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Abstract

Our attempts to understand the dynamics of real world complex systems often rely on the
observations made on them or average responses from them. The science of extracting
information from such time series or observational data forms the area of time series anal-
ysis. The dynamics underlying most of the systems in nature is nonlinear and therefore
complex. This nonlinearity leaves signatures in the dynamics of the system, captured
by the time series of its variables or observables. Nonlinear time series analysis strives
to seek and interpret these signatures in order to capture the nature of the underlying
dynamics. Such studies are hindered due to various shortcomings of the data itself. Some
of the primary problems we encounter in this respect are noise, data gaps and finite size
of data sets. This thesis attempts to address these problems in the context of nonlinear
time series analysis.

The origins of dynamical systems theory can be traced back to the celestial. Many of
the ideas of this theory were developed while trying to address the three body problem.
Subsequently, nonlinear dynamics has found applications in many fields of astrophysics.
These include stellar pulsations, accretion disc physics, galactic models and so on. The
use of time series analysis in astrophysics has been limited in the past due to the absence
of long, continuous and high quality datasets. The advent of space telescopes could
overcome some of these problems. Subsequently period doubling, chaotic and strange
non chaotic behavior etc have been established in a large variety of stars. This thesis
is a search for the dynamics of variable stars in more detail, seeking out signatures of
nonlinearity and chaos in various scenarios from observational data.

After presenting the basics of nonlinear time series analysis and the physics of variable
stars, we proceed to address the issues commonly encountered in the nonlinear time series
analysis of real world data. We identify three main issues in this context, namely the
presence of data gaps, noise and finite sizes of data.

We start by analyzing the effect that data gaps have on the estimation of the corre-
lation dimension and multifractal spectrum from time series data. This is implemented
by introducing gaps into long evenly sampled datasets of standard nonlinear dynamical
systems. The frequency and size of gaps introduced are drawn from two Gaussian distri-
butions, with varying means. After the introduction of gaps, the time series is merged,
ignoring the gaps and the quantifiers of interest like correlation dimension, multifractal
measures etc. are calculated for this gap-affected or unevenly sampled time series. The
variation of the value of the quantifier from the evenly sampled value then enables us to
identify a region where reliable conclusions can be drawn about the nature of the under-
lying dynamics of the system. We apply this to calculate the correlation dimension, D2,
of a few pulsating variable stars, from their light curves. We also use the results of the
analysis to calculate the multifractal spectrum of multiple ecological and meteorological
time-series. In these contexts, we use the method of surrogate data testing to establish
that the multifractality arises as a result of deterministic nonlinearity.
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We then proceed to address the question how presence of noise can confuse the con-
clusions while identifying the underlying dynamics of a nonlinear dynamical system. We
point out the difficulty in differentiating between limit cycle and chaotic dynamics, in a
dynamical system evolving in the presence of noise. We show that the bicoherence, which
is a higher order spectrum, proves to be a useful tool in differentiating between these two
dynamical states.

We note identifying strange non chaotic behavior from data is a major challenge.
Spectral scaling of peaks in the strobed power spectrum is one of the most accepted
methods to identify strange non chaotic behavior. We show that noise contaminated
quasiperiodicity shows exactly the same scaling behavior as a strange non chaotic time
series. The use of a bicoherence based filter while identifying peaks during scaling can
differentiate between the two dynamical states. We further use bicoherence based mea-
sures to analyze the underlying dynamics of RR Lyrae stars. We show that while RRab
Lyrae stars exhibit chaotic behavior, RRc Lyrae stars can be grouped into two subclasses
that exhibit strange non chaotic and quasiperiodic dynamics.

We also use the methods of time series analysis to study the Kepler light curves of
over contact binary stars. Using the correlation dimension, multifractal spectrum and
the bicoherence, we see that most overcontact binaries show chaotic dynamics.

Recurrence networks have been shown to be successful in the analysis of small data
sets. We utilize the power of recurrence networks to distinguish between the different
classes of RRc Lyrae stars identified using the bicoherence analysis. We also compute
the measures of recurrence networks for a large number of binary stars and show how
they can help classify close binary stars into semi detached, over-contact and ellipsoidal
binaries.

One of the significant results of our study is that we could relate the nonlinear mea-
sures computed from time series with relevant astrophysical properties of the stars. Thus
the extend of contact between the companion stars in these cases is shown to be signifi-
cantly correlated with its nonlinear properties, specifically the correlation dimension and
bicoherence. Hence the computation of these nonlinear measures gives us an estimate of
the extend of contact between these stars.

The thesis is organized as follows.
In Chapters 1 and 2, we introduce the basics of nonlinear time series analysis and the

physics of variable stars respectively.
In Chapter 3, we describe the effect that data gaps have on estimated the correlation

dimension and multifractal spectrum from time series data and use the results to analyze
variable stars light curves and multiple ecological and meteorological time-series.

In Chapter 4, we use the bicoherence function to distinguish between periodic states
contaminated with noise and chaotic and strange non chaotic states. In Chapter 5 we
present the measures correlation dimension, multifractal spectrum and the bicoherence
computed from data and discuss the dynamics of overcontact binary stars derived from
these measures.

In Chapter 6, we present recurrence networks constructed form observational data of
RRc Lyrae stars and contact binary stars and use the characteristics of the recurrence
networks to classify them into various sub categories.

In the concluding chapter, we summarize the importance of the results presented
in the thesis and provide future directions for research in this area. Identifying noisy
quasiperiodicity and distinguishing it from strange non chaotic behavior is a difficult task,
which we could successfully address in our study. We could relate measures from nonlinear
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time series analysis to astrophysical properties of the stars studied. This could lead to
classification of different types of astrophysical systems just from their observational data
alone.
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Chapter 1

Introduction: Nonlinear Time Series
Analysis

Our understanding of the physical world has been largely shaped through interpretation
of observations. A very important kind of observation is of phenomena that vary over
time. A series of such observations, ordered in time is called a time series. The techniques
used to analyze these time series are what constitute the field of time series analysis.

Depending on the nature of the underlying system from which the time series is de-
rived, we may broadly classify the time series as linear and nonlinear time series. The
dynamics of real world systems is generally nonlinear in nature. To develop an under-
standing of these systems, we rely mostly on observations from any one of its variables
or an average response. Modeling these systems based on the observations of just one of
their variables alone can be challenging. Nonlinear time series analysis aims to provide
possible directions which aid in this modeling process. A second way to classify time
series is based on whether the underlying process is primarily stochastic or deterministic.
Natural systems may have a combination of deterministic or stochastic dynamics or may
even switch between these two types of dynamics. Distinguishing between deterministic
and stochastic phenomena based on the time series is an important question that intrigues
scientists. One of the objectives of time series analysis is to classify time series into these
subcategories by determining properties of the underlying system from which the data is
derived.

1.1 Nonlinear Dynamical Systems
Dynamical systems are systems whose states change in time. Depending on whether this
change is mapped continuously in time, using differential equations or discretely in time
using difference equations, we have continuous and discrete dynamical systems. In this
thesis we will concentrate mostly on continuous dynamical systems. Discrete dynamical
systems can be generically represented by

xn+1 = F (xn, r) (1.1)

where xn is the state of the system at time step n, r is the list of parameters and F is a
nonlinear function of xn.

1



Figure 1.1: Time series and state space of the Lorenz system. Parameters used are
σ = 10, ρ = 28 and β = 8

3

Continuous dynamical systems can be generically represented by

d~x

dt
= f(~x, a) (1.2)

In general for an n dimensional system, ~x ∈ Rn, a is the list of parameters and f is a
nonlinear function of ~x. The nature of dynamics may either be stochastic or deterministic.
We will proceed to discuss various deterministic dynamical systems and the dynamical
states they exhibit.

Let us consider a few examples of nonlinear deterministic dynamical systems. The
systems we consider here will be used in subsequent chapters as test systems to illustrate
our results.

Lorenz system

The Lorenz system was first derived by meteorologist E. N Lorenz to describe unpre-
dictable changes associated with the weather. The equations were derived through mode
truncation of a partial differential equation describing fluid convection in a fluid cell [1,2].
The equations are

ẋ = σ(y − x)
ẏ = x(ρ− z)− y

ż = xy − βz
(1.3)

Here the x variable is related to the rate of convective overturning, y to the horizontal
temperature variation and z to the vertical temperature variation. σ is proportional to
the Prandtl number, ρ to the Rayleigh number and β to the dimensions of the region
under consideration [2]. The time series of the x variable and the state space of the
system is shown in Figure 1.1.

Rössler system

The Rössler equations were constructed by Otto Rössler in an attempt to design chaotic
flow in a system with only one nonlinearity [3]. While the equations were constructed
with no immediate physical interpretation in mind, it was subsequently found to be useful

2



Figure 1.2: Time series and state space of the Rössler system. The parameters used are
a = 0.1, b = 0.1, c = 14.

in describing chaos in certain chemical reactions [4]. The form of the equations are as
follows.

ẋ = −y − z
ẏ = x+ ay

ż = b+ z(x− c)
(1.4)

The time series from the x-variable and the state space of the attractor is shown in Figure
1.2

Pendulum

A simple pendulum is an idealization of a real bob oscillating on a string. The air drag,
mass and extensibility of the string, dimensions of the bob etc are ignored for convenience
in the simplest model, whose equation is given as

θ̈ =
√
g

l
sin(θ) (1.5)

Here g is the acceleration due to gravity and l is the length of the string. The small
angle approximation to this is the simple harmonic oscillator. A variation of the simple
pendulum is the driven damped pendulum, which incorporates friction and a driving
force. The equation is then given by,

θ̈ + γẋ+
√
g

l
sin(θ) = Acos(ωt) (1.6)

The second term here describes friction and the R.H.S defines the driving term. Time
series and state space plots for equation 1.6 is shown in Figure 1.3.

1.1.1 Dynamical States
One of the important pre-requisites for understanding dynamical states is the concept of
a state space. The state space is the space of all the variables in a system. A point in
the state space gives a possible state of a system. The time evolution of a system leads
to trajectories in state space. A certain dynamical system in a particular state may give
rise to different trajectories in state space depending on the parameter values and initial
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Figure 1.3: Time series and state space of the driven damped pendulum. The parameters
used are γ = 0.05, ω = 0.7, A = 0.6, l = g.

values for the dynamical variables. We explore the different dynamical states that can be
exhibited by nonlinear dynamical systems. In order to analyze these different dynamical
states let us consider a system given by the general equation

~̇X = f( ~X) (1.7)

Fixed point

A fixed point is the state where the system settles to a state of no dynamics i.e.

~̇X = 0 (1.8)

For simplicity we can assume a two dimensional state space. ~X = xî+ yĵ. Equation 1.7
can be rewritten as

ẋ = f(x, y)
ẏ = g(x, y)

(1.9)

The fixed points are then found as the points where

f(x, y) = 0
g(x, y) = 0

(1.10)

The stability of the fixed point, i.e. how trajectories that are near the fixed point behave,
is given by the derivatives of f(x, y) and g(x, y) evaluated at the fixed point. The matrix
of the derivatives is called the Jacobian matrix J .

[J ] =
 ∂f(x,y)

∂x
∂f(x,y)
∂y

∂g(x,y)
∂x

∂g(x,y)
∂y

 (1.11)

The determinant, ∆ and trace, Tr of the matrix determine the stability of the fixed point.
The time series and state space of the Rössler system approaching a fixed point is shown
in Figure 1.4. As the parameters of a system change, fixed points may change stability
which could lead to other types of dynamics like limit cycles in these systems.
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Figure 1.4: Rössler system approaching an attracting fixed point for parameter values
a = −0.1, b = 0.1, c = 14.0

Figure 1.5: Rössler system approaching an attracting limit cycle for parameter values
a = 0.1, b = 0.1, c = 4.0

Limit cycles

For state spaces with dimension greater than 1, limit cycles are also a possible dynamical
state. In state space, these would be represented by a closed loop. It is a special type
of periodic orbit where, in a neighbourhood of the limit cycle, trajectories may be either
attracted to or repelled away from it, depending on its stability [5]. This is different
from periodic orbits in a harmonic oscillator,for instance, where there is no attracting or
repelling set. An attracting limit cycle is often called an α−limit cycle and a repelling
one as an ω−limit cycle [6]. The time series and state space plot of a limit cycle of the
Rössler system is shown in Figure 1.5.

Quasiperiodicity

Quasiperiodicity is a dynamical state that arises in systems where two or more competing
frequencies, that are in an irrational ratio with each other, exist. This may occur either
due to the natural frequency of the system being incommensurate with one or more
driving frequencies, or due to the development of two or more natural frequencies in the
system itself [5]. If n independent incommensurate frequencies are present in a system,
the quasiperiodic motion takes place on an n-torus. A quasiperiodic orbit is made up of
linear combinations of the different frequencies in the system [7]. We illustrate this point
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Figure 1.6: Doubly driven pendulum showing quasiperiodicity for parameter values K =
1.34, V = 0.55, p = 3.0, ω1=

√
5−1
2 and ω2=1.0

further when we discuss power spectra in Section 1.2.
As an example system where quasiperiodicity exists, we consider a doubly forced

pendulum [8].
1
p

d2θ

dt2
+ dθ

dt
− cosθ = f(t) (1.12)

where
f(t) = K + V [cos(ω1t) + cos(ω2t)]

The time series and state space trajectory of the doubly driven pendulum in the quasiperi-
odic state is shown in Figure 1.6.

Chaos

One of the most fascinating dynamical states that can be observed in nonlinear dynami-
cal systems with state space dimension greater than 2, is chaos. A chaotic trajectory is
bounded and irregular, composed of all possible frequencies, making it difficult to distin-
guish from randomness. In general, as the values of the parameters change, a dynamical
system may approach chaos in various ways. These are called routes to chaos. One route
that is of particular interest to us is the period doubling route. In this route the dynamical
system undergoes repeated period doublings i.e. a period 1 limit cycle changes character
to a period 2 limit cycle and so on to reach chaos [9]. The time series of the Rössler
system in period-1 and period-2 states are shown in Figure 1.7. A dynamical system
may also show other routes to chaos such as the Ruelle-Takens-Newhouse scenario that
approaches chaos via a quasiperiodic state and the intermittency route [5]. We will now
define two quantifiers to describe two aspects of the state space of chaotic systems.

Lyapunov exponent
The Lyapunov exponent characterizes the rate of separation between adjacent trajectories
in state space. A rudimentary definition of the Lyapunov exponent can be achieved by
considering with two trajectories that are initially separated by a distance d0. Lets call
the initial time t0. The separation as a function of time, t, goes as

d(t) = d0e
λt (1.13)

λ is called the Lyapunov exponent. In general for an n dimensional system we have n
such Lyapunov exponents. If one of the λ > 0, we have exponential divergence of nearby
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points, which leads to unpredictability that is typical of chaotic states1. All λs that are
≤ 0 correspond to periodic or fixed point states. The sum of all the Lyapunov exponents
give the expansion or contraction of the state space. Hence dissipative systems would
have a negative sum [10]. A fixed point has all Lyapunov exponents negative. A limit
cycle has one zero Lyapunov exponent and the remaining negative. A quasiperiodic at-
tractor has two zero Lyapunov exponents and one negative and a chaotic attractor has
one positive, one negative and one zero Lyapunov exponent.

Fractal dimension
The complex nature of the chaotic trajectories in state space can be captured geometri-
cally through fractal dimensions. We will first talk about the simplest kind of dimension,
the box counting dimension . To understand the box counting dimension, let us consider
an object that needs two variables to describe it (we will stop short of calling this object 2
dimensional in order to avoid confusion between the topological and fractal dimensions).
Now, we cover this object with a grid of squares of size R0, and count the number of
occupied squares, n(R0). As we reduce the size of the squares, and count the number of
occupied squares each time, the number of squares changes as

n(R) = ARd0 (1.14)

d0 is the box counting dimension. The concept is easily extended to higher dimensions.
One easily sees that for a solid object in 2 or 3 dimensions, the box counting dimension
reduces to the usual idea of dimension. For the complicated geometry of a chaotic system,
d0 will not in general be an integer [5, 11]. Hence it is called a fractal.

The two quantifiers described above characterize two of the primary characteristics
of chaotic systems. The exponential divergence of nearby trajectories in state space is
characterized by a positive Lyapunov exponent . We illustrate this divergence in Figure
1.8. If the system under consideration is dissipative, the motion is restricted to a set with
zero n-volume(volume generalized to n-dimensions, where n is the topological dimension
of the system) [5]. This set is called a strange attractor, because of its fractal nature.
The fractal structure of this state space is characterized using fractal dimensions like the
box counting dimension. The trajectories shown in Figures 1.1 and 1.2 are examples of
chaotic and strange attractors.

Strange non chaotic behavior

Another interesting dynamical state that occurs in deterministic nonlinear dynamical
systems is the strange non chaotic state. Strange non chaotic trajectories are also bounded
irregular trajectories, similar to chaotic trajectories. The attracting set also has fractal
geometry. However nearby trajectories do not show exponential divergence, which is
characteristic of chaos. This combination of strangeness (fractal geometry) and lack of
exponential divergence is why this dynamical state is called "strange non chaotic". The
combination of the two factors give rise to a non integer fractal dimension and a zero
largest Lyapunov exponent. The doubly driven pendulum given in equation 1.12 shows
strange non chaotic dynamics for appropriate values of parameters. The time series and
state space structure for this system in the strange non chaotic state is shown in Figure
1.9.

1Systems with more than one positive Lyapunov exponent are collectively called hyperchaotic systems.
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Figure 1.7: Time series for the Rössler system in the period-1 limit cycle and period-2
limit cycle. The lower panels show the corresponding state space plots.

Figure 1.8: Divergence of nearby trajectories in the Lorenz system. The trajectories were
initially separated by .001 in the x variable, and evolved. The second graph shows the
distance between the trajectories at each time step.
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Figure 1.9: Doubly driven pendulum showing strange non chaotic behavior for parameter
values K = 1.33, V = 0.55, p = 3.0, ω1=

√
5−1
2 and ω2=1.0

1.2 Time Series Analysis
In this section we introduce the tools of time series analysis we use along the course of
this thesis. The different tools we develop, operate on time series and give us information
about them. This would help us understand the nature of the underlying dynamics
from which the time series is derived, or relationships between multiple time series or so
on. For instance it may give clues about whether the underlying system is stochastic or
deterministic, linear or nonlinear, nature of the dynamical state of the system etc.

1.2.1 Time Domain
In this subsection we deal with time series analysis tools that act directly in the time
domain. Essentially, the tools we discuss in this section, act directly on the time series,
and not on a mapping of it. The preliminary statistical properties are the mean(µ),
variance(σ2) and standard deviation(σ) of a time series x(t), that are defined as

µ = E[x] = 1
N

N∑
i=1

xi

σ2 = 1
N − 1

N∑
i=1

(xi − µ)2

σ =
√
σ2

(1.15)

These would be useful as we proceed to define correlations.

Autocorrelation function

The autocorrelation function finds the extent of correlation between a time series and a
lagged version of itself [12]. It helps find the periodicities hidden in a time series. For a
time series xn, the autocorrelation function, for a lag τ is defined as [13]

C(τ) = 1
N

N∑
i=1

(xi − µ)(xi+τ − µ)
σ2 (1.16)

Here µ and σ2 are as defined in Equation 1.15. Stochastic processes are known to have
decaying autocorrelation functions in time. Time series from chaotic systems too are
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thought to decay exponentially but much slower than noisy systems. However, this is not
a conclusive signature, and cannot differentiate between chaotic and random signals by
themselves [12]. The autocorrelation function for a white noise signal and the x variable
of the Lorenz attractor is shown in Figure1.10

Figure 1.10: Autocorrelation function for a white noise signal and for the x variable of
the chaotic Lorenz system. Unlike for white noise, the correlation falls off more slowly in
the Lorenz system.

Crosscorrelation function

A cross correlation function is an extension of the autocorrelation function, where we
consider the extent of linear correlation between one time series and a lagged version of
another. If xn and yn are time series derived from two processes, the cross correlation for
a delay τ is given as,

Cxy(τ) = 1
N

N∑
i=1

(xi − µx)(yi+τ − µy)
σxσy

(1.17)

Here the subscripts refer to the statistical measure corresponding to the time series x and
y. We show the cross correlation between two white noise processes and between the x
and y variables of the Lorenz systems in Figure 1.11

Triple correlation function

The autocorrelation function explores linear correlations in a time series. It gives no
information about the nonlinear correlations. Higher order correlations give us this infor-
mation. The simplest instance of this is the triple autocorrelation function, which checks
for correlations in a time series at two delays, τ1 and τ2 [14, 15].

T (τ1, τ2) = 1
N

N∑
i=1

(xi − µ)(xi+τ1 − µ)(xi+τ2 − µ) (1.18)

The triple autocorrelation function has the following symmetry [16]

T (τ1, τ2) = T (τ2, τ1) = T (τ1 − τ2,−τ2) = T (τ2 − τ1,−τ1) = T (−τ2, τ1 − τ2). (1.19)
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Figure 1.11: Cross correlation function between two white noise signals and between the
x and y variables of the chaotic Lorenz system. We observe a lack of correlation between
the white noise signals, while the correlation between the x and y variables of the Lorenz
system falls off much slower.

1.2.2 Frequency Domain
It is often more instructive to quantify the time series in frequency space instead of
time space. This transformation is achieved using the Fourier transform. The Fourier
transform is a specific transform belonging to the family to integral transforms, generally
described by

f ′(β) =
∫ b

a
f(α)K(α, β)dα (1.20)

where K(α, β) is called the kernel. For the Fourier transform the kernel function is given
by eiαβ. A time series x(t) can be expressed in frequency space x′(f) using the Fourier
transform and the reverse is achieved using the inverse transform [17]

x′(f) =
∫ ∞
−∞

e2πiftx(t)dt

x(t) =
∫ ∞
−∞

e−2πiftx(f)df
(1.21)

The adaptation of the Fourier transform to deal with discretely sampled time series is
the discrete Fourier transform (DFT). Before defining the discrete Fourier transform, we
need to consider the information that is preserved after sampling a continuous process
discretely. If ∆t is the sampling time, the time series is bandwidth limited to frequencies
upto fc = 1

2∆t , by a theorem called the sampling theorem. The frequency, fc is called
the Nyquist critical frequency [13].The power associated with any frequency component
lying outside the (−fc, fc) range is transferred to this range, through a phenomenon called
aliasing. Further, since the time span of the time series is finite, the function that is being
Fourier transformed is the product R(t)x(t), where R(t) is the rectangle function defined
as,

R(t) =


0 t < 0
1 0 < t < t0

0 t > t0

(1.22)
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Here, t0 is the length of the time series. The Fourier transform of a product of functions
is given by the convolution of the Fourier transforms.

F(R.x) = F(R) ∗ F(x) (1.23)

where
R ∗ x =

∫ ∞
−∞

R(τ)x(t− τ)dτ (1.24)

The Fourier transform of R(t) gives rise to a sinc function2, giving rise to spurious power
appearing in the transform.

For a time series of length N , discretely sampled at time step ∆t, the frequencies will
be sampled as

fi = i

N∆t , i = −N2 , ...,
N

2 (1.25)

The discrete Fourier transform(DFT) and inverse transform are then given by

X ′n = ∆t
N−1∑
k=0

xke
2πikn/N

xk = 1
N

N−1∑
k=0

Xne
−2πikn/N

(1.26)

An important theorem called Parseval’s theorem states that the total power in both
spaces is preserved. In discrete space this is written as

N−1∑
k=0
|x′k|2 = 1

N

N−1∑
n=0
|Hn|2 (1.27)

A remarkable speed up can be obtained computationally3, using the fast Fourier
transform (FFT) algorithm proposed by Cooler and Tukey. It is a divide and conquer
algorithm that reduces the problem to finding the DFT of the time series split into smaller
segments. A detailed description is given in [13].

Power spectrum

The power spectrum can be roughly defined as the modulus square of the discrete Fourier
transform. It gives the amount of power between frequency fi and fi+1(Equation 1.25).
If the function xk is real, X ′−n = X ′∗n , where the ∗ denotes conjugate. If Ak is the FFT of
the time series at fk, one can then write the appropriately normalized power spectrum
as

P (0) = P (f0) = 1
N2 |A0|2

P (fk) = 1
N2 [|Ck|2 + |CN−k|2], k = 1, 2, ..., (N2 − 1)

P (fc) = P (fN
2

)|CN
2
|2

(1.28)

Time series with continuous spectra, either arising from chaos or stochasticity, tend to
have a large variance associated with the calculated power spectrum. One popular way

2sinc(x) = sin(πx)
πx

3An O(N2) process can be reduced to a O(Nlog2(N)) process.
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Figure 1.12: Power spectra for the Rössler system in the limit cycle regime and the chaotic
Lorenz system. The power spectrum of the limit cycle shows peaks only at the primary
and its harmonics, whereas the chaotic power spectrum shows continuous power at all
the frequencies.

to reduce the error on the power spectrum, which we will use throughout power spectrum
estimation in this work, is through Bartlett’s method of averaged periodograms [18]. In
this method, individual periodograms calculated from k independent segments of the
time series are averaged to find a smoothed estimate of the power spectrum. This can be
shown to reduce the variance of the power spectrum by a factor 1

k
.

The power spectrum is related to the autocorrelation. The power spectrum is the Fourier
transform of the non-normalised autocorrelation. The theorem that relates the two is
called the Wiener Khinchin theorem.

A(f) =
∞∑

τ=−∞
c(τ)e−2πfτ (1.29)

The power spectrum for the Rössler system in the limit cycle regime and the Lorenz
system in the chaotic regime is shown in 1.12.

Noise

Before moving forward to higher order spectra, we define what we mean by noise. In
section 1.1 we considered the dynamics when the system is governed by a set of deter-
ministic differential equations. In this section we consider the case when the dynamics is
essentially random. A dataset that is gathered from random dynamics too would show
irregular behavior. One of the fundamental questions of nonlinear time series analysis is
to differentiate between the two kinds of irregularity. An even more challenging problem
is noise contamination. Observations from real world systems inevitably come with noise
contamination, even when the system is completely deterministic as we considered in
section 1.1. Noise may be present in the measurement or during the evolution of the sys-
tem. The noise may also be additive or multiplicative. Understanding the nature of the
contaminating noise and the its effects on time series quantifiers is hence an important
step in the modelling process.
White Noise
The simplest example of a noisy process is a white noise process. This is a stationary
stochastic process where adjacent data points are independent of each other. In terms
of the power spectrum, which gives the distribution of power across various frequencies
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Figure 1.13: Time series and power spectrum of a pure white noise process. The power
spectrum of a white noise process shows equal power at all frequencies.

in a signal, a white noise process has equal power at every frequency. If the amplitude
distribution of the white noise is Gaussian, it is termed Gaussian white noise. White
noise is present in many different natural systems. An example is the Johnson-Nyquist
noise that is present in electronic circuits. The time series and power spectrum of a white
noise process is shown in Figure 1.13.
Colored Noise
Correlations in stochastic processes give rise to colored noise. Depending on the shape of
the power spectrum the color of the noise is called pink, red etc. The power spectra of
colored noise processes all have a power law behavior in their power spectrum. In general
if the slope of the power spectrum on a log-log graph is (a) -2, the noise is called red
noise (b) -1 is called pink noise and (c) 0 is called white noise. Colored noise, especially
with spectral indices between -1 and -2, is ubiquitous in nature [19–21]. Many attempts
have been made to explain the reason for ubiquity with some success [22–24]. We will
describe red noise in some detail.

A red or Brownian noise or a Wiener process is a random process whose power spec-
trum falls with an index −2. It can be obtained as the integral of a white noise process.
It is a non stationary4 Gaussian Markov process and can be expressed as

ẋ = η(t) (1.30)

where η(t) is a white Gaussian white noise process. The Wiener process is the continuum
limit of a random walk [25]. Red noise processes appear as models in a large number
of fields [26–29]. We plot an instance of a red noise process and its power spectrum in
Figure 1.14.

Cross spectral density

The cross spectral density is defined as the Fourier transform of the non normalised cross
correlation function. In terms of Fourier components we can define it as

Sxy(f) = Ax(f)B∗y(f) (1.31)

where Ax and B∗y are the Fourier transforms of x(t) and y(t) respectively. Essentially
the power spectral density then becomes a special case of the cross spectral density when
x(t) and y(t) are the same.

4For a process to be stationary the probability distributions of its variables must remain time inde-
pendent.
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Figure 1.14: Time series and power spectrum of a red noise process. The power spectrum
shows a power law decay with an exponent ≈ −2.

Bicoherence

The bispectrum is the Fourier transform of the three point correlation function defined
in Equation 1.18. It can be estimated in terms of the Fourier transform of a time series
as

B(f1, f2) =
k∑
i=1

Ai(f1)Ai(f2)A∗i (f1 + f2) (1.32)

Here, A(f) is the Fourier transform at f and k is the number of segments. The magnitude
of the bispectrum is called the bimagnitude and the phase is called the biphase. The
bicoherence is a normalised version of the bimagnitude defined as

b(f1, f2) = |
∑k
i=1Ai(f1)Ai(f2)A∗i (f1 + f2)|∑k
i=1 |Ai(f1)Ai(f2)A∗i (f1 + f2)|

(1.33)

One can immediately see that the sum over k segments is similar to a random walk in
2 − D, which falls as

√
1
N

[16]. The bicoherence finds the extent of quadratic coupling
between different frequencies in the time series. The significance levels for various values
of bicoherence can be obtained using χ2 distributions. For 99% significance, using k

segments of time series, the required value for bicoherence is
√

9.2
2k [30]. The bicoherence

for the Rössler system in limit cycle and chaotic regimes is plotted in Figure 1.15. Only
the region defined by

f2 > 0
f1 ≥ f2

f1 + f2 ≤ fmax (1.34)

is plotted. This is because the bicoherence function is completely defined in this region
due to its inherent symmetries.

Tricoherence

The trispectrum is defined as the Fourier transform of the 3rd order cumulant [16]. In
terms of the Fourier transform, we can write it as

T (f1, f2, f3) =
k∑
i=1

Ai(f1)Ai(f2)Ai(f3)A∗i (f1 + f2 + f3) (1.35)
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Figure 1.15: Full bicoherence plots for the x time series of the Rössler system in the limit
cycle and chaotic regimes.

The tricoherence is given as,

t(f1, f2, f3) = |
∑k
i=1Ai(f1)Ai(f2)Ai(f3)A∗i (f1 + f2 + f3)|∑k
i=1 |Ai(f1)Ai(f2)Ai(f3)A∗i (f1 + f2 + f3)|

(1.36)

The tricoherence gives the extent of cubic coupling between frequencies in the time series.
The statistics of significance for the tricoherence can be shown to be similar to the
bicoherence function [31]. A table of Fourier transform pairs in time and frequency
domain is shown in Table 1.1

Table 1.1: Quantifiers in the time and frequency domains.

Time domain Frequency domain
Auto-correlation Power spectrum
Cross-correlation Cross spectral density

Triple correlation function Bispectrum
4th order cumulant Trispectrum

1.2.3 State Space Quantifiers
Upto now we talked about methods of time series analysis that works on either time series
data directly or on their Fourier transforms. This section will deal with quantifiers that
will quantify the state space directly. Though it seems that state space quantification
would need time series from all the variables of the system, a remarkable theorem by Floris
Takens showed that you can reconstruct the dynamics of the entire state space using just
one of the variables. The method employed is called the method of delay embedding.
Before we describe the method, we briefly state the statement of the theorem, which in
turn is an extension of Whitneys embedding theorem.

Taken’s Embedding Theorem:Let M be a compact manifold of dimension m. For
pairs (φ, y), where φ : M −→ M is a smooth diffeomorphism5 and y : M −→ IR a
smooth function, it is a generic property that the (2m+ 1)-delay observation map Φ(φ,y) :

5A diffeomorphism is a bijective differentiable map between two manifolds, which also has a differen-
tiable inverse.
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M −→ IR2m+1 given by Φ(φ,y)(x) = (y(x), y ◦φ(x), ..., y ◦φ2m(x)) is an embedding [32,33].
Essentially this tells us that given a time series of one of the variables of a dynamical

Figure 1.16: Autocorrelation function as a function of τ of the Rössler system. The
circled point shows the point where the autocorrelation falls to 1

e

system,x1, x2..., xn, one can construct a delay vector in m dimensions as

~v = (xi, xi+τ , xi+2τ , ..., xi+(m−1)τ ) (1.37)

A space of these vectors will be topologically equivalent to the original state space of the
dynamical system, provided m > 2de [12]. The first step in this process is the estimation
of the delay time τ . In practice τ has to be defined such that the components of the recon-
structed vectors are independent of each other. We resort to the autocorrelation function
to quantify this. The delay time is chosen as the time where the autocorrelation function
falls to 1

e
(Figure 1.16). To illustrate this, we show the state space of the Rössler system

and the state space reconstructed from the dynamics of its x variable in Figure 1.17.
When the time delay used is too small, the components end up being highly correlated
and lying along the diagonal, whereas when the delay is too large, the components have
no relation to each other and end up being space filling, like white noise. We illustrate
these two scenarios in Figure 1.18.

The Lyapunov exponent is one of the quantifiers that can be determined from this
reconstructed space. Many popular algorithms exist to calculate Lyapunov exponents

Figure 1.17: State space of the Rössler system without reconstruction and after recon-
struction using the x variable time series.
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Figure 1.18: State space of the Rössler system after reconstruction with time delays that
are (a) much smaller than 1

e
and (b)much larger than 1

e
, using the x variable time series.

from time series, like the Wolf algorithm [34]. However the Lyapunov exponent is very
susceptible to issues like noise which makes it a bad quantifier when dealing with real time
series [35,36]. Further, one may find spurious instances of positive Lyapunov exponents,
if the trajectories are not followed for long enough, especially in the vicinity of a saddle
point [5]. For these reasons, we do not rely on Lyapunov exponents for the analysis that
will be considered in subsequent chapters.

Correlation dimension

One of the features of the state space structure of dissipative chaotic dynamical systems is
its fractal nature or strangeness. One finds that the state space attractors of chaotic sys-
tems are fractals with a non integer box counting dimension. The boxcounting dimension
described in section 1.1.1 is one of the fractal dimensions that can be calculated.

The correlation dimension is an alternative measure of the fractal dimension, which
we will use extensively in the following chapters. Hence we describe how to calculate it
algorithmically from a time series. Let us first consider a scalar time series xi, sampled at
every ∆t. As described above we reconstruct the state space of the underlying dynamical
system, using the method of delay embedding. This gives us a series of N vectors as
described in 1.37. Lets now take every vector, i, in this space, and find the relative
number of vectors with a distance R from this vector. If Ni is the number of points
within a distance R,

pi(R) = Ni/N (1.38)

The correlation sum, C(R) is then defined as

C(R) = 1
N

N∑
i=1

pi(R) (1.39)

The correlation dimension D2 is then related to C(R) as [5]

C(R) = lim
R→0

kRD2 (1.40)

Taking log we have
D2 = lim

R→0

logC(R)
logR

(1.41)
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Figure 1.19: C(R) vs R and D2 vs M plots for the chaotic Rössler system. The actual
value of D2 is 1.99± 0.08 [37].

The subscript 2 is usually used for correlation dimension since it is one of the generalized
dimensions Dq, given in the next section, with q = 2 An important point to notice here
is that for low dimensional chaos, D2(or any other fractal dimension) will saturate as
we increase M to beyond the dimension of the system. This is different from say, white
noise, which will continue to grow as we embed it in larger dimensions. Graphs of C(R)
vs R for different M , and D2 vs M is shown in Figure 1.19. In our work, we make use of
a slightly modified version of this algorithm as described in [37]. Initially, the amplitude
distribution of the time series is converted to a uniform distribution. This transformation
stretches the reconstructed space without any change to any of the dynamical invariants.
Multiple advantages of using this transformation in the context of different nonlinear
quantifiers is described in [37–39]. Another important change in the algorithm is the use
of the maximum norm instead of the Euclidean norm. This means we find the number
of vectors that lie in a box of size R instead of a sphere of radius R, in equation 1.38
and 1.39. This change to the maximum norm makes it convenient to account for edge
effects correctly. We do this by imposing that the M dimensional cube has to lie within
the embedding space.

Multifractal spectrum

Our discussion of fractal dimensions in the previous subsection considered an average
over all state space points. In general, different parts of the attractor may contribute
differently to this average. Hence, the full complexity is not captured by using just one
of the measures of the fractal dimension we considered. We hence introduce the idea of
generalized dimensions to characterize the complexity of the attractor, which is related to
the idea of moments in statistics which is used to characterize a probability distribution6.

Let us cover the state space attractor again with boxes of size R and define the
relative number of points in the ith cell as pi = Ni/N . We can then define the generalized
dimension as

Dq = lim
R→0

1
q − 1

ln
∑N
i=1N(R)pqi
lnR

(1.42)

We could also alternatively define a generalized correlation sum, analogous to the corre-
6The qth moment of a distribution is given as, Mq = 1

N

∑N
i=1(xi − 〈x〉)q
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Figure 1.20: Dq vs q and f(α) vs α plots for the chaotic Lorenz system.

lation dimension, as [5]

Cq(R) =
N∑
j=1

pqj (1.43)

This gives the generalized dimension as

Dq = lim
R→0

1
q − 1

lnCq(R)
lnR

(1.44)

The dimensions we considered, like the box counting dimension, D0 and the correlation
dimension, D2, are specific cases of the generalized dimension for the values of q = 0, 2.
There is an analogous formulation, where we consider how pi changes with R. pi is
assumed to scale as

pi(R) = Rαi(R) (1.45)
We then counts the number of boxes with α between α and α+ ∆α [40]. This is related
to the size of the box R as,

n(α,R) ∝ R−f(α) (1.46)
Dq and f(α) are related through Legendre transformations.

(q − 1)Dq = qα− f(α) (1.47)

The Dq vs q and f(α) vs α plots for the Lorenz system are shown in Figure 1.20.
The f(α) curve can be characterized using the following function fit [41].

f(α) = A(α− αmin)γ1(αmax − α)γ2 (1.48)

This quantification using αmin, αmax, γ1 and γ2 of the f(α) curve has been put to extensive
use to multiple fields like black hole characterization, ECG characterization etc [42,43].

1.2.4 Recurrence Analysis
Recurrence plots

A recurrence plot is a concept that helps us quantify the recurrences and underlying
patterns in a state space trajectory. This method basically takes a structure embedded
in M dimensional space, and converts it into a binary matrix, by quantifying recurrences
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in the structure. In our case this structure is an attractor in state space. First a point in
the attractor i is chosen, and all points with a distance ε is found. If a point j lies within
ε distance of i, the matrix element (i, j) is set to 1. Otherwise it is set to 0. That is

Ri,j = Θ(ε− ||~xi − ~xj||) (1.49)

Here Θ is the Heaviside step function. The recurrence plot is the visual representation of
this matrix.

Once we have the recurrence plot, a variety of quantifiers are used to quantify the
patterns it shows. This study of recurrence plot patterns is called recurrence quantifica-
tion analysis(RQA). We will mainly be looking at the recurrence rate, determinism and
laminarity. The three measures we choose is dependent on three different aspects of the
recurrence plot, namely the recurrence density, the diagonal structures and the vertical
structures.

Recurrence rate:This is the simplest measure derived from the recurrence plot. In
the limit of large N it describes the probability of recurrence of a state to its ε neighbor-
hood. It’s given as

RR(ε) =
N∑

i,j=1
Ri,j(ε) (1.50)

Determinism:This is linked to the diagonal structures on the recurrence plot. We
can define the distribution of diagonal structures P (ε, l) as

P (ε, l) =
N∑

i,j=1
(1−Ri−1,j−1(ε))(1−Ri+l,j+l(ε))

l−1∏
k=0

Ri+k,j+k(ε) (1.51)

Weakly correlated processes cause very small or no diagonal structures whereas determin-
istic correlated processes cause long diagonal structures. The determinism is then defined
as the ratio of recurrence points that form diagonal structures of minimum length lmin
to the total number of recurrence points(for constant ε).

DET =
∑N
l=lmin

lP (l)∑N
l=1 lP (l)

(1.52)

Laminarity:The vertical structures in a recurrence plot is often associated with the
tangential motion of the state space trajectory. Though this is not always the case. We
can find the distribution of vertical structures P ′(v) as

P (v) =
N∑

i,j=1
(1−Ri,j)(1−Ri,j+v)

v−1∏
k=0

Ri,j+k (1.53)

Then the Laminarity is defined as [44]

LAM =
∑N
v=vmin

vP (v)∑N
v=1 vP (v)

(1.54)

The recurrence plots for the Rössler system in the chaotic regime and white noise in
M = 3 is shown in Figure 1.21.
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Figure 1.21: Recurrence plots for a white noise signal and the Rössler system in the
chaotic regime.

Recurrence networks

Complex networks have been one of the most intriguing additions to the field of complex
systems in recent times. The tools of complex networks have been put to use in a wide
variety of fields, including divisibility patterns in natural numbers, heteronormativity in
society and predicting complexes in protein interaction networks [45–47]. One of the
major developments in nonlinear time series analysis in the last two decades has been
the use of complex networks to study the properties of time series. This is achieved
using transformations that convert a time series into a network. Many algorithms exist
to do this, the popular among which are the visibility algorithm [48], neighbourhood
algorithm [49], coarse graining method [50], recurrence networks [51] etc. See [52] for a
detailed review on the different approaches. In this section and throughout this thesis, we
will concentrate mostly on the last method, the ε-recurrence networks. In this method,
we use the binary matrix given by equation 1.49 with the diagonals replaced by 0s, as
the adjacency matrix to generate a network. One of the primary questions that arises is
the choice of ε or recurrence threshold that should be used to generate the network. We
follow the method laid out in [39] for the work presented in this thesis. In this method, ε
is chosen based on two main conditions. First, the quantifiers of the recurrence network
are kept as being distinctly different from the network constructed from noise. Secondly,
95% of the nodes fall into a single component. Keeping these two criteria, ranges of εs can
be constructed for systems of different embedding dimensions [39]. Once the recurrence
networks are constructed, we can use network quantifiers like the average degree, average
path length and clustering coefficients to characterize the networks. Example recurrence
networks constructed from the Rössler system in the chaotic regime and from white noise
is shown in Figure 1.22.

Average degree: Once we have the recurrence network, we can plot the distribution
of degrees of all the individual nodes. The average of this distribution is the average
degree of the node. If N is the total number of nodes and Ai,j is the adjacency matrix,
the average degree is given by [53]

davg = 1
2N

N∑
i=1

Ai,j (1.55)

Average path length: Another important measure of the network is the efficiency
of information transport on it. The average or characteristic path length provides the
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Figure 1.22: Recurrence networks for a white noise signal and the Rössler system in the
chaotic regime.

average number of steps required to traverse from one part of the network to another.

CPL = 1
N · (N − 1) ·

∑
i 6=j

d(vi, vj) (1.56)

Here vi and vj are nodes in the network and d(vi, vj) is the shortest distance between
them [53].

Clustering coefficient: The clustering among nodes in the network is another im-
portant measure. It is given by the clustering coefficient. The global clustering coefficient
measures the fraction of closed triplets in the network.

CCgl = 3× number of triangles
number of all triplets (1.57)

The other measure of clustering defines a local clustering for each node in the network.
It measures how close a node is to being a clique or a complete graph. Let ki be the
degree of a node vi and let ei,j be the link between two nodes vi and vj. If N is the set
of all nodes and E is the set of all links, the local clustering for a node i is given by

Ci = 2|{ejk : vj, vk ∈ Ni, ejk ∈ E}|
(ki)(ki − 1) (1.58)

The average clustering for the whole network is [53]

CCavg = 1
n

n∑
i=1

Ci (1.59)

One of the main advantages of the CPL and CC has been the ability of the CPL-CC
plane to distinguish between deterministic and noisy dynamics [54]. We show how the
values of the CPL and CC of the Lorenz system lies in a distinct part of the CPL-CC
plane, away from the red and white noise in Figure 1.23.
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Figure 1.23: CPL-CC plane for showing positions of white noise, red noise and the Lorenz
system. We find that the deterministic Lorenz system occupies a position away from white
and red noise in the CPL CC plane.

1.3 Summary and Discussion
Now we are in a position to present the studies on the techniques of time series analysis
to understand the dynamics of real world systems. In the next chapter, we will proceed
to introduce the physics of variable stars. We will then go on to address the important
problem of datagaps in real world time series, and analyze how they affect the quantifiers
we considered in this chapter. In chapter 4 we consider the problem of noise and how
the bicoherence function in various forms can help tackle this question and recover the
underlying dynamical state. We also analyze the nonlinear dynamics of RR Lyrae stars.
In chapter 5 we use these quantifiers to study the dynamics of contact binary stars. In
chapter 6, we use recurrence based analysis to classify RRc Lyrae stars into two subgroups.
We also use recurrence networks to differentiate between different kinds of close binaries.
We present the summary of our results and scope for future work in the concluding
chapter.
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Chapter 2

Introduction: Stellar Variability

Since the dawn of civilisation, stars have fascinated the human race. Multiple legends
and myths have been spun around them, with many stars and constellations of stars
being worshipped as Gods and demigods. They were probably the first objects to be
methodically observed across civilizations. Over time the fascination with stars and
systems of stars and systems of systems of stars has not diminished, but has possibly
increased. Stars are now known to be laboratories where various branches of physics from
quantum mechanics to general relativity interplay with each other to reveal thoroughly
fascinating phenomena!

One of the earliest observations made about stars has been the light variability in some
of them. The earliest known record of stars whose light varied over time was of Algol,
an eclipsing binary noted as exhibiting light variability by the ancient Egyptians. In this
chapter we will study sources of variability in stars and the nature of their variation. This
will help us, as we proceed to subsequent chapters and explore the nonlinear dynamics
of variable star light curves.

2.1 Basics
Before we proceed further, we will define two main terms that will be fundamental to
understanding stellar physics. The first among these is the effective temperature, Teff .
To define the effective temperature, lets recollect the form of Plank’s law , given by

Bλb = 2hc2

λ5
1

exp(hc/λkT )− 1dλ (2.1)

The Teff of a source is defined as the temperature of a black body which would radiate
the same amount of radiation as the source under consideration [55]. The second of
these is the luminosity, which is defined as the total amount of energy emitted by the
star in unit time. The knowledge of the Teff and the radius of the star completely
determines its luminosity [56]. One way to measure the luminosity is using the bolometric
or absolute magnitude. To define this, we initially define the apparent magnitude, which
is the brightness of a star as measured from the earth. The apparent magnitude of the
star Vega at any specified wavelength, is defined as the zero magnitude. The apparent
magnitudes of other stars are compared in relation to Vega. The apparent magnitude
uses a logarithmic scale and is negative for objects brighter than Vega and positive for
objects that are dimmer. The absolute magnitude is defined as the apparent magnitude
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an object would possess if placed at a distance of 10 parsecs or 32.6 light-years1 [57].
The difference in bolometric magnitude (total energy across wavelengths) is related to
the bolometric luminosity ratio as

M∗ −M� = −2.5log L∗
L�

(2.2)

where � represents the value of the measure for the sun and ∗ is the value of the measure
for the object in question.

2.1.1 The H-R Diagram
The Hertzsprung-Russel diagram is a plot of luminosity versus effective temperature for
all the observable stars. An example of this H-R diagram, for some sample stars from the
Hipparcos catalog, is plotted in Figure 2.1 [58]. Immediately we see that there is a strip
along which most of the stars lie2. This strip is called the main sequence of stars. The
hotter and heavier stars live towards the top left of the main sequence, whereas the cooler
and lighter stars live on the bottom right. The stars that are off the main sequence form
what are called the horizontal branches and the instability strip. Many of the variable
stars, we will talk about fall into this instability strip. This diagram forms the central
tenet of stellar astrophysics, and gives insight regarding the structure and evolution of
stars. Alternative to luminosity and Teff we can also use the absolute magnitude versus
the color or spectral type to plot another variation of the HR diagram. The spectral type
is related to Teff and arranges stars (primarily) based on the strength of their Hydrogen
absorption lines3 [59].

Curves on the HR diagram that tracks how stars develop over time are called evolu-
tionary tracks4. A star starts its life by giving out light by burning hydrogen in its core
to give helium. These are the stars that lie on the main sequence. Once the core runs
out of hydrogen, a star moves horizontally out of the main sequence and stars growing
in size and decreasing in effective temperature. These stars start burning helium in their
cores and hydrogen in a shell around the core. Along the HR diagram, one finds a narrow
region or strip of stars which are unstable. This strip is called the instability strip. All
the stars that fall into this strip are pulsating stars. The region where this strip intersects
the horizontal branch is populated by RR Lyrae stars. Super giant stars lie above the
main sequence, again in an almost horizontal line. The instability strip intersects this
super giant strip to give rise to a region populated by Cepheid variables.

One of the other important characteristics of a star is its metallicity. It measures the
metal content in a star, and is often captured by the concentration of Fe to H in a star
as compared to the sun.

[Fe/H] = log10([Fe/H]star)− log10([Fe/H]�) (2.3)

Generally, based on the metallicity, stars are divided into Population I and Population II
stars. Population I stars are younger stars which are formed in a metal rich environment

1Assuming no extinction of light
2In this diagram, the color temperature measured by B-V is used instead of Teff . It is measured by

finding the difference in magnitude when using a B filter (≈ 440nm) and a V filter (≈ 550nm) [57].
3In the order of decreasing Teff , the spectral classes are ordered OBAFGKM that can be easily

remembered by the non-sexist mnemonic "OhBeAFierceGirl,Karate-kickMe".
4Pre main sequence stars follow a nearly vertical path called the Hayashi track, soon after which it

follows a horizontal track called the Henyey track into the main sequence.
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Figure 2.1: HR diagram of logL(in units of solar luminosity) vs. B-V for 2719 stars from
the Hipparcos catalog [60].

and consequently have higher metallicity. Population II stars are older and were formed
in a metal poor environment. Hence they have lower metal content [57].

2.2 Stellar Variability
Through the course of this thesis, we will explore the dynamics of stars that exhibit
variability in light intensities. Broadly the variation may be divided into intrinsic and
extrinsic variation. When the source of variation is in the star itself, like in pulsating stars,
the star is called an intrinsic variable. Alternately the star may also vary in luminosity
due to a external event like an eclipse or due to rotations. This results in a perceived
variation of light as observed from the earth. Such variables are called extrinsic variables.

Based on the source of variation, the stars may be broadly divided into the following
categories.

• Pulsating stars In these stars the light variation takes place due to the swelling
and shrinking of the star itself. They fall into the instability strip on the H-R
diagram, that we discussed in the last section. The intersection of the instability
strip with (a)the super giant strip is populated by Cepheids and RV Tauri stars,
(b)the horizontal branch is populated by RR Lyrae stars and (c)with the main
sequence is populated by δ Scuti star.

• Rotating stars The light variation here is primarily due to rotations of the star.
The changing faces of the star as it rotates gives differing amounts of light due to
presence of starspots on the surface or due to a distortion of the stellar surface due
to gravitation or rotation. An important example of the former are pulsars which
are rotating neutron stars. Two examples of the latter are the ellipsoidal variables
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which are close binary stars and FK Comae Berenices variables which are distorted
due to rapid rotation of a single star [61].

• Eruptive stars These are variable stars where the variability is due to sudden
bursts of energy and subsequent responses. These may be sudden short lived events
like supernovae or flares. They may also be a long term variation like mass transfer
in cataclysmic stars. When the mass transfer is unstable it may lead to an eruption
like a supernova or a coalescence like a red nova [62]. Another kind of eruptive
variable is the R Coronae Borealis type stars, where fadings are thought to be due
carbon condensation leading to a reduction in visible light [63].

• Eclipsing stars Eclipsing stars are stars where the primary source of light variation
is due to an eclipsing phenomena, either another star or a planet. If the eclipsing
object is a second star, we can have subdivisions based on how close the stars are
to each other (detached, semi-detached and contact binary stars.) [64].

An important aspect to pay attention to is that these categories are not mutually ex-
clusive. In fact semi detached binary stars would form an instance of cataclysmic stars.
Variations in close binary stars is not solely because of eclipses alone. Hence while these
classifications may be used for increasing one’s understanding of variable stars, they by
no means constitute mutually exclusive, independent categories.

2.3 Stellar pulsations
In this section we will consider stellar pulsations in greater detail. We mentioned earlier
that the reason for stellar pulsations is the swelling and shrinking of the star. This results
in light intensity variations.

One of the most popular theories for stellar pulsations is the Eddington valve mecha-
nism or κ mechanism named after Arthur Eddington [65]. It takes place in the following
steps.

• A layer of the star collapses against gravity and falls.

• This layer then compresses (heats up) and hence becomes more opaque to radiation

• The opacity leads to slower diffusion of radiation, which moves more slowly through
the layer. This leads to a build up of heat beneath.

• This leads to an increase in pressure and causes the layer to be pushed

• The layer then expands and becomes more transparent to radiation, and the process
repeats.

Stellar pulsations may lead to rather regular pulsations like in the case of Type-I Cepheids
or rather irregular pulsations like in RV Tauri variables. We will explore now, in greater
detail some specific kinds of pulsating stars.
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Figure 2.2: Section of the light curve of Cepheid variable V1154 Cyg (KIC 7548061). We
see very regular variations in the light curve.

2.3.1 Cepheids
As we mentioned earlier, Cepheid variables are found at the intersection of the instability
strip with the supergiants. Type I Cepheids undergo almost perfectly regular pulsations.
One of the most important properties of Type I Cepheid variables is a period-luminosity
relationship they show. This meant that a straight line could be drawn between the
log of the period and the magnitude. This implied that the knowledge of the period
would imply knowledge of the luminosity, which in turn implied that the distance to that
Cepheid could be calculated exactly5.

Type I Cepheids are young Population I giant stars. Type II Cepheids on the other
hand, are older and less massive Population II stars. They are also called W Virginis
stars after their prototype. Initially, the two populations of Cepheids were difficult to
distinguish, and lead to a massive miscalibration of the period-luminosity relation. The
pulsations of W Virginis stars are more irregular than type I Cepheids. Models of W
Virginis stars have been analysed and seem to show period doubling chaos [66, 67]. The
light variation of Type 1 Cepheid variable V1154 (KIC 7548061) is plotted in Figure 2.2.
The x-axis is the modified Julian day number subtracted by a constant. The Julian day
number is an integer that is assigned to every day starting from noon of 1 January 4713
BC. The Julian day number for a particular day is the number of days that has elapsed
since 12 noon of 1 January 4713 BC. For artificial Earth satellites like the Kepler, time is
expressed in Modified Julian Date Numbers. In this case the zero point is 17 November
1858 [55]. Hence, Modified Julian Date = Julian Date - 2,400,000Âů5 days.

5This relationship was first discovered by Henrietta Leavitt in the early 1900-s, and became one of
the most important results in understanding distances in the universe. Leavitt observed that among
the Cepheids in the large Magellanic cloud (which were all roughly at the same distance), the brightest
Cepheids had the longest periods.
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Figure 2.3: Section of the light curves for (a)RRab type variable KIC 4484128 and (b)RRc
type variable KIC 5520878.

2.3.2 RR Lyrae
RR Lyrae stars are another important class of pulsating variable stars which lie in the
intersection between the instability strip and the horizontal branch. These stars have
been long thought to be perfectly periodic pulsating stars and have been used as standard
candles to measure distances. They have pulsation periods that range from 0.1 to 1 day,
and fall in the spectral types A5 to F5. RR Lyrae stars have been subject to modelling
using dynamical equations [68, 69]. Hydrodynamic simulations of RR Lyrae stars have
suggested that they may undergo period doubled chaos [70].

One of the most curious phenomena in RR Lyrae light curves is a modulation that can
be observed in them. This modulation has been a paradox that has not been completely
explained to this day and is called the Blazhko effect. Recent work suggests that the
Blazhko effect may be a result of the 9th overtone that destabilizes the fundamental
mode (in a 9:2 resonance) [71]. Alternate hypothesis include a cyclical weakening of the
turbulent convection in the hydrogen and helium ionization zones [72].

RR Lyrae stars are subdivided into RRabcd Lyrae stars depending on the mode in
which they pulsate. RRab Lyrae stars pulsate in the radial fundamental mode, whereas
the RRc Lyrae stars pulsate in the first overtone. RRd variables pulsate simultaneously
in both [73]. Further, RRab stars have slightly longer periods than RRc Lyrae variables.
RRab stars have pulsation periods that range between 0.3 to 1 days. RRab Lyrae stars
were thought be be perfectly periodic until the advent of the Kepler space telescope.
One of the first results regarding these stars was the discovery of the period doubling
phenomena which was missed until the advent of Kepler [74]. This discovery of period
doubling coupled with the model based predictions of chaotic behavior in these stars
suggests that these stars may be undergoing richer dynamics. We explore this further in
chapter 4.

RRc Lyrae stars are overtone pulsators with periods between 0.2 and 0.5 days. One of
the main observations about RRc Lyrae variables is the presence of a secondary pulsation
mode that is about 0.6 times the fundamental in many of them [75]. The fact that this
ratio is very close to the golden ratio has evoked considerable excitement about them. In
fact the nonlinear analysis of RRc Lyrae variable stars showed that they may be exhibiting
strange non chaotic behavior [76]. We show sections of light curves from RRab and RRc
Lyrae stars in Figure 2.3.
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2.4 Eclipsing binaries
We mentioned earlier that eclipsing binary stars are stars whose primary variation is due
to an eclipse. Binary stars are thought to form more than 60% of stellar systems in the
universe. When the components are inclined such that one passes in front of the other
from our line of sight, we call them eclipsing binary stars.

Observationally eclipsing binaries were classified according to certain prototype stars.
Broadly they are classified into Algol type, β Lyrae stars and W UMa type stars. These
are also called EA, EB and EW type variables. Irrespective of whether the stars eclipse
each other they can be morphologically classified depending on how close the components
are to each other. In order to do so, we first define the concept of Roche lobes , which is the
area around the star where the orbiting material is gravitationally bound. A schematic
for the same is shown in Figure 2.4. If both the stars, like in Figure2.4a, does not fill
their Roche lobes, they are called detached binaries. If only one star does, as depicted in
the Figure2.4b, it is called a semi detached binary. If both stars fill their Roche lobes as
in Figure2.4c, we have what is called a contact binary star. The latter two classes of stars
are together called close binary stars, since there is a possibility of mass and/or energy
exchange in them. Algol type or EA stars are the semi detached type. WUMa or EW
stars are the overcontact type stars. EB type stars form what are called ellipsoidal type
of stars, which can be detached, semi detached or contact binary stars that are tidally
distorted [64].

The evolution of binary stars forms a very active branch of stellar astrophysics. One
of the popular theories for binary star evolution assumes that these stars start off as
detached binary stars. Due to angular momentum loss because of stellar winds combined
with the evolution of the stars, one of the stars fills its Roche lobe. This gives rise to
mass loss from the bigger companion to the smaller one through the Lagrangian point,
L1. This mass flow in turn could accelerate the evolution of the companion, which could
grow to a common envelope encompassing both stars [77, 78].

This mass and energy transfer that is characteristic of close binary stars leads to light
variation that does not stem from the eclipse. These effects have been long observed.
When the light curves show unequal maxima it is known as the O’Connell effect and when
the predicted time of a minimum does not match with the expected time, it is known as
an eclipse time variation [79, 80]. Overcontact binary stars are especially interesting in
this context, as mass transfer and loss of angular momentum in these stars are thought
be be responsible for period changes. This change in the period leads to an eventual
coalescence in the form of a red nova outburst [62]. Hunts for possible merger candidates
have been of special interest in the last few years [81,82].

We conclude this subsection by mentioning two important quantifiers that help quan-
tify overcontact binary stars. These are the fill-out factor (ff) and mass ratio (q). The
former quantifies the extent of contact between the components while the latter measures
the ratio of masses. The fill out factor is given by the formula [83],

ff = ΩI − Ω
ΩI − ΩO

(2.4)

where Ω is the potential at the surface of the common envelope, ΩI is the potential at
the inner Lagrangian surface and ΩO is the potential at the outer Lagrangian surface.
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Figure 2.4: Schemes of binary star for (a)detached (b)semi detached and (c)contact binary
stars.(Created using Google drawings.)
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2.5 Summary and Discussion
In this chapter we present a basic understanding on the origins of variability in stars.
Often, more than one source is involved in light variation in variable stars. Broadly we
divide variability into intrinsic and extrinsic variables, based on whether the source of
the variation is internal or external to the source6. We discuss specifically the case of
pulsating stars and eclipsing stars which we will analyse extensively in the subsequent
chapters.

We also study eclipsing binary stars where the primary source of variation is thought
to be an eclipse of one star by the other. However, when the component stars are close
to each other, a possibility of mass and energy exchange exists. This results in variation
of light in the light curve, from sources other than stellar eclipses. Depending on how
close the stars are to each other they may be detached, semi detached or contact binary
stars. The variation from strict periodicic behavior is studied generally as small changes
to the periodicity and are called the O’Connell effect or eclipse time variations.

Astrophysics has historically been the cradle of dynamical systems theory. Studies
into the three body problem was probably the first chaotic problem to be addressed. Many
important tools of dynamical systems theory like Poincare sections were first developed in
the context of the three body problem. However as the area of nonlinear dynamics grew
into an independent field with extensive applications, the use of the tools of nonlinear
dynamics to answer questions in astrophysics became significantly rarer. Part of the
reason has been the lack of high quality data that is needed for nonlinear time series
analysis that is often absent in astrophysics. Two areas where chaos theory has been
very successful in addressing questions posed by astrophysics has been in the theory of
stellar pulsations, and the theory of matter accretion. The former has been significantly
linked with nonlinear dynamics with dynamical systems models existing from the 1970-s.
In this chapter we saw the use of similar models to predict chaos in RR Lyrae stars.
Even earlier, nonlinear time series analysis seemed to suggest low dimensional chaotic
behavior in RV Tauri variables like R Scuti [84]. The second situation where nonlinear
time series analysis showed promise has been in the study of accretion phenomena. A
striking example of this has been in the black hole system GRS 1915+105, which was
shown to switch between random and chaotic states [85, 86]. Similar analysis for the
neutron star system, Sco X-1, showed low dimensional chaotic behavior [87]. However
exploration for chaos using nonlinear time series analysis of the light curve of the AGN
source W2R 1946+42 was shown to be inconclusive [88].

In this thesis, we will attempt to address some of the problems we face in dealing with
astrophysical data like the presence of datagaps and noise, and the lack of long datasets.
We will also attempt to explore some areas of astrophysics like close binary physics where
the tools of nonlinear time series analysis has not been used before.

6Often an extrinsic variable may have secondary sources of variability as in the case of close binary
stars, or an intrinsic source may have an extrinsic component as is the case for a planetary eclipse for a
pulsating star. Hence these classes are broad and do not represent independent groups.
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Chapter 3

Effect of Datagaps on Nonlinear
Measures

The techniques of time series analysis are mostly developed to deal with observations
that are continuous and evenly spaced in time. In actual practice however, observations
are missed intermittently for a variety of reasons many of which are difficult to avoid.
Dealing with missing data or unevenly sampled data is a real challenge in data analysis.
What is required is a detailed analysis on how datagaps affect time series quantifiers.

In this chapter we will address this question in the context of dealing with nonlinear
time series analysis. We will consider many of the time series analysis measures we have
discussed in chapter 1 and analyse their resilience to datagaps. This will help us gain
an understanding of how reliable time series analysis measures are in the presence of
datagaps.

3.1 Datagaps
Datagaps are ubiquitous in observational time series. They appear due to number of
reasons like instrument failure, imperfect sensors, environmental factors, human errors
etc. Datagaps are present in time series across fields including time series of packet traffic
data, astrophysical time series, ecological time series, radars and so on [89].

Gaps in data or missing data is a specific kind of uneven sampling of data. Data is said
to be unevenly sampled when the time series points are not evenly spaced in time. This
can happen for instance when there is no underlying sampling time in the data. This kind
of uneven sampling takes place for instance in time series of medical or psychological self
report studies, variable stars reported by amateur astronomers, paleoclimate data etc.1

Techniques like the Lomb-Scargle periodogram, have been developed to compute
power spectra and auto correlations for time series that are unevenly sampled [90, 91].
However, the most usual technique that is employed to deal with datagaps and uneven
sampling in general is interpolation. Specifically, when the time series is affected by
datagaps, the gaps are interpolated over. One major drawback of this method in the

1An example to illustrate the difference between datagaps and pure uneven sampling would be two
ways of recording temperatures over a day. First consider that the temperature was measured at every
hour from 0800 hrs to 2000 hrs, but two observations were missed. Second consider that the temperature
was measured at 10 points in time, randomly between 0800 to 2000 hrs. The former would be an example
of datagaps with a distinct sampling time of one hour, while the second is an example of pure uneven
sampling with no obvious underlying sampling time.
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context of nonlinear time series quantifiers is spurious signatures of nonlinearity that the
smoothing can generate. Historically this has lead to controversy regarding detection of a
low dimensional attractor in climate data [92–94]. In the following section we will aim to
quantify the effect that datagaps have on nonlinear time series quantifiers in the absence
of interpolation.

3.2 Synthetic Data with Gaps
In this section we will describe the process of how we quantify the effect datagaps have on
different nonlinear measures. We initially start from a time series of an evenly sampled
standard nonlinear dynamical system. For this, we choose the Rössler and Lorenz systems
described in chapter 1. To ensure that the attractor is covered uniformly, the Rössler
system is sampled at 0.1 and the Lorenz system at 0.01. Gaps are then introduced in
these evenly sampled time series. The size of gaps and frequency of gaps are drawn
from two Gaussian distributions, independent of each other2. Since the causes for gaps
are thought to arise from multiple independent sources, it is reasonable to assume a
Gaussian distribution for them. The Gaussian distributions from which the gaps are
derived from are given by

GS(s;ms, ωs) = 1
ωs
√

2π
e−(s−ms)2/2ω2

s (3.1)

GP (p;mp, ωp) = 1
ωp
√

2π
e−(p−mp)2/2ω2

p (3.2)

Here GS is the Gaussian distribution of gap sizes with mean ms and standard deviation
ωs. Instead of frequency of gaps we consider a related quantifier, termed gap position,
modelled by the Gaussian GP . The mean and standard deviation of the Gaussian distri-
bution are given by mp and ωp, respectively. The gap position essentially gives a measure
of the gapless regions in between two gaps.

Once the gaps are introduced, we merge the data across the gaps. Hence we are left
with a time series that has a finite number of discontinuities. The time series of the
Rössler system after introducing gaps and after merging is shown in Figure 3.1. The
algorithm we develop has the following steps.

1. Generate a large evenly sampled time series.

2. Calculate the quantifier of interest, say Q for the time series. Lets call this Qes

3. Introduce gaps into the time series where the gap size and frequency are drawn
from two Gaussian distributions, GS(s;ms, ωs) and GP (p;mp, ωp)

4. Ignore the gaps and merge the time series

5. Calculate Q for the time series with gaps, say Qgaps.

6. Quantify the deviation of Qgaps from Qes

2This independence can be thought to be reasonable. For instance how frequently a telescope fails is
likely to be independent of how frequently it fails.
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Figure 3.1: The time series of the Rössler system before introducing gaps (full curve),
after introducing gaps (green) and after merging the data (blue).

Figure 3.2: D2 vsM plot for white noise with and without interpolation. The white noise
without interpolation shows no saturation, while in the presence of interpolation, the D2
vs M plot tends to saturate, mimicking nonlinear and chaotic behavior.

We first illustrate the dangers of interpolation in the context of a white noise time
series that has been interpolated through. We compare the correlation dimensions of the
interpolated and non interpolated time series, and show that the interpolated time series
seems to show an artificial saturation in the D2 vs M plot. The initial time series is a
Gaussian white noise process with 20,000 points. We introduce gaps, with an average
size (ms) varying between 3 and 350 data points, every 300 data points(mp = 300 time
steps) on an average. These gaps are interpolated through using a cubic spline. We then
calculate D2(M) for dataset. The D2 values do not saturate when interpolation is absent.
When the gap size is large, the D2 values for interpolated datasets show tendencies for
saturation, hence suggesting underlying nonlinear dynamics. This is illustrated in Figure
3.2.
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Figure 3.3: Variation of saturated D2 with increasing mean position, mp for the Lorenz
(left) and Rössler (right) systems. ms if fixed at 2τ . The error bars are standard devia-
tions over five realizations.

3.3 Effect on time series quantifiers
In this section we will quantify the effect of missing data on a variety of nonlinear quan-
tifiers. Specifically we will consider the effect it has on D2 and the f(α) spectrum.

3.3.1 Correlation dimension
We introduced the correlation dimension as one of the measures of the fractal nature of
the state space of a dynamical system. We will systematically examine the effect datagaps
have on the calculation of this quantifier. For this analysis, we ensure that the datasets
have ≈ 20,000 points after introduction of gaps. The natural time scale in the problem
is the delay time used for reconstructing the state space of the system, τ . We vary ms

and mp in terms of τ , since it remains invariant with the sampling time of the system.
It is worth noting that the autocorrelation time τ , will fall faster in the presence of gaps.
However for the range of gap sizes and frequencies we’ve considered here, the variation
in τ remains small. The standard deviations, ωs, are fixed at 0.1 times the mean. We
will conduct a systematic study of the effects of standard deviation later in this section.

We first look at the variation of D2 with changing gap position, mp. We consider the
data from Lorenz and the Rössler system. The gap position mp is increased from 1τ to
10τ . We observe that the D2 falls as the mp is increased. This is to be expected, as
increasing mp results in less frequent gaps in data. Figure 3.3 shows the change in D2
with changing mp.

The variation with ms is slightly more complex. As we change ms from 0.1τ to 10τ ,
the D2 first increases, then reaches a peak at about 1τ and subsequently falls for higher
ms. We illustrate this for a particular value of mp in Figure 3.4.

We now examine the ms-mp parameter plane for the Lorenz and Rössler systems,
plotted in Figure 3.5. We observe that with increasing mp the D2 decreases for all values
of ms. Further, we find that the peak at 1 τ continues to persist across values of mp. We
will now examine this more closely.

The peak at 1τ is largely due to the way we have reconstructed the state space of the
dynamical system. Gaps are chosen in units of τ , the point where the autocorrelation
falls to 1

e
. Let the state space vectors reconstructed from the evenly sampled time series
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Figure 3.4: Variation of saturated D2 with increasing mean position, ms for the Lorenz
(left) and Rössler (right) systems. mp if fixed at 9τ . The error bars are standard devia-
tions over five realizations.

Figure 3.5: ms,mp parameter plane showing variation of saturated D2 for the Lorenz
(left) and Rössler (right) systems. The value of Dsat

2 is color coded in the plane.
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Figure 3.6: Autocorrelation function as a function of lag, τ for ms = 1τ , mp = 10τ .

be labeled as ~ve, say in 3− d space.

~ve = (xi, xi+τe , xi+2τe) (3.3)

where τe is the evenly sampled delay time. Now, say the mean gap size ms, is 1τu (we
label τ as τu, but recollect that for the gap ranges considered, τu and τe are similar). For
a vector close to the gap, the reconstructed state space vector is

~vu = (xi, xi+2τu , xi+3τu) (3.4)

Because of the periodicities in the attractor, xi+2τu is anti correlated to xi, as can be
easily seen from the autocorrelation function for the data with gaps in shown in Figure
3.6. This results in a line of vectors lying along the diagonal x = −y, as can be seen in
Figure 3.7. Hence the attractor is reconstructed with more space filled than it actually
is, resulting in increased D2. This does not affect the component at xi+3τu as much, since
the correlation dies down quickly.

An interesting question is whether the value of the embedding dimension at which D2
saturates,Md, changes as we introduce gaps. As we vary ms and mp ,Md varies between 3
and 6 for both systems. We notice that the deviation of Md coincides with the deviation
of Dsat

2 . This is a point worth noting, as in a real dataset with gaps, when the actual
embedding dimension is not known, relying on the Md to find the dimensionality of the
system may lead to a larger value than required.

We now come back to the question of how the standard deviation of the Gaussians
affect the D2 calculations. We fix the mean and vary standard deviations from 0.2 to 2.0
times the mean. Our results indicate that varying the standard deviations, ωp and ωs
does not affect the D2 value too much. This is illustrated for a specific value of mp and
ms in Figure 3.8
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Figure 3.7: Reconstructed Rössler system for ms = 1τ (left) and ms = 2τ (right). The
mp is fixed for both cases at 10τ

Figure 3.8: Variation of D2 with varying standard deviations ωp(left) and omegas(right)
for the Lorenz system. mp and ms are both fixed at 9τ in both figures.
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Figure 3.9: D2 vs M plots for the Lorenz system and surrogates, with gaps. The mean
gap size and positions are (a)ms = 0.8τ,mp = 9τ (left) and (b)ms = 10τ,mp = 9τ (right)

Finally, we consider the question of how the presence of datagaps is different from
noise. To do this, we resort to the method of surrogate analysis. The surrogate datasets
are generated using the method of Iterative Amplitude Adjusted Fourier Transform
(IAAFT) [95]. We use the TISEAN package to generate the surrogates [96]. Since the
IAAFT algorithm is suited only for evenly sampled datasets, we first generate surrogates
from the evenly sampled datasets. The same profile of gaps used on the original dataset
is used to introduce gaps into the 5 surrogate datasets. We then calculate D2(M) for
the original data and surrogate datasets. We plot the D2(M) vs M plots for 2 cases
(a)ms = 0.8τ,mp = 9τ close to the peak in Figure 3.4 and (b)ms = 10τ,mp = 9τ away
from the peak, in Figure 3.9. We see that in both cases the surrogates are away from the
data, suggesting that even though Dsat

2 deviates highly from the evenly sampled value in
most cases, it continues to behave distinctly different from noise [97].

3.3.2 Multifractal spectrum
We will now proceed to consider how datagaps affect calculation of the f(α) or multi-
fractal spectrum. We discussed the f(α) spectrum in detail in the first chapter. The
f(α) curve can be characterized using the function given in equation 1.48, in chapter 1.
Recollect that α1, α2, γ1 and γ2 uniquely characterized the f(α) curve [41]. An important
measure is the width of the f(α) curve which gives a measure of the complexity or scales
involved in the system. This is given by ∆α = α2 − α1. We initially define the deviation
of the quantifiers from those of the evenly sampled data

δ∆αrel = ∆α−∆αE
∆αE

δγrel1 = γ1 − γ1E

γ1E

δγrel2 = γ2 − γ2E

γ2E
(3.5)

Here ∆αE, γ1E and γ2E are the evenly sampled values of these quantifiers.
We conduct the analysis the same way we did for D2, by starting from large evenly

sampled datasets. Gaps are introduced in terms of the delay time τ and varied as before,
such that the resulting datasets all have ≈ 20000 points each. The ms −mp parameter
plane for the Rössler system is shown in Figure 3.10.
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(a) (b)

(c)

Figure 3.10: ms −mp parameter planes for the variation of (a) δ∆αrel (b)δγrel1 and (c)
δγrel2 for the Rössler system.
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We see that ∆α deviates highly from the evenly sampled value at low mp and ap-
proaches the evenly sampled value at higher mp. For ms, the ∆α increases initially,
reaches a peak at 1τ and then falls again at higher values. The behavior for the Lorenz
system is similar, but with a less prominent peak around ms = 1τ .

The γ1 and γ2 planes indicate that in the presence of datagaps, the γ values deviate
extensively from the evenly sampled value. This seems to suggest that in the presence of
datagaps, the estimated γ values cannot be relied upon.

A wide multifractal spectrum alone does not guarantee the system is deterministic.
Colored noise processes too show a saturating correlation dimension and a wide f(α)
spectrum [41, 98]. We again use the method of surrogate data testing using IAAFT to
determine whether the data behaves similar to noise or chaos. We first show how the
f(α) spectrum for data and surrogates for standard systems and noise processes vary.
This is shown in Figure 3.11, and listed in Table 3.1. It is clear that for chaotic data the
f(α) is different from that of surrogate datasets, while for noise data and surrogates are
very close in f(α).

(a) (b)

(c)

Figure 3.11: f(α) curves of (a) Lorenz (b) Rössler and (c)white and red noise along with
5 surrogate datasets for each.

We then examine the variation of data from surrogates when the time series is affected
by datagaps. We take examples of Rössler data with mean gap sizes, ms = 1τ and
ms = 8τ , and mean gap position, mp = 7τ . This is shown in Figure 3.12. Table 3.2
shows the values for α1 and α2 for the data and its surrogates. We see that the data
and surrogates merge for α2 in both cases. For the case where ms = 8τ , mp = 7τ , α1
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Table 3.1: α1 and α2 values for Lorenz, Rössler, red noise, white noise and their surrogates.

Data αd1 αs1 αd2 αs2
Lorenz 1.54 2.55±0.04 2.84 3.58±0.04
Rössler 1.60 1.95±0.03 2.99 3.44±0.19

Red noise 2.43 2.41±0.04 3.68 3.81±0.07
White noise 2.93 2.90±0.03 3.09 3.13±0.03

Table 3.2: α1, α2 values for the Rössler system and its surrogates for two different values
of ms.

ms mp αd1 αs1 αd2 αs2
8τ 7τ 1.73 2.02±0.03 2.98 3.06±0.18
1τ 7τ 1.81 1.95±0.07 4.04 3.82±0.43

is distinctly different for data and surrogates. However for ms = 1τ , mp = 7τ data and
surrogates merge.

(a) (b)

Figure 3.12: The f(α) spectra of Rössler system with gaps for (a)ms = 8τ,mp = 7 τ and
(b) ms = 1 τ,mp = 7 τ .

In the regions of the ms − mp parameter plane where ∆α deviates highly from the
evenly sampled value, the f(α) curves are indistinguishable from noise. This is unlike in
the case of D2, where even when the D2 value deviated away from the evenly sampled
value, it saturated distinctly away from surrogates.

3.4 Application to Real World Datasets
We now apply the analysis conducted in the previous section to analyse two real world
datasets. The first is composed of light curves of irregular variable stars observed by the
American Association of Variable Star Observers (AAVSO) [99]. The second consists of a
set of five datasets observed at the Station for Measuring Forest Ecosystem-Atmosphere
Relation (SMEAR), Finland [100,101].
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3.4.1 AAVSO Variable Star Light Curves
Astrophysical datasets are highly prone to datagaps because of the nature in which they
are collected. Since astronomy relies almost entirely on observational data, the con-
trol one has over external factors is limited. Cloud covers, eclipses and unfavourable
weather conditions limit continuous observation in optical astronomy. Radio astronomy
observations are affected highly by radio emissions from man made sources, ionospheric
scintillation, lightning, solar emissions etc. While many of these sources of gaps can be
eliminated in space based observatories, they too are plagued by datagaps, albeit to a
lesser extent [102].

Data can also be completely unevenly sampled, and AAVSO data is a typical example
of such datasets. There is no underlying sampling time, as the observations are made by
different individuals at random times. The study on pure uneven sampling focuses on
the distributions of sampling times, ∆t [103, 104]. It has been shown that ∆ts follow a
gamma distribution [105]. For very small mean gap positions, mp, we expect the data to
behave similar to datasets with no inherent sampling time. In fact we can show that for
small ms and mp, the sampling time distribution does follow a gamma distribution.

For the AAVSO datasets, we attempt to convert purely unevenly sampled datasets to
cases of time series with datagaps. We achieve this through binning. Binning introduces
an artificial sampling time into the data, equal to the bin size b. It has two major effects.
First it reduces the noise, and second it converts unevenly sampled data into a data that
we’ve handled in the previous sections. For binning, we chose a threshold ntb. If the
number of points within a bin, nb, is less than ntb, we treat that as a gap. Otherwise
the average over all the points in that bin is chosen as the value at that time bin. For
our calculations, we choose ntb = 3. We choose two values for b, 2 days and 5 days. We
consider light curves of four irregular variable stars namely R Scuti, U Monocerotis, SU
Tauri and SS Cygni, all of which have been suspected of nonlinear dynamics in the past.
Sections of light curves of all four stars are shown in Figure 3.13.

R Scuti

R Scuti (R Sct.) is an RV Tauri variable whose nonlinear properties have been extensively
studied in the past [84, 106, 107]. We first calculate the delay time,τ , of the light curve
which is about 20 days. The binning is first done for bin size, b = 2 days. This gives
mp = 33 days and ms = 8 days. In terms of τ this gives mp ∼ 1.65τ and ms ∼ 0.4τ . We
see that the D2 vs M curve does not yield a saturated value. This could be because of
the low value of mp. We then bin the light curve with b = 5 days. This gives mp ∼ 10.6τ
and ms ∼ 1.1τ . ms still falls into the critical region of D2 identified before, and we
do not get a saturated value, Dsat

2 . Finally, we try a bin size b = 10 days. This gives
mp ∼ 16.4τ and ms ∼ 1.4τ , and a saturated value of Dsat

2 = 5.67 ± 0.10. This value is
higher than previously reported values of D2 [84,106]. We suggest that this could either
be because of ms being close to the critical range considered, or because of the smoothing
methods employed in previous calculations. However conclusions regarding the nature of
the dynamics remains the same. Graphs of D2 vs M for the three bin sizes is shown in
Figure 3.14.
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(a) (b)

(c) (d)

Figure 3.13: AAVSO light curves for variable stars (a)R Sct. (b)U Mon. (c)SU Tau.
and (d)SS Cyg. binned over 5 day bins.

U Monocerotis

U Monocerotis(U Mon.) is a pulsating variable star that falls into the RVb Tauri sub-
category of stars [108]. Variability in RV Tauri stars has been hypothesized to be due
to their nonlinear behavior [109]. The delay time τ for U Mon. is found to be 15 days.
With b = 2 days, we get mp = 11.4 days or ∼ 0.76τ , and ms = 15.87 days or ∼ 1τ . The
ms and mp fall exactly into the critical region identified, and the D2 vs M curve does
not saturate. When we use b = 5 days, we get mp ∼ 3.5τ and ms ∼ 2.9τ . This yields a
Dsat

2 = 3.44 ± 0.08. The D2 vs M curves are shown in Figure 3.15. To the best of our
knowledge there are no existing calculations of Dsat

2 for this star for comparison.

SU Tauri

SU Tauri(SU Tau) is a variable star of the R Coronae Borealis type [108].Its variations
were suspected to be of chaotic origin previously [110]. The delay time of this star was
found to be τ ∼ 224days. With b = 2 days, the mean gap position and size were found
to be mp ∼ 0.06τ and ms ∼ 0.06τ . The calculated Dsat

2 was 3.26 ± 0.08. With a bin
size of b = 5 days the means changed to mp ∼ 0.28τ and ms ∼ 0.15τ . This yielded
Dsat

2 = 3.28 ± 0.08 Despite the high frequency of gaps, the consistent values of Dsat
2 ,

indicate that these may be reliable. In this case also, no known calculations of D2 exist
for comparison. The D2 vs M plots are shown in Figure 3.16.
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(a) (b)

(c)

Figure 3.14: D2 vs M plots for variable star R Sct. binned over (a)2 days (b)5 days and
(c)10 days.

SS Cygni

SS Cygni is a cataclysmic variable of the dwarf nova class [111]. Its dynamics was a
subject of dispute in the early 1990s [112,113]. Subsequently no evidence for strangeness
was found in its dynamics [114]. We follow the previous routine of binning the light
curves using bin sizes b = 2 days and 5 days. The former yields mp ∼ 10τ and ms ∼ 0.5τ ,
while the latter yields mp ∼ 50τ and ms ∼ 1τ . Both datasets show no saturation, despite
both ms and mp not falling into critical regions for b = 2 days.

We then point out the dangers of interpolation for this star, by interpolating through
both datasets and recalculating Dsat

2 . While the dataset with b = 2 does not show any
saturation even after interpolation, the dataset with b = 5 yields a saturated value for
D2 = 4.14 ± 0.05. Figure 3.17 shows the D2 vs M for both the interpolated and non
interpolated cases for two bin sizes.

The results for the correlation dimension calculations for all the stars are tabulated
in Table 3.3.

3.4.2 SMEAR Datasets
In this section, we will analyse the multifractal spectra of datasets with gaps, gathered at
the Station for Measuring Forest Ecosystem-Atmosphere Relation (SMEAR) in Finland.
We consider five datasets: three datasets from SMEAR I, namely CO2 exchange, photo-
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(a) (b)

Figure 3.15: D2 vs M plots for variable star U Mon. binned over (a)2 days and (b)5
days.

(a) (b)

Figure 3.16: D2 vs M plots for variable star SU Tau. binned over (a)2 days and (b)5
days.

synthetically active radiation (PAR) and soil moisture, and two from SMEAR II, namely
air temperature and dew point. SMEAR datasets are affected by datagaps primarily
due to instrument failure due to breaks in electricity, thunderstorms and so on [115,116].
In this subsection, we will attempt to estimate the f(α) spectra of these datasets from
SMEAR. The SMEAR I station is located 200 km north of the Arctic circle, in the Varriö
forest. We consider three main observational datasets from this station, i.e. the time
series of CO2 exchange, photosynthetically active radiation(PAR) and soil moisture. The
first of these is known to be a good proxy for photosynthesis rate [117], which in turn
is known to depend on the latter two. The photosynthesis rate of plants have been sus-
pected to have chaotic dynamics by multiple authors, previously [118,119]. The variation
of photosynthesis rate is known to be affected by variables such as ambient temperature,
CO2 concentration, PAR, soil moisture etc [120,121]. The dynamics of these variables in
turn also affect each other and hence are in constant feedback.

The SMEAR II station is located in the Hyytiälä forest. It primarily measures at-
mospheric aerosols, eco-physiology, soil and water measurements, solar and terrestrial
radiation and meteorological measurements. We choose two meteorological dataset from
SMEAR II, namely the dew-point and air temperature datasets, due to the high instance
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(a) (b)

Figure 3.17: D2 vs M plots for variable star SS Cyg. binned over (a)2 days and (b)5
days, with and without interpolation.

Table 3.3: Results for variable stars

Star Bin(days) τ(days) ms(τ) mp(τ) D2

R Sct. 2 20 0.4 1.65 N.S
R Sct. 5 20 1.1 10..6 N.S
U Mon. 2 15 1 .38 N.S
U Mon. 5 15 2.9 0.7 3.436
SU Tau. 2 224 .06 .06 3.265
SU Tau 5 224 .15 .28 3.285
SS Cyg. 2 10 0.5 10 N.S
SS Cyg. 5 10 1.0 50 N.S

of datagaps in them [115]. Multifractal analysis of climate datasets has been conducted
previously [122,123].

SMEAR I and II datasets are sampled every half an hour. We use data between
the period 2005-2017 for SMEAR I and from 2008-2017 for SMEAR II datasets. The
D2,τ , ms and mp values are shown for the five datasets in Table 3.4. We notice that the
mean gap parameter ranges for soil moisture and air temperature fall into the critical
region identified. To estimate the f(α) spectrum, we first embed the time series with an
embedding dimension, Md equal to the smallest integer greater than D2. The calculated
f(α) spectra are separately shown for the SMEAR I and II datasets in Figure 3.18

Table 3.4: τ , ms, mp and D2 for time series from the SMEAR datasets.

Data τ(hours) ms(hours) mp(hours) D2
CO2 Ex. 5 119.6 157.3 3.18
PAR 7 119.6 157.3 4.08
SM 970 499.5 971.1 1.15

Dew Pt. 1000 219.2 252.7 2.63
Air T. 667 483.2 535.1 3.28

We then look for signs of determinism, by constructing surrogates for these datasets,
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(a) (b)

Figure 3.18: f(α) spectra for datasets from (a)SMEAR I (b)SMEAR II.

Table 3.5: α1, α2 values for SMEAR datasets and their surrogates. αd1 and αd2 are
distinctly different from αs1 and αs2 for CO2 exchange and PAR, while they are within
errors of each other for the other three.

Data αd1 αs1 αd2 αs2
CO2 Ex. 1.87 2.55±0.01 2.26 4.75±0.01
PAR 2.10 3.39±0.07 3.08 3.88±0.09
SM 1.45 1.35±0.02 2.91 2.88±0.03

Dew Pt. 2.19 2.31±0.06 4.25 4.25±0.05
Air T. 2.29 1.95±0.01 3.79 4.16±0.04

and calculating f(α) spectra for them. Since these datasets are affected by datagaps,
we construct surrogates in the following way. Initially, we take regions of the data that
are continuous i.e there are no gaps present in the data. Surrogates are generated for
these continuous segments and joined together to form a surrogate for the whole dataset.
The presence of large continuously sampled segments in the SMEAR datasets makes this
possible, but we assert that this may not always be the case. The surrogate datasets are
then subjected to f(α) calculations as before. The α1 and α2 values for the five datasets
and their surrogates are shown in Table 3.5. We see that the data and surrogates are
distinctly different for CO2 exchange and PAR, but are reasonably close to each other for
the other three datasets. Of these air temperature and soil moisture have ms falling into
the critical region identified, while the dew point too has a high frequency of gaps. Hence
it is difficult to identify if the data and surrogates co-vary due to lack of deterministic
nonlinearity or due to the gap profile in these datasets [124].

3.5 Summary and Discussion
The presence of datagaps in time series has been a major impediment in their analysis.
As we discussed previously in this chapter, smoothing techniques can affect estimates of
nonlinear quantifiers, often leading to false positives. We considered the extend to which
nonlinear time series quantification is affected by the presence of datagaps in time series
data, when no such smoothing techniques are employed.
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We quantified the resilience of two popular state space quantifiers, namely D2 and
f(α) spectrum, to datagaps. We observe that a tolerable region exists for D2 and ∆α,
within which reliable conclusions can be drawn about the nature of the dynamics of the
system. We then proceeded to use the analysis we conducted, to deal with real world
AAVSO and SMEAR datasets, and estimate the D2 and f(α) spectra, respectively. We
illustrate how suitable binning can help to shift datagaps to tolerable limits and then the
estimated value of nonlinear quantifiers can give reliable conclusions.
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Chapter 4

Distinguishing Dynamical States
From Time Series Using Bicoherence

A major impediment in understanding the dynamics of systems that give rise to real
world time series observations, is the presence of noise. In this thesis we define noise
processes as those that have no correlations in their Fourier phases. Systems may have
stochastic dynamics or be contaminated by a stochastic process. It may often be challeng-
ing to determine whether a system is primarily stochastic or deterministic, especially if a
deterministic system is exhibiting irregular behavior like chaotic or strange non-chaotic
dynamics. Further, it is often difficult to distinguish between different nonlinear dynam-
ical states when the data is contaminated by noise or when the system is evolving with
noise.

In this chapter, we will present the results of our study to distinguish between dy-
namical states in the presence of noise by using higher order spectra, specifically the
bicoherence. We introduced the bicoherence in some detail in chapter 1. We will review
it again now. The bicoherence function is defined in equation 1.33 in chapter 1. It mea-
sures the extent of quadratic coupling between frequencies at f1 and f2, by looking for
a response at f1 + f2

1. The bicoherence function is useful when dealing with noisy data
because it is not phase blind unlike the power spectrum. Further, it does not distinguish
between symmetrically distributed mean zero noises, irrespective of its color.

We discuss the use of the bicoherence function to distinguish noisy periodic phe-
nomena from deterministic irregular phenomena, when noise contamination is involved.
Specifically we use it to distinguish noisy limit cycles from chaotic behavior and noisy
quasiperiodicity from strange non chaotic behavior.

1One can motivate this by imagining a quadratic system with an x2 response. Suppose the input
signal is x = sin(ω1t) + sin(ω2t). The system would cause components to appear at sin(ω1t + ω2t) and
sin(ω1t−ω2t). The bicoherence checks if these components in the Fourier transform are related to each
other.
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4.1 Analysis of Noisy Limit Cycles
To study the behavior of noisy limit cycles, we use the Rössler system evolved in the
presence of noise as our test system. It is given by

ẋ = −y − z + η(t)
ẏ = x+ ay

ż = b+ z(x− c)
(4.1)

where a=0.1, b=0.1, c is varied for the regime under consideration and η(t) is δ-correlated
mean zero Gaussian white noise. We initially set η(t) to 0, and check the bicoherence
for the noiseless Rössler in the periodic regime [125]. The power spectra and bicoherence
plane for the period 1 and 2 regimes is shown in Figure 4.1. The bicoherence is plotted
only for the frequency pairs over the 99% significance threshold, given by

√
9.2
dof

[30]. Here
d.o.f is 2N , where N is the number of segments into which the time series is divided. In
our study,we divide the time series into 32 segments with 4096 points each.

(a)

(b)

Figure 4.1: Power spectrum for the Rössler system in (a)period 1 and (b)period-2 regimes.
The corresponding bicoherence graphs zoomed to [0, 1] region are shown in (c) and (d).
The islands of high bicoherence corresponds to the finite width of the peaks in the power
spectra.

We then proceed to analyze the difficulty in dealing with the case where η(t) is non
zero. We set the standard deviation of η(t) to 2.0 for the periodic regimes(c = 4 and 6.2)
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and at 5.0 for the chaotic regime(c = 18). The power spectra for the periodic Rössler
evolved in the presence of noise, is shown in Figure 4.2 a and b. We see a continuous
inter-peak peak power in them, that is absent in the noiseless case. This is similar to the
noiseless chaotic power spectrum shown in Figure 4.2 c. Further, as can be seen from the
chaotic Rössler evolved with noise (Figure 4.2 d), the fine features of the chaotic power
spectrum is lost when contaminated by noise. Hence it becomes difficult to understand
the underlying dynamical state of the system looking at the power spectrum alone.

The bicoherence corresponding to the four cases is shown in Figure 4.3. Unlike the
power spectra, the bicoherence graphs show distinct features for the periodic regimes
evolved with noise, different from the chaotic regime. For the periodic time series, the
points corresponding to the primary frequency and its harmonics can be clearly identi-
fied2.

Figure 4.2: Power spectra for the Rössler system evolved in the presence of noise in
(a)period-1 (b)period-2 and (d)chaotic regimes. (c) shows the noiseless Rössler in the
chaotic regime.

4.2 Analysis of Noisy Quasiperiodicity
In this section, we will try and distinguish between noise contaminated quasiperiodicity
and strange non chaotic behavior. Quasiperiodicity is a dynamical state exhibited by

2The small but significant bicoherence one sees along the horizontal lines is due to the finite width
of the peaks due to the finite length of the data, which causes the stochastic peaks on its wings to be
misidentified as being of chaotic origin.
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Figure 4.3: Bicoherence graphs for the Rössler system evolved in the presence of noise
in (a)period-1 (b)period-2 and (d)chaotic regimes. (c) shows the noiseless Rössler in the
chaotic regime.

dynamical systems possessing two or more independent frequencies of oscillations that
are incommensurate. The power spectrum of such a state would contain peaks at the
original frequencies f1 and f2 and all their linear combinations like f1 +f2, f1−f2, f1 +2f2
and so on [7]. Our definition of the bicoherence in equation 1.33 seems to suggest that
in such a system, the bicoherence of pairs such as (f1, f2) and (f1 − f2, f2) would be
significant. Hence the bicoherence function seems to be a natural quantifier to deal with
systems exhibiting quasiperiodicity.

Since all possible frequencies in the power spectrum must arise from linear combina-
tions of these fundamental frequencies, it would suffice for us to look at bicoherence pairs
where one of these frequencies is a member. We hence define a quantifier, the main peak
bicoherence,

bF (f) = |
∑k
i=1Ai(F )Ai(f)A∗i (f + F )|∑k
i=1 |Ai(F )Ai(f)A∗i (f + F )|

(4.2)

where F is the maximal peak in the power spectrum.
One of the possible dynamical states that can occur in systems that have two inde-

pendent frequencies of oscillations is the strange non chaotic state. We discussed this
briefly in chapter 1. A system is said to be exhibiting strange non chaotic behavior when
it possesses a strange attractor with fractal geometry, but does not show divergence of
nearby trajectories. The former is characterized by a non integer fractal dimension while
the latter is characterized by the absence of any positive Lyapunov exponents.

We study quasiperiodicity and strange non chaotic behavior taking the dynamics of
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a doubly driven pendulum as a standard system, already considered in chapter 1 and
described by 1.12. This system exhibits quasiperiodicity for K=1.34, V=0.55, p=3.0,
ω1=

√
5−1
2 and ω2=1.0 , and strange non chaotic dynamics by changing K to 1.33 [8]. The

power spectrum and bicoherence graphs for these regimes are shown in Figure 4.4. In this
case we divide the time series into 32 segments of 16,384 points each. Differences in these
dynamical states can be easily seen in both the power spectrum and bicoherence. To
illustrate the usefulness of bF (f), we also plot the main peak bicoherence for these states
in Figure 4.5. We clearly see that all the peaks in the power spectrum have significant
bicoherence. The error on the bicoherence for N segments is given by 1

N
[126].

(a)

(b)

Figure 4.4: Power spectrum for the doubly driven pendulum in (a)quasiperiodic and
(b)strange non chaotic regimes, normalised to the range [0, 1]. The corresponding bico-
herence graphs are shown in (c) and (d).

One of the most popular methods to detect strange non chaotic behavior in time
series data has been through the spectral scaling of peaks in the strobed power spectrum
[76,127]. In this, the time series is first strobed3 along its primary frequency. The power
spectrum of this strobed time series is then calculated. The number of peaks4, Np is
counted for a fixed threshold power. This threshold power is increased and the number of

3Strobing is the process of resampling the time series along a desired frequency. In this case the data
is strobed along the primary frequency. This is equivalent to taking a Poincare section of the time series.

4A peak is defined as a local maxima in the power spectrum. This helps avoid artifacts due to finite
peak widths in the power spectrum
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(a)

(b)

Figure 4.5: Main peak bicoherence for the doubly driven pendulum in (a)quasiperiodic
and (b)strange non chaotic regimes. The vertical lines represent the peaks in the power
spectrum with power above 0.001. We see that in both cases, all the peaks in the power
spectrum have significant main peak bicoherence as well.

peaks is counted each time. The variation of the number of peaks with threshold power
can be shown to have a power law scaling, for strange non chaotic behavior [128]. We
show that a system exhibiting quasiperiodicity, when contaminated with colored noise
can show very similar scaling behavior.

We show that this is the case for the quasiperiodic pendulum when contaminated
with red noise with a signal to noise ratio5 of 1.15. The time step for integration of the
system is chosen as one tenth of the primary frequency, F1( 2π

10Ω1
). The time series of the

y variable, given by dφ
dt
, is strobed by picking every tenth point. The power spectrum of

this strobed time series for 32 segments is shown in Figure 4.6. The scaling of number of
peaks with changing threshold is then calculated. We use logarithmic binning6 to avoid
statistical errors in the tail of the distribution [129]. The scaling of peaks for the noiseless
strange non chaotic case and the noise contaminated quasiperiodic case is shown in Figure
4.7. The similarity in the scaling indices between the two is immediately obvious, and
may lead to false conclusions regarding the underlying dynamics of the system. Hence,
alternate methods must be employed to differentiate between the two cases. We suggest
the method of applying a main peak bicoherence filter to consider only the peaks of
dynamical origin in the counting. Recollect from Figure 4.5 that all the peaks in the
strange non chaotic power spectrum also have significant bicoherence.

One of the main hurdles in the use of the main peak bicoherence filter, when dealing
5Defined as the ratio of standard deviation of the signal to the standard deviation of the noise
6In this the bin sizes are not chosen to be equal. Rather, they are chosen as powers of a number, n.

Hence, the bins are equally spaced on a logarithmic axis(See Figure 4.7, for instance).
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Figure 4.6: Power spectra for the y time series of the driven pendulum in (a)noiseless
strange non chaotic state and (b)quasiperiodic state contaminated with red noise.

with strobed time series is the small value for the Nyquist frequency, fm7. We get around
this problem, by considering the significance of bF (fm − F ), if f + F > fm. Hence we
check if

bF (f) >
√

9.8
2N ,F + f < fm

bF (fm − F ) >
√

9.8
2N ,F + f > fm

before counting the peaks above a threshold in the power spectrum. The scaling behavior
of the strange non chaotic state is shown in Figure 4.8(a). We see the scaling is identical
before and after applying the filter. On the other hand the scaling of quasiperiodic
power spectrum when contaminated with red noise is shown in Figure 4.8(b). One sees
a distinct difference in the scaling before and after application of the filter in this case.
We find that the filter reduces the number of peaks by a factor greater than seven at
the smallest threshold [130]. Our method can hence be used to identify quasiperiodicity,
even in cases when the system is contaminated by noise. We point out that the nature of
the bicoherence function would make this filter applicable, irrespective of the color of the
noise. We also point out that this filter may be useful in filtering out dynamical peaks
even when the system evolves in the presence of noise [131].

4.3 Dynamics of RR Lyrae Stars
In this section we will examine the dynamics of RR Lyrae stars in more detail, especially
in the light of the analysis considered above. One of the primary drawbacks of nonlinear
analysis like the bicoherence, has been the need for long continuous high quality light
curve data8. This has been made available with the advent of space telescopes for ob-
servations. The Kepler space telescope is one such telescope [132, 133]. With its advent,
the understanding of the underlying nonlinearity in the dynamics of many stars has im-
proved considerably. Some important results to this end has been the discovery of period

7For a strobing frequency Fs, the Nyquist frequency is Fs

2 .
8The time series of the intensity variation of an astrophysical object is called its light curve
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Figure 4.7: Scaling of peaks in the strobed power spectrum for the noiseless strange non
chaotic (SNC) state and the quasiperiodic(QP) state contaminated with red noise. Both
show similar power law like scaling.

doubling in RR Lyrae stars [73,74],strange non chaotic behavior in RRc Lyrae stars [76],
chaotic behavior in RV Tauri stars [134] etc.

4.3.1 RRab Lyrae Stars
RRab Lyrae stars are subclasses of RR Lyrae stars that pulsate in the radial fundamental
mode, with long to moderately long periods [61]. These stars have a strong periodicity and
were thought to be perfectly periodic until recently. With the Kepler space telescope,
many RRab Lyrae stars were shown to have undergone period doubling [74]. Hydro-
dynamic simulations of RR Lyrae stars show possibilities of rich dynamics like period
doubling, intermittency and chaos [70,135,136].

We explore signatures of chaos in the Kepler light curves of RRab Lyrae stars using the
bicoherence function. We first compute the power spectrum from the star light curves.
Specifically we consider two stars KIC 4484128 and KIC 7505345. Since the datasets
come with gaps in observations, the calculations are done by averaging over n evenly
sampled segments. The power spectra for the two stars are shown in Figure 4.9. Other
than the peaks at the fundamental, harmonics and half harmonics, we also see minor
peaks at other frequencies. These may be stochastic peaks or may be of chaotic origin.
We explore this question further by considering the bicoherence for these stars. The
full bicoherence planes for these stars are shown in Figure 4.10. We observe that the
bicoherence plane has significant bicoherence at many points, besides the main peak, half
harmonics and harmonics, suggesting that these stars may be exhibiting richer dynamics
than simple period doubled behavior. We illustrate this specifically in the case of the star
KIC 4484128, by plotting the main peak bicoherence along with the prominent power
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Figure 4.8: Scaling of peaks in the power spectrum with and without bicoherence filter
for the (a)noiseless strange non chaotic state and (b)the quasiperiodic state contaminated
with red noise.

Figure 4.9: Power spectrum graphs for RR Lyrae stars (a) KIC 4484128 and (b)KIC
7505345.

spectral peaks in Figure 4.11.
In an attempt to understand the dynamics of these stars better, we also undertake

correlation dimension analysis of these stars, along with its surrogates. The plots for the
same are shown in Figure 4.12. The surrogates are generated separately for the individual
segments and joined together to act as a surrogate for the whole time series, as described
in Section 4.2 in chapter 3. We see clearly that in both cases the data deviates from
surrogates, but the deviation is larger for KIC 4484128. We also show the f(α) plots for
these stars in Figure 4.13. The D2 values and the parameters of the f(α) spectrum for
these stars are listed in Table 4.1. One sees that the width of the f(α) curve in the case
in the case of KIC 7505345 is very narrow, similar to noise.

Table 4.1: D2,α1,α2, γ1 and γ2 values for the stars considered in Figure 4.9.

KIC D2 α1 α2 γ1 γ2

4484128 2.88 1.69 2.10 0.31 .0005
7505345 3.81 1.65 1.69 1.0 .25
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Figure 4.10: Full bicoherence plane for RR Lyrae stars (a) KIC 4484128 and (b)KIC
7505345.

Figure 4.11: Main peak bicoherence function for RR Lyrae star KIC 4484128. The
vertical lines indicate the power spectral peaks.

RRc Lyrae Stars

In this section, we analyze the dynamics of RRc Lyrae variable stars in the Kepler field
of view. Four RRc Lyrae stars fall into this category, namely KIC 4064484, KIC 5520878,
KIC 8832417 and KIC 9453114. Spectral scaling analysis of these stars had lead to the
conclusion that all four may be exhibiting strange non chaotic variation [76]. Subse-
quently, spectral scaling of the power spectrum without strobing, was also shown to have
similar power law scaling for these stars [137]. In fact this difference in spectral scaling
between RRc and RRab Lyrae stars was suggested as a method of differentiating between
the two subclasses [138].

We first examine the power spectra of these four stars. As before the power spectrum
is calculated for n evenly sampled segments using the FFT algorithm. The plots for
the same is shown in Figure 4.14. One sees immediately that all four stars show a rich
spectrum, with peaks an interpeak continuum. We explore the question of whether these
peaks are stochastic as in the noise contaminated quasiperiodic case or dynamic as in
the strange non chaotic case. The values of the primary and secondary peaks and their
ratio is shown in Table 4.2 [73]. We notice that all the stars seem to exhibit an irrational
ratio for primary to secondary frequency, very close to the golden ratio. In order to
check whether the peaks are of dynamical origin, we first consider the full bicoherence
graphs corresponding to these stars. This is shown in Figure 4.15. We see that the
bicoherence planes for the stars KIC 4064484 and KIC 9453114 are distinctly different
from the stars KIC 5520878 and KIC 8832417. We quantify this difference by defining a
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Figure 4.12: Correlation dimension (D2) vs embedding dimension (M) plots for RR Lyrae
stars (a) KIC 4484128 and (b)KIC 7505345, along with 10 surrogates.

Figure 4.13: f(α) vs α plots for RR Lyrae stars (a) KIC 4484128 and (b)KIC 7505345.

quantifier called the significant pair fraction. This counts the relative number of peaks
with significant bicoherence. We list this in Table 4.2, along with the average value of
bicoherence through the plane. This confirms that the bicoherence is higher through the
plane for KIC 4064484 and KIC 9453114, as compared to KIC 5520878 and KIC 8832417.

As representative cases, we study the main peak bicoherences of KIC 4064484 and
KIC 5520878. We see that the main peak bicoherences too reflect the lack of quadratic
coupling between the peaks in the power spectrum for KIC 5520878. KIC 4064484 on the
other hand shows significant bicoherence for almost all the peaks present in the power
spectrum. This is shown in Figure 4.16. Finally, we analyze the spectral scaling of the
peaks in KIC 4064484 and KIC 5520878, in the presence of the bicoherence filter developed
in Section 4.2. We see that while the scaling behavior with the filter is retained for KIC
4064484, it changes drastically for KIC 5520878, as seen in Figure 4.17. This indicates
that KIC 4064484 is indeed undergoing strange non chaotic behavior as suggested by [76],
while KIC 5520878 is not. In order to explore the dynamics of KIC 5520878 further,
we also consider the tricoherence along the primary power spectral peak for this star.
However no significant tricoherence was observed either. This suggests that the dynamics
in KIC 5520878 may actually be noise contaminated quasiperiodicity. Similar results were
obtained for the other two stars. KIC 8832417 showed behavior similar to KIC 5520878,
with a drastic difference in the spectral scaling when a bicoherence filter was applied.
However, KIC 9453114 did not show any such change, indicating strange non chaotic
dynamics similar to KIC 4064484 [131].

The results of the bicoherence analysis done suggests that the stars KIC 4064484 and
KIC 9453114 have distinctly different dynamics from KIC 5520878 and KIC 8832417. We
explore this further, and see if this is reflected in other properties of these stars. We first
check the astrophysical properties and observe that the two populations differ in three
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Figure 4.14: Power spectrum graphs for RRc Lyrae stars (a)KIC 4064484, (b)KIC
5520878, (c)KIC 8832417 and (d)KIC 9453114.

Table 4.2: Primary period(P1), secondary period (P2), the ratio of the pri-
mary to secondary, significant pair fraction(SPF ), mean bicoherence(Bavg), effective
temperatures(Teff ) and metallicities([Fe/H]) of the RRc Lyrae stars in the Kepler field
of view.

KIC P1(days) P2(days) P2
P1

SPF Bavg Teff [Fe/H]
4064484 0.337 0.207 0.615 0.77 0.64 6500 −1.58
5520878 0.269 0.170 0.631 0.31 0.40 7250 −0.18
8832417 0.248 0.152 0.612 0.24 0.33 7000 −0.27
9453114 0.336 0.224 0.614 0.70 0.55 6500 −2.13
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Figure 4.15: Full bicoherence graphs for RRc Lyrae stars (a)KIC 4064484, (b)KIC
5520878, (c)KIC 8832417 and (d)KIC 9453114.
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(a)

(b)

Figure 4.16: Main peak bicoherence for the Kepler RRc Lyrae stars (a)KIC 4064484 and
(b)KIC 5520878. The vertical lines represent the peaks in the power spectrum. Almost
all the power spectral peaks have significant bicoherence in (a), while very few of them
show significant bicoherence in (b).

Figure 4.17: Spectral scaling with and without bicoherence filter for RRc Lyrae stars
(a)KIC 4064484 and (b)KIC 5520878. (a) retains the scaling behavior after applying the
filter, while (b) shows distinctly different behavior.
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main parameters. These are the primary period P1, effective temperature Teff and the
metallicity measured through [Fe/H]9 [73, 75](See Table 4.2). We explore the nonlinear
properties of these stars further, using recurrence quantification analysis in chapter 6.

4.4 Summary and Discussion
In this chapter, we present the results of our study on the bicoherence function in various
forms to deal with noisy data. We primarily look at two cases when periodic data can
be misinterpreted as being chaotic or strange non chaotic when contaminated with noise.
The kind of noise may be additive or the system itself may be evolving in the presence
of noise.

When the system evolves with noise, we show that limit cycles may seem similar to
chaos. However, the bicoherence planes for the two cases help us differentiate between
these two states. We subsequently show how the bicoherence may be used to identify the
underlying dynamics in RRab Lyrae stars where the power spectrum shows an interpeak
continuum which may be of chaotic or stochastic origin. Our conclusions suggest that
RRab Lyrae stars may be undergoing chaotic dynamics. We supplement the bicoherence
studies with D2 and f(α) studies.

The second scenario where periodic behavior is misinterpreted is in quasiperiodically
forced systems. We show that a system in quasiperiodic state, when contaminated with
noise shows behavior similar to strange non chaotic behavior, when only conventional
techniques are considered. We point out that the spectral scaling of peaks in the strobed
power spectrum is similar for strange non chaotic and noisy quasiperiodic systems. These
two distinct dynamical behaviors can be distinguished if one uses a bicoherence based
filter. The filter, we see, recovers the true scaling behavior, even when the system is
contaminated with noise.

We use this analysis to examine the dynamics of RRc Lyrae stars which are thought to
exhibit strange non chaotic behavior. We show that two distinct groups can be observed
in RRc Lyrae stars based on their bicoherence. One group consisting of KIC 4064484
and KIC 9453114 seem to be exhibiting strange non chaotic dynamics while KIC 5520878
and KIC 8832417 seem to be exhibiting quasiperiodic dynamics. Further, these groups
also seem to correspond to distinct classes when astrophysical properties like the effective
temperature, metallicity and primary period are considered. We suggest that these stars
may be further subclassified using their nonlinear dynamical properties. We explore these
stars further using recurrence based analysis in chapter 6.

9Measured as [Fe/H] = log10(NF e
NH

)star − log10(NF e
NH

)sun
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Chapter 5

Nonlinear Dynamics of Contact
Binary Stars

In this chapter we will consider the nonlinear properties of overcontact binary stars. Over-
contact binary stars are binaries in which both component stars overfill their Roche lobes.
This implies that both matter and energy can be transferred between the companions.
Hence the light curves of overcontact binary stars are not purely periodic, but exhibit
irregularities in the form of uneven maxima and eclipse time variations. The origins
of these are still not well understood and are attributed to a number of different fac-
tors. The nonlinear properties of overcontact binary stars remain relatively unexplored.
On the other hand, one of the striking examples where nonlinear time series analysis
has been successfully implemented in astrophysics is in the study of compact binary
stars [87, 139, 140]. In this chapter we will attempt to understand the light variations of
overcontact binary stars by systematically studying their nonlinear dynamics. We will
also attempt to correlate the astrophysical properties of these stars with their nonlinear
dynamical properties.

5.1 Dynamics of overcontact binary stars
As a preliminary step, we compute the power spectrum of four sample over contact binary
stars. These are shown in Figure 5.1. We immediately notice the peaks at half integer
multiples of the primary peak. This is indicative of period doubling in the underlying
dynamics. Similar period doubling behavior has been observed in a number of different
stars including RR Lyrae stars, W Virginis stars, black holes and so on [74,141,142]. The
existence of half integer peaks in contact binary stars seems to suggest a strong indication
of nonlinear dynamics in their light curves. Hence we apply nonlinear time series methods
to get measures of nonlinearity in them.

5.1.1 Correlation Dimension
In this section we will calculate the correlation dimension for the 463 overcontact binary
stars in the Kepler field of view [143]. To eliminate the wide differences arising from the
amplitude distributions of the different stars, we first convert the amplitude distributions
to uniform distributions. This is done by taking the uniform deviate of the light curve.
We then proceed to reconstruct the state space using Taken’s theorem. If I(t) is the
intensity of the star at time t and Iu(t) is its uniform deviate, the M dimensional delay
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Figure 5.1: Light curves and power spectra of four typical over-contact binary stars
((a)KIC 4909422, (b)KIC 6368316, (c)KIC 7657914, and (d)KIC 8800998). The upper
panel corresponds to the light curves and the lower panel shows the corresponding power
spectra.
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vectors are given by

~vi = [Iu(ti), Iu(ti + τ), ..., Iu(ti +Mτ)] (5.1)

Figure 5.2: Reconstructed state space of four typical over-contact binary stars projected
in 2D ((a)KIC 4909422, (b)KIC 6368316, (c)KIC 7657914, and (d)KIC 8800998)

The reconstructed state space projected to two dimensions for the four sample stars
are shown in Figure 5.2. One immediately sees a structure in the state space of these
stars, arising from the uneven maxima and eclipse time variations described above. We
quantify this structure using the correlation dimension, D2. A histogram of the values of
D2 for all 463 stars is shown in Figure 5.3. We see from the figure that the D2 shows a
range of values for the stars under consideration.

We also generate IAAFT surrogate datasets for all the light curves as described in pre-
vious chapters [144, 145]. Surrogate datasets are constructed by constructing individual

Figure 5.3: Histogram of D2 values for all the overcontact binary stars under considera-
tion.
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Figure 5.4: D2 vs M curves for four typical over-contact binary stars ((a)KIC 4909422,
(b)KIC 6368316, (c)KIC 7657914, and (d)KIC 8800998). We see the data is distinctly
different for surrogates for (a),(b) and (d), while for (d) data and surrogates co-vary.

surrogates for the evenly sampled segments that are joined together to form a surrogate
for the entire dataset. The D2(M) vs M curves for the four sample datasets and their
surrogates is shown in Figure 5.4. We also calculate the nmsd measure for all the stars
considered.

We make an important observation regarding the D2 and nmsd for the stars under
consideration, by plotting the D2 with nmsd. This is shown in Figure 5.5. We see that
the D2 and nmsd are inversely related, such that higher D2 values come with lower
nmsd. One of the reasons behind lower nmsd values is the noise contamination in the
system. Hence our analysis may suggest that systems with higher D2 tend to have
stochastic factors influencing their dynamics. We analyze this further as we consider the
bicoherence studies of these stars.

Eclipse Time Variation

Periodic phenomena are very common in nature. However, very often the periodicities
are not exact. Hence these phenomena are only nearly periodic. In such cases one of
the properties that is widely studied is the variation or deviation from the period. This
analysis is called by different names in different contexts. For instance in cardiology, the
heart rate variability is studied and in ecology variations in flowering time and population
dynamics are studied [146–148]. The origins of these variations are often explained using
nonlinear dynamics [149–151]. In the context of eclipsing variable stars this deviation
from the primary period is called eclipse time variation. The general method to study
this phenomena is through the study of O-C curves (Observed-Calculated).

In order to analyze the eclipse time variations in these stars we generate O-C curves
using the following equation.

∆ = Ti − T0 − i× P s (5.2)
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Figure 5.5: Variation of the log of the nmsd with log of D2. We see a fall in nmsd as
D2 increases. Hence the increase D2 may be attributed to an increase in stochasticity or
a change in the underlying equations of the system.

Table 5.1: D2 and nmsd values for the O-C curves of the four overcontact stars shown
in Figure 5.1, and two chaotic dynamical systems.

Kepler ID D2 nmsd

4909422 1.74 2.77
6368316 1.50 3.56
7657914 1.92 7.42
8800998 1.74 2.05
Rössler 3.84 1.63
Pendulum 3.39 3.33

Here, Ti is the observed time of the ith maxima, T0 is the initial time of observation, and
P s is the mean period of occurrence of the maxima.

Eclipse time variation curves of overcontact binary stars were previously reported as
showing random walk like behavior. Here we explore this further by considering the O-C
curves generated by two standard chaotic systems with strong periodicities, namely the
driven pendulum and the Rössler system. We see that the O-C curves generated from
these systems too show random walk like characters. This is evident from the power
spectrum, which shows 1

f2 characteristics(Figure 5.6). We see similar characteristics for
the O-C curves generated from the overcontact Kepler stars.

Finally, we also consider the D2 for the O-C curves generated from the standard
systems and the overcontact binaries. We compare them to the five IAAFT surrogate
datasets generated. The D2 and nmsd for the O-C curves generated from the sample
stars considered and the standard systems are shown in Table 5.1. The similar values
of nmsd seems to suggest that the eclipse time variations may also be of deterministic
origin.
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Figure 5.6: Power spectra for the eclipse time variation for (a)Rössler system and (b)KIC
4909422. The 1

f2 line is shown in both cases for comparison.
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Figure 5.7: f(α) vs α plots for the 4 sample eclipsing binary stars considered. The figures
correspond to (a)KIC 4909422, (b)KIC 6368316, (c)KIC 7657914, and (d)KIC 8800998.
The narrow spectrum corresponding to (d) is indicative of noisy behavior, as suggested
by Figure 5.4

5.1.2 Multifractal Properties
As mentioned in earlier chapters, multifractal spectra or f(α) curves are also calculated for
the whole dataset of overcontact binary stars. We can characterize the f(α) curve using
the function given in equation 1.48. The f(α) curves can be characterized completely
using the four parameters αmax, αmin, γ1 and γ2.

The embedding dimension for calculation of the f(α) properties is chosen to beM = 4,
as over 80% of D2 values lie below this range in Figure 5.3. The calculated f(α) curves for
the four sample stars considered is shown in Figure 5.7. αmax corresponds to the rarest
parts of the attractor and as such needs a very large number of points for an accurate
calculation. Hence the calculation of this quantifier may be susceptible to numerical
errors.

5.1.3 Bicoherence Properties
Both the earlier subsections dealt with the fractal properties of the reconstructed state
space of the overcontact binaries. In this subsection, we will look at the bicoherence
properties, which measures the extent of coupling between the different frequency pairs1

present in the system. The full bicoherence planes corresponding to the four sample stars
we considered is shown in Figure 5.8.

As discussed in chapter 4, in many cases studying the main peak bicoherence function
suffices [131].The main peak bicoherence function bF (f) is given by the equation 4.2. For
overcontact binary stars, F is the eclipsing frequency. The bF (f) for the four sample
stars under consideration is shown in Figure 5.9. In order to extract a single number,

1Upto quadratic order!
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Figure 5.8: Full bicoherence plots for the four typical eclipsing binary stars considered
before. Very few frequency pairs show significant bicoherence in (b) and (d), whereas (a)
and (c) show significant bicoherence for many frequency pairs.

representing the extent of contact we define a quantity called the significant bicoherence
fraction. It is the number of frequencies that have a significant (above 99%) bicoherence
with the eclipsing frequency. It is important to note that the eclipsing frequency is equal
to the maximal peak in the power spectrum in all cases. The plot of the histogram of
the significant bicoherence fraction SBF is shown in Figure 5.10. The range of SBF
observed seems to suggest that the coupling with the eclipsing frequency varies widely
within the dataset. The stars where no coupling with the eclipsing frequency is seen,
seem to be primarily dominated by stochastic factors or with a nonlinearity that is not
of quadratic order.

5.1.4 Correlations Between Astrophysical and Nonlinear Prop-
erties

The results presented in the previous sections establish the nonlinearity in the light
curves of overcontact binary stars. The quantifiers we get suggest that the stars may be
exhibiting low dimensional chaotic behavior. We see that almost all the stars show this
low dimensional chaos irrespective of the physical properties they possess. It then seems
plausible that the nonlinear properties of the star may evolve as the physical properties
of the star evolves. We address this question in this section by hunting for correlations
between the nonlinear dynamics of a star and its astrophysical properties.

An important property of an overcontact binary star is the extent of contact that
exists between the component stars. This is measured using the fill-out factor, ff . We
discussed the fill-out factor in chapter 2, described in equation 2.4. ff is also associated
with the evolution of a binary, with a higher ff indicative of a more evolved star [78].
Hence a correlation with ff is indicative of evolution and age of the star.

We first look at the correlation between D2 and ff . For this we split the stars into two
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Figure 5.9: bF (f) vs f plots for the four typical eclipsing binary stars considered above.
Only bicoherence values above 99% significance are plotted. As in the case of Figure 5.8,
(a) and (c), show significant coupling with the eclipsing frequency whereas (b) and (d)
have much less frequencies that show significant value for bicoherence. The error bar on
the bicoherence for N segments is given by 1

N
[126].

Figure 5.10: Normalized histogram and kernel density estimate of Significant Bicoherence
Fraction (SBF) for all the light curves considered.
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Figure 5.11: Plots of kernel density estimates of fill-out factors for (a)D2 < 3.29 and
D2 > 3.29 (b)SBF < 0.23 and SBF > 0.23. One can see two different distributions when
we subdivide the parameters into two. In (a) the skews of the distributions corresponding
D2 < Dmed

2 and D2 > Dmed
2 , towards higher ff and lower ff respectively, suggests that

higher D2 implies a more evolved system with higher ff values. Similarly in (b) we see
that the stars start to loose coupling with the eclipsing frequency as it evolves.

categories based on their D2. This is done by taking the median of the D2 distribution
plotted in Figure 5.3 given by Dmed

2 = 3.29. We compare the fill-out factors of the two
categories in Figure 5.11a. We find that the stars with a lower D2 tends to have a lower
value for ff , while the stars with higher D2 have a higher values for ff .

We then consider the Spearman correlation coefficient between D2 and ff . For two
distributions Xi and Yi, the Spearman correlation coefficient is defined as follows. First
the distributions are converted into ranks, giving gXi

and gYi
. Then the Spearman rho,

ρS is given as
ρS = cov(gX , gY )

σgX ,gY

(5.3)

where cov(gX , gY ) is the covariance of the rank distributions. rhoS between D2 and ff
is found to be ρS = 0.33. The significance of this correlation is given by the p-value. One
determines this from the value of

t = ρS

√
n− 2
1− ρ2

S

(5.4)

which can be shown to be Student t-distributed with n− 2 degrees of freedom [13]. The
significance essentially gives the probability that the correlation arose from a random
distribution. Generally, a correlation is assumed to be significant, if its p-value is less
than .001 The p-value for the correlation between D2 and ff is 6.9× 10−13, and is hence
likely to be highly significant.

For the correlation between SBF and ff , as before we divide the dataset into two
categories according to the median of the SBF distribution. The value of the median
is SBFmed = 0.23. The kernel density plots for the two distributions is given in Figure
5.11b. Unlike for the D2 case, we see that higher SBF corresponds to lower ff , while
lower SBF corresponds to higher ff . This is also reflected in the ρS, which is given by
ρS = −0.44 with a p-value of 2.2 × 10−23. We show this variation of ff with D2 and
SBF in Figure 5.12.
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Figure 5.12: Scatter plot of all the overcontact stars as a function of D2 and SBF .
The color code shows the range of ff values. We see that the top left of the graph
corresponding to higher SBF and lower D2, shows a lower ff whereas the bottom right
corresponding to higher D2 and lower SBF shows a higher value for ff .

Miscellaneous correlations

In this section we explore the correlations that exist between different nonlinear time
series measures with the physical parameters and between themselves. Such a study
is important as it indicates the independent correlations in the study. In addition to
the fill-out factor in this section we consider the following physical parameters. These
are the effective temperature Teff , the mass ratio, q and the period, P0. The nonlinear
parameters are the D2, SBF and the parameters of the f(α) spectrum. The table of
correlations is shown in table 5.2

We can see for instance that the correlations between ff and D2 and ff and SBF
do not follow from each other as the correlation between D2 and SBF is much smaller at
−0.24. Some of the correlations in the table, especially between P0 and Teff and between
q and ff are already studied in the context of contact binary physics [152, 153]. Such a

Table 5.2: Spearman correlations between D2, SBF , αmin, αmax, ∆α, ff , Period(P0),
Teff ,and mass ratio, q. Correlations that are significant are displayed in bold. We consider
a correlation as significant if the p-value is less than .001.

Property D2 SBF αmin αmax ∆α ff P0 Teff q

D2 1
SBF -0.24 1
αmin 0.40 -0.33 1
αmax −0.001 0.02 0.28 1
∆α -0.20 0.21 -0.26 0.75 1
ff 0.33 -0.44 0.20 −0.08 -0.16 1
P0 −0.12 -0.24 −0.13 −0.04 0.06 0.04 1
Teff -0.21 -0.17 -0.21 −0.06 0.07 0.05 0.61 1
q 0.04 −0.02 0.03 −0.04 −0.05 0.59 0.03 −0.01 1
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table of correlations is important as it helps us identify spurious correlations that arise
in data.

Subcategories

Till now we considered overcontact stars without considering differences they may have
in physical properties. For instance, multiple stars of the same ff may be very different
mass ratios. These could in turn contribute to differences in the underlying physics of
the contact binary. For instance stars with high fill out factors and low mass ratios are
thought to be progenitors of binary mergers [78]. Hence we will now concentrate on
specific subcategories of contact binary stars, based on their mass ratios and effective
temperatures.

We first narrow down the stars based on mass ratio. We avoid binaries with skewed
mass ratios by taking the range 1

2 < q < 2. This gives rise to an increased correlation
between D2 and ff with ρS = 0.47 (p-value = 6.9 × 10−20, sample size = 333). ρS for
SBF and ff increases to −0.50 (p-value = 9.9× 10−23). Outside the range we consider
no correlation remains between D2 and ff . This implies that for q < 1

2 and q > 2, D2
and ff are no longer correlated(ρS = −0.01, p-value = 0.911, sample size = 120 stars).
Hence stars with highly skewed mass ratios seem to have little correlation between D2
and ff .

Next we restrict the effective temperature, Teff between 6000 and 7000, while keeping
the restriction on q. This increases the correlation between D2 and ff to ρS = 0.69 (p-
value = 5.2 × 10−14, sample size = 91) [154]. With SBF , ρS becomes −0.60(p-value
= 2.6 × 10−10). We show the kernel density plots of ff for (a) D2 > Dmed

2 and D2 <
Dmed

2 (Dmed
2 = 3.12) and (b)SBF > SBFmed and SBF < SBFmed (SBFmed = 0.21), for

this case in Figure 5.13. Contact binary stars with the ranges of Teff considered roughly
fall into the F spectral class. The stars from these earlier spectral types are thought to
constitute the A-type W UMa subclass [155].

We finally take the range, 2
3 < q < 3

2 and 6000 < Teff < 7000. This gives ρS = 0.75
for D2 and ff (p-value = 2.87 × 10−11, sample size= 56) and ρS = −.65 for SBF and
ff (p-value = 7.2× 10−8). These correlations are shown in Table 5.3.

Table 5.3: Spearman correlations ofD2 and SBF with ff and the corresponding p-values,
for different sub-populations. ρ1

S corresponds to .5 < q < 2, ρ2
S to 6000 < Teff < 7000 ;

.5 < q < 2 and ρ3
S to 6000 < Teff < 7000 ; .67 < q < 1.5. The sample sizes for the three

sub-populations are 333, 91 and 56 respectively.

Measure ρ1
S p ρ2

S p ρ3
S p

D2 .47 6.9× 10−20 0.69 5.2× 10−14 0.75 2.87× 10−11

SBF −0.50 9.9× 10−23 −0.60 2.6× 10−10 −0.65 7.2× 10−8

One of the instances where the correlations we observe can be put to use is in pre-
diction of approximate values of ff . For large datasets ff is calculated using machine
learning algorithms, like neural networks. However using the nonlinear properties may be
an alternative approach. Relations like the period-mass correlations derived in [156], can
be calculated from the nonlinear dynamical quantifiers. We show this by considering a
linear regression of SBF and D2. We use the best fit line to predict the value of ff . We
plot the cumulative distribution of the deviation of the predicted ff from the ff derived
in [143] in Figure 5.14. We observe that the fill-out factors of more than 70% of stars can
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Figure 5.13: Plots of kernel density estimates of fill-out factors for (a)D2 > 3.12 and
D2 < 3.12 and (b)SBF > 0.21 and SBF < 0.21 for 1

2 < q < 2; 6000 < Teff < 7000.
The significantly different distributions in these plots suggests that as one goes into more
restricted sub-populations, the dimension of the system and the coupling of frequencies in
the system with the eclipsing frequency become more closely linked to the fill-out factor.

be predicted within an accuracy of 0.2 using linear regression within the subcategories
considered [157].

5.2 Summary and Discussion
In this chapter we present the results on the quantifiers of the nonlinear dynamics of
overcontact binaries, which are close binaries with both companions in contact with each
other.

Overcontact binary stars have many partially explained features like eclipse time vari-
ations and unequal maxima in their light curves2. Hence the light variation is not purely
periodic. We check whether the origin of the light variation is chaotic. The possibility of
period doubling chaos in these stars is suggested by strong peaks at half integer peaks of
the primary frequency evident in the power spectrum. We find a saturating D2, distinctly
different from surrogate datasets in almost all the stars, indicating deterministic chaotic
behavior. We also explore the behavior of the time series of eclipse time variations cap-
tured by O − C curves. We find similar behavior for the O − C curves generated from
period doubling systems like the Rössler and driven pendulum.

Our analysis also indicates that the nonlinear properties of overcontact binaries are
related to their astrophysical characteristics. This is especially evident in the correlation
observed for D2 and the bicoherence with the fill-out factor ff . D2 is positively corre-
lated with the fill-out factor, ff , while SBF is negatively correlated with ff . These
correlations become more prominent when we subcategorize these binaries based on mass
ratio, q and effective temperature, Teff . We show how this result can be used to derive
approximate values for ff . Further these correlations must be reproducible in models
or simulations of contact binary light curves and may serve as important checks for the
validity or accuracy of binary star models.

2Called the O’Connell effect [79] after its discoverer.
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Figure 5.14: Cumulative density function of the deviations of ff from the best fit line
for (a) Case 0 : No restrictions on parameters, (b) Case 1 : 1

2 < q < 2 (c) Case 2 :
1
2 < q < 2, 6000 < Teff < 7000 and (d)Case 3: 2

3 < q < 3
2 , 6000 < Teff < 7000. (a) and

(d) suggests that, using simple linear regression, we can find a value of ff in restricted
sub-populations of binary stars, with reasonable accuracy.
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Chapter 6

Recurrence Networks and Analysis
of Stars

Recurrence is a property of bounded dynamical systems. The pattern of recurrence of
trajectories in state space is captured using a technique called recurrence plot, discussed in
chapter 1. One can also construct a network from this plot. The properties of this network
would reflect the properties of the underlying recurrence patterns. In this chapter we
will use recurrence based analysis to classify different astrophysical objects. Recurrence
based analysis has shown promise in differentiating between different kinds of dynamical
states [158, 159]. For instance it has been used to capture differences between resting
and seizure states in EEG signals, between stochastic and chaotic states in blackhole
systems and so on [54, 160]. One of the primary advantages recurrence based analysis
shows over conventional methods of time series analysis is that recurrence networks give
reliable results with smaller datasets [39].

We first try to differentiate between the two classes of RRc Lyrae stars classified in
chapter 4 using bicoherence measures, using recurrence based analysis. We also look
for astrophysical parameters that are similar within these subgroups. This correlation
between the astrophysical and nonlinear properties of astrophysical objects has been
studied recently in the context of compact objects [161]. We also use recurrence networks
to differentiate between the different kinds of close binary stars. We discussed close
binaries in Chapter 2, as a group of binary stars where the companion stars can exchange
matter or energy. We further classify binary stars based on whether the companion stars
fill their Roche lobes as detached, semi-detached, over contact and ellipsoidal binary stars.
We attempt to classify close binary stars based on their recurrence network properties
and check whether this classification correlates with the classification based on Roche
lobe filling.

6.1 Recurrence Analysis of RRc Lyrae stars
In chapter 4, we isolated two distinct populations of RRc Lyrae stars based on bicoherence
based analysis. We saw that the stars are either quasiperiodic or strange non chaotic,
from their spectral scaling behavior. To further understand the dynamics of these stars,
we conduct a recurrence based analysis [44]. For this we first reconstruct the dynamics
of the system from its light curves as described in previous chapters. The amplitude
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Table 6.1: Delay time (τ), saturated correlation dimension (D2), mean square difference
(sq.diff.), Recurrence Rate (RR), Determinism (DET), Laminarity (LAM) and Lami-
narity Determinism ratio(LAM

DET
) for the four RRc Lyrae stars

KID τ(days) D2 sq.diff. RR DET LAM LAM
DET

4064484 0.08 3.05 0.43 0.02 0.71 0.07 0.1
5520878 0.06 3.58 0.25 0.02 0.61 0.02 0.04
8832417 0.06 2.87 0.52 0.01 0.60 0.02 0.04
9453114 0.08 2.89 0.54 0.02 0.61 0.08 0.13

distribution of the light curves are first converted to a uniform distribution1. We use
only 3000 points for recurrence analysis. These numbers have been shown to give robust
estimates of recurrence parameters [39]. To determine the embedding dimension, we first
calculate the value of the correlation dimension of these light curves. The correlation
dimension and deviation of the correlation dimension from the surrogates, measured by
the square difference 2 is listed in Table 6.1. We find the smallest embedding dimension
to use to retain the dynamics of the system is 4. Hence we embed the stars in a 4 − d
state space. The recurrence threshold, ε used for constructing the recurrence plots is 0.14
in accordance with the criteria laid out in [39].

6.1.1 Recurrence Plots
We initially calculate the recurrence plot from the reconstructed space. A point on the
recurrence plot is 1 if two points fall within ε distance of each other. The recurrence plots
for the four RRc Lyrae variables considered is shown in Figure 6.1. An examination of
the plots themselves seem to suggest that the plots corresponding to KIC 4064484 and
KIC 9453114 seems to differ from the recurrence plots corresponding to KIC 5520878 and
KIC 8832417. We quantify this difference using three main quantifiers of the recurrence
plot, namely the laminarity, determinism and determinism to laminarity ratio. These
quantities are listed in Table 6.1. The values in the last column are distinctly different
for the two sets.

6.1.2 Recurrence Networks
One can use the recurrence plot as an adjacency matrix to construct a recurrence network
[162]. Each state space vector is a node and a link exists between two nodes if they are
geometrically separated by less than ε distance. We set all the diagonal elements to zero to
avoid self loops. The recurrence networks constructed from the dynamics of the four RRc
Lyrae stars is shown in Figure 6.2. We consider three main properties of the recurrence
network so constructed. These are the average degree (davg), the clustering coefficient
(CCavg)3 and the characteristic path length (CPL). These properties are listed in Table
6.2. We see that KIC 4064484 and KIC 9453114 have a lower path length and higher
average degree when compared to KIC 5520878 and KIC 8832417 [163]. The CPL-davg
plane is shown in Figure 6.3.

1Converting the light curve to a uniform deviate eliminates differences arising from the amplitude
distributions of the individual stars

2The square difference is calculated as follows sqdiff = 1
Mmax−1

∑Mmax

M=2 D2(M)− < Dsurr
2 (M) >2

3The average clustering coefficient is used here.
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Figure 6.1: Recurrence plots for RRc Lyrae stars (a)KIC 4064484, (b)KIC 5520878,
(c)KIC 8832417 and (d)KIC 9453114
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Figure 6.2: Recurrence networks constructed for the four RRc Lyrae stars consid-
ered.(a)KIC 4064484 (b)KIC 5520878 (c)KIC 8832417 and (d)KIC 9453114
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We hence see that the classes identified above have distinct differences in recurrence
based parameters as well. In chapter 4 we found that some of the astrophysical prop-
erties of these stars are also distinctly different in three main parameters, the primary
period P1, effective temperature Teff and the metallicity. Our classification technique in
chapter 4 was based on bicoherence based measures which need datapoints upwards of
20000(depending on the sampling rate) for a reasonable calculation. On the other hand,
recurrence based measures are found to distinguish between the two classes using just
3000 points. We will explore the power of classification using recurrence networks further
in the next section on close binary stars.

Figure 6.3: davg-CPL plot for the four RRc Lyrae stars considered. We see that there
are two clusters formed with KIC 4064484 and 9453114 occupying a region away from
KIC 5520878 and 8832417.

Table 6.2: Average degree (davg), Characteristic path length (CPL) and average clustering
(CCavg) for the RRc Lyrae stars considered.

Kepler ID davg CPL CCavg

4064484 92.6 10.22 0.73
5520878 69.8 15.0 0.75
8832417 60.5 15.77 0.75
9453114 104 7.95 0.80
white 7.1 10.6 0.49
red 104 7.95 0.80

6.2 Classification of Close Binary Stars
In the last section we explore the possibility of chaotic behavior in contact binary stars.
From our discussions in chapter 2, we realize that there are three possible states for binary
stars.
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• Detached binary stars: When both stars do not fill their Roche lobes.

• Semi detached stars: When one of the components fills its Roche lobe.

• Overcontact stars: When both components fill their Roche lobes.

The last two configurations are called close binary stars. If the companion stars are such
that their mutual gravitation distorts their shapes and such that no eclipse is visible from
our line of sight, we have a category of stars called ellipsoidal binary stars. From our
discussions in chapter 2, we know that the underlying processes governing light variations
in different classes of close binaries are different. In this section we question whether this
implies that the underlying nonlinear quantifiers are also different. If so, these properties
could be used as an alternate classification scheme to identify the different kinds of close
binary stars.

We first construct recurrence networks from the light curves of the close binary stars.
We then study the properties of the recurrence networks, mainly the characteristic path
length and clustering coefficient. We then explore the clusters in the plane of CPL and
CC (and CPL alone) using clustering algorithms and machine learning techniques.

We find that the clusters found using these algorithms largely correspond to the
presently accepted astrophysical classification. We can especially distinguish semi de-
tached and ellipsoidal stars from over contact binary stars. Hence, we suggest that the
nonlinear properties of close binaries may be used as an alternative method to separate
them into semi detached, over contact and ellipsoidal binary stars. For our analysis we
use the embedding dimension 4 for all the stars. The analysis aims to check whether the
parameters of the recurrence network constructed from the embedded 4 − d state space
are distinct for different classes of close binary stars. The ε is chosen to be 0.14 using the
criteria suggested in [39], for 4− d systems.

We quantify the recurrence networks using the characteristic path length (CPL) and
average clustering(CC) of the network. We first examine the characteristic path length of
the different kinds of close binaries. We show the kernel density plots for the three types
of close binary stars in Figure 6.4. We see that the overcontact stars can be distinctly
distinguished from the other two categories using CPL alone.

As mentioned earlier, ellipsoidal binaries are inclined such that no eclipses are possible
with the line of sight. Hence these stars have distinctly different inclinations from semi
detached stars. This is shown in Figure 6.5. We speculate that in many cases low
inclination semi detached stars may be wrongly classified as being ellipsoidal.

6.2.1 Clusters in the CPL-CC Plane
We further classify the stars based on the clustering coefficients of their recurrence net-
works. The location on the plane of the CPL and CC has been shown to be a robust
way to distinguish between dynamical states [54, 164]. We calculate and plot the values
of CPL and CC on a parameter plane in Figure 6.6.

We will now examine how well the different kinds of close binaries can be identified
from the recurrence network parameters. Initially we consider classification of the binaries
using just the CPL. We define the accuracy of the algorithm as corrected predicted
fraction of the total set. The intervals are chosen using the distributions of the CPL
for the three kinds of close binaries, identified using the kernel density estimate. One
finds that the distributions merge for over-contact and semi-detached at CPL = 9.8
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Figure 6.4: Distributions of CPL for the three kinds of close binary stars. The distri-
butions for semi detached and ellipsoidal binary stars are distinctly different from the
distribution for the overcontact stars.

Figure 6.5: Distributions of sin(i) for ellipsoidal and semi detached binary stars. El-
lipsoidal stars have distinctly low inclinations whereas semi detached stars are almost
exclusively detected at high inclinations.
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Figure 6.6: Locations of close binary stars plotted on the CPL-CC plane. Green corre-
sponds to semi-detached, red corresponds to overcontact and blue to ellipsoidal binary
stars. We immediately notice that overcontact stars lie in a distinctly different part of
the plane from the semidetached and ellipsoidal stars.
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Figure 6.7: Clusters predicted by the k − means clustering algorithm in the CPL-CC
plane. Predicted clusters for (a)Overcontact-Semi detached case and (b)Overcontact-
Ellipsoidal case.The color code is green: semi-detached, red: overcontact and blue: ellip-
soidal binary stars.

and for overcontact and ellipsoidal at CPL = 9.2(Figure 6.4). For semi detached versus
overcontact, this gives an accuracy of 0.86. We correctly classify 402 of 463 overcontact
stars and 129 of 152 semi detached stars using these intervals. For the ellipsoidal case,
we get an accuracy of 0.91 with 428 of 463 overcontact stars and 120 of 137 ellipsoidal
stars falling into these intervals.

Classification using k-Means clustering

We next use a simple k−means clustering algorithm to identify clusters in the CPL−CC
parameter space. The k −means algorithm works in the following way [165].

• A random set of observations are chosen as initial k −means, m1,m2, ...,mk
4.

• Each observation is then assigned to the nearest5 mean.

• In the update step, the new means are calculated as the centroids of the clusters.

In our case we partition our CPL-CC plane into two. As before first we try to distinguish
between overcontact and semi detached binary stars. Using the k-means algorithm, we
get cluster the plane into two as shown in Figure 6.7a. This correctly classifies 330 of 463
overcontact binaries and 146 of 152 semi detached binaries. This leads to an accuracy of
0.77. Similar analysis for ellipsoidal binaries correctly classifies 357 overcontact binaries
and 135 (of 137) ellipsoidal binaries with an accuracy of 0.82.

Classification using support vector machine

Support vector machine is a machine learning technique that attempts to partition a
distribution into clusters based on a discriminating hyperplane. Suppose we have a

4This is called the Forgy method. Alternatively, clusters can be randomly assigned to each observation
and the update can be conducted. This sets the initial mean to be the centroid of the cluster points.
This method is called the Random Partition method.

5Nearest is calculated using least squared Euclidean distance
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Figure 6.8: Clusters predicted by the support vector clustering algorithm in the CPL-CC
plane. Predicted clusters for (a)Overcontact-Semi detached case and (b)Overcontact-
Ellipsoidal case. The color code is green: semi-detached, red: overcontact and blue:
ellipsoidal binary stars.

distribution of points in an n− d space, separated into two clusters. The support vector
machine tries to construct the optimal n− 1 dimensional surface in this plane, such that
the distance of the points closest to the surface from it, is maximized.

We use the support vector machine algorithm to classify the different classes of binaries
in the CPL − CC plane. 50% of the points are used for training the algorithm. The
remaining 50% of data is used as the testing set. We see that the testing set gives
an accuracy of 0.89 ± 0.01 for the semi detached versus over contact case, where as the
ellipsoidal versus overcontact case gives an accuracy of 0.91±0.01. The predicted clusters
are shown in Figure 6.8.

Algorithm Accuracy(OC − ELV ) Accuracy(OC − SD)
CPL 0.91 0.86

K −means 0.82 0.77
SV C 0.94± 0.01 0.89± 0.01

6.3 Summary and Discussion
In this chapter we present the results of recurrence based analysis of RRc Lyrae stars.
In chapter 4 we saw that there are two distinct groups exhibiting strange non chaotic
and quasiperiodic dynamics. These groups also show distinct astrophysical properties
like effective temperature, metallicity and primary period. The recurrence based analysis
conducted in this chapter shows that the two classes have highly differing recurrence
plot and network measures. Hence this again supports our claim that there is a strong
link between the astrophysical and nonlinear properties of RRc Lyrae stars. We explore
this idea further in close binaries, where we find good correlation between the nonlinear
dynamics and astrophysics of this category of binary stars.

We use measures of recurrence networks to distinguish between the different types
of close binary stars. Different kinds of close binary stars have different mechanisms
that are responsible for their variability. We check if these differences reflect in the
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nonlinear properties of their light curves. If so, these properties can be used as an
alternate classification scheme to identify the different kinds of close binary stars.

We first construct recurrence networks from the light curves of the close binary stars.
We then study the properties of the recurrence networks, mainly the characteristic path
length and clustering coefficient. We then explore the clusters in the plane of CPL and
CC (and CPL alone) using clustering algorithms and machine learning techniques. We
find that the clusters found using these algorithms largely correspond to the presently
accepted astrophysical classification. We can especially distinguish semi detached and
ellipsoidal stars from over contact binary stars. Hence, we suggest that the nonlinear
properties of close binaries may be used as an alternative method to classify them into
semi detached, over contact and ellipsoidal binary stars.
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Chapter 7

Conclusions and Discussions

We summarize the results of the study reported in the thesis, its significance and the
horizons to which it can be applied and extended to. We start by introducing the salient
features of the methods used in nonlinear time series analysis and in subsequent chapters
present their application to various types of datasets, specifically astrophysical data. We
address how to manage datagaps and noise contamination in dealing with such data and
their practical effectiveness in arriving at conclusions regarding the dynamics underlying
the data.

7.1 Summary
Most of the methods of time series analysis are developed for evenly sampled datasets.
Missing data, which is ubiquitous in observational data, is generally smoothed over by
interpolation. Interpolation of data is known to create artifacts that resemble chaotic
behavior, making interpolation unsuitable for nonlinear time series analysis. We tackle
the problem of missing data by quantifying the extend to which they are affected by
gaps in observations. We do this by artificially introducing gaps in standard systems
and calculating deviations of quantifiers from the evenly sampled values. This helps us
identify a region of gap sizes and frequencies, where the quantifier under consideration
is resilient to gaps. We use this to identify regions where reliable conclusions can be
drawn for correlation dimension D2 and the multifractal spectrum f(α). We also use
the results to compute these quantifiers for various datasets. We find signatures of chaos
in the unevenly sampled light curves of pulsating stars as evidenced by saturating D2.
We also find multifractality resulting from deterministic nonlinearity in the time series of
photosynthesis data and some meteorological datasets.

A second issue in all kinds of observational data is the presence of noise. Even perfectly
deterministic systems would be affected by noise at the time of measurement. Apart from
measurement noise, stochastic effects may be present at different points in the system’s
dynamics. The system itself may be evolving in the presence of noise, the measured
variable may be contaminated by noise sources prior to measurement, the parameters of
the system may be affected by noise and so on. We specifically consider the problem of
distinguishing between different dynamical states when noise is present in the system. To
do so, we use the bicoherence function. First we show that for a system evolving with
noise, the bicoherence can be use to distinguish between noisy limit cycles and chaotic
states. We use this to show that RRab Lyrae stars may be exhibiting richer dynamics
than simple period doubled dynamics. We also point out that strange non chaotic states
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behaves similar to noisy quasiperiodic states, when one checks the scaling behavior of
peaks in the strobed power spectrum for them. We show that a bicoherence based filter
can remove this ambiguity.

Finally we use the techniques developed, to study the dynamics of close binary stars.
We initially establish chaotic behavior in contact binary stars. We show this by showing
that most contact binaries in the Kepler field of view show saturating D2, away from
surrogate datatsets. We also explore the bicoherence properties of these stars. Our
analysis also indicates that the D2 and bicoherence properties of these stars are correlated
to the extend of contact that exists between the component stars in a binary. We show
that this correlation is higher when we restrict the spectral class and mass ratios from
which the stars are sampled. This seems to be the first work that indicates how closely
the astrophysical and nonlinear dynamical properties of a star may be related to each
other.

We also show that we can use the nonlinear properties of stars to classify them. To
achieve this we use the framework of recurrence plots and networks. We initially analyse
the light curves of RRc Lyrae stars that are thought to show strange non chaotic behavior.
In RRc Lyrae stars we discover two groups showing strange non chaotic and quasiperiodic
behavior using bicoherence studies. Using recurrence plots and recurrence networks we
establish that other nonlinear properties are also different for these groups. We use the
properties of recurrence networks to distinguish between different types of close binary
stars. We see that the properties of the recurrence network, especially the average path
length (CPL) and clustering coefficient (CC), for contact binaries are different from
other classes of binaries. We suggest using this technique to classify large datasets of
close binaries into different standard types like semi detached, overcontact and ellipsoidal
binaries.

7.2 Significance and Future Directions
The study reported in the thesis gives a recipe for examining the effect that datagaps
have on nonlinear quantifiers. While we have used it only to examine three main quan-
tifiers, the method is applicable to any nonlinear quantifier. It addresses the question
of whether a quantifier can be used to analyze a time series with a particular profile of
gaps. An important extension of this work would be to compare the effects of various
kinds of interpolation with our method, and compare which works best. In this context
it is imperative to mention the use of uniform deviates which converts the amplitude
distribution to a uniform distribution. Our preliminary analysis with datagaps suggests
that in the absence of uniform deviates, gaps tend to affect nonlinear quantifiers to a
larger extend.

The bicoherence function computed from Fourier transforms has been utilized exten-
sively in time series analysis. However barring a few early attempts in the 1990s, they
have not been used to analyze chaotic systems in general. Bicoherence and the tricoher-
ence functions seem to give important insights about systems and their dynamical states,
especially in the case of period doubling chaos. One important extension would be to
use cross bicoherence techniques to analyse nonlinear phenomena that involve relation-
ships between multiple variables. Preliminary work in this direction seems to show good
promise.

With the launch of the Transiting Exoplanet Survey Satellite (TESS), whose first light
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was received on August 2018 larger datasets will soon become available for analysis. Then
the relative abundance of quasiperiodic stars to strange non chaotic stars can be explored.
An important step to take in the direction of understanding the dynamics of pulsating
stars would be to have data driven models. An integration of time series techniques and
numerical hydrodynamic simulations has not been considered in understanding pulsating
stars, unlike in the case of compact objects [161]. Utilization of complimentary expertise
to tackle these questions would result in an important leap forward in understanding the
physics of these objects.

In chapter 5 we conducted an extensive analysis of contact binary stars. Apart from
gaining important insights into the underlying physics of these stars, it also gives a
practical method to classify large datasets and predict values for quantifiers like the fill
out factor. While we have combed through the catalog of contact binary stars to find
correlations between fill-out factor and nonlinear quantifiers, many more relations may
emerge through a careful analysis of this dataset. Besides this dataset, the work opens up
the possibility that physical parameters may be linked to nonlinear parameters. This may
be the case in other natural systems exhibiting chaos. This method also gives important
checks on the reliability of the numerical hydrodynamics models. While certain features
of the light curves are reproduced currently, an important additional check would be to
see if the nonlinear properties of the light curves produced from simulation and data are
similar.

The recurrence based analysis in chapter 6 provides an alternate and more quantitative
method of classification, based on the nonlinear dynamical properties instead of using
broad features of the light curve. Further, the understanding for the reasons for the light
variations in ellipsoidal binary stars is still lacking. The study of the nonlinear properties
of ellipsoidal stars will form an important clue to develop an understanding of the reasons
for light variations in these stars. Finally, merger events like the one reported in [62] are
poorly understood. Recurrence networks have been shown to be good indicators for
dynamical transitions in real world systems basically because they give reliable results
with small datasets [160,166]. So also continuous time monitoring of recurrence network
parameters may be a good approach to study upcoming merger events in binary stars.

Recently machine learning algorithms are being increasingly used in the analysis of
large number of datasets and classification of their results. We illustrate this in the
context of the classification of binary stars based on the recurrence network measures.
Very soon machine learning and artificial intelligence will become quite powerful tools in
scientific research.

Time series analysis has also become an important tool for research in multiple diverse
fields like medicine, finance, sociology, meteorology and ecology. There is an increasing
recognition of the need to use the techniques of dynamical systems theory to fully under-
stand various astrophysical phenomena. This thesis attempts to draw these fields together
by using the techniques of time series analysis to astrophysical systems that show non-
linear and chaotic behavior. We strongly believe that this study makes an important
addition to the research in nonlinear dynamics, astrophysics and time series analysis and
will prove to be a starting point for future developments in these directions.
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