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Chapter 1 Introduction 

Sensory systems are involved in creating an internal representation of the external world which 

helps the animal to produce an appropriate behavioral response. The olfactory system is involved 

in detecting and processing various volatile chemical compounds. The mammalian olfactory 

system is organized into three different layers namely; olfactory receptor neurons, olfactory bulb 

and olfactory cortex (Shepherd and Greer, 2004). Odor detection begins when odor molecules 

bind to the G-protein coupled receptors present on the olfactory receptor neurons (ORNs). It was 

discovered that the olfactory system expresses a vast repertoire of odorant receptors (ORs) and the 

tuning properties of these ORs vary: some are broadly tuned whereas some are narrowly tuned and 

thus odors are encoded in a combinatorial fashion by the ORNs (Axel, 1995; Hallem and Carlson, 

2006). This helps in recognizing a diverse array of odor molecules. Odor binding depolarizes the 

ORNs and this information is then sent to the olfactory bulb where the ORNs innervate spherical 

structures known as glomeruli. Each glomeruli in the bulb is homogeneous, meaning all the ORNs 

that innervate a particular glomerulus express the same OR. Within the glomeruli the mitral cells 

make synaptic connections with the ORNs. The mitral cells are coupled to each other through 

inhibitory interneurons known as granule cells. Based on this wiring patterns of ORNs it has been 

proposed that in the bulb also combinatorial coding of odors takes place. However studies done in 

locust antennal lobe as well as zebrafish olfactory bulb have shown that odors are represented as 

spatiotemporal patterns of activity of the principal neurons characterized by epochs of inhibition 
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and excitation (Friedrich and Laurent, 2001; Laurent and Davidowitz, 1994; Laurent et al., 

1996). Inhibition plays an important role in organizing these spatiotemporal patterns of activity, 

as blocking inhibition through GABA antagonist causes desynchronization of PNs and leads to 

impairment in odor discrimination (Stopfer et al., 1997). In the bulb inhibition from granule cells 

has been shown to generate synchronized firing in the mitral cells (Schoppa, 2006). Apart from 

inhibition, the underlying structure of the network also governs the generation of these patterns. 

Studies of simple microcircuits such as central pattern generators have helped in understanding 

dynamics in larger complex networks. CPGs mostly consist of neurons which are connected to 

each other through reciprocal inhibition and generate rhythmic motor movement (Marder and 

Bucher, 2001, 2007). Earlier work has shown that graph coloring can be used to study the 

relationship between inhibitory networks and their dynamics (Assisi et al., 2011). While this 

relationship is easy to observe for small or regular networks, it is not possible to obtain all possible 

colorings for complex topologies in a reasonable period of time. Brain connectomic studies, which 

involve applying graph theory techniques to study the organizational features of anatomical 

connections across cortical structures found that these networks are modular in nature (Sporns, 

2013). Computational modeling shows that synchronization dynamics in these networks is shaped 

by the underlying structure. These networks consist of neurons which are coupled to each other 

through excitatory connections. In our study, to overcome the limitation of graph coloring, we 

used community clustering algorithm to study the relationship between modularity of inhibitory 

networks and their dynamics. Modularity for inhibitory networks is defined as group of neurons 

that are maximally disconnected from each other but connected among other groups. 

 

Chapter 2 Spatiotemporal Patterning in Mitral Cell Network  

We simplified the bulb circuitry as an inhibitory network of mitral cells. In our simulations upon 

injection of depolarizing current to mitral cells show clustered action potentials interspersed with 

subthreshold oscillations (STOs). The clustering of spikes arises because of the slow potassium 

current and the STOs because of the interaction of slow potassium and persistent sodium. Our 

simulations show that when mitral cells are coupled to each other through lateral inhibition it 

results in switching of activity in the mitral cells. To investigate what factors contribute to 

sequential activity in the mitral cells we simulated a random motif of six mitral cells.  On 



Synopsis 

 

xvi 

 

simulating this network, we see temporal ordering in the firing of mitral cells with certain neurons 

firing together and other neurons firing synchronously at different times. The inactivation variable 

of the slow potassium current determines which neuron fires next in the sequence. 

 

Chapter 3 Correlation between dynamics and inhibitory network structure 

In the olfactory bulb different odors activate different subnetworks and therefore we simulated 

random inhibitory subnetworks of the mitral cells. In an inhibitory network, neurons that inhibit 

each other form groups that fire at different times. We used Newman clustering algorithm to cluster 

our inhibitory subnetworks and tried to find groups of neurons that will fire synchronously forming 

a spatiotemporal pattern. This algorithm tries to find communities based on edge densities such 

that the resulting communities should have higher edge densities within the communities and 

sparser across communities. This is done using a measure known as the modularity. Since our 

networks are inhibitory we used the flipped version of the adjacency matrix to find such groups. 

Upon clustering we permuted the original matrix to reveal such groups having minimum within 

group connections. Upon simulating such random networks we were able to extract hidden 

correlations between network structure and the dynamics. The clusters identified helped in 

revealing groups of neurons that fired synchronously but did not specify the temporal ordering. 

We simulated different instances of random networks and using our method we were able to extract 

such communities for different random networks. These correlations persisted across different 

noise trials. We then tried a different approach in which using the dynamics we tried to cluster the 

activity of neurons using spike synchronization measure and k-medoid clustering. We were able 

to find groups of neurons that fired synchronously revealing the spatiotemporal dynamics. We also 

found good overlap between the dynamics based clustering and the structure based clustering. 

 

Chapter 4 Asymmetries and Reliability in dynamics 

In the locust antennal lobe PNs response to odor stimulus is reliable across different noise trials. 

Similar observation has been recorded in the mitral cells of zebrafish. We investigated how 

network topology can help in inducing reliability in the patterns across noise perturbations. 

Theoretical work using simpler and smaller networks have shown that asymmetry in network 
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conditions can induce reliability across noise trials. Based on this work we simulated mitral cell 

network of 40 neurons with symmetry in network connections and found that they generated 

different temporal orderings across noise trials making it unreliable. When we introduced 

asymmetry in the network by making preferential connections from one group to another, we found 

that the ordering of the dynamics becomes reliable across noise trials. We quantify reliability using 

an entropy measure. For reliable patterns entropy value is close to zero. We find that in case of 

symmetric network the entropy value is high whereas in asymmetric cases entropy value is close 

to zero. 

 

To summarize, using Newman clustering algorithm we were able to extract hidden correlations 

between network topology and dynamics. The algorithm found neurons that fired synchronously 

but the temporal ordering was not specified. These correlations persisted across different noise 

trials, but they generated different ordering in each trial making it unreliable. Asymmetries in 

network topology induced a particular ordering in the patterns that was reliable across noise trials. 

The work shows that lateral inhibition in the bulb plays a role in generating spatiotemporal 

patterning, and we speculate that this would help in decorrelating patterns evoked by similar odor 

pairs. Our work has implications in further studying the olfactory bulb dynamics such as the 

possible role of sniff cycle in inducing reliability in mitral cell spiking. Also our method can be 

used for studying brain regions where inhibitory networks are involved in information processing.  
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1.1 Introduction 

Sensory systems are involved in creating an internal representation of the external world which 

help the animal to produce an appropriate behavioral response. The olfactory system detects and 

processes various volatile chemical compounds. The olfactory system has a great ability to 

recognize a diverse range of odor molecules which are helpful for animals in locating the source 

of food, identifying conspecifics, avoiding predators, finding partners for reproduction and 

avoiding death. Olfactory system, like the visual and auditory system can detect and discriminate 

between a wide range of stimuli. However, odors are characterized by a multidimensional chemical 

space, unlike visual and auditory stimuli, which can be classified by a single parameter like 

wavelength and frequency respectively (Su et al., 2009). The olfactory system in addition to 

recognition also helps the animal in discriminating between a variety of odor molecules. 

Representations of certain odor molecules are learned and stored as memory for future recall. The 

underlying olfactory circuitry plays an important role in performing these diverse functions of 

recognition, discrimination and learning.  

There are striking similarities in the way the olfactory system is organized across different animal 

species. These include presence of receptor neurons for odor detection, a second messenger 

signaling pathway and convergence of particular receptor neurons to neurophil structures known 

as glomeruli. It has been proposed that these similarities have occurred due to convergent evolution 

of the olfactory system and point to an optimal solution to the problem of odor detection and 

discrimination (Ache and Young, 2005; Eisthen, 2002). Despite these similarities, certain 

differences do exist. The olfactory bulb in mammals is a highly laminated structure comprising of 

two different populations of principal neurons namely mitral and tufted cells. There are a large 

number of different interneuron populations present in the bulb. The bulb principal neurons project 

to the olfactory cortex which sends feedback connections to the bulb. The insect antennal lobe, 

which is analogous to the olfactory bulb, is not highly layered like it. The excitatory population in 

the lobe are the principal neurons and the inhibitory population are the local interneurons. PNs 

send projections to the mushroom body (MB) (MB is analogous to the olfactory cortex) and the 

MB sends feedback to the antennal lobe  (Ache and Young, 2005; Eisthen, 2002; Hildebrand 

and Shepherd, 1997; Hu et al., 2010; Rybak and Menzel, 1993). Since the overall functional 
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organization of the olfactory system is similar across species, fundamental insights gained from a 

particular organism can be equally applied to others. 

We are interested in studying how the olfactory system encodes odors as spatiotemporal patterns. 

These patterns arise because of the input to the bulb from the ORNs and the network architecture 

of the bulb. The following section describes the anatomical features of the olfactory system to 

understand how information flows across different layers before being finally sent to the olfactory 

cortex. 

1.2 Anatomy of the Olfactory System 

1.2.1 Olfactory Receptor Neurons 

Olfactory receptor neurons (ORNs) represent the first level of processing in the olfactory system. 

ORNs are bipolar neurons lining up the nasal epithelium. The apical side of the ORNs projects a 

single dendrite into the mucosal covering of the epithelium. The dendrite ends up into a knob-like 

structure from which 20-30 cilia emerge (Firestein, 2001). On the proximal side an unmyelinated 

axon projects into the olfactory bulb (Buck, 1996; Mombaerts, 1999). How are odors detected by 

this first layer? Volatile odorant molecules enter the nasal cavity and bind to the odorant receptors 

(ORs) present on the cilia of the ORNs. The odorant receptors belong to the G-protein receptor 

family and consist of a seven-transmembrane domain (7TD) (Touhara and Vosshall, 2009). 

Binding of the odorant molecules to the G-protein coupled receptors initiates adenylyl 

cyclase/cAMP second messenger cascade system leading to the opening of cyclic-nucleotide gated 

channel (CNG). Opening of the CNG channels leads to an influx of Ca2+ and to some extent Na+ 

ions into the membrane. This influx of Ca2+ causes depolarization of the ORNs which is amplified 

because of the efflux of Cl- through Ca2+ activated chloride channel (Lowe and Gold, 1993; 

Restrepo et al., 1996). The depolarization initiated in the cilia leads to the generation of action 

potentials at the soma which propagates along the axon and the signal is transmitted to the olfactory 

bulb. Thus the ORNs are involved in transduction of chemical stimulus into an electrical stimulus. 

Identification of different odorant receptors and the wiring of the ORNs in the olfactory bulb 

helped in deciphering the molecular mechanism underlying odor detection (Axel, 1995). 

Pioneering work done in 1991 led to the discovery that ORs are coded by a large multigene family 

and each ORN expresses only one particular type of odorant receptor (Buck and Axel, 1991). The 
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total number of odorant receptors expressed in each species varies. There are about 1000 different 

types of receptors found in the mice olfactory system, in zebrafish the number of ORs is  about 

140, 160 in honeybees and around 400 in humans (Alioto and Ngai, 2005; Go and Niimura, 

2008; Robertson and Wanner, 2006; Zhang and Firestein, 2002). The presence of a large 

number of different ORs endows the olfactory system with the ability to detect and discriminate a 

large set of odor molecules.  All the ORNs that express a particular OR converge to one or two 

glomeruli in the olfactory bulb (Mombaerts, 1999; Vassar et al., 1993). 

 

1.2.2  Olfactory Bulb 

Olfactory bulb is the next relay layer after ORNs in the olfactory system. The Olfactory bulb is a 

laminar structure comprising of multiple layers (Figure 1.1). The five prominent layers of the bulb 

from superficial to deep layers are: glomerular layer (GL), External Plexiform Layer (EPL), Mitral 

Cell Layer (MCL), Internal Plexiform Layer (IPL) and the Granule Cell Layer (GCL). The 

glomerular layer consists of glomeruli which are well-defined spherical neurophil structures. The 

ORNs get bundled together into the olfactory nerve and after reaching the bulb defasciculate and 

innervate the appropriate target glomerulus. Each glomerulus receives thousands of ORNs all of 

which express the same OR. This has come to be known as the glomerular convergence rule. The 

number of glomeruli varies in each species. There are about 1800 glomeruli in the mouse, 4200 in 

the rat and 6300 in rabbit (Royet et al., 1998). The size of the glomeruli also varies according to 

the species. They are around 20-40 µm in diameter in fish and amphibians and do not have clear 

boundaries. In mice they are about 30-50 µm in diameter whereas in rabbit they are around 100-

200 µm (Shepherd and Greer, 2004). The neurons found within or surrounding the glomeruli are 

collectively known as juxtaglomerular cells (JG). Three morphologically distinct neuronal 

populations comprise the JG cells. They are the periglomerular cells (PG), External Tufted Cells 

(ET) and the superficial short axon cells (sSA) (Nagayama et al., 2014; Pinching and Powell, 

1971a, b, c). PG cells are involved in modulating the activity of a particular glomerular unit. The 

dendrites of the PG cells are localized within a single glomerulus forming intraglomerular 

connections. They receive excitatory inputs from the ORNs via the axodendritic synapses and also 

from the mitral/tufted cells via the dendrodendritic synapses. PG cells mediate inhibition onto the 

mitral/tufted cells by releasing GABA and thus shape their activity patterns. Axons of the sSA 
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cells span multiple glomeruli forming interglomerular connections. In contrast to PG cells they 

release glutamatergic neurotransmitter and their function is not well known (Yamaguchi, 2014). 

The principal neurons of the bulb, namely the tufted and mitral cells, project their primary dendrite 

into a single glomerulus where it branches into a tuft like structure. They make axodendritic 

synaptic contacts with the ORNs. The mitral/tufted cells also give rise to the secondary dendrites 

(also known as lateral dendrites) and these are found in the EPL. These secondary dendrites are 1-

6µm in diameter and can extend upto 1mm in length. The cell body of the tufted cells is located in 

the EPL whereas that of the mitral cell is found in the MCL which is around 200-400 µm deep to 

the GL. The axons of the mitral cells and tufted cells are found in the IPL. The granule cell layer 

(GCL), which lies beneath the IPL, contains the soma of the granule cells. The cell bodies of 

granule cells are small and have a diameter of 6-8µm. Granule cells have an apical dendrite which 

extends into the EPL and a basal dendrite located in the GCL, however they lack an axon. Granule 

cells are GABAergic neurons and are the primary inhibitory interneurons of the bulb. Unlike most 

brain regions the inhibitory population outnumbers the excitatory population in the olfactory bulb. 

The granule cell dendrites contain a large number of spines which are also known as gemmules. 

The apical dendrites of the granule cells make reciprocal dendrodendritic connections with the 

lateral dendrites of the mitral/tufted cells. This dendrodendritic synapse is the hallmark of the 

olfactory bulb. A particular granule cell makes synaptic contacts with mitral cells belonging to the 

same glomerular unit as well as mitral cells belonging to another glomerular unit and thus 

facilitating recurrent as well as lateral inhibition. Action potentials generated in the mitral cells 

back propagate into the lateral dendrites and depolarize them causing release of glutamate. 

Glutamate release activates the NMDA and AMPA receptors present on the gemmules of granule 

cell spines. This leads to depolarization of granule cells. This depolarization causes activation of 

calcium gated channels leading to an influx of calcium which then facilitates the release of GABA. 

The GABA then binds to the receptors present on the lateral dendrites of mitral cells mediating 

lateral as well as recurrent inhibition of the mitral cells (Figure 1.2) (Shepherd and Greer, 2004). 
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               Figure 1.1 Diagram showing the connectivity in the olfactory bulb 

Mitral (red) and Tufted (blue) cells send projections to the glomerulus where they make synaptic 

contacts with the ORNs. Mitral/tufted cells also make reciprocal dendrodendritic connections 

with the granule cells. Reproduced from (Nagayama et al., 2014) with permission. 

 

Figure 1.2 Diagram showing the dendrodendritic synapse between mitral cell lateral 

dendrite and the granule cell apical dendrite 

Mitral cell lateral dendrite upon activation releases glutamate which excites the granule cells via 

AMPA and NMDA receptors. This leads to release of GABA onto the mitral cell dendrite by the 

granule cells. Reproduced from (Chen et al., 2000) with permission. 
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1.2.3 Olfactory Cortex 

The olfactory cortex is made up of those regions that receive direct innervations from the olfactory 

bulb projection neurons. These include piriform cortex (anterior and posterior piriform cortex), 

olfactory tubercle, cortical areas of olfactory peduncle (anterior olfactory cortex, tenia tecta, and 

dorsal peduncular cortex), cortical amygdaloid nuclei (nucleus of the lateral olfactory tract, 

anterior cortical amygdaloid nucleus and posterior cortical amygdaloid nucleus) and lateral 

entorhinal cortex (Haberly and Price, 1977; Mori and Manabe, 2014; Neville and Haberly, 

2004; Price, 1973). As compared to other sensory systems input to the cortex does not arrive via 

relay to the thalamus. The olfactory cortex is a laminar structure comprising of three layers instead 

of the usual six layers found in the neocortex. One of the extensively studied regions of the 

olfactory cortex is the piriform cortex. The entire piriform cortex has the same organizational 

features and it consists of three distinct layers namely Layer I, II and III. Layer I is subdivided into 

a superficial layer Ia which receives afferent input from the bulb via the lateral olfactory tract 

(LOT) and a deep layer Ib which receives connections from other areas of the olfactory cortex. 

Similarly, Layer II has a superficial layer known as IIa which consists of semilunar cells and a 

deep layer IIb which contains cell bodies of superficial pyramidal cells. Layer III consists of deep 

pyramidal cells. Layer II and Layer III pyramidal cells are considered as the principal cells of the 

olfactory cortex because they have large dendritic trees and they project their axons to a large 

number of different areas. Pyramidal cells of Layer II and Layer III cannot be differentiated from 

each other morphologically. Deeper to Layer III is another layer known as the endopiriform 

nucleus (Mori and Manabe, 2014; Neville and Haberly, 2004). Pyramidal cells of the piriform 

cortex as well as other olfactory cortical areas send large amounts of axon collaterals (centrifugal 

inputs) back to the olfactory bulb forming a top-down feedback pathway (de Olmos et al., 1978). 

These axonal collaterals project heavily to the GCL and the granule cells are the primary recipients 

of these connections. They also make sparser connections with deep short axon cells found in the 

GCL. The centrifugal connections mediate disynaptic feedforward inhibition of the mitral cells 

through AMPA receptors present on the granule cells (Boyd et al., 2012; de Olmos et al., 1978). 

Experimental studies suggest that feedback centrifugal connections play a role in olfactory 

learning (Gao and Strowbridge, 2009; Gschwend et al., 2015)  
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Odor recognition begins at the ORN level and undergoes transformations at each level before the 

information is sent to the olfactory cortex. Below we focus on odor representation in the olfactory 

bulb.  

1.3 Encoding of odors (representations) 

1.3.1 Representation of Odors by ORNs 

Odor perception begins when odorant molecules bind to the odorant receptors initiating second 

messenger cascade signaling. Discovery of the presence of large repertoire of odorant receptors 

led to the suggestion that odors are encoded as preferential responses of some ORs (Axel, 1995; 

Buck, 1996). Later studies showed that OR responses to odorant molecules are either excitatory 

or inhibitory and they are differentially tuned. Some ORs respond to a large number of odor 

molecules and are hence referred to as being broadly tuned. On the other hand, some respond to 

only a narrow set of molecules and are referred to as being narrowly tuned. The breadth of the 

tuning reveals the discriminatory power of the odorant receptor. These studies also showed that a 

single odorant stimulus can activate multiple odorant receptors. This diversity in the response 

properties of ORNs enables the system to implement an elaborate combinatorial encoding of a 

wide array of odors (Hallem and Carlson, 2006). Studies done in locusts reveal that ORN’s 

responses to odors are temporally heterogeneous; which is characterized by latency in spiking, 

onset and offset time, rate of adaptation and peak amplitude. The different temporal properties of 

ORN firing are believed to contain information about odor identity, concentration and duration of 

the odor presented. Complex spatiotemporal patterns were generated by the AL when there was 

heterogeneity in the duration of ORN response time as well as its amplitude (Raman et al., 2010). 

However, the temporal complexity of the antennal lobe is far more dynamic than what is observed 

for the ORNs. 

 

1.3.2 Spatial Coding of Odors in the Olfactory Bulb 

The ORNs, after transduction of the chemical information of odorant molecule into an electrical 

stimulus, send this information to the olfactory bulb glomeruli. It has been long thought that odor 

encoding in the olfactory bulb occurs in a combinatorial manner. It has been proposed that different 

odors will activate different and distinct spatial patterns of glomeurli. Thus, transformation of odor 
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information encoded by the ORNs to the activation of glomerular patterns in the olfactory bulb 

has been studied using various approaches. Initial studies were done based on uptake of 

radioactively labeled [14C] 2-deoxy-D-glucose (2-DG) to map the sites of activation in the 

glomerulus. The rats were injected with radioactive 2-DG and exposed to amyl acetate.  The 

glomeruli that were activated by this odor, increased their 2-DG uptake which was reflected in the 

increased intensity on autoradiographs. Further studies done using 2-DG uptake showed that 

different odors activated different foci of glomeruli, thus providing evidence for a spatial coding 

scheme in the bulb (Jourdan et al., 1980; Sharp et al., 1975; Stewart et al., 1979). Guthrie et. 

al. used a marker, known as immediate early gene c-fos expression, to study odorant evoked 

neuronal activity and found that it confirmed the studies of 2-DG uptake that odors activate focal 

patterns in the glomeruli (Guthrie et al., 1993). Optical imaging of the olfactory bulb using Ca2+ 

sensitive dyes in the ORNs indicate that different odorants evoke different combinations of 

glomeruli and similar odors evoke overlapping but distinct spatial patterns of glomeruli (Friedrich 

and Korsching, 1997, 1998). Optical imaging using intrinsic signals have also reached similar 

conclusions (Rubin and Katz, 1999). Other techniques such as fMRI and 2 photon Ca2+ imaging 

also show that odorants evoke specific spatial patterns of activity in the glomeruli (Wachowiak 

and Cohen, 2001; Yang et al., 1998). In a study done with large number of different enantiomer 

pairs, it was found that rats readily discriminated between them. Optical imaging revealed that the 

enantiomer pairs activated distinct spatial glomeruli patterns in the bulb, thus providing support 

that spatial activity pattern contains sufficient information to create distinct identities which helps 

in odor discrimination (Rubin and Katz, 2001). Thus these experimental studies have shown that 

odors evoke spatial patterns of glomerular activation and that a combinatorial coding scheme of 

odor processing occurs in the olfactory bulb. A recent study has also supported this argument 

where they show that the olfactory bulb circuitry is involved in linearly summating the input 

received from the ORNs (Gupta et al., 2015). 

 

1.3.3  Spatio-Temporal Coding in the Olfactory Bulb 

Studies regarding odor encoding suggest that in addition to the spatial dimension, the temporal 

dimension also plays an important role in odor stimulus processing. The role of time in olfactory 

coding comes with respect to observations such as the presence of oscillatory activity in the 
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olfactory bulb. Odor evoked oscillations in the local field potential recordings of the mammalian 

olfactory bulb were first revealed by E.D. Adrian (Adrian, 1942). The sine wave like oscillatory 

activity was found to be in the frequency range of 35-80 Hz (Bressler and Freeman, 1980). Early 

computational models suggested that temporal patterning in mitral cell spiking activity may play 

a role in odor processing (Meredith, 1992; Schild, 1988). Recordings in the rabbit olfactory bulb 

showed that mitral/tufted cell spike discharges have a temporal relationship with the oscillatory 

LFP. This showed that the rhythmic oscillatory drive occurs due to the synchronized activity of 

the mitral/tufted cells (Kashiwadani et al., 1999). Experiments done using voltage sensitive dye 

imaging in the rodent olfactory bulb have also shown that odors evoke spatio-temporal patterns of 

activity (Spors and Grinvald, 2002).  Mitral cells of zebrafish olfactory bulb respond to odors 

with complex spatiotemporal patterns that evolve over hundreds of milliseconds, consisting of 

epochs of excitation and inhibition (Friedrich and Laurent, 2001). Similar slow temporal 

patterns have also been observed in the antennal lobe of locusts (Laurent et al., 1996a; Wehr 

and Laurent, 1996). Odor evoked oscillatory activity has been observed in the antennal lobe and 

the antennal lobe circuitry itself generates these odor evoked oscillatory activity, as ablation of the 

mushroom body did not result in ablation of the oscillatory activity in the AL (Laurent and 

Davidowitz, 1994). It has been shown that blocking of synchronization in honeybee antennal lobe 

leads to loss of odor discrimination between similar pair of odors suggesting that oscillatory 

synchronization of PNs plays an essential role in odor processing (Stopfer et al., 1997). Laurent 

has proposed a coding scheme whereby the antennal lobe circuitry using the spatiotemporal 

patterns of activity expands the coding capacity of the olfactory system. These slow temporal 

patterns of activity evolve along the oscillatory LFP with different groups of principal neurons 

getting entrained at each cycle of the oscillation (Laurent, 2002). It has been proposed that this 

slow temporal patterning helps in reducing the overlap between representations of similar odors 

helping in decorrelation and discrimination. Inhibition from local interneurons has been shown to 

play an important role in generating the precise spiking patterns of principal neurons in the 

honeybee antennal lobe (Stopfer et al., 1997). 
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1.4 Role of Inhibition 

The olfactory bulb contains a large number of inhibitory interneurons which outnumber the 

excitatory neurons (mitral/tufted cells) and thus inhibition plays a key role in shaping and 

regulating the mitral/tufted cell activity. There are various roles that have been attributed to 

inhibition: 

1.4.1 Oscillatory Activity and Slow Temporal Patterning 

It has been found that the circuitry of the insect antennal lobe generates oscillatory activity. 

Blocking inhibition on to the principal neurons (PNs) by applying GABAA antagonist picrotoxin 

in the antennal lobe abolishes the oscillations as seen in the local field potential recordings while 

leaving the slow patterns unaffected, thus showing that inhibition plays a role in shaping the 

patterns of principal neurons (MacLeod and Laurent, 1996). Applying GABAB antagonist has 

been found to abolish these slow temporal patterns (Wilson and Laurent, 2005). Similarly 

applying picrotoxin in the honeybee antennal lobe abolishes the 30Hz oscillatory activity and also 

leads to loss of precise firing of the PNs causing impairment in odor discrimination (Stopfer et 

al., 1997). These studies show that inhibition plays an important role in organizing these 

spatiotemporal patterns. It has been shown that inhibitory interactions in the LN subnetwork 

entrains different populations of PN which participate in forming spatiotemporal patterns 

(Bazhenov et al., 2001). Similarly in another computational study it has been shown how the 

inhibitory subnetwork of the LN population shapes the spatiotemporal patterns of activity(Assisi 

et al., 2011). Theoretical work done using simpler models have shown that inhibitory networks 

generate dynamics through competition, known as winnerless competition (WLC) and it has 

proposed that the spatiotemporal patterns of odors resemble these dynamics (Rabinovich et al., 

2001). In the olfactory bulb reciprocal dendrodendritic synapses mediate synchronization of the 

mitral cells. Synchronized feedback inhibition from granule cells onto the mitral cells shapes their 

spike times leading to the synchronized oscillatory activity and generating the characteristic 40 Hz 

oscillations (Lagier et al., 2004; Schoppa, 2006). A computational study has shown how 

inhibition along with subthreshold oscillations play a role in generating the gamma oscillations in 

the mitral cell population (Brea et al., 2009). Psychophysical studies have shown that increasing 

inhibition on to the mitral cells leads to faster discrimination ability of mice for similar odor pairs. 
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This suggests inhibition plays a role in organizing spatiotemporal patterns of activity for odors 

(Abraham et al., 2010).  

 

1.4.2 Contrast Enhancement 

Another role that has been attributed to inhibition in the olfactory system is the role of contrast 

enhancement. Contrast enhancement has been studied in case of the visual system, where it helps 

in improving the spatial contrast between light and dark regions. Contrast enhancement occurs by 

lateral inhibition and it involves sharpening of neural representations by inhibiting nearby neurons 

and thus enhancing the difference between stimulus and the background (Cleland and Linster, 

2005). Investigators have explored whether similar phenomenon takes place in the olfactory bulb 

They have argued that lateral inhibition in the bulb is facilitated by the lateral dendrites of the 

mitral cells. The most direct evidence for contrast enhancement in the bulb came from the studies 

of Yokoi et. al. in 1995. Using single unit recordings of mitral/tufted cells, their response to a series 

of aliphatic aldehydes consisting of increasing carbon chain length was recorded. It was found that 

mitral cells can respond to a wide range of related odors but receive lateral inhibition from flanking 

mitral cells. The weaker responses to an odor were inhibited by strong lateral inhibition. This led 

to the sharpening of responses to a defined set of odor molecules only. This property was lost when 

inhibition was blocked by bicuculline thus indicating that it is mediated by GABAA receptors 

(Yokoi et al., 1995). Thus contrast enhancement in the bulb is proposed to be a competitive process 

between neurons processing similar information and helps in improving the molecular contrast 

between related compounds (Cleland and Linster, 2005). 

Such contrast enhancement models are based on neurons sharing similar receptive fields and lying 

nearby to each other (topographically related), however it is unlikely that a fine chemotopic 

organization exists in the olfactory bulb. Studies done in zebrafish have shown that natural odors 

such as amino acids, bile acids and nucleotides activate different regions in the olfactory bulb and 

similar amino acids activate overlapping regions indicating presence of a coarse chemotopy 

(Friedrich and Korsching, 1997, 1998). Another study using optical imaging of intrinsic signals 

studied the activation of glomeruli in response to a series of aliphatic molecules which had the 

same functional group but different chain lengths. They found a clear relationship between 

glomerular region activated and its preferred chain length and there was a successive shift in the 
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glomerular region activated with increasing carbon chain length (Meister and Bonhoeffer, 2001). 

However, another study using a marker for vesicle fusion reported results that were in 

disagreement with the above studies as they did not find any successive activation of glomeruli to 

a homologous chemical series (Bozza et al., 2004). Since the odor is a multidimensional chemical 

stimulus there is difficulty in addressing this issue using a series of odorant stimuli that can be 

systematically varied along different dimensions. 

The network architecture of the bulb can play a role in shaping the spatiotemporal patterns of 

activity. Insights into the relationship between dynamics and structure of complex networks can 

be gathered from the studies of Central pattern generators (CPGs). These are simple microcircuits 

which show rhythmic patterns of activity and their connectivity has been characterized in great 

detail by virtue of the fact they are comprised of a small population of neurons. 

 

1.5 Structure Dynamics Relationship in Central Pattern Generators (CPGs) 

CPGs are a group of neurons that generate rhythmic movement by activating motor neurons (which 

synapse onto the muscles) in a specific sequence. These include swimming, walking, heartbeat, 

chewing etc. (Arbas and Calabrese, 1987; Marder and Calabrese, 1996; Miller and 

Selverston, 1982; Rabinovich et al., 2006; Satterlie, 1985). The rhythmic movements occur due 

to the interplay of intrinsic properties of the constituent neurons and the circuit connectivity. In all 

of the pattern generators, the central feature is that neurons are synaptically coupled to each other 

through reciprocal inhibition. In certain CPGs, rhythms are shaped by the intrinsic pacemaker 

activity of the neurons whereas in others it arises as an emergent property of the inhibitory 

connectivity among the component neurons (Marder and Bucher, 2001).  

The pyloric rhythm of the crustaceans consist of alternating bursts of motor neurons generated by 

the stomatogastric ganglion (STG). The anterior burster neuron (AB) is an endogenous oscillator 

and is the main determinant of the pyloric rhythm. The AB neuron is electrically coupled to the 

pyloric dilator (PD) neurons and they together reciprocally inhibit other neurons in the network. 

This results in alternating bursting activity of different neurons in a specific temporal order, which 

is critical for the generation of the rhythm (Figure 1.3) (Marder and Bucher, 2007; Miller and 

Selverston, 1982).  
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The gastric mill rhythm of crustaceans unlike the pyloric rhythm is an emergent property of the 

network and does not have any endogenous bursting neuron that determines the rhythm of the 

pattern. Gastric mill rhythm controls the movements of two lateral teeth and one medial teeth 

aiding in the grinding and chewing of the food (Figure 1.4) (Heinzel, 1988; Marder and 

Calabrese, 1996; Mulloney and Selverston, 1974; Selverston and Mulloney, 1974). 

 

Figure 1.3 Connectivity Diagram of the circuit generating the pyloric rhythm 

AB is anterior burster neuron, PD is pyloric dilator neuron, LP is lateral pyloric neuron, 

PY is pyloric neurons. Reproduced from (Marder and Bucher, 2007) with permission. 

 

 

Figure 1.4 Connectivity Diagram of the circuit generating the gastric mill rhythm in 

crustaceans 

Reproduced from (Marder and Bucher, 2007) with permission. 
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Studies of pattern generators have thus helped in understanding how reciprocal inhibitory networks 

give rise to sequential patterns of activity and has contributed to understanding similar 

phenomenon observed in various other brain regions. 

1.6 Inhibitory Network Dynamics 

A computational study has shown that graph coloring is a useful technique to study inhibitory 

network dynamics (Assisi et al., 2011). There are many types of graph coloring but the most 

commonly used one is vertex coloring. It involves assigning different colors to nodes which are 

connected to each other and the minimum possible number of colors required to color a graph is 

known as its chromatic number. The authors of the study used graph coloring to investigate 

structure dynamics relationship in the locust antennal lobe (Assisi et al., 2011). The antennal lobe 

consists of populations of inhibitory neurons known as LNs (local neurons) and excitatory 

populations known as PNs (principal/projection neurons). The LN population is connected to each 

other through reciprocal inhibition forming a sub-network and also sends inhibition to the PN 

population. The PN population sends excitatory connections to the LNs. Odors evoke 

spatiotemporal patterns of activity in the PN population. Computational studies of insect antennal 

lobe have shown that LN inhibitory network entrains different populations of PNs leading to their 

synchronization and temporal patterning (Bazhenov et al., 2001).Graph coloring helped in 

understanding how LN sub-network can give rise to this patterning. Groups of neurons that do not 

have any inhibitory connections among each other are assigned the same color whereas neurons 

with which they form reciprocal inhibitory connections are given a different color. Thus neurons 

associated with the same color fire synchronously whereas neurons associated with different colors 

fire at different times generating an ordered sequential activity. This relationship of coloring with 

the dynamics is easy to observe in regular networks or specially constructed networks. However, 

coloring random networks is a hard problem. Random networks can have multiple possible 

colorings and obtaining all possible colorings in a reasonable period of time is an intractable 

problem. It is also not guaranteed that a minimal coloring will always be achieved. To overcome 

limitations of graph coloring we turned our attention towards connectome studies which use graph 

theoretic measures to study brain structure dynamics relationship (Bullmore and Sporns, 2009). 
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1.7 Connectome Studies 

Large scale synchronized activity has been observed in various brain regions and it is known to 

play a major role in information processing (Singer, 1999). These coherent patterns of activity 

arise from the underlying neuronal structure. Connectomic studies aim to map the anatomical 

connections of the brain in order to understand how the network structure of the brain shapes its 

emergent properties. The anatomical connections are largely determined using tractography or 

diffusion tensor imaging (DTI). The anatomical connections, so found, are studied using graph-

theorectic techniques. One of the widely used techniques are community clustering algorithms 

which help in characterizing organizational features of the connectome. These algorithms have 

helped in finding communities of neurons coupled through excitation, which cluster together with 

most edges lying within the module and minimal edges lying across the modules (Sporns, 2013). 

These studies have revealed that a large number of motifs and modules exits within the cortical 

regions of the brain (van den Heuvel and Sporns, 2013). The presence of modules indicates that 

there is segregation of information in the brain. The modules represent neurons which share 

common input and output connections and give rise to coherent patterns of activity (Sporns, 2013).  

Another class of networks that are studied are known as functional networks. Connectivity in 

functional networks (functional connectivity) is determined by studying statistical dependencies 

among neuronal elements, correlations derived from time series data such as EEG 

(electroencephalography), magnetoencelphalography (MEG) and fMRI (functional magnetic 

resonance imaging) studies. Studies have found that a relationship exists between the anatomical 

connectivity and the functional connectivity. Functional connectivity is shaped by the underlying 

anatomical connections (van den Heuvel and Sporns, 2013). Theoretical work has demonstrated 

how synchronization occurs in networks of complex topologies (Arenas et al., 2008). These 

studies have helped in understanding the structure dynamics relationship observed between 

anatomical and functional connectivity.  

The above studies have mainly looked into synchronization in networks which are coupled through 

excitation, however we study networks of inhibitory neurons. For inhibitory networks, 

communities are defined as groups of neurons which are maximally disconnected from each other 

and send most of the connections across the community and this is the modularity for inhibitory 

networks.  Due to the limitations of graph coloring on random networks, we applied community 

detection algorithms for finding such groups of neurons in inhibitory networks. 
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1.8 Thesis Outline 

It has been hypothesized that different odors activate different subnetworks in the olfactory bulb. 

We have tried to understand how the structure of the bulb circuitry through lateral inhibition gives 

rise to the dynamics (representations). Given that brain regions have modularity in their structure, 

using community detection algorithms we tried to establish a relationship between the modularity 

of inhibitory networks and the dynamics that are governed by it. Modularity of inhibitory networks 

is defined as the group of neurons that are maximally disconnected with each other in the group 

but their maximum connections lie in with neurons belonging to other group. Given that graph 

coloring is a complex problem and obtaining all possible colorings for random networks is 

computationally hard we have explored our methodology for random networks: 

 

Chapter 2: In this chapter we describe the model of the mitral cells in detail and show how intrinsic 

properties determine the temporal sequences in a small random network of mitral cells.  

 

Chapter 3: In this chapter using larger random networks we use a particular community clustering 

algorithm - Newman modularity algorithm and apply it to detect correlations between the structure 

and the dynamics of random networks. 

 

Chapter 4: In this chapter we show the results of how introduction of asymmetry in the network 

topology leads to reliability of representations across noise perturbations. 
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2.1 Introduction 

It has been proposed that odor representation is converted from a combinatorial representation by 

ORNs to a spatiotemporal code in the OB/AL (Laurent, 2002). Recordings done in the locust 

antennal lobe show that odor stimulation results in odor specific activation of PNs. The activated 

PNs do not fire continuously but fire at certain epochs of the entire duration of ensemble response. 

The slow temporal activity evolves along a fast oscillatory activity as observed in the local field 

potential. At each cycle of the oscillation the subset of synchronously firing PNs change. Thus, 

odor information is represented by spatial (PNs that are activated and participate in the ensemble 

response) and temporal activity (the order in which they fire) (Laurent, 2002; Laurent et al., 

1996b; MacLeod and Laurent, 1996; Wehr and Laurent, 1996). The synchronization of PNs 

is dependent on the inhibition mediated by the local neurons in the antennal lobe as was observed 

in the locust and honeybees (MacLeod and Laurent, 1996; Stopfer et al., 1997). Odor evoked 

oscillatory synchronization and its importance in odor encoding was shown in honeybees. 

Honeybees were trained to discriminate odors using a proboscis extension conditioning paradigm. 

Using this paradigm honeybees were able to discriminate between structurally similar odors (1-

hexanol and 1-octanol) and a dissimilar odor which is geraniol (a terpene). When picrotoxin, an 

ionotropic GABA antagonist was injected into the antennal lobe this led to loss of oscillatory 

synchronization as was evident with no power at the stimulus evoked frequency in the power 

spectrum. The bees failed to discriminate between 1-hexanol and 1-octanol. However, they were 

able to discriminate between geraniol and hexanol. Thus loss of synchronization led to impairment 

in fine odor discrimination (Stopfer et al., 1997). In an experiment done in rodents it was found 

that when rodents take longer time to make a decision for odor discrimination, higher inhibition 

leads to better performance in such a task (Abraham et al., 2010; Abraham et al., 2004).  

In this chapter we have constructed realistic biophysical models using in house developed neuronal 

C++ library in-silico to understand how intrinsic properties and lateral inhibition play a role in 

generating spatiotemporal patterning in the olfactory bulb.  

The choice of using multicompartment models or reduced models for simulations depends upon 

the goal of the study. Multicompartment models are generally used for studying the properties of 

single neurons such as the role of different currents or dynamics of synaptic transmission. Reduced 

models or single compartment models are useful if one is interested in studying how the activity 
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of group of neurons give rise to properties such as synchronization. Single compartment models 

ignore detailed biophysical properties and take into account only those that are needed for spike 

timing (Marder, 1998). Bhalla and Bower described a 286 compartment model of the mitral cell 

obtained by fitting parameters based on the electrophysiological recordings and anatomical details 

of the cells (Bhalla and Bower, 1993). Since our study involves network behavior, we have used 

single compartment model of mitral cells. 

2.2 Methods 

In this study mitral cells were modeled as single compartment using voltage dependent currents 

that were based on Hodgkin Huxley kinetics: The current equation for the mitral cell model is as 

follows: 

Cm

dV

dt
 =  −IL −  INa −  INaP −  IKfast −  IKa −  IKs −  Isyn + current − noise 

           (1) 

 

Equation 1 describes the dynamics of a mitral cell network comprising of N neurons. 

The ionic currents governing the intrinsic dynamics are governed by the following equation: 

I =  gmaxmMhH(V − E) 

           (2) 

E denotes the reversal potential and gmax denotes the maximal conductance of the channel.  m 

and h are the time and voltage dependent gating variables (M and H represent the number of 

activating and inactivating gates respectively). 

The gating variables are given by the following ODE’s: 

dm dt⁄ = (m∞ − m)τm  

     dh dt⁄ = (h∞ − h)τh 

     𝑚∞ =  𝛼𝑚(𝑉)/(𝛼𝑚(𝑉) +  𝛽𝑚(𝑉)) 
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     𝜏𝑚 = 1/(𝛼𝑚(𝑉) +  𝛽𝑚(𝑉))  

     ℎ∞ =  𝛼ℎ(𝑉)/(𝛼ℎ(𝑉) +  𝛽ℎ(𝑉)) 

     𝜏ℎ = 1/(𝛼ℎ(𝑉) +  𝛽ℎ(𝑉))  

Sodium Current: 

𝐼𝑁𝑎 =  𝑔𝑁𝑎𝑚3ℎ(V-𝐸𝑁𝑎) 

𝛼𝑚 =
0.32(𝑉 + 50)

{1 − exp [−
𝑉 + 50

4
]}

 ,  β𝑚 = 0.28(𝑉 + 23)/{exp [(𝑉 + 23)/5] − 1} 

𝛼ℎ = 0.128/exp [(𝑉 + 46)/18],   𝛽ℎ = 4/{1 + exp [−(𝑉 + 23)/5]} 

𝑔𝑁𝑎 = 50 𝑚𝑆/𝑐𝑚2 , 𝐸𝑁𝑎 = 45 𝑚𝑉 

Persistent Sodium current: 

𝐼𝑁𝑎𝑝 =  𝑔𝑁𝑎𝑃𝑚(V-𝐸𝑁𝑎𝑃) 

𝑚(𝑉) = 1/{exp [−(𝑉 + 51)/5]   + 1 } 

𝑔𝑁𝑎𝑃 = 0.1 𝑚𝑆/𝑐𝑚2 , 𝐸𝑁𝑎𝑃 = 55 𝑚𝑉 

KA current: 

𝐼𝐾𝑎 =  𝑔𝐾𝑎𝑚h(V-𝐸𝐾𝑎) 

𝜏𝑚(𝑉) = 25 exp[(𝑉 + 45) /13.3]/{exp [(𝑉 + 45)/10]  +  1} 

𝜏ℎ(𝑉) = 55.5 exp[0.99(𝑉 + 70) /5.1]/{exp [(𝑉 + 70)/5]  +  1} 

𝑚∞ = 1/{exp [−(𝑉 − 70)/14]   + 1 } 

ℎ∞ = 1/{exp [(𝑉 + 47.4)/6]   + 1 } 

𝑔𝐾𝑎 = 10 𝑚𝑆/𝑐𝑚2 , 𝐸𝑁𝑎𝑃 = −70.0 𝑚𝑉 

KS current: 

IKs = 𝑔𝐾𝑠𝑚ℎ(𝑉 − EKs) 
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𝜏𝑚(𝑉) = 10 

𝜏ℎ(𝑉) = 400 + 110/{exp [−(𝑉 + 71.6)/6.85]  +  1} 

𝑚∞ = 1/{exp [−(𝑉 + 34)/6.5]   + 1 } 

ℎ∞ = 1/{exp [(𝑉 + 65)/6.6]   + 1 } 

𝑔𝐾𝑠 = 31 𝑚𝑆/𝑐𝑚2 , 𝐸𝐾𝑠 = −70.0 𝑚𝑉 

 

Kfast current: 

𝐼𝐾𝑓𝑎𝑠𝑡 =  𝑔𝐾𝑓𝑎𝑠𝑡𝑚2ℎ(𝑉 − 𝐸𝐾𝑓𝑎𝑠𝑡) 

𝐼𝐾𝑓𝑎𝑠𝑡 kinetics were modeled using a table which was adapted from Bhalla and Bower 1993. 

(Details provided in Appendix) 

𝑔𝐾𝑓𝑎𝑠𝑡 = 50 𝑚𝑆/𝑐𝑚2 , 𝐸𝐾𝑠 = −70.0 𝑚𝑉 

 

Synapse: 

Synaptic conductance is modeled as a difference of two exponential functions of time t 

𝑔(𝑡) =  
𝑔𝑠𝑦𝑛 𝜏𝑟 𝜏𝑑

𝜏𝑟 𝜏𝑑
 [exp(−𝑡/ 𝜏𝑑) − exp(−𝑡/𝜏𝑟)]   

where 𝜏𝑟 and 𝜏𝑑 are the rise time and fall time of the synapse respectively.  𝑔𝑠𝑦𝑛 is a factor 

dependent on rise and fall time such that the maximal value of g(t) is 1 with respect to time. Its 

value used in the model is 5.2381. The synaptic current is given by: 

I𝑠𝑦𝑛 =  gsynmax𝑔(𝑡)(V𝑝𝑜𝑠𝑡 − EGABA) 

where 𝑔𝑠𝑦𝑛𝑚𝑎𝑥 is the maximal synaptic conductance. The inhibitory synaptic current is activated 

by presynaptic spikes in the mitral cell. The reversal potential for GABAergic synapse is -70.0 

mV. The rise time is 0.2ms and the decay time is 20ms with a latency of 0.75ms.  
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Simulation procedure: 

All single cell and network simulations were carried out using a fourth order Runge Kutta 

integration method. Time step used for simulation was 27µs. The input onset was set at 1000ms 

so as that the cells settle down to resting state. The input was provided for 6000ms and started to 

decay at 7000ms. Simulations were performed using an in house developed open source C++ 

library called ‘in-silico’. The in-silico library utilizes the boost library (odeint) for integrating the 

system of coupled differential equations. MATLAB was used to visualize and analyze data. 

 

2.3 Results 

2.3.1 Mitral cells show mixed mode oscillations 

Using a minimal set of parameter values the model recaptures some of the essential physiological 

properties of mitral cells. It includes the regular spiking current (INa), a delayed rectifier (IKfast), a 

leak current (ILeak), slow potassium(IKs) and persistent sodium (INap) current. An additional A-type 

potassium current has also been included (Figure 2.1). The model is based on a previously 

published study by Bathellier et.al. (Bathellier et al., 2006). The activation and inactivation curves 

of sodium (INA) and delayed rectifier potassium current (IKfast) have been shifted by -8mv to lower 

the spike threshold in accordance with the experimental results (Desmaisons et al., 1999). The IKa 

current is responsible for the delay in onset of spikes (Balu et al., 2004). 

 

Figure 2.1 Schematic of the currents present in the point model of mitral cell 

Currents in the model are sodium (INa),  delayed rectifier (IKfast), leak current (ILeak), slow 

potassium (IKs), persistent sodium (INap) and IKa. Iapp is the applied current. 
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Olfactory sensory neurons excite the mitral cells through the neurotransmitter glutamate 

(Berkowicz et al., 1994). The input provided to the mitral cells was a depolarizing current which 

had an onset time (1000ms), a particular peak amplitude (0.6µA) and a fall time (7000ms). Upon 

depolarizing the mitral cells, they showed repetitive firing of clusters of action potentials 

interspersed with epochs of subthreshold oscillations (STOs) which match with the experimental 

recordings (Chen and Shepherd, 1997; Desmaisons et al., 1999). This rhythmic activity is known 

as mixed mode oscillations (Figure 2.2). This alternation of burst of spikes followed by 

subthreshold oscillations results because of the slow timescale of the potassium current (IKs). Slow 

potassium current is a depolarization activated hyperpolarizing current. Due to the slow timescale 

of the inactivation variable the IKs builds up slowly at each successive spike and after certain 

number of spikes it causes cessation of spikes in the cell and the neuron goes into STO mode 

(Figure 2.3). After spike cessation, there is a gradual decline in the inactivation variable of the 

slow potassium current. Since the neuron receives an input the membrane potential is depolarized 

by the applied current, which is further amplified by the persistent sodium current. This small 

depolarization activates the slow potassium current which again leads to hyperpolarization of the 

membrane voltage. This back and forth depolarization and hyperpolarization is responsible for the 

generation of STOs. Decay in slow potassium current leads back to the appearance of spike clusters 

and the whole cycle repeats. It has been shown that subthreshold oscillations are generated by 

interaction between a resonant current and an amplifying current (Hutcheon and Yarom, 2000) 

and in our model the resonant current is IKs and the amplifying current is INap. Mixed mode 

oscillations are also seen in the stellate cells, found in the entorhinal cortex, where they are 

generated by the interaction of IH and INap current (Dickson et al., 2000).  
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Figure 2.2 Mitral cells display spiking as well as subthreshold oscillations 

Top panel shows the depolarizing input current given. It has an onset time and an offset time. 

Bottom panel shows the firing of mitral cell in response to a current of amplitude 0.6µA. Mitral 

cells respond with clustering of action potentials interspersed with subthreshold oscillations. 

Arrows indicate the subthreshold oscillations. 

 

 

Figure 2.3 Mitral cell activity and the role of IKs in generating mixed mode oscillation 

Top panel mitral cell activity. 

Bottom panel shows open fraction channel of IKs current. After certain successive action potentials 

the IKs current builds up and causes cessation in activity of the mitral cell which is followed by 

subthreshold activity. 
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2.3.2 Mitral cells inhibit each other and display antagonistic interactions 

Granule cells mediate recurrent as well as lateral inhibition onto mitral cells belonging to other 

glomeruli. . There are no granule to granule cell connections thus far found (Neville and Haberly, 

2004). Thus mitral cells inhibit each other through granule cells. We have not explicitly modeled 

the granule cells in our simulations. We have assumed that mitral cells are coupled to each other 

via lateral inhibition. Lateral inhibition between mitral cells is the sum of small inhibitory 

postsynaptic currents (IPSCs) mediated by GABAergic interneurons through dendrodendritic 

coupling. Our parameter values for lateral inhibition are not based on real experimental data hence 

we derive conclusions that are not dependent on the particular parameter value chosen but are 

based on general observations.  

We started with the simplest motif of two mitral cells (M1 and M2) inhibiting each other through 

lateral inhibition. On driving the two mitral cells with a depolarizing current they showed 

alternation in their activity. How does this alternation/switching in the activity arise? When M1 

neurons fires because of inhibition M2 remains in a quiescent state. When M1 is spiking the slow 

potassium current of M1 builds up and after a certain number of spikes it switches of the M1 

neuron and the M2 neuron escapes from inhibition and starts spiking (Figure 2.4). In our parameter 

regime the two neurons continue to switch for the duration of the stimulus and neither of them 

completely suppress each other. 

Antagonistic interactions between neurons can also occur through spike frequency adaptation. 

Spike frequency adaptation is a prominent phenomenon seen in the dynamics of neurons and is 

exhibited by different types of spiking interneurons. Spike frequency adaptation is mediated by a 

number of ionic currents such as the slow recovery from inactivation of fast sodium current, M-

type currents and calcium dependent potassium currents (AHP) (Brown and Adams, 1980; 

Fleidervish et al., 1996; Madison and Nicoll, 1984)(see (Benda and Herz, 2003)review on 

detailed mechanisms of spike frequency adaptation ). In a model of locust antennal lobe 

switching in the dynamics of LNs occurs through a hyperpolarizing calcium dependent potassium 

current (Assisi et al., 2011).  
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Figure 2.4 Switching Dynamics in Mitral Cells 

A) Schematic of two mitral cells reciprocally inhibiting each other. 

B) Reciprocally connected mitral cells generate alternating bursts of activity. 

C) The open fraction of slow potassium current. It is a depolarization activated hyperpolarization 

current. It builds up with each successive spike of the mitral cell and switches off the neuron 

(indicated by the arrows) after some time which leads to alternation in spiking activity. 
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2.3.3 Temporal sequences in a mitral cell network 

Odors evoke spatiotemporal patterns of activity in the mitral cells. To examine the factors that give 

rise to temporal ordering we used a random motif of six mitral cells which are coupled to each 

other via lateral inhibition (Figure 2.5A). Upon injecting a depolarizing current to all the neurons 

we observe a temporal sequence of neuronal activity. This temporal patterning results because of 

the interplay of lateral inhibition and the slow potassium current dynamics. The neurons organize 

themselves into three groups, as shown by the color coding scheme (Figure 2.5). Neurons having 

the same color fire synchronously and alternate with neurons associated with other colors, which 

fire at different times. This shows that neurons that are not inhibiting each other do not compete 

with each other and fire together. The activity of neurons largely follows the topology but due to 

the difference in synaptic weights we get three different groups. The temporal ordering in the motif 

is determined by the relative activation of the slow potassium current. The neuron that fires 

immediately is determined by the one whose inactivation variable has the lowest value (Figure 

2.5B). Our motif was able to generate the spatiotemporal patterns as evidenced by epochs of 

excitation and inhibition of neurons observed in the recordings of the mitral cells upon odor 

activation (Friedrich and Laurent, 2001). In the insect antennal lobe the ordering is determined 

by the calcium concentration. The neuron with the lowest calcium concentration is the one that is 

most likely to fire (Assisi et al., 2011). 

Temporal ordering can also be determined by other factors such as the asymmetries in the input 

pattern, asymmetries in the intrinsic properties of neurons or network topology. 
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Figure 2.5 Temporal ordering in a network of mitral cells 

A) Schematic of the connectivity of a random network of 6 mitral cells. w indicates the weight of 

synapse (w=4.2 mS/cm2). 

B) Mitral cell network is capable of generating a sequence which is dictated by the inactivation 

variable of the slow potassium current. The top traces (top 6) show the activity of the mitral cells 

which follows a particular sequence. The neuron that spikes immediately after a particular neuron 

is the one whose inactivation variable has the lowest value (bottom traces) among all neurons. 

2.4 Summary 

We have used realistic biophysical models of the mitral cells which capture the physiology of the 

mitral cells (mixed mode oscillation). Based on these results we proceeded to study and 

characterize the dynamics in larger networks of mitral cells. 
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3.1 Introduction 

Inhibition plays an important role in spatiotemporal patterning in a number of neuronal networks 

(for example in case of central pattern generators involved in chewing, locomotion, swimming).  

In the locust antennal lobe Assisi et. al. derived a simple relationship between the structure of the 

inhibitory network and the collective dynamics of neurons that form the network (Assisi et al., 

2011). Antagonistic interactions between inhibitory interneurons imply that neurons that were 

directly connected to each other did not spike at the same time. This could be related to a structural 

property of the network, namely the coloring. Graph coloring is a partitioning of the network that 

assigns different colors to nodes that are directly connected. Nodes of different colors, due to 

inhibition, fire at different times whereas those that do not connect can potentially spike 

synchronously. The relationship between the coloring and the dynamics of the network is easy to 

observe in case of small or regular networks. However, coloring networks with a complex topology 

is a difficult problem since there are many possible solutions (colorings) and determining all these 

colorings in a reasonable period of time is an intractable problem. Despite these technical hurdles, 

coloring provides a useful heuristic to examine the structure of inhibitory networks.  

Consider a densely connected network of neurons that interact via excitation. These would tend to 

fire in a correlated manner. Similarly, in resting state networks correlated dynamics are often used 

to identify functionally connected components of the network (Deco et al., 2011; Sporns, 2013). 

Given that dynamic correlations are often a signature of physical connections between 

components, a number of algorithms that characterize the structure of brain networks look for 

modules– densely connected sub-graphs that extend sparse connections to other nodes of the 

graph. A coloring can be thought of as a module with just the opposite property – Nodes that do 

not connect to each other tend to form synchronously spiking groups. This peculiar property meant 

that we could still employ the same modularity detection tools, but on networks that were ‘flipped’ 

versions of the inhibitory networks –nodes that were not connected in the original network would 

be connected in these flipped networks. We posit that the dynamics of modules detected by 

clustering algorithms - densely connected sub-graphs of the flipped network – would be correlated 

since they do not inhibit each other. This technique certainly does not detect the colorings of the 

original network, but it can potentially identify clusters of neurons that fire in a correlated manner.  
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In the following section we describe various algorithms that are commonly used for clustering and 

studying the properties of networks.  

3.2 Clustering methods 

A graph is an ordered pair G = (V, E) where V is a set consisting of elements known as vertices or 

nodes and E is a set consisting of elements known as edges/links between these vertices. Since 

many widely studied natural systems can be represented as networks, graph theoretic techniques 

are widely used to study problems in different areas like biology, engineering, physics and 

sociology.  

Some of the widely used methods are concerned with clustering/partitioning of networks. 

Partitioning is done to study the organizational features of the network which are not obvious in 

the raw network topology. This can help in getting valuable information, for example presence of 

distinct communities means that different functionalities are present in the network. Detection of 

groups in networks has been done using two principal methods known as graph partitioning 

algorithms and community detection algorithms. The aim of both these methods is to find divisions 

of the network such that they reveal densely connected groups with sparse connections across 

groups. However there exist some differences between the two methods. Graph partitioning 

algorithms always gives a partition of the network even if no good division is permissible. For 

these algorithms the experimenter should a priori provide the number of groups and group sizes 

into which the network should be split. These algorithms have been typically useful for computer 

science problems, for example in case of parallel computing where the computations are to be split 

among different processors in such a manner that there is minimal interprocessor communication. 

This increases computational efficiency and performance. The investigator knows beforehand the 

number of processors and the number of jobs to be assigned to each processor, thus the number of 

groups and the group sizes is a priori known. These algorithms are not useful when the 

experimenter does not know into how many different groups to split the network and the size of 

the groups. On the other hand, for community clustering algorithms the investigator is not required 

to a priori specify the number of groups and their sizes. These algorithms work on the premise 

that “natural groupings” exist in the network and the objective is to find them.  If there is no good 

partition possible these algorithms do not force a division of the network. These algorithms find 

communities based on the idea that the communities so found have fewer than expected number 
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of edges across them. For this purpose the community structure of the network is compared with 

a null model. A null model is a randomization of the original network wherein the degrees of the 

nodes are preserved. If the number of edges within the communities is significantly more 

(alternatively number of edges across communities is significantly less) than expected chance, then 

it is said that the communities found are meaningful in nature (it is assumed that the null model 

will not have a community structure). A quantity known as modularity has been defined for these 

algorithms. This quantity reveals the goodness of the partition and hence the partition 

corresponding to the maximum value represents the best possible clustering of the network. 

Therefore most of these algorithms try to partition the network in such a manner that this quantity 

is maximized. Finding the true modularity is time consuming and a difficult problem. Therefore 

most of the algorithms try to find approximate solutions to the maximum modularity value which 

is acceptable in most cases. Hence these algorithms are also known as “heuristic algorithms” 

(Fortunato, 2010; Newman, 2006, 2010). 

Below we review some of the algorithms with their methodology of finding clusters and some of 

their drawbacks and why we choose a particular algorithm for our work. 

 

3.2.1 Kernighan-Lin Algorithm 

Kernighan-Lin is a graph partitioning algorithm developed by Brian Kernighan and Shen Lin in 

1970. The algorithm finds clusters by optimizing a benefit function (Q) which is defined as the 

difference between the number of edges within the clusters and the number of edges across the 

clusters. At the start the algorithm requires that the user specifies the size of the groups and for 

initial configuration the vertices are randomly assigned to the two groups. There are two stages in 

this algorithm. In the first stage, for each possible pair of vertices selected from the two groups, 

the change in the benefit function is calculated if those two vertices were swapped. Then the pair 

for which the change is the highest is selected and swapped. This way the algorithm does not 

change the size of the groups and maintains the partitioning originally specified. After this, the 

procedure is again repeated with the condition that the pair of vertices once swapped will not be 

used again. In the second stage, after all the swaps have been completed the algorithm goes back 

through all the swapping stages and finds the point at which Q was highest. This is the final 

partition of the network.  
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This algorithm suffers from some drawbacks. It is unsuitable for situations where the investigator 

does not have a clue about the sizes of the groups. The experimenter is forced to choose particular 

group size, which can lead to unwanted results. In such cases the algorithm can be run against all 

possible partitions of the network but not only would that be time consuming, the best values of Q 

are achieved for partition into highly asymmetric group sizes. The other drawback is that this 

algorithm only results in division of the network into two groups. Further division of the network 

could be achieved by repeatedly bisecting the groups thus found, but there is no assurance that the 

procedure followed this way will result in the best division of the entire network. Also the user 

does not know when to stop this process of repeated bisections (Kernighan and Lin, 1970; 

Newman, 2010; Newman, 2004). 

 

3.2.2 Agglomerative/Hierarchical clustering 

Hierarchical clustering is an agglomerative technique which involves joining of nodes to each 

other in a hierarchical manner based on a similarity measure until all the nodes are joined forming 

one single large cluster. This leads to a tree like representation known as dendrogram from which 

clustering can be inferred. This approach has been described as bottom up approach of clustering. 

This algorithm stands in contrast to other graph partitioning algorithms which are divisive 

techniques as they take a network and fragment it into different parts. The connections made 

between the nodes in this method has no relation with connections in the original graph. The 

original graph connections are used only for calculating the similarity measure. There are number 

of different similarity measures available to the experimenter to select for his task. The choice is 

dependent on the requirements of the problem. Some of the most commonly used measures are 

Euclidean distance, Hamming distance, Mahalanobis distance, Minkowski distance, Square-

euclidean distance etc. The algorithm first starts by calculating the similarity scores for all pairs of 

vertices in the network. It then joins the vertices with the highest similarities to form a group. 

Further, groups that are most similar are combined together forming larger clusters and this process 

is repeated until all vertices have been taken into account. Once the dendrogram is created, cutting 

the tree by choosing a particular point reveals the clusters (following the branches shows the 

clusters). This process of joining groups requires calculating similarity measure for the groups. 

Three different methodologies exist for calculating group similarity scores: 
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1. Single linkage clustering: In this method similarity of two groups is taken to be the highest 

similarity value of all the vertex pairs 

2. Complete linkage clustering: In this method similarity of two groups is taken to be the least 

similarity value of all the vertex pairs 

3. Average linkage clustering. In this method the similarity of two groups is the average 

similarity value of all vertex pairs. This method creates a balance and is not at the extreme ends 

like single linkage and complete clustering. 

To summarize the algorithm for this clustering method is: 

1. Choose a similarity/dissimilarity measure to be applied on all pairs of nodes 

2. Compute the similarity/dissimilarity measure for all nodes pairs of the network. 

3. Using the computed score choose the pair with the highest similarity measure and group 

them into a single cluster. 

4. Calculate the new similarity measure for this composite group and other nodes using the 

methods mentioned above (single, complete and average linkage). 

5. Keep repeating from step 3 onwards till a single group is achieved. 

This method has the advantage that the experimenter is not required to input the size and number 

of groups in advance, however it does have some drawbacks. Hierarchical clustering, despite 

offering a number of different similarity metrics and linkage methods to choose from does not 

specify which metric and method is best suited for a particular problem. Also, the experimenter 

does not know into how many communities the network should be split for the best result. The 

other problem with hierarchical clustering is that it can result in single nodes which are not part of 

any group. This is because it generally clusters nodes which have strong similarity scores together 

leaving the assignment of single nodes (also called peripheral nodes) towards the end of the 

clustering process because of their low similarity values (Fortunato, 2010; Newman, 2010). 

 

3.2.3 Girvan Newman Algorithm 

The Girvan Newman algorithm is a community detection algorithm that finds “natural divisions” 

of the network. As seen in hierarchical clustering this algorithm also generates a dendrogram as 
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its output. It is however a divisive algorithm as it involves a top down approach by starting at the 

very top of the tree (known as the root) and going all the way down to the bottom (the nodes are 

known as leaves). This algorithm operates on the principle that if the information has to flow 

between nodes belonging to different communities it will occur through the shortest path and the 

paths will involve edges connecting those communities. The goal is to find the edges which have 

a heavy flow of traffic and remove them, as this will help in unveiling the communities present in 

the network. For this the algorithm utilizes a quantity known as edge betweenness. Edge 

betweenness for a particular edge is defined as the number of shortest paths between all pairs of 

vertices in the network that goes through the edge in question. Higher edge betweenness score 

indicates that large information flows through that particular edge. 

The algorithm works by first calculating the edge betweenness score for all edges in the network. 

Then the edge with the highest score is removed first. After removal the scores for the remaining 

edges is recalculated since the shortest paths between nodes will change. Then a search is again 

made to find the edge with the highest score and it is removed. This process of recalculating and 

removing of edges continues until there are no more edges left. The result is a dendrogram in which 

the branching reveals the order of splitting of the network. Horizontal cut in the dendrogram 

represents the possible community divisions with varying sizes of the communities.  

This cut can be applied anywhere in the dendrogram and the investigator has the option to split the 

network as per their wish. However, it suffers from the same problem as hierarchical clustering, 

as the investigator does not know the best division. To address this problem Girvan and Newman 

modified this algorithm to introduce a parameter called the modularity value Q. Q is defined as 

the difference between the number of edges found within communities and the expected value in 

the same network where node degrees are preserved but edges are placed randomly. The other 

disadvantage of this algorithm is that the runtime scales with network size thus making it slow in 

operation (Girvan and Newman, 2002; Newman and Girvan, 2004; Newman, 2004). 

 

3.2.4 Newman Modularity Algorithm 

This algorithm is a modularity (Q) optimization method and finds communities based on the same 

premise that the number of edges found in a community is higher than the expected value of a 
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similar network in which edges are placed randomly and the node degrees are preserved. 

Modularity is calculated as the fraction of edges and not the number.  

Modularity (Q) of a network is defined as follows: 

𝑄 =
1

4𝑚
∑(𝐴𝑖𝑗 −

𝑘𝑖𝑘𝑗

2𝑚
𝑖𝑗

)𝑠𝑖𝑠𝑗 

Where A is the adjacency matrix, 
𝑘𝑖𝑘𝑗

2𝑚
 is the expected probability of connection between nodes i 

and j. m is the total number of edges in the network and k is the degree of each node. s is an index 

vector denoting the division of the network into communities. s is constrained to take values +1. 

If it belongs to community 1 then the element si = 1 and si = -1 if it belongs to community 2. 

Figure 3.1 shows a schematic flow of how the Newman modularity algorithm works in detecting 

communities. As seen in the schematic the first step involves bisection of the network. This 

bisection occurs only if the modularity value increases. 

The modularity can be rewritten in the matrix form as  

𝑄 =
1

4𝑚
𝑠𝑇𝐵𝑠 

Where the entries of each element of B are as follows: 

𝐵𝑖𝑗 = 𝐴𝑖𝑗 −
𝑘𝑖𝑘𝑗

2𝑚
 

B is called the modularity matrix. Since the goal is to maximize the modularity this can be achieved 

by selecting the best partition and therefore the s vector should be chosen accordingly. Since 

modularity can be expressed in terms of the product of eigenvectors and s vector, the algorithm 

calculates the leading eigenvector (eigenvector with the most positive eigenvalue) to maximize the 

product.  Since s is constrained to take only +1 or -1, s is made as close to parallel to the leading 

eigenvector as possible.  For this the element of s vector is assigned +1 if the corresponding 

element in the eigenvector is positive, otherwise it is assigned -1. Thus the elements which are +1 

in s go in one group and the negative elements go to the other group and the partitioning is 

achieved. If the algorithm is able to find no positive eigenvalue then it gives the trivial solution; 
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which is putting all the vertices into one community, meaning it is best to leave the network 

undivided.  

The next step as seen in the schematic is to find further divisions of the communities. This is 

accomplished by examining each community and bisecting them with the constraint that division 

into further communities should result in an overall positive change in modularity which is given 

by the following equation: 

∆𝑄 =
1

4𝑚
∑ [𝐵𝑖𝑗 − 𝛿𝑖𝑗 ∑ 𝐵𝑖𝑘

𝑘∈𝑔

] 𝑠𝑖𝑠𝑗

𝑖,𝑗∈𝑔

 

=
1

4𝑚
𝑠𝑇𝐵(𝑔)𝑠 

Where 𝛿𝑖𝑗 is kronecker 𝛿-function and 𝐵(𝑔)is ng x ng matrix indexed by i,j vertices of group g and 

its entries are given by: 

𝐵𝑖𝑗
(𝑔)

= 𝐵𝑖𝑗 − 𝛿𝑖𝑗 ∑ 𝐵𝑖𝑘

𝑘∈𝑔

 

For further division the algorithm again looks for the leading eigenvector which will give positive 

value to the quantity ∆Q. As can be seen in Figure 3.1 the best partition of the given network is its 

division into three communities. The algorithm stops further subdivisions only when no positive 

contribution to the quantity ∆Q is found (Newman, 2006). 

To summarize, this algorithm works by first constructing a modularity matrix from the adjacency 

matrix and finding the leading eigenvalue and the corresponding eigenvector. The network is then 

divided into two groups based on the signs of the eigenvector. This same operation is performed 

for finding subdivisions of the communities. If at any point the change in modularity is zero the 

division of that community is halted. The algorithm ends when the entire network has been split 

into indivisible communities. 

This algorithm does not require the investigator to input the size and number of groups to start 

with and finds the natural communities present in the network. This algorithm is quite fast and the 

only time consuming step is finding the leading eigenvector. Thus the running time of this 
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algorithm does not scale with increase in network size. Based on these characteristics we chose 

this algorithm for our work. 

 

 

Figure 3.1 Schematic illustration of the Newman community detection Algorithm 

 (Newman, 2006) 

The diagram shows flow of the algorithm in detecting the underlying communities in the network. 

The algorithm works on the principle of repeated bisection of the network at each step to find 

communities. The top network shows the input network given to the algorithm. On the first iteration 

the algorithm divides the network into two communities on the condition that it leads to an increase 

in modularity. In the next iteration it examines each community separately found in the first step 

and tries to split it on the condition that it leads to an overall increase in modularity. The end result 

at the bottom shows the communities found by the algorithm. 
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3.3 Methods 

Mitral Cell Model and synapse model:  

These are described in chapter 2. 

Network Structure: 

We constructed random networks using the Watts and Strogatz model (Watts and Strogatz, 

1998).  This model starts with N nodes arranged on a circular ring and each node is connected to 

its k nearest neighbors. This network is also referred to as a regular network. In this regular network 

a particular node and the edge that connects to its nearest neighbor is chosen. With a particular 

probability β this edge is then rewired to a uniformly picked random node from the entire network 

or it is left unchanged. Moving in the clockwise direction the process is similarly repeated for all 

the other nodes. The first iteration is completed when the nearest neighbor edges of all the nodes 

are considered. In the next round edge that connects to the second nearest neighbor is selected and 

the similar operation of rewiring is applied. This process is then continued upon other nodes and 

after each round the next nearest neighbor edges are picked. The entire process of rewiring is 

completed when all the edges in the original network have been considered. Figure 3.2 illustrates 

the process of generating random networks using this model. The rewired network enters the 

random regime when β >=0.8. The random networks used for simulations in this chapter consisted 

of 50 neurons, K=6 and the probability β was 0.8. 

 

Figure 3.2 Watts and Strogatz model 

A ring network of N nodes is constructed in which each node connects to k nearest neighbors 

(N=50, K=6 for our network. Three different realization of p have been shown here. When p>=0.8 

the network becomes random. 
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Newman Clustering:  

We have used MATLAB implementation of the Newman clustering algorithm from the Brain 

connectivity toolbox (Rubinov and Sporns, 2010). 

Classical MultiDimensional Scaling (CMDS):  

Classical Multidimensional scaling is a dimensionality reduction method which maps a higher 

dimensional data set to lower dimensions (up to three dimensions) by preserving the distances 

between points. CMDS uses eigenvalue decomposition for dimensionality reduction and requires 

the input as a distance measure which is usually the Euclidean distance. In our analysis we have 

used dissimilarity values as the distance measures for applying CMDS. We have used an R 

implementation of CMDS for the analysis. 

Spike Synchrony: 

Spike synchronization measures how synchronized the spike trains are. Values that are close to 1 

imply that spikes are synchronous. A coincidence detection value is calculated for every spike in 

a spike train. Spikes 𝑡𝑖
(1)

and 𝑡𝑗
(2)

are coincident only if the difference in their spike times is below 

a threshold window 𝜏𝑖𝑗
(1,2)

 as given below 

𝐶𝑖
(1)

= {
1
0

  
𝑖𝑓 𝑚𝑖𝑛𝑗  (|𝑡𝑖

(1)
−𝑡𝑗

(2)
|)  < 𝜏𝑖𝑗

(1,2)

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 and analogously for 𝐶𝑗

(2)
 

𝜏𝑖𝑗
(1,2)

= min{𝑡𝑖+1
(1)

− 𝑡𝑖
(1)

, 𝑡𝑖
(1)

− 𝑡𝑖−1
(1)

, 𝑡𝑗+1
(2)

− 𝑡𝑗
(2)

, 𝑡𝑗
(2)

− 𝑡𝑗−1
(2)

} /2 

𝐶𝑖
(1)

is the coincidence value of ith spike in spike train 1. 

𝑡𝑖
(1)

 is spike time of ith spike in spike train 1 for which coincidence value is being calculated.  

𝑡𝑗
(2)

 is the spike time of corresponding spike (termed jth) in spike train 2 with which comparison is 

made 

𝑡𝑖+1
(1)

 is the spike time of i+1 spike in spike train 1  

𝑡𝑖−1
(1)

 is the spike time of i-1 spike in spike train 1  

𝑡𝑗+1
(2)

 is the spike time of j+1 spike in spike train 2 
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𝑡𝑗−1
(2)

 is the spike time of j-1 spike in spike train 2 

The spike synchronization for cases involving more than two spike trains is calculated by first 

performing bivariate coincidence detection for each pair of spike trains (n,m)  

𝐶𝑖
(𝑛,𝑚)

= {
1
0

  
𝑖𝑓 𝑚𝑖𝑛𝑗  (|𝑡𝑖

(𝑛)
−𝑡𝑗

(𝑚)
|) <  𝜏𝑖𝑗

(𝑛,𝑚)

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

This is followed by normalizing each coincidence values involving spike train n by averaging it 

over N-1 bivariate comparison: 

𝐶𝑖
(𝑛)

=
1

𝑁 − 1
∑ 𝐶𝑖

(𝑛,𝑚)

𝑚≠𝑛

  

N is the total number of spike trains being compared. 

The coincidence detection values of both the spike trains are pooled together into a unified set of 

coincidence detectors.  

Spike synchronization S is calculated as follows: 

𝑆𝑐 =
1

𝑀
∑ 𝐶(𝑡𝑘)

𝑀

𝑘=1

 

M denoting the total number of pooled spikes from both spike trains 

𝐶(𝑡𝑘) is the coincidence value at time t for a spike k. 

Python implementation of the SPIKE synchronization known as pyspike has been used for the 

analysis (Kreuz et al., 2015; Mulansky and Kreuz, 2016). 

 

K-medoid Clustering 

K-medoid is a partitional algorithm used to cluster data sets into different groups. In this method 

the aim is to group data into clusters such that their distance to the medoid of the cluster is 

minimized. The medoid selected for clustering is one of the data points. R implementation of the 

k-medoid clustering was used. 
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The analysis involving CMDS, spike synchrony and K-medoid clustering was done by Divye, a 

Masters student from Savitribai Phule Pune University. 

Simulation 

All network simulations were carried out using a fourth order Runge Kutta integration method. 

The time step used for simulation was 27µs. The input onset was set at 1000ms so as that the cells 

settle down to resting state. The input was provided for 6000ms and started to decay at 7000ms. 

The entire simulation was done for 8000ms. Simulations were performed using an in house 

developed open source C++ library called as ‘in-silico’. The in house ‘in-silico’ utilizes boost 

library (odeint) for integrating the system of coupled differential equations. MATLAB was used 

to visualize and analyze data. 
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3.4 Results 

3.4.1 Clustering mitral cell network using Newman Modularity Algorithm 

Since odorant molecules are recognized by multiple ORNs and a particular odorant receptor can 

recognize many odorant molecules it has been proposed that odors are represented in a 

combinatorial manner (combinatorial coding scheme) (Hallem and Carlson, 2006; Malnic et al., 

1999). It has also been proposed that different odors activate different subnetworks of the olfactory 

bulb and hence we sought to understand how the network structure governs the dynamics. For this 

we first constructed a random subnetwork of 50 mitral cells using the WS model. As described in 

the previous chapter our simplified network consists of mitral cells inhibiting each other, hence 

our random network is a purely inhibitory network. To determine groups of neurons that will be 

maximally disconnected, the flipped version of the adjacency matrix was passed through the 

Newman modularity algorithm. The algorithm pulled out groups based on the edge density within 

and across the group. The indices of the neurons were then permuted on the original matrix 

according to the clusters obtained from the clustering algorithm. This rearrangement of the original 

adjacency matrix revealed block like structures with minimal within group connections (diagonal 

blocks of zero) and all the across group connections represented by 1’s present on the off diagonal. 

Figure 3.3 outlines the procedure for the methodology used for finding such groups by us. A 

uniquely colored network has zero within group connections and all connections are across groups. 

Our final rearrangement of the adjacency matrix matches quite closely to such a uniquely colored 

network. The network used in this example had four groups which we have represented with four 

colors (red, blue, green and orange). The group sizes revealed by the algorithm shows that groups 

are of unequal sizes with red group consisting of 15 neurons, blue consisting of 14 neurons, green 

consisting of 11 neurons and orange consisting of 10 neurons.  

We constructed several such random networks and used this algorithm to find out the sizes of the 

communities. We looked for only those groups whose size was greater than six as we defined this 

to be the threshold for being a meaningful group. Figure 3.4 shows the frequency of various group 

sizes. We found that the distribution of group sizes lied in the range 10-16 and thus the groups 

detected were mostly of similar size. The average size of the group was found to be 12. We 

constructed several such random networks and applied this algorithm to find their modularity (as 

shown in Figure 3.5).  
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Figure 3.3 Clustering using Newman Algorithm 

Adjacency matrix of a random network. A black dot (indicating 1 in the adjacency matrix) at the 

location (i,j) indicates that the ith neuron inhibits the jth neuron. In step 1, the adjacency matrix 

was transformed by converting the ones to zeros. The diagonal elements were not changed. In step 

2, we used the Newman clustering algorithm to detect clusters of densely connected nodes in the 

flipped network. The nodes were rearranged such that those belonging to a cluster were put in 

adjacent rows/columns. The original (but permuted) adjacency matrix was obtained by switching 

back the ones to zeros and vice versa. This created diagonal blocks that had minimal connections 

and off-diagonal regions with a randomly distributed mix of ones and zeros. 

 
Figure 3.4 Distribution of group sizes upon clustering 

Histogram showing the distribution of group sizes obtained on clustering different random 

networks. The average size of the groups is 12. 
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Figure 3.5 Clustering of few Random Networks using Newman Algorithm 

Examples of few random networks that were clustered using the procedure outlined in Figure 3.3. 

The random networks shown here have a total of 4 distinct groups shown in different colors. 
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3.4.2 Using modularity algorithm and determining correlations in the dynamics 

Assuming all neurons receive similar input and the network structure respects the groupings, 

neurons belonging to the same group will not compete amongst each other and spike 

synchronously, whereas neurons belonging to other groups will fire antagonistically and at 

different times. This antagonistic interaction leads to alternation in the firing patterns of different 

groups and constitutes a spatiotemporal pattern. Upon constructing the random network and 

finding its modularity, we asked whether we can detect the impression of the network in the 

dynamics. In other words, we looked for correlation in the dynamics with the groups found. We 

simulated different instances of random network by providing similar input to all the neurons in 

the random network. The system was given 1000ms to reach steady state, after which the stimulus 

was provided for 6000ms. The raster plot in Figure 3.6A shows the dynamics of the random 

network over 3700 milliseconds. The dynamics without the rearranging the network do not show 

any ordering or spatiotemporal pattern, however when we rearrange the neurons according to the 

groups the hidden correlations are revealed (Figure 3.6B). The neurons associated with the red 

color fire synchronously, so do the neurons associated with the blue, green and orange color. The 

neurons in the red, blue, green and orange groups alternate in their firing pattern. Such dynamics 

have been demonstrated already for uniquely colored networks (Assisi et al., 2011).  We calculated 

correlation coefficients for within group neurons and across the group neurons by convolving their 

activity with a square pulse (window =50ms).We compared these correlations, with the 

correlations obtained from a random clustering of the network. Correlations calculated based on 

the Newman clustering revealed the presence of groups as observed in the structure and we found 

the groups to be positively correlated among themselves and negatively correlated to the other 

groups. Correlations based on a random clustering showed no such group like structure (Figure 

3.7). We simulated different instances of random networks and found that the algorithm was able 

to extract groups which showed positive correlations within the groups and negative correlations 

across the groups (Figure 3.8A). We simulated a particular random network across different noise 

trials. We found that these correlations persisted across different noise instances as the distribution 

of the negative and positive correlations were different from each other (Figure 3.8B). 

Our methodology gives us different possible valid solutions for the system. These solutions 

correspond to distinct possible spatiotemporal patterns that the network can generate. The 

modularity places constraints on the number of distinct spatiotemporal patterns that can be 
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generated and gives an estimate on the capacity for encoding large number of different odor 

stimulus. The total number of distinct possible combinations generated is referred to as the 

Capacity(C) of the network. According to a previous work, for a system of N neurons the capacity 

is given by the following equation (N≥3) (Rabinovich et al., 2001): 

𝐶 = ∑ (
𝑁

𝑘
)

𝑁

𝑘=3

(𝑘 − 1)! = 𝑁! ∑
1

𝑘(𝑁 − 𝑘)!

𝑁

𝑘=3

 

In our case N can be considered to as the total number of distinct groups.  

 

Figure 3.6 Dynamics of a random network 

A random network of 50 neurons was simulated. The top left panel shows the connectivity/adjacency matrix 

of a random network. It is a 50 X 50 matrix with black dots showing connection between the neurons (entry 

value =1) and white showing no connection between the neurons (entry value=0). The colorbar indicates 

the coloring of the neurons in the network. The top raster plot shows the activity of this particular network. 

The bottom right is the rearranged connectivity matrix, upon coloring the graph reveals the block like 

structures. The bottom raster plot which is rearranged according to the block like structure reveals that the 

dynamics obey the coloring of the network. The raster is shown from 2500ms to 6200ms. 
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Figure 3.7 Correlation coefficient in the dynamics according to Newman clustering 

Correlation coefficient for all pairwise neuron activity was calculated after convolving with a 

square pulse (windows=50ms). The plot shows the correlation coefficient with the ordering 

obtained from Newman Algorithm (top panel) and compared with correlation coefficient arranged 

according to a random clustering (bottom panel). Notice that a block like structure is observed in 

the top panel. 
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Figure 3.8 Distribution of correlations 

Correlation coefficient was calculated, for within group and across group neuron spiking activity 

and the distribution of values is plotted as a histogram. The top histogram (A) shows the distribution 

for different instances of random networks. The below histogram (B) shows distribution for 

different noise trials of a particular random network. 

 

3.4.3 Dynamics based Clustering 

After finding that the hidden correlations in the dynamics are in agreement with the network 

structure, we asked whether we could cluster the neurons using their firing activity and if this 

would correlate with the clustering obtained from Newman algorithm. For this we recorded the 

spike times of each neuron in a vector. The spike time vector was then used to calculate pairwise 
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spike synchrony for all the neurons. Spike synchrony measure uses the spike times to calculate the 

average synchronization value of two spike trains. A value of 1 indicates that the two spike trains 

are fully synchronized and a value of 0 indicates they are not synchronized. Any intermediate value 

indicates that they were correlated at certain times and not correlated at other times during the 

stimulus duration. The idea behind using spike synchrony was that this measure could be used as 

a distance metric to cluster the neurons. The spike synchrony values were then used to build a 

dissimilarity matrix by subtracting them from 1. This was done so that a dissimilarity value of 0 

means that the points are close together and 1 meant they are farther apart. Before clustering was 

performed, we first reduced the dimensionality of the system using Classical Multidimensional 

scaling. This was done for the purpose of visualizing the clusters. For our work, reducing the 

dimensionality to one dimension was found to be helpful. Clusters were then detected using k-

medoid clustering method. The groups obtained through this method were used to replot the 

dynamics (shown as a raster plot) (Figure 3.9). The raster revealed the underlying antagonistic 

interactions between groups. Similar to the previous results, we looked for correlations within and 

across the groups and compared it with a random clustering. The correlations revealed the presence 

of a group like structure which is absent in the random clustering (Figure 3.10). We further sought 

to find the overlap between the groups obtained from Newman clustering and dynamics based 

clustering. Since the identities of the groups found through the dynamics based clustering are not 

known, we calculated the best overlap between Newman based clustering and structure based 

clustering.  For this we found the overlap values with all possible combinations between Newman 

method and dynamics based method and the highest value was taken to be the overlap between 

both the methods for a particular random network. The overlap of 50 different instances of random 

network was calculated and the mean overlap was taken. Similarly, the best overlap between 

random clustering and dynamics based clustering for each network was done. The results (Figure 

3.11) plotted as bar plot shows that dynamics based clustering had better overlap with the Newman 

based clustering method, thus further demonstrating that correlations found in the dynamics were 

governed by the structure. 
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Figure 3.9 Approach to clustering using dynamics 

Spike times are used to calculate pairwise spike synchrony between all the 50 neurons. This 

synchrony measure is then thresholded and is used to construct a distance matrix (second panel). 

The dimensionality of this system is then further reduced from 50 dimensions to 1 dimension using 

classical multidimensional scaling (third panel). This dimensionality reduction helps in identifying 

the clusters using k-medoid clustering method. Using the predicted clusters the dynamics are 

reordered to reveal the patterning (bottom panel). 
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Figure 3.10 Correlation coefficient in the dynamics according to Dynamics based clustering 

Correlation coefficient for all pairwise neuron activity was calculated after convolving with a 

square pulse (windows=50 ms). The plot shows the correlation coefficient with the ordering 

according to the clustering obtained from the dynamics based clustering (top panel) and compared 

with correlation coefficient arranged according to a random clustering (bottom panel). Notice that 

a block like structure is observed in the top panel. 
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Figure 3.11 Comparison of overlap between groups predicted by Newman algorithm and 

Dynamics based clustering 

The bar plot shows the percentage of overlap in the neurons predicted by the Newman algorithm 

and dynamics approach based algorithm, compared with the overlap between random clustering 

and dynamics based clustering. 

 

3.5 Summary 

The results above demonstrate how lateral inhibition among different groups of the mitral cells 

leads to synchronous firing of neurons associated with a particular group and they alternate in their 

activity with other groups. The rich spatiotemporal patterns generated by the olfactory system has 

been proposed to generate a large coding space for representation of olfactory stimulus (Laurent, 

2002). In this work we have been able to demonstrate that structural properties of the mitral cell 

network and the resulting dynamics can be linked through modularity algorithm and it allows us 

to represent the dynamics of a high-dimensional complex system in lower dimensions, which is 

reduced to the minimal number of interacting groups. Asymmetries can stabilize some of the 

sequences generated by the olfactory bulb network in the network connectivity. Komarov et al. 

have shown that the network bursting pattern reflects the heterogeneities in the external stimulus 

(Komarov and Bazhenov, 2016). So input heterogeneities can also lead to particular stable 

sequences.  
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Although the work described here is for the circuitry of the olfactory bulb it can be generalized for 

the study of inhibitory networks involved in information processing in different brain regions. 
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4.1 Introduction 

Recordings of the mitral cells of zebrafish show that their activity evolves over time during 

stimulus presentation. The evolution of mitral cell activity helps in separating the initially similar 

patterns evoked by similar odors (Friedrich and Laurent, 2001, 2004). This separation of patterns 

is known as odor decorrelation and it helps the animal to discriminate odors from one another.  

In the zebrafish, recordings of the electrical activity of mitral cells in response to different amino 

acids show that the patterns evoked are less variable upon presentation of the same odor across 

different trials (Friedrich and Laurent, 2001, 2004). These findings show that representations 

for a particular odor are reliable from trial to trial. Similarly, recordings of the locust antennal lobe 

show that odors elicit reliable responses of the PNs over different trials (Laurent et al., 1996a; 

Perez-Orive et al., 2002; Wehr and Laurent, 1996). Reliable spiking in response to repeated 

odor presentations is also observed in Drosophila PNs (Bhandawat et al., 2007). In rodents, 

optical imaging had revealed that same glomeruli were activated across trials in response to a 

particular odor (Spors and Grinvald, 2002). 

Based on above studies, it can be inferred that the olfactory system is involved in achieving two 

goals, one is to discriminate between similar kinds of stimuli and second is to ensure reliable 

identification of the same odor presentation despite different noise variations. This is important 

since animals encounter odors under different environmental conditions and they should correctly 

identify the same odor with different noise background.  

Network topology is one of the important factors that play a role in achieving reliability. 

Theoretical work with simple models and smaller networks within the framework of dynamical 

systems have shown that symmetries in the network topology can give rise to two distinct 

possibilities depending upon the coupling strength between the neurons. For weak coupling, the 

dynamical system has a global attractor in which all neurons get synchronized. If the coupling is 

strong then the system exhibits multi-stability, where only one neuron is active and others are 

quiescent and initial conditions determine which neuron remains active. However if asymmetry 

exists in the network the system enters a regime known as winner-less competition (WLC) –the 

system generates reliable sequential activity of neurons. In this regime the dynamics are robust to 

noise perturbations leading to reliability (Rabinovich et al., 2001). 
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Asymmetry in a network means that there are more connections going in one direction as compared 

to the other. In this chapter we explore whether such asymmetry in the network topology can bring 

about reliability in spatiotemporal patterns for larger and much higher dimensional mitral cell 

networks. 

4.2 Methods 

Mitral Cell Model and synapse model:  

These are described in chapter 2 

Network Structure: 

A network consisting of 40 mitral cells were constructed having a unique coloring. Four groups of 

10 neurons each were constructed in such a manner that neurons within a group did not make an 

inhibitory connection whereas they made inhibitory connections with the neurons belonging to 

other groups.  This network’s chromatic number was 4. Using the same network a unique sequence 

was embedded by making the connections asymmetric from group to another.  

Entropy Measure: 

This measure was used to calculate the reproducibility of sequences over trials 

𝑆𝑖 = − ∑ 𝑝𝑖→𝑗𝑙𝑜𝑔
𝑗

𝑝𝑖→𝑗 

Where 𝑆𝑖 is the total entropy for a particular group i and p is the probability of transition of group 

i to group j (Huerta and Rabinovich, 2004). 

Simulation 

All network simulations were carried out using a fourth order Runge Kutta integration method. 

The time step used for simulation was 27µs. The input onset was set at 1000ms so as that the cells 

settle down to resting state. The input was provided for 6000ms and started to decay at 7000ms. 

The entire simulation was done for 8000ms. Simulations were performed using an in house 

developed open source C++ library called ‘in-silico’. The in house ‘in-silico’ utilizes boost library 

(odeint) for integrating the system of coupled differential equations. MATLAB was used to 

visualize and analyze data. 
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4.3 Results 

4.3.1 Asymmetry in the network produces reliable representations 

We constructed a k-partite network consisting of 40 neurons which were divided into four groups 

of equal neurons. A k-partite network is a network which has no within group connections and all 

the connections lie across the groups. Figure 4.1A represents the adjacency matrix (A) of the k-

partite network. The black dots indicate the presence of connections and for the k-partite they all 

lie on the off diagonal. The four groups are represented by four different colors because the k-

partite network has a unique coloring. This network is full symmetric: if for every inhibitory 

connection going from node i to j there is a reciprocal connection going from j to i (Aij = Aji). This 

network was then simulated for 100 different noise trials. Upon simulation this network produced 

dynamics which were governed by the partitions of the network. Different trials of this network 

produced different patterns. As can be seen in Figure 4.1B, the patterns produced are different in 

each noise trial. Thus symmetric network produced dynamics which are unreliable across noise. 

We introduced an asymmetry in this network by having more synaptic connections in one direction 

as compared to the other direction (in the resulting adjacency matrix Aij ≠ Aji) (Figure 4.2A). This 

asymmetry activated a particular sequence in the network. When this network was simulated for 

100 trials and the activity pattern was plotted (raster plot) it was found that the same ordering of 

the groups occurred across different noise trials (Figure 4.2B). 

We used entropy as a metric for measuring reliability. This measure uses probability of transition 

from one group to another and looks at how reliable these transitions are across noise trials. If there 

is successful transition from group A to group B across all noise trials then the entropy value of 

group A is zero. The probability of transition for a particular group was calculated taking into 

account 10 trials each, which allowed us to calculate the entropy over these 10 trials. Mean entropy 

value for the group was calculated by taking into account all the trials, by grouping the hundred 

total trials into groups of 10 each. This process was repeated similarly for all the other groups and 

a mean entropy value for the symmetric case was calculated by taking a mean of all the groups. A 

similar procedure was adopted for the asymmetric case. Figure 4.3 shows the entropy value of 

symmetric networks as compared to asymmetric networks. The asymmetric network has a highly 

reproducible transition among groups across noise trials hence its entropy value is close to zero 

whereas it is high for symmetric networks meaning the transitions are unreliable. 
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Figure 4.1 Symmetry in the network does not show reliability to noise 

A) A perfectly symmetric k-partite network with four groups of equal number of neurons. All the 

off diagonal elements are black (entry=1) and the diagonal elements are colored according to the 

groups (entry=0). 

B) Raster plot showing the dynamics of the k-partite network across noise trials. The top raster and 

the bottom raster are the dynamics across different noise trials of the same network. The dynamics 

reveal that different groups fire alternately but they do not fire reliably in the same manner across 

noise trials. 
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Figure 4.2 Asymmetry in the networks leads to reliability in ordering 

A) Connectivity matrix of asymmetric network for a network with 4 groups consisting of equal 

number of neurons.  

B) Raster plot showing the dynamics of the asymmetric network across noise trials. The top raster 

and the bottom raster are the dynamics across different noise trials of the same network. The 

dynamics reveal that the neurons of a particular group fire together and the firing of each group 

occurs in a sequential manner. The ordering of the groups is preserved across different noise trials. 
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Figure 4.3 Reliability in dynamics across noise measured as entropy 

The entropy measure calculates the reliability of one group transitioning to different groups. If 

firing of one group is followed by another group reliably then its entropy is close to zero. 

The plot shows the mean entropy of all four groups sampled for 100 trials in groups of 10. Entropy 

for asymmetric network is close to zero whereas for symmetric networks the entropy is high. 

 

4.4 Summary 

4.4.1 Asymmetry in the random network 

We see in our simulations that introducing asymmetry in the network coupling brings reliability 

in the ordering of patterns. Thus based on these results we reasoned that asymmetry in random 

networks can also produce reliable ordering. The random networks that we generated had 

symmetry in their connectivity (Figure 4.4). As shown in Figure 4.4, the total number of outgoing 

connections from red group to blue group is the same as from blue to red group. This is true for all 

the other groups. Asymmetry in the random networks can be introduced by deleting connections 

between two particular groups and redistributing it equally to the other remaining groups. We did 

this for one specific random network. As can be seen in Figure 4.5, introducing asymmetry by this 

method results in directionality in the network based on the outgoing connections, which are more 

in one direction and less in the other direction. Based on our simulations with k-partite networks, 

we predict that this network should result in the following sequence Red-> Orange->Green->Blue-

>Red and this sequence would be reliable.  In the olfactory bulb, intrinsic asymmetries in the 

subnetwork could be present which could be activated by a particular odor, thus encoding a reliable 

representation for that odor. 
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Figure 4.4 Adjacency matrix of a random network show the presence of symmetry in the 

network 

A black dot indicates 1 whereas white is 0. The right shows the total number of inhibitory 

connections going from one group to the other. Since the total number of connections going from 

one to the group and vice versa are same hence the random networks are symmetric. 

 

 

Figure 4.5 Adjacency matrix of a random network in which connections are deleted  

The right matrix shows the total number of inhibitory connections going from one group to the 

other after deletion. There is an asymmetry in the network, as the number of connections going 

from one group and the number of connections it receives from that particular group are not same. 

This network should result in Red-> Orange->Green->Blue->Red sequence. 
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5.1 Discussion 

In this study we have explored the relationship between the modularity of inhibitory networks and 

their dynamics with a view to understand how odor encoding occurs in the olfactory bulb. The 

objective was to study if an impression of the network structure can be detected in the dynamics 

of the network. Network modularity for inhibitory networks is defined as the group of neurons 

which are maximally disconnected from each other in the group but connect to neurons belonging 

to other groups. Gaining insights into the relationship between the structure and dynamics of a 

network is a complex task since the properties of the constituent neurons and synapses are non-

linear and the system is high dimensional in nature. The main findings of the study were: 

 

5.1.1 Hidden Correlations  

We employed the Newman modularity algorithm to detect groups of neurons that were maximally 

disconnected from each other but made connections with neurons belonging to other groups. This 

algorithm helped us in finding such clusters of neurons in randomly generated networks. When 

dynamics were reordered based on the clustering obtained, we were able to extract hidden 

correlations between the dynamics and the structure of these random inhibitory networks. 

Simulating different networks showed that neurons belonging to a particular group fired together 

and neurons belonging to other groups fired at different times forming a spatiotemporal pattern. 

This kind of dynamics has been observed in neuronal networks that have reciprocal inhibitory 

connections, along with a slower time scale mechanism such as spike frequency adaptation (Assisi 

et al., 2011). Spike frequency adaptation involves a slow adaptation current, for example, the 

hyperpolarizing Ca2+ dependent potassium current in the insect antennal lobe PNs, which upon 

activation leads to cessation of neuronal activity after certain time. In our case it was the slow 

potassium current that allowed switching in the activity of neurons. We generated various 

instances of random networks and in all those networks the groups predicted by the modularity 

algorithm showed positive correlations in their spiking activity for within group dynamics and 

negative correlations across the groups. These correlations were found to be robust for changing 

noise perturbations. The methodology helped us in deducing all possible dynamics of the network 

provided they respect the modularity of the network. Thus, we are able to construct a link between 

the structural property of every inhibitory network and its dynamics. It has the added benefit of 
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describing a complex high dimensional system in a low dimensional space. The results obtained 

here are generic and not contingent upon the model used for random network generation. Random 

networks generated using the Erdos-Renyi model can also be clustered as shown in the Figure 5.1. 

We predict that the dynamics of this network would also show correlations with the structure.   

As stated previously in Chapter 1, there are two theories regarding odor coding in the bulb: a 

combinatorial based encoding and spatiotemporal based encoding. Based on the combinatorial 

coding theory, studies carried out have shown that lateral inhibition in the bulb is involved in 

generating contrast enhancement (Yokoi et al., 1995). This results in sharpening of representations 

and helps in discriminating similar odors. However, based on the spatiotemporal coding theory, 

studies show that the role of lateral inhibition is to generate sequential firing of synchronous 

ensembles of neurons (Friedrich and Laurent, 2001). Our simulations support the role of lateral 

inhibition in generating spatiotemporal patterns which can lead to decorrelation of patterns evoked 

by similar odors (Laurent, 2002). A caveat in our work is that we have reduced the olfactory bulb 

circuitry to a network of mitral cells coupled through lateral inhibition whereas in the bulb mitral 

cells are coupled to each other through granule cells which mediate reciprocal as well as lateral 

inhibition (Shepherd and Greer, 2004).  

A recent study has also shown that the heterogeneity in the external input is reflected in the 

inhibitory network dynamics (Komarov and Bazhenov, 2016). The sequence of neuronal firing 

reflects the ranking (magnitude) of the external stimulus to the network. In our network we predict 

that a heterogeneous external input provided to each group would result in sequential activation of 

groups of neurons based on the ranking of the external stimulus.  

In neuroscience there is a large interest in understanding how the network topology gives rise to 

dynamical behaviours such as synchronization. It has been found that synchronization of various 

brain regions form functionally coherent networks. Computational study  done using realistic 

topology of cat corticocortical network has revealed that such dynamics are governed by the 

underlying network structure (Zemanová et al., 2006). It has been found that brain at rest (when 

it is not performing any task) displays spontaneous dynamics with intermittent fluctuations. 

Resting state dynamics have been characterized by metabolic profile studies of the brain done 

using blood oxygen level dependent signal fluctuations (BOLD fMRI). These fMRI studies reveal 

functional connectivity between brain regions. Functional connectivity has been characterized by 
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quantities such as correlations, mutual information and covariance. These temporal correlations 

are also termed as resting state functional connectivity (rsFC). This temporal coherence between 

brain regions has provided evidence of the presence of robust resting state networks (RSNs). The 

most widely studied RSNs is the default mode network (DMN) (Deco et al., 2011; Hutchison et 

al., 2013; Vincent et al., 2007). The DMN show decrease in their activity during the performance 

of a cognitive task as compared to baseline activity, whereas they are activated in the absence of 

the task. These DMNs are anticorrelated with regions that show task positive correlations (Fox et 

al., 2005). Computational studies have found that the simulated dynamics of the rsFC matches up 

with the fMRI data and they are shaped by the underlying anatomical connectivity. The 

relationship between the rsFC and the structural connectivity has been found to be robust (Honey 

et al., 2009). In our work also, we find correlations in the activity of neurons belonging to a group 

which are maximally disconnected from each other and the network topology gives rise to such 

dynamics. Our work is in contrast to the above studies since correlations (functional connectivity) 

mostly arise between regions that are anatomically connected. 

 

 

Figure 5.1 Random network generated through ER model 

Adjacency matrix of a random network generated using Erdos-Renyi model on the left. A 

black dot indicates 1 whereas white is 0. The random network was created using 50 nodes 

and the probability of connection is 0.2. The adjacency matrix of the rearranged network 

after clustering using Newman modularity shown on the right. The clustered network has 

four groups. 
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5.1.2 Asymmetries in the network lead to reliable ordering 

Simulation of symmetric networks showed that the dynamics were unreliable across different noise 

trials, as each noise trial exhibited different temporal dynamics. Upon introduction of asymmetry 

in the connections we found that the dynamics of the network showed reliability across different 

noise perturbations.  

Theoretical work using simplified models and smaller networks have illustrated how the 

spatiotemporal dynamics observed in the olfactory system can be explained through a competitive 

mechanism known as winnerless competition (WLC). According to WLC the spatiotemporal 

dynamics resemble heteroclinic orbits that connect unstable fixed points (known as saddle points). 

Each input stimulus is encoded by a different orbit, hence magnifying differences between the 

inputs over time. These orbits are robust and hence unperturbed by noise, thus ensuring trial to 

trial reliability. According to the study these orbits arise because of asymmetries in the network 

(Afraimovich et al., 2004; Laurent et al., 2001; Rabinovich et al., 2001). In the context of 

olfactory encoding, the results imply that asymmetries in the bulb circuitry can stabilize 

representations for particular odors while making others unstable. Such asymmetries can arise due 

to learning mechanisms such as inhibitory facilitation. We hypothesize that the locus of such 

facilitation could be the granule-mitral cell GABAergic synapse. Computational study of the locust 

olfactory system has shown that inhibitory facilitation in the AL leads to coherent spiking activity 

in the PNs and introduces reliability (Bazhenov et al., 2005). 

Recent theoretical work has described that spatiotemporal dynamics can be conceptualized as 

trajectories (flows) on a low dimensional surface referred to as structured flow on manifolds 

(SFMs). The word structured implies “meaningful flow” in the state space and a manifold is a 

“low-dimensional” space which is specific to a certain behaviour. Usually high dimensional 

systems have effective low dimensional dynamics (functional activity). The SFM approach 

identifies the set of equations that defines this low dimensional manifold onto which the neuronal 

dynamics converge and evolve for the duration of an activity. Interestingly they find that SFMs 

arise because of asymmetries (deviations) in the network connectivity that leads to time scale 

separation in an otherwise invariant system. The SFMs  introduced into the state space due to 

structural symmetry breaking also contributes to robustness in the system dynamics against noise 

perturbations (Pillai and Jirsa, 2017). 
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5.2 Future directions 

In this work the bulb network was modeled as an inhibitory network of mitral cells. However, the 

bulb contains inhibitory interneurons called granule cells which form reciprocal dendrodendritic 

synapses with the mitral cells. In the future explicit modeling of granule cells and the incorporation 

of excitatory synapses such as NMDA and AMPA from mitral cells to granule cells and 

GABAergic synapses from granule cells to mitral cells would help in understanding the 

computations occurring in the bulb circuitry. There is so far no evidence of granule cells being 

connected amongst each other. 

Sniffing helps the rodents to explore the external environment. Sniffing occurs at a frequency of 

4-12 Hz (Deschenes et al., 2012; Welker, 1964). Timing of neuronal firing relative to this 

sampling behavior carries information about the stimulus and is important in coding of odor 

representations (Smear et al., 2011). Studies show that odor evoked spiking activities of the tufted 

cells and mitral cells are phase locked with the sniff cycle. The tufted cells fire at the onset of the 

inhalation phase whereas the mitral cells fire during the inhalation-exhalation transition phase. 

These principal neurons also differ in their firing frequencies with tufted cells showing high 

frequency burst spikes whereas mitral cells showing lower-frequency burst spikes (Fukunaga et 

al., 2012). LFP recordings in the freely behaving rat showed the presence of two types of gamma 

oscillations. There was an early onset of fast gamma oscillations (65-100 Hz) and a late onset of 

slow gamma oscillations (40-65 Hz). These gamma oscillations were phase locked with the sniff 

cycle with the fast gamma occurring at early onset of inhalation (attributed to tufted cells) and 

slow gamma occurring at inhalation to exhalation transition (attributed to mitral cells) (Manabe 

and Mori, 2013). These findings showed that both the mitral and tufted cell circuitry generate 

distinct gamma oscillations in the olfactory bulb. A recent computational study has shown that 

theta oscillations induce reliable firing of the stellate cells in the medial entorhinal cortex. It has 

been demonstrated that theta oscillations create time windows such that only a particular group of 

interneurons respond to the external input, while others are suppressed. Theta oscillations lead to 

synchronization of stellate cells and they fired at a time when interneurons were hyperpolarized 

thus leading to reliability in the firing of both stellate cells and interneurons. Given the fact that 

theta oscillations can induce reliability it would be interesting to study if a similar mechanism 

exists with respect to sniff cycle (Neru and Assisi, 2019). 
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In psychophysical studies it has been found that bidirectional change in inhibition onto the mitral 

cells by granule cells affects odor discrimination times. For similar odor pairs it has been found 

that increasing inhibition leads to faster discrimination times, whereas decreasing inhibition leads 

to slower discrimination times (Abraham et al., 2010). These studies suggest that inhibition plays 

a role in organizing spatiotemporal patterns of activity. Our results show that lateral inhibition is 

a key player in organizing these patterns. We speculate that, in these studies, it is lateral inhibition 

which is driving decorrelation of similar odors pairs as it aids in increasing the separation of 

patterns and this is achieved faster with increased inhibition. However, in addition to lateral 

inhibition, granule cells also mediate recurrent inhibition onto the mitral cells. These two forms of 

inhibition can play varying roles in the bulb. 
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