψ

(
1

Rj

)
δvj+ 1

2
+ (1− κ)ψ

(
Rj

)
δvj− 1

2

]
vL
j+ 1

2
= vj −

1

4

[
(1− κ)ψ

(
1

Rj

)
δvj+ 1

2
+ (1 + κ)ψ

(
Rj

)
δvj− 1

2

]
vn+1
j can be derived from vnj in terms flux at the left and right faces of the j’th
cell.

vn+1
j = vnj − λ

[
g(vL

j+ 1
2
, vR
j+ 1

2
)− g(vL

j− 1
2
, vR
j− 1

2
)
]

Adding and subtracting an additional term in the above equation yields

vn+1
j = vnj−λ

[
g
(
vL
j+ 1

2
, vR
j+ 1

2

)
− g

(
vL
j− 1

2
, vR
j+ 1

2

)
+ g

(
vL
j− 1

2
, vR
j+ 1

2

)
− g

(
vL
j− 1

2
, vR
j− 1

2

)]
(3.16)

By making use of Mean Value Theorem, it is guaranteed to find a point u1 ∈
[vL
j− 1

2

, vL
j+ 1

2

] such that

∂g

∂u

(
u1, v

R
j+ 1

2

)
=
g
(
vL
j+ 1

2

, vR
j+ 1

2

)
− g

(
vL
j− 1

2

, vR
j+ 1

2

)
vL
j+ 1

2

− vL
j− 1

2
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Similarily, there exist a point u2 ∈ [vR
j− 1

2

, vR
j+ 1

2

] such that

∂g

∂u

(
vL
j− 1

2
, u2

)
=
g
(
vL
j− 1

2

, vR
j+ 1

2

)
− g

(
vL
j− 1

2

, vR
j− 1

2

)
vR
j+ 1

2

− vR
j− 1

2

The difference equation (3.16) can be written as,

vn+1
j = vnj−λ

∂g

∂u

(
u1, v

R
j+ 1

2

)(
vL
j+ 1

2
− vL

j− 1
2

)
−λ∂g

∂u

(
vL
j− 1

2
, u2

)(
vR
j+ 1

2
− vR

j− 1
2

)
(3.17)

Consider vL
j+ 1

2

− vL
j− 1

2

,

vL
j+ 1

2
− vL

j− 1
2

=

(
vj −

1

4

[
(1− κ)ψ

(
1

Rj

)
δvj+ 1

2
+ (1 + κ)ψ

(
Rj

)
δvj− 1

2

])

−
(
vj−1 −

1

4

(
(1− κ)ψ

(
1

Rj−1

)
δvj− 1

2
+ (1 + κ)ψ

(
Rj−1

)
δvj− 3

2

])

⇒ vL
j+ 1

2
−vL

j− 1
2

=

(
vj −

1

4

[
(1− κ)ψ

(
1

Rj

)
δvj+ 1

2

δvj− 1
2

δvj− 1
2

+ (1 + κ)ψ
(
Rj

)
δvj− 1

2

])

−

(
vj−1 −

1

4

[
(1− κ))ψ

(
1

Rj−1

)
δvj− 1

2
+ (1 + κ)ψ

(
Rj−1

) δvj− 3
2

δvj− 1
2

δvj− 1
2

])

⇒ vL
j+ 1

2
−vL

j− 1
2

=

(
vj −

1

4

[
(1− κ)ψ

(
1

Rj

)
Rjδvj− 1

2
+ (1 + κ)ψ

(
Rj

)
δvj− 1

2

])

−
(
vj−1 −

1

4

[
(1− κ)ψ

(
1

Rj−1

)
δvj− 1

2
+ (1 + κ)ψ

(
Rj−1

) 1

Rj−1

δvj− 1
2

])

⇒ vL
j+ 1

2
−vL

j− 1
2

=
(
vj − vj−1

)
−1

4

[
(1− κ)ψ

(
1

Rj

)
Rjδvj− 1

2
+ (1 + κ)ψ

(
Rj

)
δvj− 1

2

]

+
1

4

[
(1− κ)ψ

(
1

Rj−1

)
δvj− 1

2
+ (1 + κ)ψ

(
Rj−1

) 1

Rj−1

δvj− 1
2

]

⇒ vL
j+ 1

2
− vL

j− 1
2

=
(

1− (1− κ)

4

[
ψ

(
1

Rj

)
Rj − ψ

(
1

Rj−1

)]
−(1 + κ)

4

[
(ψ(Rj)− ψ(Rj−1)

1

Rj−1

])
δvj− 1

2

In the similar way, it can be shown that

vR
j+ 1

2
− vR

j− 1
2

=
(

1− (1− κ)

4

[
ψ
(
Rj+1

)
−
ψ
(
Rj

)
Rj

]

−(1 + κ)

4

[
(ψ

(
1

Rj+1

)
Rj+1 − ψ

(
1

Rj

)])
δvj− 1

2
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Using (3.7.4), (3.7.4) and then plugging it back in (3.17), it can be shown
that the scheme could be recast in Harten’s incremental form with coefficients
satisfying the required criteria under the following conditions.

1. 0 ≤ ψ(R) ≤ 3− κ
1− κ

− (1 + α)
1 + κ

1− κ

2. 0 ≤ ψ(R)

R
≤ 2 + α

where
α ∈

[
− 2, 2

1− κ
1 + κ

]
and then the scheme can be written in the form (3.13) with the coefficients

Cn
i− 1

2

and Dn
i+ 1

2

satisfying the condition demanded by Harten’s Lemma and thus
the scheme is TVD.

3.8 Roe Solver

Roe Solver is based on linear approximation of Riemann problem. The problem
of finding solution to

Ut + F ′(U)Ux

where U is n dimensional vector, F is flux function and F ′(U) is n× n Jacobian
matrix, is approximated by another problem of solving

Ut + AUx

which is set of n linear equations where A is n× n Jacobian matrix. Here

A = A (Ul, Ur)

is a function of left and right states. A satisfies the following conditions.

F (U)− F (V ) = A(U, V )(U − V )

A(U, V )→ F ′(U) as V → U

A(U, V ) has only real eigenvalues

A(U, V ) has complete set of eigenvectors

The flux function is given by

FRoe (U, V ) =
F (U) + F (V )

2
− 1

2
|A (U, V )| (U − V ) (3.18)

Consider the one dimensional case, Roe flux function is given by

Fi+ 1
2

=
1

2
(F (Ui) + F (Ui+1)) +

1

2
|λ| (Ui+1 − Ui)
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where λ = A (Ui, Ui+1). If further, the eigenvalue λ happens to be zero, then flux
reduces to

Fi+ 1
2

=
1

2
(F (Ui) + F (Ui+1))

This does not let the discontinuity insufficiently smear out. Hence there is a need
to prevent the second term on right hand side in (3.18) from going to zero.

λ =

λ, if λ ≥ ε

1
2

(
ε+ λ2

ε

)
, if λ ≤ ε

for small real ε > 0. This correction is also called Entropy Fix since it fixes the
entropy-violating solution which is obtained when eigenvalue λ = 0.

3.9 Important Numerical Flux schemes

Various flux schemes are known with respective advantages and disadvantages.
Low resolution schemes like Lax-Wendroff, Lax-Friedrichs do not yield accurate
solution mainly in case of nonlinear Partial Differential Equation. Some of the
useful schemes are described below with their flux functions:

First Order Upwind scheme

Considering the case of a > 0, we can use backward difference, central difference
or forward difference to approximate ∂u

∂x but the one which works out is backward
difference. Since a > 0, the information travels towards right and backward
difference works because it requires function value at the left node in order to
calculate the function value at right node, which is in accordance with actual flow
of information. In this case, Upwind Scheme is the following

un+1
i − uni
dt

+ a

(
uni − uni−1

dx

)
= 0

Considering the case of a < 0, we can use backward difference, central dif-
ference or forward difference to approximate ∂u

∂x but the one which works out is
forward difference. Since a < 0, the information travels towards left and forward
difference works because it requires function value at the right node in order to
calculate the function value at left node, which is in accordance with actual flow
of information. In this case, Upwind Scheme is the following

un+1
i − uni
dt

+ a

(
uni+1 − uni

dx

)
= 0
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Here both can be combined to approximate (2.6) by
un+1
i −un

i

dt + a
(
un
i −un

i−1

dx

)
= 0, if a > 0

un+1
i −un

i

dt + a
(
un
i+1−un

i

dx

)
= 0, if a < 0

(3.19)

Note: Here Forward Euler scheme is used to approximate partial time derivative
of function.

Further introducing the quantities a+ and a− such that, a+ = max (a, 0) and
a− = min (a, 0), then (3.19) can be collectively written as

un+1
i − uni
dt

+ a+

(
uni − uni−1

dx

)
+ a−

(
uni+1 − uni

dx

)
= 0

un+1
i = uni −

dt

dx

[
a+

(
uni − uni−1

)
+ a−

(
uni+1 − uni

)]
= 0 (3.20)

Numerical Flux function is given by

F (u, v) =

u, if a > 0

v, if a > 0

The above flux function is for the Advection equation considered for which flux
is linear in velocity, f(u) = au. The general flux function is the following which
reduces to the above expression for Advection equation.

F (u, v) =

u, if f is non-decreasing function between u and v

v, if f is non-increasing function between u and v

Lax-Wendroff scheme

For any function u (x, t), second order Taylor approximation gives

u(x, t+ dt) = u (x, t) +
∂u

∂t
dt+

1

2

∂2u

∂t2
dt2 (3.21)

Further, for Advection equation, ∂u
∂t = a∂u

∂x and

∂2u

∂2t
=

∂

∂t

(
∂u

∂t

)
=

∂

∂t

(
a
∂u

∂x

)
= a

∂

∂t

(
∂u

∂x

)

= a
∂2u

∂t∂x
= a

∂2u

∂x∂t
= a

∂

∂x

(
∂u

∂t

)
= a

∂

∂x

(
a
∂u

∂x

)
= a2 ∂

∂x

(
∂u

∂x

)
= a2∂

2u

∂2x
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Then (3.21) becomes,

u(x, t+ dt) = u (x, t) + a
∂u

∂x
dt+

1

2
a2∂

2u

∂2x
dt2

Suppose uni is the numerical solution in i′th cell at n′th time step, then the above
equation is approximated by

un+1
j − unj = a

unj+1 − unj−1

2∆x
∆t+

1

2
a2
unj+1 − 2unj + unj−1

∆x2
∆t

⇒ un+1
j − unj =

1

2

(
a

∆t

∆x

)
(unj+1 − unj−1) +

1

2

(
a2 ∆t2

∆x2

)(
unj+1 − 2unj + unj−1

)
∆t

⇒ un+1
j = unj +

1

2

(
a

∆t

∆x

)
(unj+1 − unj−1) +

1

2

(
a2 ∆t2

∆x2

)(
unj+1 − 2unj + unj−1

)
∆t

The quantity a∆t
∆x

denoted by ν is called CFL number. The above equation
reduces to

un+1
j = unj +

1

2
ν(unj+1 − unj−1) +

1

2
ν2
(
unj+1 − 2unj + unj−1

)
∆t

Flux function is given by

Fj+ 1
2

=
fj + fj+1

2
−
νj+ 1

2

2

(
fj+1 − fj

)
where

vj+ 1
2

=
aj+ 1

2

(
fj+1 − fj

)
− aj− 1

2

(
fj − fj−1

)
h2

and aj+ 1
2
is given by

aj+ 1
2

=

1
2

[
a
(
uj
)

+ a
(
uj+1

)]
, if a(uj) 6= a(uj+1)

a(uj), if a(uj) = a(uj+1)

Flux function is given by

Fj+ 1
2

=
fj + fj+1

2
−
νj+ 1

2

2

(
fj+1 − fj

)
where

vj+ 1
2

=
aj+ 1

2

(
fj+1 − fj

)
− aj− 1

2

(
fj − fj−1

)
h2

and aj+ 1
2
is given by

aj+ 1
2

=

1
2

[
a
(
uj
)

+ a
(
uj+1

)]
, if a(uj) 6= a(uj+1)

a(uj), if a(uj) = a(uj+1)
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Godunov Scheme

Consider the following problem with piecewise constant initial data.wt + (f (w))x = 0 , t ∈ (tn, tn+1]

w(x, tn) = u(x, tn)
(3.22)

where u(x, tn) is also denoted by uni if x ∈
(
xi− 1

2
, xi+ 1

2

)
. The problem could

be decomposed into many local Riemann problems centered at interfaces xi+ 1
2
.

wt + (f (w))x = 0 , t ∈ (tn, tn+1]

w(x, tn) =

uni , if x < xi+ 1
2

uni+1, if x > xi+ 1
2

(3.23)

If we further take the CFL number NCFL ≤ 1
2
, then the waves from xi+ 1

2
cannot

reach the line x = xi and x = xi+1 in the time used for evolution. Hence, problem
(3.22) can be interpreted as superposition of local Riemann problems if NCFL ≤ 1

2
.

The solution of (3.22) in (xi, xi+1)× (tn, tn+1] is given by

w(x, t) = wR

((
x− xi+ 1

2

)
/ (t− tn) , uni , u

n
i+1

)
⇒ w(x, tn+1) = wR

((
x− xi+ 1

2

)
/∆t, uni , u

n
i+1

)
where ∆t = tn+1 − tn. Average value of w(x, tn+1) in

(
xi− 1

2
, xi+ 1

2

)
, denoted by

un+1
i , in terms of grid width hi = xi+ 1

2
− xi− 1

2
is given by

un+1
i =

1

hi

x
i+1

2∫
x
i− 1

2

w(x, tn+1)

Integrating (3.22) over space-time interval
(
xi− 1

2
, xi+ 1

2

)
× (tn, tn+1] ,

x
i+1

2∫
x
i− 1

2

tn+1∫
tn

(
∂w (x, t)

∂t

)
dtdx = −

tn+1∫
tn

x
i+1

2∫
x
i− 1

2

(
∂f(w (x, t))

∂x

)
dxdt

x
i+1

2∫
x
i− 1

2

 tn+1∫
tn

∂w (x, t)

∂t
dt

 dx = −
tn+1∫
tn


x
i+1

2∫
x
i− 1

2

∂f(w (x, t))

∂x
dx

 dt

x
i+1

2∫
x
i− 1

2

w (x, t)

∣∣∣∣∣
tn+1

tn

 dx = −
tn+1∫
tn

f(w (x, t))

∣∣∣∣∣
x
i+1

2

x
i− 1

2

 dt
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x
i+1

2∫
x
i− 1

2

[w (x, tn+1)− w (x, tn)] dx = −
tn+1∫
tn

[
f
(
w
(
xi+ 1

2
, t
))
− f

(
w
(
xi− 1

2
, t
))]

dt

x
i+1

2∫
x
i− 1

2

w (x, tn+1) dx−

x
i+1

2∫
x
i− 1

2

w (x, tn) dx = −
tn+1∫
tn

[
f
(
w
(
xi+ 1

2
, t
))
− f

(
w
(
xi− 1

2
, t
))]

dt

hiu
n+1
i = hiu

n
i −

tn+1∫
tn

[
f
(
w
(
xi+ 1

2
, t
))
− f

(
w
(
xi− 1

2
, t
))]

dt

hiu
n+1
i = hiu

n
i −

tn+1∫
tn

[
f
(
wR
(
0, uni , u

n
i+1

))
− f

(
wR
(
0, uni−1, u

n
i

))]
dt

hiu
n+1
i = hiu

n
i −∆t

[
f
(
wR
(
0, uni , u

n
i+1

))
− f

(
wR
(
0, uni−1, u

n
i

))]
un+1
i = uni −

∆t

hi

[
f
(
wR
(
0, uni , u

n
i+1

))
− f

(
wR
(
0, uni−1, u

n
i

))]
un+1
i = uni −

∆t

hi

[
Fi+ 1

2
− Fi− 1

2

]
where Fi+ 1

2
= F (uL

i+ 1
2

, uR
i+ 1

2

) where the numerical flux function given by

F (uni , u
n
i+1) = f

(
uR
(
0, uni , u

n
i+1

))
A simple formula which is used for calculation purposes is

F (u, v) =

minw∈[u,v] f(w), if u ≤ v

maxw∈[u,v] f(w), if u > v

In terms of left and right reconstructed states ui− 1
2
and ui+ 1

2
, Godunov flux is

calculated as

Fi+ 1
2

= F
(
u−
i+ 1

2

, u+
i+ 1

2

)
= max

{
f
(

max
(

0, u−
i+ 1

2

)
, 0
)
, f
(

min
(

0, u+
i+ 1

2

)
, 0
)}

Roe Scheme

The problem of finding solution to (3.22) could be decomposed into many local
Riemann problems centered at interfaces xi+ 1

2
. The following linear problem is

considered in this case.
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wt + a(uni , u

n
i+1)ux = 0 , t ∈ (tn, tn+1]

w(x, tn) =

uni , if x < xi+ 1
2

uni+1, if x > xi+ 1
2

(3.24)

where

a(u, v) =


f(u)−f(v)

u−v , if u 6= v

f ′(u), if u = v

Solution of (3.24) is given by

w(x, t) =

uni , if x− xi+ 1
2
< a(uni , u

n
i+1)t

uni+1, if x− xi+ 1
2
> a(uni , u

n
i+1)t

Scheme can be written in the form

un+1
i = uni −

∆t

hi

(
Fi+ 1

2
− Fi− 1

2

)
where Fi+ 1

2
= F

(
xL
i+ 1

2

, xR
i+ 1

2

)
with flux function F given by

F (u, v) =
f(u) + f(v)

2
− 1

2
|a(u, v)| (u− v)

Local Lax-Frederichs Scheme/ Rusanov Scheme

F (u, v) =
1

2
(f(u) + f(v))− 1

2
λ (v − u)

where
λ = max(

∣∣f ′(u)
∣∣ , ∣∣f ′(v)

∣∣)

Lax-Frederichs Scheme

F (u, v) =
1

2
(f(u) + f(v))− 1

2

∆x

∆t
(v − u)

where ∆x is grid width and ∆t is time-step

Engquist Osher Scheme

F (u, v) =

f(u), if a ≥ 0

f(v), if a < 0

a =


f(u)−f(v)

u−v , if u 6= v

f ′(u), if u = v
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3.10 Periodic Boundary Problems

If we consider N + 1 faces and N cells, and suppose for the initial domain
I0 = [xmin, xmax] considered , xL0 denotes the position of leftmost face and xRN
denotes the position of rightmost face. The interval can be extended in the fol-
lowing manner ,

Ii = [xmin + i (xmax − xmin) , xmax + i (xmax − xmin)]

for any i ∈ Z . Then (
xL0
)
x∈Ii+1

=
(
xRN
)
x∈Ii

and (
xRN
)
x∈Ii−1

=
(
xL0
)
x∈Ii

for integers i ∈ Z .

Updating solution at any node i requires fluxes from the left and right faces
i.e. Fi+ 1

2
and Fi− 1

2
.

un+1
i = un+1

i

(
uni ;xi+ 1

2
, xi− 1

2
;Fi+ 1

2
, Fi− 1

2

)
(3.25)

For the second order schemes, the flux through right face i.e. Fi+ 1
2
depends on

function values at nodes i− 1, i, i+ 1, i+ 2 and their locations.

Fi+ 1
2

= Fi+ 1
2

(xi−1, xi, xi+1, xi+2;ui−1, ui, ui+1, ui+2) (3.26)

where xi is the location of i’th node and ui is the solution at i’th node at some
time step.

Similarily

Fi− 1
2

= Fi− 1
2

(xi−2, xi−1, xi, xi+1;ui−2, ui−1, ui, ui+1) (3.27)

Thus, from (3.25), (3.25) and (3.25)

un+1
i = un+1

i

(
xi−2, xi−1, xi, xi+1, xi+2, xi+ 1

2
, xi− 1

2
;ui−2, ui−1, ui, ui+1, ui+2

)
(3.28)
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N-2 N-1 N20 1

0 1

2

NN-1N 0

Number of faces = Number of Nodes + 1   

Illustrating the periodic boundary condition :
Flux through face N is same as flux through face 0 

Nodes

Faces

1N-1

 Figure 3.3: This figure shows the treatment done at the boundary while taking into
account the periodic boundary conditions.

It has already been proved in Section 3.2.3 that the following first order deriva-
tive is second order accurate

∂uj
∂x

=

1
Rj

(
uj+1 − uj

)
+Rj

(
uj − uj−1

)
xj+1 − xj−1

For j′th node located at xj, consider (j-1)’th, j’th and (j+1)’th cells. We define
here left difference and right difference in any cell.

Right difference : drj = xj+ 1
2
− xj

Left difference : dlj = xj − xj− 1
2

Left and right states at the
(
i+ 1

2

)′th face can be constructed using first order
derivative,

Left state :
uL
j+ 1

2
= uj + drj

(
∂uj
∂x

)

uL
j+ 1

2
= uj +

(
xj+ 1

2
− xj

)( 1
Rj

(
uj+1 − uj

)
+Rj

(
uj − uj−1

)
xj+1 − xj−1

)
Right state :

uR
j+ 1

2
= uj+1 − dlj+1

(
∂uj+1

∂x

)

uR
j+ 1

2
= uj+1 −

(
xj+1 − xj+ 1

2

)( 1
Rj+1

(
uj+2 − uj+1

)
+Rj+1

(
uj+1 − uj

)
xj+2 − xj

)

42



To take periodicity into account, the initial domain can be extended in a
manner such that the last face of i’th interval coincides with the first face of
(i+ 1)’th interval and the final face of (i+ 1)’th interval coincides with the last
face of i’th interval. In our convention, N nodes are indexed by integers from 0
to N -1. In our convention, xi denotes the position of nodes for i ∈ {0, 1, ..., N −
2, N − 1} and it denotes position of faces for i ∈ {−1

2
, 1

2
, 3

2
, .........., N − 3

2
, N − 1

2
}.

We need to know xi and ui for i = −1 and i = −2 while evaluating solution
at the left end. We further need to know xi and ui for i = N and i = (N + 1)

while updating solution at the right boundary. We can impose the periodicity
while calculating the above two quantities in the following way. We can set
i = mod

(
i∈{−2,−1,0,1,....,N−1,N,N+1}, N

)
, which results in i ∈ {0, 1, ...., N − 1},

for calculating ui’s. Further the extension is done in the way described below.
Since we know xi for i∈ {−2,−1, 0, 1, ...., N − 1} ,we can use the following to

deal with boundary indices.

xi =


xN−1, if i = −1

xN−2, if i = −2

x1, if i = N + 1

(3.29)

xi+ 1
2

=



xN− 3
2
, if i = −2

xN− 1
2
, if i = −1

x 1
2
, if i = N

x 3
2
, if i = N + 1

(3.30)

In this convention,

uR− 1
2

= u0 −
(
xN − xN− 1

2

)( 1
R0

(u1 − u0) +R0

(
u0 − unface−2

)
(x1 − x0) + (xN − xN−1)

)

uL− 1
2

= uN−1 +
(
xN− 1

2
− xN−1

)( 1
RN−1

(u0 − uN−1) +RN−1 (uN−1 − uN−3)

xN−1 − xN−3

)

Flux at the leftmost face,

F− 1
2

= F− 1
2

(
uL− 1

2
, uR− 1

2

)

uR− 3
2

= uN−1 −
(
xN−1 − xN− 3

2

)( 1
RN−1

(u0 − uN−1) +RN−1 (uN−1 − uN−2)

xN−1 − xN−3

)
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uL− 3
2

= uN−2 +
(
xN− 3

2
− xN−2

)( 1
RN−2

(uN−1 − uN−2) +RN−2 (uN−2 − uN−3)

xN−2 − xN−4

)

and then

F− 3
2

= F− 3
2

(
uL− 3

2
, uR− 3

2

)

uL1
2

= u0 + (x1 − x0)

(
1
R0

(u1 − u0) +R0

(
u0 − unface−2

)
(x1 − x0) + (xN−1 − xN−2)

)

uR1
2

= u1 −
(
x1 − x 1

2

)( 1
R1

(u2 − u1) +R1 (u1 − u0)

x2 − x0

)

and then

F 1
2

= F 1
2

(
uL1

2
, uR1

2

)
By using these recontructed states, we can first calculate the flux across the

face and this can be made use of to finally calculate un+1
j from unj .

3.11 Convergence Analysis

The error considered is

ep,h,α =

∑
j

|vj − uj|p∆xj

 1
p

where

vj =
1

∆xj

∫
Cj

u (x, t) dx

where Cj denotes j’th cell. uj is the numerical solution at j’th cell
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3.12 Numerical Results

3.12.1 Comparison of Various Flux Schemes

Figure 3.4: Riemann Problem considered, Shock wave is generated which moves
to right

Lax-Wendroff scheme produces lot of oscillations while Godunov and Roe schemes
yield solutions which apparently coincide with each other.
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Figure 3.5: Riemann Problem considered, Shock wave is generated which moves
to right

Lax-Friedrichs scheme yields solution which deviates a lot from the reference
solution. Local Lax-Friedrichs does better than Lax-Friedrichs. Roe and Godunov
schemes do slightly better than Local lax-Friedrichs.
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Figure 3.6: Riemann Problem considered, Shock wave is generated which moves
to left

Solutions corresponding to Roe and Enguist-Osher nearly coincide. Lax-
Wendroff produces oscillations near the shock.
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Figure 3.7: Riemann Problem considered, Shock wave is generated which moves
to left

Solution corresponding to Lax-Friedrichs is very different from the reference
solution. Enguist-Osher, Godunov, Roe and Local-Lax Friedrichs all result in
solution close to reference solution but the former three do slightly better than
Local Lax-Friedrichs.
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Figure 3.8: Riemann Problem considered, Rarefaction wave is generated

Godunov and Local-Lax Friedrichs yield solution close to reference solution
and Godunov does better than Local-Lax Friedrichs. Lax-Wendroff and Enguist-
Osher schemes do not produce the correct solution.
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3.12.2 Comparison of First and Second Order Schemes
based on solutions to Burgers Equation
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Figure 3.9: Riemann Problem considered, Shock wave is generated

The shock moves towards right with velocity 1
2
. The number of red dots in the

shock region indicate the accuracy of the scheme. Second order scheme produces
fewer red dots as compared to first order scheme in both grids.
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Figure 3.10: Riemann Problem with ul=1 and ur=-1, on different grids

The results are on the random grid. Two different random grids used have
different randomness with degree of randomness being 0.2 and 0.4 for the both of
them. The shock moves towards right with velocity 1

2
. The number of red dots

in the shock region indicate the accuracy of the scheme. Second order scheme
produces fewer red dots as compared to first order scheme.
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Figure 3.11: Riemann problem considered results in rarefaction waves

The solution with second order scheme is closer to the reference solution as
compared to the first order scheme.
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3.12.3 Comparison of Cell-centered and Vertex-centered
approach for different values of parameter beta con-
sidering solutions to Burgers Equation
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beta=100.0: Convergenve Rate = 1.734933
beta=2.0: Convergenve Rate = 1.768236
beta=1.5: Convergenve Rate = 1.797058
beta=1.0: Convergenve Rate = 1.757575

Figure 3.12: Convergence Analysis on Random Grid: Convergence is slow for beta
= 1
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Figure 3.13: Convergence Analysis on Random Grid: The rate of convergence is
very close to 2 with Cell-centered scheme
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beta=2.0: Convergenve Rate = 2.004043
beta=1.5: Convergenve Rate = 2.039784
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Figure 3.14: Convergence Analysis on Smooth Grid in which cells are clustered
at the middle: beta = 1.0 results in slow convergence

55



10−3 10−2

10−6

10−5

10−4

10−3

10−2

Grid Width

E
rr

or
 in

 S
ol

ut
io

n 
at

 t=
0.

12

Error vs Grid Width on Smooth(End−Clustered) Grid(Cell−Centered)(Burgers)

 

 

beta=100.0: Convergenve Rate = 1.960432
beta=2.0: Convergenve Rate = 1.978023
beta=1.5: Convergenve Rate = 2.039671
beta=1.0: Convergenve Rate = 1.926120

10−3 10−2

10−6

10−5

10−4

10−3

10−2

Grid Width

E
rr

or
 in

 S
ol

ut
io

n 
at

 t=
0.

12

Error vs Grid Width on Smooth(End−Clustered) Grid(Vertex−Centered)(Burgers)

 

 

beta=100.0: Convergenve Rate = 1.941505
beta=2.0: Convergenve Rate = 1.969884
beta=1.5: Convergenve Rate = 2.046727
beta=1.0: Convergenve Rate = 1.915122

Figure 3.15: Convergence Analysis on Smooth Grid in which cells are clustered
at the ends: beta = 1.0 results in slow convergence
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3.12.4 Comparison of Cell-centered and Vertex-centered
approach for different values of parameter beta con-
sidering solution to 1D Advection Equation
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beta=100.0: Convergenve Rate = 2.005507
beta=2.0: Convergenve Rate = 1.990930
beta=1.5: Convergenve Rate = 2.026634
beta=1.0: Convergenve Rate = 1.912390

Figure 3.16: Convergence Analysis on Random grid with Second Order scheme:
beta = 1.0 results in slow convergence
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beta=100.0: Convergenve Rate = 2.007849
beta=2.0: Convergenve Rate = 2.005652
beta=1.5: Convergenve Rate = 2.003835
beta=1.0: Convergenve Rate = 1.903429

Figure 3.17: Convergence Analysis on Random grid with Second Order scheme:
beta = 1.0 results in slow convergence
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3.13 Conclusions

• Careful consideration of plots which compare different flux schemes suggest
that Lax-Friedrichs is very dissipative scheme. Lax-Wendroff also results in lot of
oscillations near the shock. Godunov, Roe and Engquist-Osher are very good flux
schemes in general but both Roe and Inguist-Osher sometimes require incorpo-
ration of Entropy Fix. Local Lax-Friederichs also does a good job but Godunov
seems to be the best.

• Considering any of the figures fig. 4.2 , fig. 3.11 , it can be concluded that
second order scheme is better than the first order scheme since there are lesser
number of points in the shock region when second order scheme is considered
when compared to first order scheme.

• Considering fig. 3.12 , fig. 3.13 ,fig. 3.14, fig. 3.15 , fig. 3.16 ,fig. 3.17, it can
be concluded that the cell-centered scheme does is better than the vertex-centered
scheme because in most of the cases for different grids considered, error is found
to be less in case when cell-centered scheme is implemented.

• Again considering fig. 3.12 , fig. 3.13 ,fig. 3.14, fig. 3.15 , fig. 3.16 ,fig. 3.17,
it can be consistently seen that convergence rate is greater for beta =1.5 when
compared to beta being 1, 2 or 100. This suggests that the intermediate value
of beta should be chosen in the minmod limiter in order to get high rates of
convergence.
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Chapter 4

Finite Volume Method on
Moving Mesh

4.1 Overview

Moving mesh, as the name suggests, refers to completely dynamic mesh where
finite volume cells may change their location in time. Static meshes can be re-
placed by Moving meshes in order to get highly accurate solution in the regions
which require more computational effort. For example, if there is a shock mov-
ing through the mesh, then there are lot of points clustered around the shock,
clustering might be denser at the position of the shock than other positions on
the mesh. In that case, it is desirable to have more cells in the shock region
to get more accurate numerical solution. Not many finite volume cells could be
considered in the regions which does not require more computational effort.

Starting with a mesh lying in the domain [a0, b0], numerical domain at time t,
D(t) := [a(t), b(t)], where a(t) and b(t) denote the left and right mesh boundaries
after time t, for an initial value problem is divided into cells in the following way:

D(t) = ∪
i∈K

[
xi− 1

2
(t) , xi+ 1

2
(t)
]
or D(t) = ∪

i∈K
Ci (t)

where K = {1, 2, ......, N−1, N} is set of nodes , N being the total number of cells
considered and x 1

2
(t) = a (t), xN+ 1

2
(t) = b (t) and Ci (t) = {[xi− 1

2
(t) , xi+ 1

2
(t)], i ∈

K} are the cells. Here the leftmost face is taken to be at the left boundary of the
the numerical domain and the rightmost face to be at the right boundary. Here
cells are indexed by integers i ∈ K, and the faces are indexed by half-integers(
i+ 1

2

)
∀i ∈ {0} ∪ K. The common face of cell i and cell i + 1 is indexed by(

i+ 1
2

)
. Mesh at any time t is represented by set of points a(t) = x1(t) ≤ x2(t) ≤

...... ≤ xN−1(t) ≤ xN(t) = b(t). Solution at each cell depends on the fluxes coming
in and going out. In this simple 1-D case, each cell has two faces and each face
has two adjoining cells. The flux across any face is positive for one adjoining cell
and negative for the other one. So, for an arbitrary cell, contribution from one
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face is added and contribution from the other face is subtracted.

Consider an arbitrary finite volume cell,

Ci (t) = [xi− 1
2

(t) , xi+ 1
2

(t)]

Considering the following quantity, the total mass inside the i′th cell.

Q(i) =

x
i+1

2
(t)∫

x
i− 1

2
(t)

u (x, t) dx (4.1)

In terms of grid width’s, hi(t) = xi+ 1
2

(t)− xi− 1
2

(t), cell average value of the
solution in i′th cell, denoted by ui (t) is

ui (t) =
1

hi (t)

x
i+1

2
(t)∫

x
i− 1

2
(t)

u (x, t) dx

⇒

x
i+1

2
(t)∫

x
i− 1

2
(t)

u (x, t) dx = ui (t)hi (t) (4.2)

Consider rate of change of Q(i) with respect to time given defined in (4.1)

d
dt
Q(i) =

d
dt


x
i+1

2
(t)∫

x
i− 1

2
(t)

u (x, t) dx


By using Chain Rule of differentiation and Leibnitz Integral Rule, above ex-

pression reduces to

d
dt
Q(i) =

x
i+1

2
(t)∫

x
i− 1

2
(t)

∂u (x, t)

∂t
dx+ u

(
xi+ 1

2
(t) , t

) d
dt
xi+ 1

2
(t)

u
(
xi− 1

2
(t) , t

) d
dt
xi− 1

2
(t)

= −

x
i+1

2
(t)∫

x
i− 1

2
(t)

∂f(x, t)

∂x
dx+ u

(
xi+ 1

2
(t) , t

)
ωi+ 1

2
(t)− u

(
xi− 1

2
(t) , t

)
ωi− 1

2
(t) (4.3)
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where wi+ 1
2

(t) = d
dtxi+ 1

2
(t) is the velocity with which interface of i′th and

(i+ 1)′th cell moves. In this notation, (4.3) further simplifies to

d
dt

Q(i) = −
[
f
(
u
(
xi+ 1

2
(t) , t

))
− f

(
u
(
xi− 1

2
(t) , t

))]
+
[
u
(
xi+ 1

2
(t) , t

)
ωi+ 1

2
(t)− u

(
xi− 1

2
(t) , t

)
ωi− 1

2
(t)
]

d
dt

Q(i) = −
[
f
(
u
(
xi+ 1

2
(t) , t

))
− u

(
xi+ 1

2
(t) , t

)
ωi+ 1

2
(t)}

]
−
[
f
(
u
(
xi− 1

2
(t) , t

))
− u

(
xi− 1

2
(t) , t

)
ωi− 1

2
(t)}

] (4.4)

Further introducing a velocity dependent flux

g(u;w) = f(u)− uw

and then approximating flux g by numerical flux ĝ, (4.4) reduces to

d
dt
Q(i) = −

[
Fi+ 1

2
− Fi− 1

2

]
(4.5)

where Fi+ 1
2

= ĝ
(
uL
i+ 1

2
, uR

i+ 1
2
;wi+ 1

2

)
(4.6)

is the numerical flux at common face of and i′th and (i+ 1)′th and i ’th cell
From (4.2) and (4.5), it is apparent that Moving Mesh finite volume scheme is
given by

d
dt

[ui (t)hi (t)] = −
[
Fi+ 1

2
− Fi− 1

2

]
(4.6)

Since discrete time steps are considered for numerical implementation, inter-
face velocity is taken to be constant in any time interval

wi+ 1
2

(t) = wi+ 1
2
(tn) = wn

i+ 1
2
(shorthand notation) ∀ t ∈ [tn, tn+1]

Further in Cell-centered approach, cell boundaries are moved and then node
is considered to be at the middle of the two boundaries.

xn+1
i+ 1

2

= xn
i+ 1

2
+ wn

i+ 1
2
∆t

where ∆t = tn+1 − tn.

xn+1
i =

xn+1
i+ 1

2

+ xn+1
i− 1

2

2

4.2 Reconstruction

The left and right states for calculating the flux across a face are reconstructed
from the already known cell average values u′is,

ui (t) =
1

hi (t)

∫ x
i+1

2
(t)

x
i− 1

2
(t)

u (x, t)
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Left State: uL
i+ 1

2
(t) = ui (t)+

[
xi+ 1

2
(t)− xi (t)

]
minmod

(
sLi (t) , sMi (t) , sRi (t)

)
where minmod is a function which returns the argument with lowest absolute
value,

sLi (t) =
ui+1 (t)− ui (t)
xi+1 (t)− xi (t)

is the left difference, sRi (t) =
ui (t)− ui−1 (t)

xi (t)− xi−1 (t)
is the right difference

sMi (t) , the central difference could be
ui+1 (t)− ui−1 (t)

xi+1 (t)− xi−1 (t)
which is not second order accurate.

We could also choose sMi (t) =

1
Rj(t)

[
uj+1 (t)− uj (t)

]
+Rj (t)

[
uj (t)− uj−1 (t)

]
xj+1 (t)− xj−1 (t)

which is second order accurate difference, where Rj (t) =
xj+1 (t)− xj (t)

xj (t)− xj−1 (t)

Right State: uR
i+ 1

2
(t) = ui+1 (t)−

[
xi+1 (t)− xi+ 1

2
(t)
]
−minmod

(
sLi+1 (t) , sMi+1 (t) , sRi+1 (t)

)
and then finally

Fi+ 1
2

(t) = Fi+ 1
2

(
uL
i+ 1

2
(t) , uR

i+ 1
2

(t) ;wi+ 1
2

(t)
)

4.3 Flux Scheme

Roe Scheme: The following flux function is used in Roe scheme.

FRoe
i+ 1

2

(
u−
i+ 1

2

, u+
i+ 1

2

;wi+ 1
2

)
=
g
(
u−
i+ 1

2

;wi+ 1
2

)
+ g

(
u+
i+ 1

2

;wi+ 1
2

)
2

−1

2
|ai+ 1

2
|
(
u+
i+ 1

2

− u−
i+ 1

2

)
where

ai+ 1
2

=
f(u+

i+ 1
2

)− f(u−
i+ 1

2

)

u+
i+ 1

2

− u−
i+ 1

2

− wj+ 1
2

and g(u;w) = f(u)− uw.
This scheme could be modified by incorporating entropy fix which has been ex-
plained in section 3.8. aj+ 1

2
is not allowed to go zero and is lower bounded by a

quantity. This could be done by using a′
j+ 1

2

in place of aj+ 1
2
where

a′
j+ 1

2
=


aj+ 1

2
, if aj+ 1

2
> ε

ε+

(
a
j+1

2

)2

ε

2
if aj+ 1

2
< ε
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for some small ε > 0. This leaves a′
j+ 1

2

> ε
2
. And thus, finally,

Fi+ 1
2

(
u−
i+ 1

2

, u+
i+ 1

2

;wi+ 1
2

)
=
g
(
u−
i+ 1

2

;wi+ 1
2

)
+ g

(
u+
i+ 1

2

;wi+ 1
2

)
2

−1

2
|a′
i+ 1

2
|
(
u+
i+ 1

2

− u−
i+ 1

2

)
Godunov Scheme:
The following flux function is used in Godunov scheme.

Fi+ 1
2

(
u−
i+ 1

2

, u+
i+ 1

2

;wi+ 1
2

)
= max

{
g
(

max
(
wi+ 1

2
, u−

i+ 1
2

)
, wi+ 1

2

)
,

g
(

min
(
wi+ 1

2
, u+

i+ 1
2

)
, wi+ 1

2

)}
where g(u;w) = f(u)− uw

4.4 Time Integration

3-stage Runge Kutta scheme has been used which is described as follows.
� Initialisation

x
(0)

i+ 1
2

= xn
i+ 1

2
, x

(0)
i = xni , u

(0)
i = uni

� Step 1
x

(1)

i+ 1
2

= x
(0)

i+ 1
2

+ wi+ 1
2
∆tn

h
(1)
i = x

(1)

i+ 1
2

− x(1)

i− 1
2

u
(1)
i =

1

h
(1)
i

[
h

(0)
i u

(0)
i + dtR

(
x(0), u(0)

)]
� Step 2

x
(2)

i+ 1
2

=
3

4
x

(0)

i+ 1
2

+
1

4

[
x

(1)

i+ 1
2

+ wi+ 1
2
∆tn

]
x

(2)
i =

x
(2)

i+ 1
2

+ x
(2)

i− 1
2

2
, h

(2)
i = x

(2)

i+ 1
2

− x(2)

i− 1
2

u
(2)
i =

1

h
(2)
i

[
3

4
h

(0)
i u

(0)
i +

1

4

(
h

(1)
i u

(1)
i + dtR

(
x(1), u(1)

))]
� Step 3

x
(3)

i+ 1
2

=
1

3
x

(0)

i+ 1
2

+
2

3

[
x

(2)

i+ 1
2

+ wi+ 1
2
∆tn

]
x

(3)
i =

x
(3)

i+ 1
2

+ x
(3)

i− 1
2

2
, h

(3)
i = x

(3)

i+ 1
2

− x(3)

i− 1
2

u
(3)
i =

1

h
(3)
i

[
1

3
h

(0)
i u

(0)
i +

2

3

(
h

(2)
i u

(2)
i + dtR

(
x(2), u(2)

))]
whereR

(
x(k), u(k)

)
= g

((
u−
i+ 1

2

)(k)

,
(
u+
i+ 1

2

)(k)

;wi+ 1
2

)
−g
((

u−
i− 1

2

)(k)

,
(
u+
i− 1

2

)(k)

;wi− 1
2

)
for k = 0, 1, 2 and g is the numerical flux.
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4.5 Thomas algorithm

It is an special form of Gaussian Elimination used for solving the system of linear
equations Ax = q for a tridigonal matrix A. A sequence of row operations are
performed which finally lead to much simplification and evaluation of x given A
and d. 

b1 c1 0 0 0 0 0

a2 b2 c2 0 0 0 0

0 a3 b3 b3 0 0 0

0 0 . . . 0 0

0 0 0 . . . 0

0 0 0 0 aN−1 bN−1 cN−1

0 0 0 0 0 aN bN





x1

x2

x3

.

.

xN−1

xN


=



q1

q2

q3

.

.

qN−1

qN


This algorithm is a three-step process consisting of initial decomposition of matrix
A into lower triangular and upper triangular matrices followed by solving th
resulting linear systems by forward and backward substitution. The flow of the
algorithms goes as follows

Ax = q ⇒ LUx = q ⇒ Lp = q and Ux = p

and finally the last two linear systems are solved by Forward substitution and
Backward substitution respectively. The detailed explanation is given below

� Step 1: LU-Decomposition
Matrix A is decomposed into a lower triangular matrix L and an upper triangular
matrix U , A = LU .

b1 c1 0 0 0 0 0

a2 b2 c2 0 0 0 0

0 a3 b3 b3 0 0 0

0 0 . . . 0 0

0 0 0 . . . 0

0 0 0 0 aN−1 bN−1 cN−1

0 0 0 0 0 aN bN


=



1 0 0 0 0 0 0

l2 1 0 0 0 0 0

0 l3 1 0 0 0 0

0 0 . . . 0 0

0 0 0 . . . 0

0 0 0 0 lN−1 1 0

0 0 0 0 0 lN 0




d1 u1 0 0 0 0 0

0 d2 u2 0 0 0 0

0 0 d3 u3 0 0 0

0 0 . . . 0 0

0 0 0 . . . 0

0 0 0 0 0 dN−1 uN−1

0 0 0 0 0 0 dN
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with the elements of L and U given by
• d1 = a1, u1 = c1

• li = bi/di−1, di = di + ai − liui−1, ui = ci ∀i ∈ {2, 3, .....N − 2, N − 1}
• lN = bN/dN−1, dN = aN − lNuN−1

� Step 2: Forward Substitution
Here system Lp = q is solved by forward substitution, which means pi+1 is found
out by already known p1, p2, ..., pi

1 0 0 0 0 0 0

l2 1 0 0 0 0 0

0 l3 1 0 0 0 0

0 0 . . . 0 0

0 0 0 . . . 0

0 0 0 0 lN−1 1 0

0 0 0 0 0 lN 0





p1

p2

p3

.

.

pN−1

pN


=



q1

q2

q3

.

.

qN−1

qN


The coefficients pi′s are given by
• p1 = q1

• pi = qi − lipi−1 ∀i ∈ {2, 3, ...., N − 1, N}

� Step 3: Backward Substitution
Here system Ux = p is solved by backward substitution, which means pi−1 is
found out by already known pi, pi+1, ..., pN−1, pN

d1 u1 0 0 0 0 0

0 d2 u2 0 0 0 0

0 0 d3 u3 0 0 0

0 0 . . . 0 0

0 0 0 . . . 0

0 0 0 0 0 dN−1 uN−1

0 0 0 0 0 0 dN





x1

x2

x3

.

.

xN−1

xN


=



p1

p2

p3

.

.

pN−1

pN


The coefficients pi′s are given by
• xN = pN/dN

• xi = (pi − uixi+1) /di ∀i ∈ {N − 1, N − 2, ...., 2, 1}

To sum up, in slightly different notations, this is how various steps are imple-
mented:
� c′1 = c1/b1

� c′i = ci/ (bi − c′i−1ai) ∀i ∈ {2, 3, ..., N − 1, N}
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� d′1 = d1/b1

� d′i = (di − d′i−1ai) / (bi − c′i−1ai) ∀i ∈ {2, 3, ..., N − 1, N}

� xN = d′N

� xi = d′i − c′ixi+1 ∀i ∈ {N − 1, N − 2, ..., 2, 1}
x is the final solution.

4.6 CFL Condition

Here parameters α < 1 and β > 1 are chosen so that hnew(i) ≥ (1− α)hold(i),

∀i ∈ Z where hold(i) = xn
i+ 1

2

− xn
i− 1

2

is the old spacing and hnew(i) = xn+1
i+ 1

2

− xn+1
i− 1

2

is the new spacing. In the implementation α = 0.9 and β = 1.1 have been used.
This is implemented in the following way.

• Choose ∆t1n = min
i

(
hni

f ′ (uni − wni )

)

• Choose ∆t2n = min
i

(
(1− α)hni
−∆wn,−i

,
(β − 1)hni

∆wn,+i

)

where ∆wn,−i = min
(
wn
i+ 1

2

− wn
i− 1

2

, 0
)
and ∆wn,+i = max

(
wn
i+ 1

2

− wn
i− 1

2

, 0
)

• Finally, take ∆tn to be the minimum of the two.

∆tn = min
(
∆t1n,∆t

2
n

)

4.7 Different Mesh Velocities considered and cor-
responding results with Cell-Centered Mov-
ing Mesh method

� One way is to choose constant velocity for the mesh, i.e. wn
i+ 1

2

= c,∀n ∈ Z+,
for all faces, where c is a constant. In this case, the solution can evolve in the
mesh indefinitely with excellent scheme like Godunov Scheme.

� Velocity equivalent to local shock speeds
Following velocity is considered

wn
i+ 1

2
=
f(uni+1)− f(uni )

uni+1 − uni

Nodes near the shock come very close to each other which makes time step be-
comes very small and thus the numerical implementation cannot be performed
for long time with this choice of velocities.
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Figure 4.1: For the Riemann problem with ul=1 and ur=0, the two nodes coming
closer can be clearly seen which results in very small time step

� Velocity smoothed out using local shock speeds
• Assigning velocity to cell faces

wn
i+ 1

2
=
f(uni+1)− f(uni )

uni+1 − uni
• Smoothing it
Consider the quantity,

J =
1

2
Σj∈Z

(
wj+ 1

2
− wj+ 1

2

)2

+
α

2
Σj∈Z

(
wj+ 1

2
− wj− 1

2

xj+ 1
2
− xj− 1

2

)2

To get smooth velocity profile from unsmoothed velocities, J could be minimised
over wi+ 1

2
. This could be done by setting ∂J

∂w
j+1

2

equal to zero.

∂J

∂wj+ 1
2

= 0 ⇒
(
wj+ 1

2
− wj+ 1

2

)
+α

 wj+ 1
2
− wj− 1

2(
xj+ 1

2
− xj− 1

2

)2 +
wj+ 1

2
− wj+ 3

2(
xj+ 1

2
− xj+ 3

2

)2

 = 0

⇒
(
wj+ 1

2
− wj+ 1

2

)
+ α

(
wj+ 1

2
− wj− 1

2

hj
2 +

wj+ 1
2
− wj+ 3

2

hj+1
2

)
= 0
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⇒ aj+ 1
2
wj− 1

2
+ bj+ 1

2
wj+ 1

2
+ cj+ 1

2
wj+ 3

2
= wj+ 1

2

with coefficients given by

aj+ 1
2

= − α
h2
j

, bj+ 1
2

= 1− α

h2
j

− α

h2
j+1

, cj+ 1
2

= − α

h2
j+1

The smooth velocities wj+ 1
2

′s can be found out by solving the system Aw = w

with A being a tridigonal matrix using Thomas Algorithm.

The smooth velocities wj+ 1
2

′s obtained above are slightly problematic since
the velocity profile starts becoming nearly vertical in the shock region. In order
to avoid this, the velocities wj+ 1

2

′s could be chosen such that points ahead of
the shock in the direction of shock are assigned slightly larger velocity as com-
pared to the points before the shock. For instance for the Reimann problem with
ul = 1, ur = 0, choice w′j+ 1

2
= wj+ 1

2
+ 0.3 + 0.2ni/N works out where ni = i is the

node index corresponding to the i′th node, wj+ 1
2
being the smoothed velocities

obtained from the above rule. In general, choice w′j+ 1
2

= wj+ 1
2

+a1 +a2 ∗s∗ni/N ,
s being the shock speed works out for certain values of a1 and a2 for the Reimann
problem considered where shock gets generated.
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When smoothed velocities obtained by minimising the quantity J are used then it
can be seen that smaller values of α result in velocities close to local shock speeds.
Larger values of α, result in almost a straight line profile of velocities .
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Figure 4.2: Riemann Problem with ul=1 and ur=0, on moving grids
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� Another choice of velocities is as follows: • Assign velocity to cell faces

wn
j+ 1

2
=
unj + unj+1

2
for Burgers

• Consider the quantity,

Sj+ 1
2

=
1

3

(
uj + uj+1 +

uj−1 + uj+2

2

)
or wj+ 1

2

• If Sj is positive, then choose

wj+ 1
2

=
1

2

(
wj− 1

2
+ wj+ 1

2

)
• If Sj is negative, then choose

wj+ 1
2

=
1

2

(
wj+ 1

2
+ wj+ 3

2

)
The last two steps could be repeated multiple times in order to get very smooth
velocity profile with few grid points right after the shock moving with significant
non-zero velocity.

For p = 20, the velocity profile looks as follows and it be seen that it starts
becoming vertical as time increases. After a certain time time-step becomes very
small as some nodes come very close to each other and hence the solution cannot
be obtained for more time.
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4.8 Convergence Analysis on different moving
meshes
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Static Mesh:Convergence Rate = 0.943860
Moving Mesh(M2):Convergence Rate = 0.943830

(a) Moving Mesh M2:vi(t) = −cit2, ci > 0
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Moving Mesh:Convergence Rate = 0.965239

(b) Mesh moving with constant velocity 1.2
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(c) Moving Mesh M2:vi(t) = −cit2, ci > 0
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(d) Mesh moving with constant velocity 1.2

Figure 4.3: Comparison of Moving meshes with Static Mesh
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(a) Solution with First Order
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(b) Solution with Second Order
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Static Mesh:Convergence Rate = 0.943860
Moving Mesh:Convergence Rate = 0.979238

(c) Comparison with First Order
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Static Mesh:Convergence Rate = 2.097872
Moving Mesh:Convergence Rate = 2.097252

(d) Comparison with Second Order

Figure 4.4: Solution on Moving Mesh M3:[v(t) = −ci cos(t), ci ≥ 0] and its com-
parison with Static Mesh

It can be seen that second order scheme does better than the first order scheme
since the solution with second order scheme is very close the reference solution
while the solution with the first order scheme is not very close to the reference
solution everywhere.
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Static Mesh:Convergence Rate = 0.943860
Moving Mesh(M1):Convergence Rate = 0.922464
Static Mesh(M2):Convergence Rate = 0.919795
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Static Mesh:Convergence Rate = 2.097872
Moving Mesh(M1):Convergence Rate = 2.076456
Static Mesh(M2):Convergence Rate = 2.077235
Moving Mesh(M3):Convergence Rate = 2.097252

Figure 4.5: Comparison of different meshes, M1: vi(t) = −cit, M2: vi(t) = −cit2,
M3: v(t) = −ci cos(t), ci ≥ 0, ci = −kx0i (x0i − 2π) , k > 0

Convergence plot for different meshes seems to coincide with each other when
degree of freedom is large for both first and second order schemes.
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4.9 Conclusion

Looking at fig. 4.5, it can be seen that the different meshes considered result
in nearly the same convergence rate eventually upon mesh refinement. However,
since selected velocity profiles have been tried, so it is not possible to make a
general comment on the role of velocity profile. If lagrangian velocity is consid-
ered for mesh movement, then the early compression of cells could be delayed by
properly smoothing out the mesh velocity profile.
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Chapter 5

AREPO Moving Mesh Scheme

5.1 Overview

This scheme is finite volume analogue of Adaptive Mesh Refinement finite element
method. The accuracy in the solution can be increased in the regions of interest,
such as region near the shock. For 1D mesh generation, Voronoi approach is
adopted which takes very simple form in one space dimension. It involves taking
common face of any two adjacent mesh-generating points, also called nodes, at
their geometric center.

xi+ 1
2
(t) =

xi(t) + xi+1

2
(t)

and then the numerical domain is subdivided into cells

D = ∪
i∈K

[
xi− 1

2
(t) , xi+ 1

2
(t)
]
or D = ∪

i∈K
Ci (t)

where K = {1, 2, ......, N−1, N} is set of nodes , N being the total number of cells
considered and x 1

2
(t) = a (t), xN+ 1

2
(t) = b (t) and Ci (t) = {[xi− 1

2
(t) , xi+ 1

2
(t)], i ∈

K} are the cells

Starting with one dimensional Conservation Law
∂u

∂t
+
∂f(u)

∂x
= 0

Note: In the discussion below x = x(t), u = u(x, t) arguments have been omit-
ted for notational simplicity

Integrating it over an arbitrary cell indexed by i, Ci = (xi− 1
2
, xi+ 1

2
)∫

Ci

∂u

∂t
dx = −

∫
Ci

∂f(u)

∂x
dx (5.0)

Using the rule

d

dt

∫ x
i+1

2

x
i− 1

2

udx

 =

∫ x
i+1

2

x
i− 1

2

∂u

∂t
dx+ u

(
xi+ 1

2

) dxi+ 1
2

dt
− u

(
xi− 1

2

) dxi− 1
2

dt
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⇒
∫ x

i+1
2

x
i− 1

2

∂u

∂t
dx =

d

dt

∫ x
i+1

2

x
i− 1

2

udx

+ u
(
xi− 1

2

) dxi− 1
2

dt
− u

(
xi+ 1

2

) dxi+ 1
2

dt

Using the above expression, (5.1) becomes

d

dt

∫ x
i+1

2

x
i− 1

2

udx

 = −
∫ x

i+1
2

x
i− 1

2

∂f(u)

∂x
dx+ u

(
xi+ 1

2

) dxi+ 1
2

dt
− u

(
xi− 1

2

) dxi− 1
2

dt

Using the notations Qi =
∫ x

i+1
2

x
i− 1

2

udx, above expression reduces to

Qi = −
∫ x

i+1
2

x
i− 1

2

∂f(u)

∂x
dx+ u

(
xi+ 1

2

) dxi+ 1
2

dt
− u

(
xi− 1

2

) dxi− 1
2

dt

dQi

dt
=
[
fi− 1

2
− fi+ 1

2
+ u

(
xi+ 1

2

)
ωi+ 1

2
− u

(
xi− 1

2

)
ωi− 1

2

]
dQi

dt
= −

[
{fi+ 1

2
− u

(
xi+ 1

2

)
ωi+ 1

2
} − {fi− 1

2
− u

(
xi− 1

2

)
ωi− 1

2
}
]

Q
(n+1)
i = Q

(n)
i −∆t

[
F̂i+ 1

2
− F̂i− 1

2

]
, F̂ being the approximation of f(u) - uw

vn+1
i hn+1

i = vni h
n
i −∆t

[
F̂i+ 1

2
− F̂i− 1

2

]
where vni is the numerical solution at t = tn

5.2 Reconstruction

There is a need to limit the reconstructed value of a quantity at cell-interfaces
from the current values in surrounding cells in order to get higher order accuracy
in numerical solution. However, it is very important to apply this reconstruction
only in the selected regions. In the regions of discontinuity, for example, near a
shock wave, reconstruction of a can yield values which may be an overshoot or
undershoot and may thus give rise to oscillations in the solution in the neigh-
bouring finite volume cells. The gradient that has been used for reconstruction
of various quantities in different cells is obtained as follows.

Starting with the following gradient

(∇φ)′i =
1

hi

∑
j=i−1,i+1

(
φi + φj

2

ri,j
ri,j

)
In the convention, r̂i,i+1 = 1 and r̂i,i−1 = −1, above quantity takes the follow-

ing form

(∇φ)′i =
φi+1 − φi−1

2hi

78



which is simply the first order central approximation based on values of φ on
left and right. Further, a factor limiting the gradient is added

(∇φ)i = αi(∇φ)′i

where αi = min
(
1, ψij

)
, with

ψij =


(φmaxi − φi) /∆φij if ∆φij > 0(
φmini − φi

)
/∆φij if ∆φij < 0

1, if ∆φij = 0

∆φij =


(∇φ)i

(
xi+ 1

2
− xi

)
for j = i+ 1

2

(∇φ)i

(
xi− 1

2
− xi

)
for j = i− 1

2

1, for j = i

φmaxi = max (φj) and φmini = min (φj), j ∈ {i− 1, i, i+ 1}

(∇φ)i is the final gradient that has been used. The factor αi which has been
multiplied acts like a limiter. It does not let the gradient become too large in the
regions where φ fluctuates a lot.

The consequent steps below describe the reconstruction done at the face where
Muscle-Hancock scheme has been used to calculate left and right reconstructed
state at the face

� u(x, tn) = uni + (∇u)i(x− xni )

� un,−
i+ 1

2

= uni + (∇u)i
hni
2

� un,+
i− 1

2

= uni − (∇u)i
hni
2

Muscle-Hancock scheme is based on the reconstructed value of numerical flux
at the faces at half time steps. The following finite volume scheme is used

un+1
i hn+1

i = uni h
n
i − (tn+1 − tn)

[
F
n+ 1

2

i+ 1
2

− F n+ 1
2

i− 1
2

]
where

F
n+ 1

2

i+ 1
2

= F

(
u
n+ 1

2
,L

i+ 1
2

, u
n+ 1

2
,R

i+ 1
2

)
where

u
n+ 1

2
,L

i+ 1
2

= u
(
xL
i+ 1

2
(tn + ∆tn/2) , tn + ∆tn/2

)
Following the steps, we finally get
� u

n+ 1
2
,−

i+ 1
2

= uni + (∇u)i
hni
2
− ∆t

2hni

(
F
(
un,−
i+ 1

2

)
− F

(
un,+
i− 1

2

))
− wn

i+ 1
2

∆t
2
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5.3 Mesh Movement

The following velocities have been tried out for mesh movement starting from
local shock speeds.
• Velocity of node is taken to be the lagrangian velocity itself ωi = vi

• Velocity of node is taken to be the slightly different from lagrangian veloc-
ity in order to move the node towards the centre of the cell ωi = (1 − α)vi +

α
(
xi+ 1

2
− xi

)
/∆t where ∆t is the time-step and α is the degree by which node

is moved towards center of the cell.
Finally for the calculation purposes, velocity of face is taken to be the the

average of left and right values ωi+ 1
2

= ωi+ωi+1

2

5.4 Time Integration

Local time step is calculated as follows

∆ti = NCFL
hi

|vi − wi|
for cell i

Finally the global time-step is chosen for the mesh evolution which is the
minimum value of ∆ti over all nodes

∆t = min
i
ti
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(b) Initial Condition: u0(x) = sin(x) + 0.2
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(c) Initial Condition: u0(x) = sin(x)

0 1 2 3 4 5 6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Grid

S
ol

ut
io

n 
at

 t=
0.

6

Solution with AREPO scheme

 

 

Numerical Solution
Actual Solution
Initial Condition

(d) Initial Condition: u0(x) = sin(x) + 0.2

Figure 5.1: Evolution of Moving Mesh and the Numerical Solution on Moving
Mesh with AREPO scheme when mesh moves with local shock speed
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(a) First Order Scheme
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(b) Second Order Scheme

Figure 5.2: Shock propagation with AREPO scheme(α=0.0): Solution in Y-axis
and Grid on X-axis

Since the degree of movement of node towards the cell centre is zero, points
near the shock cross each other. Lot of oscillation can be seen in the solution near
the shock region.
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(a) First Order Scheme
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Figure 5.3: Shock propagation with AREPO scheme(α=0.1): Solution in Y-axis
and Grid on X-axis

Since the node is moved slightly towards the cell centre, oscillations are con-
trolled to some extent. Points near the shock cross each other near the shock
region.
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(a) First Order Scheme
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(b) Second Order Scheme

Figure 5.4: Shock propagation with AREPO scheme(α=0.2): Solution in Y-axis
and Grid on X-axis

Degree of movement of nodes towards the respective cell-centers is high and
thus there is no crossing of nodes. Oscillations in the solution are not seen any-
more.
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(a) First Order Scheme
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(b) Second Order Scheme

Figure 5.5: Shock propagation with AREPO scheme(α=0.3): Solution in Y-axis
and Grid on X-axis

Degree of movement of nodes towards the respective cell-centers is high and
hence nodes do not cross one another. There are no oscillations in the solution
but the solution seems to be slightly diffused near the shock.
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(a) First Order Scheme
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Figure 5.6: Shock propagation with AREPO scheme(α=0.4): Solution in Y-axis
and Grid on X-axis

Nodes do not cross one another as the degree of movement of nodes towards
the respective cell-centers is very high. There are no oscillations in the solution
but there is pronounced diffusion in the solution near the shock.
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(a) First Order Scheme
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Figure 5.7: Shock propagation with AREPO scheme(α=0.5): Solution in Y-axis
and Grid on X-axis

Nodes are taken to be at the respective cell-centers and thus crossing of nodes
is totally avoided. There are no oscillations in the solution but the degree of
diffusion in the solution is very high.
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5.5 Conclusion

Looking at fig. 5.2,fig. 5.3,fig. 5.4,fig. 5.5,fig. 5.6,fig. 5.7 it can be seen that
AREPO moving mesh scheme effectively handles the shock waves when the local
shock speed is used for mesh movement and the nodes are properly moved towards
the cell-centres. When α, the degree of movement of node towards the cell-centre,
is zero, then the nodes cross each other and there are lot of oscillations in the
solution near the shock. Increase in α results in reduction in number of nodes
crossing one another. Increase in α also decreases the oscillations in the solution.
However, it increases the degree of diffusion in the solution near the shock. So
in case of α = 0.5, which corresponds to node being at the cell-centres, although
there are no nodes crossing and there are no oscillation, but the solution is very
diffused near the shock. So, some intermediate value of α seems to do the best
job overall. Out of the values of α tried out, α=0.2 seems to do better than all
others since the there are no oscillations in this case and the solution is is not
very diffused near the shock.
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Appendices
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Appendix A

Runge-Kutta Scheme

Runge-Kutta schemes are used for updating the solution at the next iteration
given the current value. First order Runge-Kutta scheme is also known as Forward
Euler scheme. Runge-Kutta Scheme of higher orders are more accurate.
Consider solving the equation,

du

dt
= L(u)

First, second and third order schemes for updating the solution are described
below.
RK1 Scheme: This is first order accurate scheme.

u(0) = un

u(1) = un + δtL(u(0))

un+1 = u(1)

RK2 Scheme: This is second order accurate scheme

u(0) = un

u(1) = un + δtL(u(0))

u(2) =
1

2
un +

1

2

(
u(1) + δtL(u1)

)
un+1 = u(2)

RK3 Scheme: This is third order accurate scheme

u(0) = un

u(1) = un + δtL(u(0))

u(2) =
3

4
un +

1

4

(
u(1) + δtL(u(1))

)
u(3) =

1

3
un +

2

3

(
u(2) + δtL(u(2))

)
un+1 = u(3)
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