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Abstract

Polymer electrolyte membrane fuel cells are environmentally friendly energy conversion
devices where electrical energy is derived from chemical energy. The key role of the
membrane is to prevent the mixing of the reactant gases, to conduct protons from anode
to cathode and to provide insulation to the transfer of electrons. Experimental techniques
and computer simulations have been employed extensively to study structure, surface mor-
phology, membrane deformation, dynamics, hydrophilicity, etc. of various polymer elec-
trolyte membranes. In this thesis, molecular dynamics (MD) simulations (using all-atom
force field) is employed to examine structure/dynamics of molecular transport in hydrated
perfluorosulfonic acid and N,N-diethyl-N-methylammonium triflate([dema][TfO]) ionic
liquid (IL) doped poly-benzimidazole (PBI) fuel cell environments.

In the first part, MD simulations are employed to examine the effect of atomic charge
delocalization on the pendant side chain of hydrated Nafion on the structural and dynam-
ical properties. The sulfur-sulfur radial distribution functions suggest that the sulfonate
groups of the pendant side chain have closer geometric proximity with an increase in
charge delocalization. A complex interplay between sulfur-sulfur, sulfur-water/hydronium
interactions, and water cluster distribution plays a key role in the magnitude of the diffu-
sion coefficient of water molecules and hydronium ions. In the second study, the sim-
ulations predict ionic conductivity increases with wt% of [dema][TfO] IL (in IL-doped
PBI) and temperature and is found to be in qualitative agreement with experimental mea-
surements. Also, the simulations predict that anions of IL preferably interact with the
interaction site on the PBI. In the final investigation, quantum chemistry calculations are
employed to examine proton transport pathways in base rich imidazolium methanesul-
fonate (IMMSA) IL. When IMMSA interacts with two imidazole molecules, one of the
pathways shows barrierless rotation of imidazole molecules. This could be the reason for
high proton conductivity in base rich imidazolium ILs.

— [ xix ] —



Chapter 1

Introduction

The excessive use of fossil fuels has led to global warming which necessitates the de-
velopment of alternatives for energy technology. Polymer electrolyte membrane (PEM)
fuel cells are environmentally friendly energy conversion devices where electrical energy
is derived from chemical energy stored in simple fuels, such as hydrogen. PEMFCs have
been used for various stationary, portable and transportation applications. > Hydrogen gas
is introduced at the anode, where it dissociates into protons and electrons with the help of

a platinum catalyst. The electrons flow through the external circuit, and the protons are

Load

Anode Cathode

PEM

Figure 1.1: Schematic of PEMFC.

transported to the cathode with the help of electrolytic membrane. Oxygen gas is intro-

duced at the cathode, which interacts with protons and electrons to produce liquid water.
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The chemical reactions are as follows:

Anode:
Hy — 2H" + 2¢” (1.1)
Cathode:
1
502 +2HT +2¢~ — H,0 (1.2)
Overall Reaction:
1
H2 + 502 — HQO (13)

The polymer membrane is a vital component of the PEMFC (see Figure 1.1). The mem-
brane prevents mixing of reactant gases and assists in proton conduction across the elec-
trode. The polymer membrane should have high mechanical, thermal stability, chemical
resistivity, and provide insulation to the transfer of electrons and have high proton conduc-

tivity in fuel cell environments.** Several PEMs, such as Nafion (Perfluorosulfonic acid

Perfluorosulfonic Acid membranes

(@) «%CFZ——CF%—FCFZ—CF#—
X v

m=0,n=2 -Dow
m=0,n=35 -Aciplex
O%CFz—CF%O%CFZ%SO‘?H m=1,n=2 -Nafion
" :
CF,
Benzimidazole based membranes
(®) 0 © N N
T adn
N N N
H
Poly(2,5-benzimidazole) Poly[2,2-(m-phenylene)-5,5-bibenzimidazole)
ABPBI (PBI)

Figure 1.2: Chemical structure of (a) PFSA (b) ABPBI and (c) PBI

(PFSA)) (see Figure 1.2),>7 and aromatic membranes such as poly(2,5-benzimidazole)
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(2) Vehicular Diffusion

J.

<
‘

(b) Hopping Mechanism

J J J J

Figure 1.3: Proton transport mechanisms (a) Vehicular diffusion of hydronium ions (b)
Hopping mechanism of proton transport.

(ABPBI), poly[2,2-(m-phenylene)-5,5-bibenzimidazole) (PBI), etc. have been explored
for fuel cell applications. The membranes require charge carriers to conduct protons (via
vehicular diffusion® or Grotthuss (hopping/structural) mechanism’ (see Figure 1.3)) to
achieve high conductivity desired for commercial applications of PEMFCs. A wide range
of charge carriers such as water,* phosphoric acid,® imidazole,” ionic liquids (ILs),” etc.
have been explored. A description of literature on humidified and non-humidified mem-

branes is presented in the subsequent sections.

1.1 Humidified membranes

PFSA membranes have a hydrophobic backbone, and the pendant side chain is hydrophilic.
Such structure results in a enhanced phase-separated morphology in hydrated conditions.
The hydrophobic backbone provides mechanical strength and hydrophilic phase assists in

dH10-12 g

proton transport. PFSA membranes (e.g. Nafion) have been extensively studie
ing a wide range of experimental techniques and theoretical methods. Experimental meth-
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ods such as X-ray, '* atomic force microscopy (AFM), 1“7 electrochemical mass transport

measurements, '® and contact angle measurements, !

etc. have been employed to exam-
ine water uptake, scattering intensity, surface morphology, hydrophilicity, membrane de-
formation, and micelle orientation. A schematic (see Figure 1.4) of Nafion polymer back-
bone, hydrophilic groups, and the water phase illustrates phase separation which occurs

due to hydrated conditions (backbone is not cylindrical rather just a schematic to show

phase separated morphology). The AFM studies confirm stronger phase-separation in hy-

Hydrophobic backbone

‘1 {

Figure 1.4: Schematic of hydrated PFSA Membrane.

drated conditions as compared to hydrophobic surface depleted of hydrophilic groups in
dry conditions. McLean et al.'> employed AFM and phase imaging methods and showed
a cluster-like structure of the hydrophilic domains. The authors concluded that swelling
and redistribution of hydrophilic clusters is a dynamic process. The current sensing AFM
results from the work of Kostecki and coworkers,?? on Nafion at low relative humidity
(RH) (see Figure 1.5) shows predominantly non-conductive domains responsible for the
limited connectivity in the hydrophilic network. The authors observed a more pronounced
current pattern of more conducting and larger active regions with the increase in RH. The

clustering of hydrophilic domains (conducting areas) increases at high RH. The red color

—[4]—
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RH=51% RH=65% RH=77% RH=84%

OnA {g;é;f;? g {onA B 7 OnA
{ “,}"‘i'c. "y !

Figure 1.5: Synchronized AFM current-sensing image of Nafion. Reprinted with permis-
sion from the work of Kostecki and coworkers.?? Copyright American Chemical Society.

indicates more conductive regions. The current shown in the color scale bar shows that
flow of current increases with increase in hydration (the difference in the magnitude of
values is more at higher hydration levels). A few non-conducting patches appear on the
membrane surface due to hydrophobic backbone. Zawodzinski et al.?* using contact an-
gle measurements observed that the surface of PFSA membrane is relatively hydrophobic
at low RH. Perrin et al.?* employed Small angle neutron scattering (SANS) study on hy-
drated Nafion, and observed (see Figure 1.6) a shift and increment in the ionomer peak in
the SANS structure factors with hydration which demonstrates nanoscale swelling of the
hydrophilic domains. In a review article, Kusoglu and Weber !> compared (see Figure 1.7)
the diffusion coefficient of water molecules in several PFSA (Dow, Aquivion, Flemion,
3M, and Gore-Select) membranes.

In addition to experimental studies, computational methods have been used to exam-
ine structure and dynamics in hydrated PFSA membranes. Classical molecular dynamics
(MD) simulations have been widely employed to investigate membrane morphology and
vehicular diffusion of water molecules/hydronium ions.**** For example, Vishnyakov
and Neimark** explored phase segregation at microscopic level in the hydrated Nafion,
and showed that the proton conductivity depends on extent of hydration. Jang et al.*
explored monomeric sequence effects on phase separation and transport properties in hy-

drated Nafion. The authors showed that water diffusion is faster in the dispersed sequence
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Figure 1.6: SANS structure factors of hydrated Nafion (from dry to saturated). The
variation of the mean distance between hydrophobic aggregates d = 27 (1/Qg()) - 1/Qq
(A =0)), where Qy is the position of the ionomer peak, as a function of the number of
water molecules per ionic group A, is shown in the inset. Reprinted with the permission
from work of Perrin et al.>* Copyright American Chemical Society.

compared to the blocky sequence. Cui et al.*® observed the formation of hydrophobic
domains and heterogeneous hydrophilic domains in hydrated Nafion. The authors con-
cluded that clustering of water molecules is minimal at low hydration, and large clusters

1.7 investigated structure and

are observed only at higher hydration. Venkatnathan et a
transport in hydrated Nafion. The authors reported that diffusion coefficients of hydro-
nium ions is lower than water. Devanathan et al.*® characterized nanostructure of hydrated
Nafion and observed that sulfonate groups move apart with increasing hydration. The au-
thors observed strong sulfonate-water/hydronium interaction leads to a lower probability

of vehicular diffusion of protons at lower hydration. In another study, these authors?®

observed that the mean residence time of water molecules/hydronium ions decreases with
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1.1. Humidified membranes
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Figure 1.7: Water tracer-diffusion coefficient of PFSA membranes as a function of wa-
ter content (25-30 °C), compiled from the pulsed field gradient stimulated spin echo
(PFGSE)- nuclear magnetic resonance (NMR) data in the literature: Nafion (1100
EW), 230 Dow,?’(Flemion,?® Gore-Select,3M,3! as well as anisotropy of D' and
stretching effect for Nafion membrane (from Li et al. *>%). Reprinted with the permission
from work of Kusoglu and Weber. !> Copyright American Chemical Society.

hydration. However, the mean residence time for hydronium ions was found to be higher

than water molecules. The diffusion coefficients of hydronium ions using MD simula-

tions were found to be in good agreement with quasielastic neutron scattering (QENS)

experiments. Sunda and Venkatnathan*’ examined the structure and dynamics of a differ-

ent PESA (Aciplex) membrane. The authors observed, that sulfonate-water interactions

decrease with increasing hydration similar to the trends seen in hydrated Nafion. The

diffusion of hydronium ions in hydrated Aciplex was found to be higher as compared

to hydrated Nafion, though the diffusion coefficients of water molecules showed a reverse

trend. In a subsequent study, Sunda and Venkatnathan*' examined structure and dynamics

in pendant side chains of Nafion, Dow, and Aciplex (PFSA) in hydrated environments. A
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schematic (see Figure 1.8) of variation in chain length from simulations and the change in
the nanostructure with an increase in hydration with snapshots is illustrated. The authors
concluded that the extra ether oxygen (of pendant side chain of Nafion) leads to enhanced

interaction between the sulfonate group and hydrophilic phase.

Aciplex Naf'on
! Ermcr backlmn ! F Pnlymerpbackbone i
£
60 % longer side chain ef' F
0 pendant in Aciplex . Fes
: compared to Dow : e 3 I
; results in more P SWF - .
& inflexibility - | F_,.e :‘f
S‘ 9: . g Yot . . o
@/ H [ (~20%) side chain contraction in
(] ,o__ F ° Mafion side chain pendant directed
._3:" L @ by CF, group and flexibility of
1 @ Extended fbrm F \,31,\ ether oxygen give rise to
ati=3,6 @ @ hydrosphere region at 429

Figure 1.8: Schematic of variation in pendant side chain length. Reprinted with the per-
mission from work of Sunda and Venkatnathan.*!' Copyright Royal Society of Chemistry.

Quantum chemistry calculations have also been used to examine the proton transfer
mechanism in membrane fragments and dopants.**™ For example, a density functional
theory (DFT) study by Paddison** showed that the ether oxygen atoms (in pendant side
chains of Nafion) are not hydrophilic and attributed it to the strong electron withdrawing
effect of the neighboring -CF,- groups. In a different study, Paddison** observed that pro-
ton dissociates from the -SOsH group in the presence of minimum three water molecules.
Paddison and Elliott** showed that the number of water molecules required to connect
these sulfonic acid groups decreases with a reduction in the length of the backbone (-CF,-
groups) (see Figure 1.9). Further these authors* examined short-side-chain PFSA mem-
brane and investigated the effects of conformational changes in the backbone with varying
water molecules. The authors observed that the membrane backbone could either adopt an
elongated form with all C atoms in a trans-state or a folded conformation due to hydrogen
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Figure 1.9: Fully optimized (B3LYP/6-311G**) global minimum energy structures of
two side chain fragments of the short-side chain perfluorosulfonic acid polymer showing
the connectivity of the hydrophilic groups with explicit water molecules: (a) one HoO
connects the sulfonic acid groups in the Cg fragment; (b) two H2Os connect the sulfonic
acid groups in the Cg fragment; (c) three HoOs connect the sulfonic acid groups in the
Cyg fragment. Reprinted with permission from work of Paddison and Elliot.** Copyright
American Chemical Society.

bonding of the pendant sulfonic acids groups with the water. The authors concluded that
a ‘kinked’ backbone leads to stronger interaction of water with the pendant sulfonic acid
groups and also results in proton transfer from the -SOsH acid group to water with a fewer

water molecules (see Figure 1.10).



Chapter 1 1.1. Humidified membranes

&
€ ¢
t.‘. ¢ é z ¢ ¢ . '/‘&Jw ©
P L 3 y es ¥
ke | L% 2‘: LS & “ p‘
- e & ¢ ® Lﬁvﬁ. ¢ " .‘?'h
. hh - W g ¢e & b £
oL ® g g €
¢ . R ';”\' .’ @
o L2 o W o
L s h._,‘-t_
(a) (h)

Figure 1.10: Fully optimized (B3LYP/6-311G**) global minimum energy structures of
the two side chain fragment with 5 explicit water molecules: (a) dissociation has occurred
with only one of the sulfonic acid groups with hydrated proton exhibiting a Zundel-like
structure and the PTFE backbone is elongated with the carbons in a trans conformation
through out; (b) both protons are dissociated with one as a hydronium ion hydrogen
bonded to both sulfonates; the backbone is folded with both the sixth and seventh carbon
atoms from the left in nearly cis arrangements. Reprinted with the permission from work
of Paddison and Elliott.*> Copyright Elsevier.

Proton hopping mechanism is also crucial for full understanding of proton conduction.
Since this cannot be modeled using classical MD simulations, this has been explored us-
ing reactive MD simulations,*’ Self consistent iterative multistate empirical valence bond
(SCI-MS-EVB), #4839 and ab initio MD (AIMD) simulations.>'> Petersen and Voth*®
employed SCI-MS-EVB to characterize hydrated Nafion. The authors concluded that hop-
ping (discrete component) and diffusion mechanism (continous component) are of similar
magnitude and anti-correlated, (see Figure 1.11) which results in an overall lower proton
diffusion. Feng and Voth*’ showed occurence of Zundel and Eigen ions depends on the
distance from the sulfonate group. Voth and coworkers® examined several morphologi-
cal models (see Figure 1.12) of hydrated Nafion and showed that different models show
distinct proton transport patterns and hence different rates of proton diffusion.

Choe and coworkers®!' employed first-principles MD simulations to model proton dy-
namics in hydrated Nafion. The authors obtained proton diffusion coefficients to be 0.3

—[10]—
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Figure 1.11: Total mean-squared displacement (black) and the continuous (red) and
discrete (blue) components of the mean-squared displacement of proton in Nafion.
Reprinted with permission from work of Voth and coworkers.*® Copyright American
Chemical Society.

x 1075 cm?/s and 7.1 x 1075 cm?/s for A = 4.25 and 12.75, respectively (\ is num-
ber of water molecules per sulfonate group). Ilhan and Spohr3? employed Car—Parrinello
MD simulations to examine the nature of water/protons in cylindrical pore consisting of
CF3SO3H and CF3—CF3 molecules (see Figure 1.13). The authors observed that in the
first step, protons dissociate and then is transferred from the polymer to water molecules
to form an ion pair (sulfonate-hydronium) at A = 3. The authors concluded that proton
transport depends on the continuity of hydrogen bonding network. Devanathan et al.>
performed AIMD simulations on hydrated Nafion and reported proton diffusion coeffi-
cient at A = 15 to be 0.9 x 1075 cm?/s, which is close to the experimental measurements.
To summarize, proton conduction in hydrated PFSA membranes varies with hydration,

interaction of water with sulfonate groups, length of side-chain, and polymer segmental

—[11]—
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Figure 1.12: Upper left: snapshot of the cylinder-type model at hydration level 15; the
axis of the cylinder is on the Z direction. Upper right: snapshot of the lamellar model at
hydration level 15. Lower left and right: snapshots of the cluster model from two different
perspectives; the clusters are connected on the Z axis. Red spheres represent the oxygen
atoms, white spheres represent the hydrogen atoms, yellow spheres represent the sulfur
atoms, and the rest represent the Nafion backbone atoms. Reprinted with permission from
work of Voth and coworkers.>° Copyright American Chemical Society.

motions. The challenge in the design of such electrolytic membranes is to enhance the

transport properties without undermining the mechanical stability. '

1.2 Non-humidified membranes

PEMs which require humidification for proton conduction limit the deployment of these
fuel cells with operating temperatures restricted to the boiling point of water. The oper-

ation of these fuel cells at higher temperature is also favored to reduce catalyst poison-

—[12]—
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Pore A Pare B

Figure 1.13: Sketch of the model pores for A = 2.5. The eight CF3-CF3 and the four
CF3SOs3H entities are arranged in a helical pattern. Pore atoms are shown as a density
map and water molecules as stick models. Printed with permission from work of Ilhan
and Spohr.>? Copyright IOP Publishing.

ing, and hence, suitable alternatives as proton carriers have been explored.>*>> Aromatic
membranes such as ABPBI, PBI doped with phosphoric acid have been explored for high-
temperature fuel cells. These membranes possess excellent properties such as high ther-
mal, chemical and mechanical stability, high conductivity at elevated temperatures and are
available at low cost.®%®! PBI membrane has a high glass transition temperature (430
°C), excellent chemical resistance, and mechanical strength which stems from the aro-
matic backbone. These membranes are promising alternatives for the operation of high
temperature fuel cells. ABPBI membrane has N atom on imidazole ring which serves as a
proton acceptor>®and can interact with dopants like phosphoric acid. ABPBI, has higher
affinity towards phosphoric acid as compared to PBI due to absence of phenyl ring in the
former (see Figure 1.2).

Phosphoric acid is amphoteric and has a high boiling point, which makes it a suitable
proton conductor for fuel cell applications.>® The phosphoric acid doped PBI has high

proton conductivity (0.07 Scm™1) in fully doped conditions and is comparable to the state-

—[13]—
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Figure 1.14: Conductivity of Nafion and acid doped PBI membranes as a function of
Relative Humidity at different temperatures.®® Temperatures are indicated in the figure
printed from work of Li et al.®! Copyright John Wiley & Sons.

of-the-art Nafion membrane (see Figure 1.14) at higher temperatures.®! A few computa-
tional studies have been performed on benzimidazole (BIM) based membranes. Pahari et
al.®? investigated structure and dynamics of phosphoric acid doped PBI membranes at a
varying concentration of phosphoric acid using MD simulations. The authors observed
no phase separation (see Figure 1.15) and phosphoric acid molecules form inter and in-
tramolecular hydrogen bonds at all concentration of phosphoric acid. Venkatnathan and
coworkers® performed MD simulations to examine structure and dynamics in neat BIM,
phosphoric acid, and phosphoric acid-BIM mixtures. The authors observed that diffusion
coefficients of BIM decrease with increasing phosphoric acid concentration, whereas the
diffusion of phosphoric acid increases. The RDFs showed a strong hydrogen bonding in-
teraction between the imine N of BIM and hydrogen of phosphoric acid. Venkatnathan
and coworkers® examined structure and dynamics of phosphoric acid doped ABPBI and

characterized the effect of polymer chain length (dimer to decamer). The authors observed

—[14]—
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Figure 1.15: Snapshots of PBI-phoshporic acid mixed systems (1:4, 1:8, and 1:14)

Reprinted with permission from work of Pahari et al.®> Copyright American Chemical
Society.

that the inter and intra-chain interactions change insignificantly with chain length. The au-
thors proposed decamer to be optimum for computation of structure and dynamics. Pahari

and Roy® employed MD simulations on phosphoric acid doped PBI and ABPBI. The au-
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Figure 1.16: (a) Interaction of a Nafion-side-chain fragment with a TEATF IL unit. TFA
approaches towards hydrogen atom and TEAH™ towards the oxygen atom of the sul-
fonic acid end-group of the membrane fragment. (b) Mechanism of proton transfer in
a TEAH™..TEA...TFA- complex. Reprinted with permission from work of Kumar and
Venkatnathan. % Copyright American Chemical Society.

thors showed that ABPBI has more affinity towards phosphoric acid as compared to PBI

—[15]—
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due to more number of hydrogen-bonds in ABPBI than in PBI. Iojoiu and co-workers®’
examined triethylamine (TEA)-saturated and triethlyammonium-triflate (TEATF)-doped
Nafion and suggested proton transport occurs via cationic clusters. Kumar and Venkat-
nathan®® employed quantum chemistry calculations on TEATF-doped Nafion membrane
and examined proton transport pathways (see Figure 1.16). The authors proposed that
hydrogen bonding interaction of anions, present in the medium, with the free base in-
creases its basicity and thus facilitates faster proton conduction. Shirata and Kawauchi®

Top View Side View

d)

J

Figure 1.17: Optimized structures of (a) N-type, (b) O-type, (c) OH-type, and (d) 7-type
interactions at the B97X-D/6-311G(d,p) level of theory. Reprinted with permission from
work of Shirata and Kawauchi.® Copyright American Chemical Society.

—[16]—
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employed DFT calculations to examine the interaction of phosphoric acid with BIM with
different configurations. The authors explored several interactions (see Figure 1.17) and
observed that N-type to be strongest (followed by O-, OH-, and 7-type). VilCiauskas et
al.® investigated proton transport mechanism in neat phosphoric acid using AIMD simu-
lations. The authors showed that interplay of polarizable hydrogen-bonds and frustrated
hydrogen-bonding is responsible for high proton conductivity. Further, the authors ex-
amined proton transfer mechanism, structure, and dynamics in phosphoric acid-imidazole
mixtures.’” However, PBI is preferred due to loss of mechanical strength of ABPBI with
increasing concentration of phosphoric acid. Another drawback of ABPBI membrane is
its poor solubility in common solvents employed for membrane casting methods.”! Also,
phosphoric acid doped PBI membranes have disadvantages like leaching and condensa-
tion of phosphate groups at high temperatures.’? Hence, alternatives to phosphoric acid
such as ILs are explored.

ILs are considered as a promising alternative due to their excellent properties such
as high thermal stability, low vapor pressure, wide electrochemical window, and high
anhydrous ionic conductivity. These properties make ILs a promising dopant in elec-
trolytic membranes and thus enabling operation of PEM fuel cells at higher operating

temperatures (>100 °C). A protic ionic liquid (PIL) is defined as a combination of a Brgn-

A-H =+ B‘ ) A'..B-H‘}'\

Broensted acid Bronsted base Protic Tonic Liquid

Figure 1.18: Formation of Protic Ionic Liquid.

sted base and Brgnsted acid, where the base accepts a proton from the acid (see Fig-

ure 1.18).73 The use of PILs as proton carriers has been explored for high-temperature

—[17]—
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fuel cells.”>%” A wide range of PILs as a prospective proton conducting material and un-
derlying proton conduction mechanism in PIL, in PIL with excess of one constituent, or
in PIL doped membranes have been investigated for fuel cell applications. >7*%-! Sood et
al.”® demonstrated IL (triethylammmonium trifluoromethanesulfonate, TEAMS) doping
in Nafion (neutralized with triethylamine, TEA) enhances the ionic conductivity in anhy-
drous conditions. The conductivity of IL doped membrane increases with wt% of IL (see
Figure 1.19).
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Figure 1.19: Conductivity vs temperature of Nafion—-TEA+x%TEAMS (4-29 wt %) un-
der anhydrous conditions. Reprinted with permission from work of Sood et al.”® Copy-
right American Chemical Society.

1.3 Molecular dynamics simulations

A chemical system such as an atom, molecule or a macromolecule (polymer, biomolecule)
can be represented by a model. The molecular models are constructed using standard

softwares (e.g. MOLDEN,"? Gaussview* etc.) and represented as coordinates. The co-

—[18]—
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