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Abstract

The basic unit of quantum information is called a qubit, and it can physically be realized using a

two-level quantum system. The devices which manipulate qubits to process quantum information

for practical applications are called quantum technologies. In certain cases, provided enough

number of qubits, these devices can significantly outperform their traditional counterparts. How-

ever, a quantum system invariably interacts with its surrounding environment and consequently

gets exposed to environmental noise, which in turn limits the efficiency of quantum technologies.

Thus, ensuring fault-tolerance against environmental noise is vital in unlocking the real potential

of these devices.

Currently, the quantum technologies available to us are not entirely fault-tolerant. Neverthe-

less, in the very near future, large enough qubits are likely to be at our disposal to show the supe-

riority of these noisy devices over their traditional counterparts. These devices are called Noisy

Intermediate-Scale Quantum (NISQ) [1] technology. Although the opportunity to experiment

with NISQ technology is tempting and should be grabbed with both hands, the quantum com-

munity must be cautious not to lose sight of the essential longer-term goal to build fault-tolerant

quantum devices. Keeping this caution in mind, broadly, I am interested in contributing to the

robust implementation of quantum technologies. My thesis is mainly centered on the following

two questions: How to efficiently characterize environmental noise acting on a quantum system?

And how to design optimized control strategies for suppressing environmental noise? In my doc-

toral research, I have made an effort to address these questions from both fundamental as well as

practical perspectives utilizing nuclear magnetic resonance (NMR) methods. Specifically, in fun-

damental aspects, concepts such as quantum non-Markovianity and information scrambling are

explored, which involve precise characterization of information exchange between the quantum

system and the surrounding environment. In practical aspects, I have worked towards investigat-

ing control protocols for estimation and suppression of environmental noise, with an emphasis on

practical constraints motivated by realistic experimental scenarios. This thesis is divided into five

chapters. An outline and chapter-wise abstracts are given below.
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Chapter 1− Introduction

Chapter 1 introduces the concepts and terminology required for the thesis. Here I describe quan-

tum information processing (QIP) and its physical realization using NMR methods. Also, sepa-

rate sections are devoted to the discussion of the interaction between a quantum system and the

surrounding environment leading to loss of information due to noise and the physical mechanisms

responsible for environmental noise in NMR quantum systems.

Chapter 2− Enhancement of long-lived singlet-order using optimal control

In certain cases, it is possible to initialize the quantum system in specific subspaces of states

which are immune to environmental noise. In NMR terminology, these subspaces are known as

long-lived singlet order (LLS). Under favorable conditions, LLS can be sustained for a very long

time, and as a result, it has a wide range of applications in NMR. However, detection of LLS in

naturally rare nuclei is a challenge and may require sophisticated instrumentation along with long
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experimental times. In this chapter, we experimentally demonstrate the significant enhancement

of the LLS content in naturally rare nuclei via coherent manipulation of a large qubit system using

optimal control techniques without requiring any additional hardware.

Chapter 3− Noise spectroscopy of multi-qubit states

To ensure maximum fault tolerance, the noise-suppression strategies must be judiciously opti-

mized according to environmental noise. To this end, it is essential to have some a priori infor-

mation about the noise itself. The method to characterize environmental noise is called noise

spectroscopy. The investigation of noise affecting singlet qubit states is extensively reported in

the literature. In this chapter, we report an experimental study of noise affecting some special

multi-qubit states.

Chapter 4− Emulation and control of quantum non-Markovian dynamics

Often it is assumed that the surrounding environment is an infinite reservoir, and the information

lost from the quantum system immediately gets dispersed into many degrees of freedom of the

environment. These kinds of environments are called memoryless or Markovian environments.

However, in many realistic experimental scenarios, the environments are finite, and they have

memory effects associated with them, which manifests as information backflow to the system.

These kinds of environments are called non-Markovian environments. In this chapter, we exper-

imentally emulate these environments using NMR methods and study dynamics of information

flow between the system and the environment. We also optimize protection strategies in the

presence of information backflow associated with the non-Markovian environment and experi-

mentally study their efficiencies.

Chapter 5− Unambiguous measurement of information scrambling

The loss of quantum information from the system to the environment is a non-unitary or irre-

versible process. However, in certain many-body quantum systems, unitary dynamics can also

lead to a perceived loss of quantum information in practical timescales. This happens due to the

spreading of initially localized information into non-local degrees of freedom of the system, and

it is called information scrambling. This phenomenon is used to further our insight into many
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fundamental issues not only in QIP but also in condensed matter and high energy physics.

The information loss due to scrambling is experimentally measurable, but its detection can

be confused with information loss due to environmental noise. To this end, in this chapter,

we propose and experimentally demonstrate a protocol to filter out contributions solely due to

scrambling. Till now, the scrambling of information localized in initially uncorrelated degrees

of freedom was experimentally investigated. We go one step further and study scrambling of

information initially localized in multi-qubit correlations.
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CHAPTER 1

Introduction

What are the ultimate physical limits of technology? Each attempt made to answer this ques-

tion pushes these very limits one step further. The latest addition to these attempts is a cross-

disciplinary venture from physicists, mathematicians, and computer scientists in the form of

Quantum technologies [2]. Quantum technologies are physical devices that use fundamental

laws of quantum mechanics to harness the resources available at the sub-atomic level for prac-

tical applications. Essentially these devices are efficient processors of information encoded in

the state of a quantum system, called quantum information, according to the task at hand. These

devices include quantum computers [3], that can solve hard problems which are impossible to

solve on traditional supercomputers in feasible timescales; sensors [4] of physical quantities like

a magnetic field, temperature, electric field, etc., with unprecedented precision. Similar to quan-

tum computers and quantum sensors, quantum systems are actively exploited for other promising

practical applications like quantum metrology, quantum communication, quantum cryptography,

etc. [5, 6] and it has led to significant attention from technology giants like Google, Microsoft,

and IBM to develop industry-grade quantum devices.

However, in reality, the power of quantum technologies is severely limited by noise intro-

duced due to unwanted interaction of the quantum system with its surrounding environment. For

quantum technologies to reach the market, environmental-induced noise must be appropriately

understood and mitigated to an acceptable degree below a certain threshold [7]. To this end, the

goal of understanding the interaction between system and environment has led to the theory of

open quantum systems [8], and tremendous effort has been put to develop protocols to boost the

robustness of quantum devices against the destructive effects of the environment.

In this chapter, the first section 1.1 is devoted to the following questions: (i) How to encode in-

formation in the state of a quantum system? (ii) How does the processing and readout of quantum

information take place? In section 1.2, I describe how quantum information gets corrupted due

to the interaction with the surrounding environment. Finally, in section 1.3 and 1.4, respectively,
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Chapter 1

I outline the physical realization of a quantum information processor using Nuclear Magnetic

Resonance (NMR) methods and noise mechanisms hindering its error-free operation.

1.1 Quantum information processing (QIP)

1.1.1 Qubits

Qubit is the unit of quantum information analogous to the bit (binary digit) in traditional tech-

nologies. A bit can be represented by a two-state system such as an electrical circuit that allows

two voltage levels, usually denoted by 0 and 1. Similarly, we can physically realize a qubit by a

two-state quantum-mechanical system, usually represented by kets |0〉 and |1〉, such as the spin

of an electron or the polarization of a photon. While a bit can only exist in one or the other of

computational states, namely 0 and 1, a qubit can exist in a coherent superposition of its basis

states |0〉 and |1〉. A general superposition state can be written as

|ψ〉 = α|0〉+ β|1〉, (1.1)

where α and β are the complex numbers which satisfy |α|2 + |β2| = 1. The set of states {|ψ〉}

form a complex vector space with unit norm.

z 
|0  

|1  

|𝜓  

x 

y 

𝜃 

𝜙 

Figure 1.1: Bloch sphere representation of states of a single qubit

The state of the qubit can be geometrically represented by a unit Bloch sphere as shown in

Fig 1.1. Here α = cos(θ/2) and β = eiφ sin(θ/2) where θ ∈ [0, π] and φ ∈ [0, 2π]. Operations

on qubit can be easily visualized as rotation on the Bloch sphere.
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1.1 Quantum information processing (QIP)

In contrast to the classical bit whose state can be determined with certainty, the outcome of

the measurement of the state of a qubit is always probabilistic. For example, when the state |ψ〉

is subjected to measurement, we get |0〉 and |1〉 with probabilities |α|2 and |β|2 respectively. This

probabilistic nature of the measurement outcome demands experimentalists to take either mea-

surement of a large number of copies of the qubit or a large number of sequential measurements

of a single qubit with identical state preparation, to obtain appropriate expectation values.

A system consisting of multiple qubits is called a quantum register. As a result of superpo-

sition, a N qubit quantum register can hold information equivalent to 2N bits, which means that

the appropriate control of dynamics of N qubits can provide exponentially faster processing of

information. A general quantum state ofN qubits can be written as a linear superposition of basis

states formed by the direct product of basis states spanning the Hilbert space of each qubit. In

other words, if HA and HB are Hilbert space of qubit A and B, then Hilbert space of the com-

posite system will be HA ⊗ HB. Hence, for a N qubit system, dimension of the Hilbert space

is 2N and accordingly these many basis states are required. For example, in case of two qubits,

the computational basis constitutes four states namely |00〉, |01〉, |10〉 and |11〉 and a general two-

qubit state can be written as

|ψ〉 = α|00〉+ β|01〉+ γ|10〉+ δ|11〉, (1.2)

with |α|2 + |β|2 + |γ|2 + |δ|2 = 1.

Apart from the phenomenon of superposition, multiple-qubit states also exhibit important

properties such as entanglement, which can be exploited to boost the performance of quantum

technologies. Entangled states are the special multi-qubit quantum state which cannot be writ-

ten as the direct product of the states of its constituents qubits. To be precise, if |ψ1〉, |ψ2〉,

|ψ3〉, ...., |ψN〉 are states of each qubit in a N qubit system then entangled states of the composite

system can not be written as |ψ1〉 ⊗ |ψ2〉 ⊗ |ψ3〉 ⊗ .... ⊗ |ψN〉. The states which are not entan-

gled are termed as separable states. For example, in case of two qubits, while the Bell states

{(|00〉 ± |11〉) /
√

2, (|01〉 ± |10〉) /
√

2} are entangled, the states such as (|00〉+ |01〉) /
√

2 are

separable. The Bell states have the following property: The qubits exhibit non-local correlations.

For example, in case of (|00〉+ |11〉)/
√

2, after measuring σz observable on the first qubit we get

0 or 1, each with probability 1/2, with corresponding post-measurement states being |00〉 or |11〉.

3



Chapter 1

Therefore, measurement results of both the qubits are correlated since the measurement of the

second qubit always gives the same result as the first qubit. Entanglement is an essential ingre-

dient of various quantum communication protocols such as quantum cryptography, superdense

coding, and quantum teleportation [9].

1.1.2 Density operator formalism

In certain experimental scenarios, a qubit is realized using an ensemble of identical quantum

particles, such as in NMR. In this case, dealing with the statistical ensemble of kets is rather

cumbersome and alternative way of representing the quantum state using density operator is

often convenient. A density operator is a linear operator with its matrix representation named

as density matrix, which depends upon the choice of the basis in the underlying Hilbert space.

If all the member of ensembles are in same state |ψ〉 =
∑

j cj|j〉 with orthonormal basis {|j〉},

ensemble is called pure and density operator is given by

ρ = |ψ〉〈ψ| =
∑
j,k

c∗jck|j〉〈k|. (1.3)

In this case density matrix is idempotent, i.e., ρ2 = ρ.

For a mixed ensemble of states |ψi〉 each with probability pi, the density operator can be

written as

ρ =
∑
i

piρi =
∑
i

pi|ψi〉〈ψi| =
∑
i

pi
∑
j,k

c∗jck|j〉〈k| =
∑
j,k

c∗jck|j〉〈k| (1.4)

with
∑

i pi = 1 and overbar denotes the ensemble average. The above density matrix can be

interpreted as mixture of the pure states ρi with probabilities pi. A density operator have following

important properties:

1. ρ is a positive operator, which means that all eigenvalues must be non-negative.

2. Tr[ρ] = 1 ,i.e., sum of all the eigenvalues must be unity.

3. ρ is Hermitian, i.e., ρ† = ρ. It amounts to the fact that elements in the upper triangle of the

density matrix are the complex conjugate of that in the lower triangle.

Also, note that for pure states and mixed states, respectively, Tr[ρ2] = 1 and Tr[ρ2] < 1. The
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1.1 Quantum information processing (QIP)

identity matrix (1/2) represents the maximally mixed state with Tr[ρ2] = 1/2. Hence Tr[ρ2] is

often termed as the purity of a quantum state.

Geometrically, in terms of Bloch sphere, the most general state of a single qubit can be written

as

ρ =
1 + r.σ

2
, (1.5)

where 1 is identity matrix, r is a three dimensional Bloch vector such that ||r|| ≤ 1, and σ =∑
i=x,y,z σi. Here

σx =

0 1

1 0

 ; σy =

0 −i

i 0

 ; σz =

1 0

0 −1

 . (1.6)

All the pure states and mixed states lie on and inside the surface of the Bloch sphere respectively.

As purity decreases, states move inside the Bloch sphere with identity matrix lying at the center

of it.

1.1.2.1 Populations and coherences

The physical significance of density operator can be better understood by looking at the element

of the density matrix. For a pure state

ρrs = 〈r|ρ|s〉 =
∑
j,k

c∗jck〈r|j〉〈k|s〉 = c∗rcs, (1.7)

and for a mixed state

ρrs = 〈r|ρ|s〉 =
∑
i

pic
i∗
r c

i
s = c∗rcs. (1.8)

Due to Hermitian property of density operator

〈r|ρ|s〉 = 〈s|ρ|r〉∗. (1.9)

In the eigenbasis of Hamiltonian, the diagonal element

ρrr = |cr|2 (1.10)

5
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represent population [10, 11] of the state |r〉. The off-diagonal element

ρrs = c∗rcs (1.11)

is called coherence [10, 11] because it indicates a coherent superposition of state |r〉 and |s〉.

1.1.2.2 Coherence order

Often, it is very useful to classify coherences based on magnetic quantum number associated with

states participating in the coherence. If a magnetic field is applied in z-direction then eigenstate

|r〉 and |s〉 of Hamiltonian has a well defined angular momentum in z-direction [11]

Iz|r〉 = mr|r〉,

Iz|s〉 = ms|s〉, (1.12)

where Iα = σα/2 with α ∈ x, y, z are called spin operators. Then order q of the coherence is

defined as

q = mr −ms. (1.13)

A coherence having coherence order q is called q-quantum coherence. For a N -qubit system,

dimensions of density matrix are 2N × 2N amounting to total of 22N elements. There are 2N

diagonal elements representing populations and rest of them are coherences. Coherence with

order q = ±1 are called single quantum coherences and q 6= ±1 are called multiple-quantum

coherences (MQC). Coherences can be further divided into two types. Consider a 3−qubit system

and following two particular coherences out of total 56 coherences

(i) Coherence between eigenstates |000〉 and |001〉 has coherence order +1. Here the first two

qubits are not involved in the transition and termed as passive qubits while the third qubit is

the active qubit.

(ii) Coherence between eigenstates |001〉 and |110〉 also has coherence order +1. Here all three

qubits are active.

The later type of coherences in which the number of active spins is larger than coherence order

are called combination coherences. In contrast, the former case where the number of active

spins is equal to coherence order are called simple coherences [11]. In this thesis, combination

6



1.1 Quantum information processing (QIP)

quantum coherences are utilized to estimate noise affecting various qubits participating in the

coherence and to study spreading of information in multi-qubit correlations in chapter 3 and

chapter 5 respectively.

1.1.2.3 Reduced density operator

The density matrix description is a handy tool for finding out the state of the sub-system, called

the reduced density operator, using the state of the composite system. Suppose the composite

system is in state ρAB, then reduced density operator of the sub-system A is defined as

ρA = TrB[ρAB], (1.14)

where TrB is a map from Hilbert space of composite system AB to Hilbert space of subsystem

A, called the partial trace over system B and defined as following. If ρAB =
∑

ijkl cijkl|ai〉〈aj| ⊗

|bk〉〈bl| then partial trace

ρA = TrB[ρAB] =
∑
ijkl

cijkl|ai〉〈aj|〈bl|bk〉 =
∑
ijk

cijkk|ai〉〈aj|. (1.15)

The reduced density operator description is justified in the sense that it produces correct measure-

ment statistics for measurement made on A [9].

The reduced density operator description is very helpful in deciding if the state of the com-

posite system is entangled or not. If the state of the composite system is a pure separable state,

then its reduced density operator will be a pure state. On the other hand, if the composite system

is described by an entangled state, then its reduced density operator will be a mixed state.

1.1.2.4 Trace distance between two quantum states

Trace distance is a metric on the space of the density matrices. For two density matrices ρ1 and

ρ2, the trace distance is defined as half the trace norm

D(ρ1, ρ2) = ||ρ1 − ρ2||/2, (1.16)

7
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where the trace norm is defined as ||ρ|| =
√
ρ†ρ. Since the density matrices ρ1 and ρ2 are

hermitian operators, the trace distance is simplified to

D(ρ1, ρ2) = Tr
[√
ρ1 − ρ2

]
/2 =

∑
i

λi, (1.17)

where λi are eigenvalues of the hermitian matrix (ρ1 − ρ2). For Bloch sphere representation

(Eq. 1.5) of density matrices ρ1 and ρ2 with Bloch vector r and s, the trace distance is half the

Euclidean distace

D(ρ1, ρ2) = ||ρ1 − ρ2||/2 (1.18)

= ||(r − s).σ||/4 (1.19)

= |r − s|/2. (1.20)

The trace distance has the following properties

1. 0 ≤ D(ρ1, ρ2) with equality when ρ1 = ρ2.

2. D(ρ1, ρ2) ≤ 1 with equality when ρ1 and ρ2 are orthogonal.

3. It is symmetric in its inputs: D(ρ1, ρ2) = D(ρ2, ρ1).

4. It satisfies triangular identity: D(ρ1, ρ2) ≤ D(ρ1, ρ0) +D(ρ0, ρ2).

5. It is preserved under Unitary transformations: D(Uρ1U
†, Uρ2U

†) = D(ρ1, ρ2).

6. It is subadditive under tensor product: D(ρ1 ⊗ ρ′1, ρ2 ⊗ ρ′2) ≤ D(ρ1, ρ2) +D(ρ′1, ρ
′
2)

7. It is convex in each of its inputs: D(
∑

i piρ
i
1, ρ2) ≤

∑
i piD(ρi1, ρ2)

1.1.2.5 Distinguishability of quantum states

The concept of trace distance is intimately connected to the concept of distinguishability of two

quantum states. To elaborate, consider two parties Alice and Bob. Suppose Alice prepares two

states ρ1 and ρ2 with probability 1/2 each and send it to Bob. Bob’s task is to find out the state of

the system with a single measurement. The maximum probability of success in this task with an

optimal strategy is related to trace distance by 1+D(ρ1,ρ2)
2

. Due to this relation, trace distance can be

interpreted as distinguishability. For example, suppose that ρ1 and ρ2 are orthogonal. In this case,

8



1.1 Quantum information processing (QIP)

D(ρ1, ρ2) = 1, and the probability of success is 1, which is a well-known fact that orthogonal

states can be distinguished with certainty. Similarly if ρ1 = ρ2, D(ρ1, ρ2) = 0, probability of

success is 1/2 and in this case the two states ρ1 and ρ2 can not be distinguished at all with any

optimal strategy.

1.1.2.6 Von-Neumann entropy

For a quantum states ρ, the von-Neumann entropy is given by

S(ρ) = −Tr[ρlog2ρ] (1.21)

and it can be simplified using eigendecomposition of ρ =
∑

i λi|i〉〈i| in the following way

S(ρ) = −
∑
i

λilog2λi. (1.22)

For pure states S(ρ) = 0 since density matrix is idempotent ρ2 = ρ and for a maximally mixed

states S(ρ) = log2N , where N is the dimenssion of the system. Von-Neumann entropy has

following properties

1. S(ρ) is invariant under a unitary transformation, S(ρ) = US(ρ)U †.

2. S(ρ) is a concave function: S (
∑

i λiρi) ≥
∑

i λiS(ρi).

3. S(ρ) is additive under tensor product, i.e., for two independent systems given by ρA and

ρB: S(ρA ⊗ ρB) = S(ρA) + S(ρB).

4. S(ρ) is subadditive in the sense: S(ρAB) ≤ S(ρA) + S(ρB).

1.1.3 Quantum gates

In traditional technologies, processing of information takes place using physical tools known as

logic gates such as NOT, OR, NOR, etc. Similarly, the processing of information in quantum

technologies is done via quantum gates. Quantum gates are nothing but unitary operators acting

on qubits such that an initial state is transformed into the final desired state. If a qubit starts in an

initial state |ψ(0)〉, then application of unitary operator U transforms it to

|ψ(t)〉 = U |ψ(0)〉. (1.23)
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Since UU † = 1, quantum gates are reversible in nature. In terms of density operator formalism,

it can be readily shown that

ρ(t) = Uρ(0)U †. (1.24)

For a quantum quantum system described by Hamiltonian H(t), the dynamics is governed by

Schrödinger equation (assuming ~ = 1)

∂|ψ(t)〉
∂t

= −iH(t)|ψ(t)〉, (1.25)

where |ψ(t)〉 is time evolved state. Similarly in density matrix picture dynamics is governed by

von Neumann equation
∂ρ(t)

∂t
= −i[H(t), ρ(t)]. (1.26)

The solution of above equations leads to unitary time evolution of the form

U = T exp

(
−i
∫ t

0

H(t′)dt′
)
, (1.27)

where T is Dyson time ordering operator. For single qubit, unitary operator U can be visualized

as rotations on the Bloch sphere,

U = eiαRn̂(θ), (1.28)

for some α and rotation Rn̂(θ) = exp(−iθn̂.σ/2) with σ =
∑

i=x,y,z σi which represents a

rotation of angle θ about axis n̂.

In the following, we give some examples of widely used single and two-qubit quantum gates.

To construct multi-qubit gates, it was shown in Ref. [12] that set of gates consisting of one qubit

quantum gates (local gates) and two-qubit controlled gates (for example CNOT gate described

below) is universal, i.e., unitary operations on arbitrarily many qubits can be expressed as a com-

bination of single-qubit and two-qubit controlled quantum unitary gates.

X (NOT), Y and Z gate

Matrix representation of X, Y, and Z gate is that of σx,−iσy and σz operator shown in Eq. 1.6.

Similar to classical NOT gate, X gate inverts the basis state of the qubit from |0〉 to |1〉 and vice-

versa. The Z gate introduces a relative phase of π to the state |1〉 , i.e., α|0〉+β|1〉 → α|0〉−β|1〉.

The Y gate inverts the basis states along with putting a relative phase to the state |1〉, i.e.,

10



1.1 Quantum information processing (QIP)

α|0〉+ β|1〉 → −α|1〉+ β|0〉.

Hadamard gate

Application of Hadamard gate on a basis state produces equal superposition of the basis states

and vice versa. Its Matrix representation is

H =
1√
2

1 1

1 −1

 (1.29)

and its action on |0〉 and |1〉 basis states transforms them to |+〉 = |0〉+|1〉√
2

and |−〉 = |0〉−|1〉√
2

re-

spectively. Note that H2 = 1, hence two consecutive applications of Hadamard gate does not

change the state.

Controlled-Not (CNOT) gate

CNOT gate is a two qubit gate where one qubit works as control and other one act as target.

Action of this gate is to perform a NOT operation on the target qubit depending upon the state of

the control qubit. To be precise, it performs a selective inversion of the state of the target qubit if

control qubit is in |1〉 state. It has the following matrix representation

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 . (1.30)

1.1.4 Measurement of the state of quantum register

When an experimentalist measures a quantum state, it collapses arbitrarily to one of the eigen-

states of the measured observable. An observable is a Hermitian operator corresponding to phys-

ical quantities such as position, energy, or spin that can be measured. During the measurements,

the system interacts with an external physical system (the measuring apparatus), which forces the

dynamics to occur in non-unitary fashion. In quantum theory, measurements are postulated [9]

using a collection of operator {Mm}, called the measurement operators. If the state before the

measurement is given by |ψ〉 the probability of obtaining the measurement outcome m is given

11
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by

p(m) = 〈ψ|M †
mMm|ψ〉 (1.31)

and the state after the measurement can be written as

Mm|ψ〉√
p(m)

. (1.32)

The measurement operators satisfy completeness relation
∑

mM
†
mMm = 1 which translates to∑

m p(m) = 1.

1.1.4.1 Projective measurement

A special case of the above-mentioned measurement postulate is the projective measurement

when Mm are orthogonal operators. It is described by an observable M =
∑

mmPm, where

Pm = |m〉〈m| is projector onto eigenspace of M corresponding to eigenvalue m. In this case, the

probability of obtaining the measurement outcome m is given by

p(m) = 〈ψ|Pm|ψ〉 (1.33)

and the state after the measurement can be written as

Pm|ψ〉√
p(m)

. (1.34)

1.1.4.2 Expectation value of an observable

In experiments, it is often required to calculate the average of the observable after several mea-

surements, called the expectation value. In terms of projective measurement, it can be written

as

〈M〉 =
∑
m

mp(m) (1.35)

= 〈ψ|M |ψ〉. (1.36)
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1.2 Why does a quantum system get noisy?

In case of a mixed state ρ =
∑

i pi|ψi〉〈ψi|, the expectation value can be written as

〈M〉 =
∑
i

pi〈ψi|M |ψi〉

=
∑
i

piTr[|ψi〉〈ψi|M ]

= Tr

(∑
i

pi(|ψi〉〈ψi|M)

)
= Tr[ρM ]. (1.37)

1.2 Why does a quantum system get noisy?

1.2.1 Open quantum systems

Until now, I have described the dynamics of a closed quantum system in the sense that it does not

have unwanted interaction with the surroundings. However, in realistic laboratory conditions, a

quantum system is never isolated but open to unavoidable interactions with the surrounding envi-

ronment, called an open quantum system (OQS). The unwanted interaction with the surrounding

environment introduces noise in the dynamics of the quantum system and makes superposition

and entangled states very fragile to handle. As a result of this noise, despite being aware of the

overwhelming capacity of quantum technologies to outperform their existing counterparts for the

last two decades, we are still struggling to operate them in a fault-tolerant manner. Therefore

understanding and controlling these processes is of utmost importance to ensure error-free oper-

ation of quantum devices. In the following, I describe some essential features of open quantum

dynamics.

    OQS 

Hilbert space HS 

Hamiltonian HS 

State 𝜌𝑆 

Environment 

Hilbert space HB 

Hamiltonian HB 

State 𝜌𝐵 

 HSB 

Figure 1.2: An open quantum system (OQS)

Consider a quantum system S interacting with the surrounding environment B. Let HS and
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HB denote the Hilbert space corresponding to the system and environment, respectively, then

Hilbert space of the composite system is HSB = HS ⊗ HB. The system and environment are

governed individually by Hamiltonian HS and HB, respectively, and interacting via Hamiltonian

HSB (see Fig. 1.2). The total Hamiltonian of the full S +B system is given by

H = HS +HB +HSB. (1.38)

The dynamics of the composite system is governed by von Neumann equation

∂ρSB(t)

∂t
= −i[H, ρSB(t)] (1.39)

which yields the formal solution

ρSB(t) = UρSB(0)U †, (1.40)

where

U = T exp(−i
∫ t

0

H(t′)dt′). (1.41)

The overall state of the composite system ρSB(t) evolves unitarily, as shown in Eq. 1.40 but

measuring the state ρSB(t) is very challenging since the surrounding environment is not under

the experimentalist’s control. Hence one can only determine time evolution of reduced state of

the system ρS(t) = TrB[ρSB(t)]. The equation of motion, called the master equation, for the

time evolution of ρS(t) derived from the integration of Eq. 1.39 is complicated and depends upon

coupling between OQS and the environment.

1.2.2 Dynamical map

IIn the following, we describe an equivalent approach to describe the reduced dynamics of OQS.

First, we assume the initial state of the composite system is separable, i.e.,

ρSB(0) = ρS(0)⊗ ρB(0), (1.42)

which leads to following expression for time evolution for the reduced state of the system

ρS(t) = TrB[U(t)ρS(0)⊗ ρB(0)U †(t)]. (1.43)
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For a fixed environment initial state ρB(0), above equation defines a linear map Φt [8, 9, 13] on

the state space of the OQS which maps the initial reduced system state ρS(0) to final reduced

system state ρS(t) according to

ρS(0)→ ρS(t) = ΦtρS(0). (1.44)

Here Φt is called the dynamical map. In contrast to closed system dynamics, the states of OQS

evolving according to the dynamical map experience decoherence, describing the transformation

from pure states (coherent superposition) to mixed states (incoherent superposition or statistical

mixture) [14]. The dynamical map satisfies the following properties to map physical states into

physical states

1. Φt preserves trace and Hermiticity of the operators.

2. Φt is a convex linear map, i.e., for the probabilities pi

Φt

(∑
i

piρi

)
=
∑
i

pi(Φtρi) (1.45)

3. Φt is a completely positive map [15–17].

Complete positivity of dynamical map plays an essential role in fault-tolerant quantum error

correction [18] and can be defined in the following two equivalent ways [9]

(i) A linear operator Φt is completely positive if it admits a Kraus representation [19], i.e.,

Φtρ =
∑
i

E†i ρEi (1.46)

with a set of operator Ei on the underlying Hilbert spaceHS such that
∑

iE
†
iEi = 1S .

(ii) Consider a Hilbert spaceHS⊗Cn corresponding to a Hilbert space of systemHS combined

with an n-level system R and a map Φt ⊗ 1n acting on this combined system. We can then

define that a map Φt to be completely positive if Φt ⊗ 1n is positive for all n.

Hence, complete positivity is a stronger condition than positivity. The requirement of only pos-

itivity ensures that evolved states of the reduced system ΦtρS(0) are valid density operators.

However, when the system S is a part of a larger system S +R, it might happen that the evolved
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state of the composite system ρSR may not be a valid density operator. This is because of the de-

velopment of entanglement between S andR, which does not occur in classical dynamics and is a

genuine quantum feature [20]. Therefore, similar to reduced states of the system, the requirement

of complete positivity ensures that all physical states of the composite system are also mapped to

physical states of the composite system.

1.2.3 Markovian description

In the Markovian regime, the following approximations are made to derive a master equation for

the dynamics of the reduced OQS

(i) Weak coupling or Born approximation - Under this assumption, there is no significant de-

velopment of system-environment correlations. Consequently the environment is effectively

unchanged, i.e, it has no memory of past states of the OQS.

(ii) Separation of timescales or Markov approximation - If τE represents timescales correspond-

ing to decay of environmental correlations and τR denotes the relaxation timescales over

which state of OQS varies appreciably because of interaction with environment, this as-

sumption amounts to relation τR >> τE .

(iii) Rotating wave approximation - Terms which oscillate faster compared to system dynamics

can be neglected.

With these approximations, equation of motion for reduced state of OQS can be written in the

Lindblad master equation form [21, 22]

∂ρS(t)

∂t
= LρS(t) = −i[HS, ρS(t)] +

∑
i

γi

(
AiρS(t)A†i −

1

2
{A†iAi, ρS(t)}

)
, (1.47)

whereAi are Lindblad operators, γi are positive constants called the decay rates, andL is operator

corresponding to dynamical map Φt = eLt. Here the first term describes the unitary evolution

due to HS and the second term describes the non-unitary effect of the environment. In this case

the dynamical map obeys the semi-group property

Φt+t′ = ΦtΦt′ . (1.48)

While the above Markovian description of the OQS dynamics is easy to handle, and certain
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Environment     OQS 

Markovian 

Environment     OQS 

Non-Markovian 

Figure 1.3: Difference between Markovian and non-Markovian OQS. Arrows indicate the flow of infor-
mation. In the Markovian case, the quantum system always loses information to the environment, whereas,
in the case of the non-Markovian environment, information backflow can take place.

physical systems satisfy the associated assumptions with it, in general, OQS are intrinsically non-

Markovian. In many practical situations such as in the presence of strong system-environment

coupling, low temperature, and structured environment, the above approximations are not justi-

fied. In these cases, the environment has memory effects, and they are manifested as information

backflow from the environment to OQS [20, 23](see Fig. 1.3). From the perspective of the master

equation, there exist time-local equations of the form Eq. 1.47 with time-dependent coefficients

γi(t) to describe these memory effects [24, 25]. In this case, the dynamical map can be written as

Φt = T exp

(∫ t

0

Lt′dt′
)

(1.49)

and one can speak of time-dependent Markovian master equation when γi ≥ 0, which leads

to a dynamical map satisfying the divisibility property [26] analogous to semi-group property.

Therefore, the departure of dynamics from divisibility property corresponding to γi < 0 signifies

the presence of memory effects. More detailed discussion on definition and measures of non-

Markovianity is given in chapter 4 in context to dephasing dynamics of a qubit governed by

single Lindblad operator σz.

1.3 Quantum information processing using NMR

To act as an efficient processor of quantum information, any physical device has to satisfy the

DiVincenzo criteria [27]. Though all the requirements are not satisfied by any one of the devices,

various architectures are being explored in the literature. Some of these are

1. Nuclear magnetic resonance (NMR) [28, 29]

2. Nitrogen vacancy centers [30]
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3. Superconducting qubits [31]

4. Quantum dots [32, 33]

5. Trapped ion quantum simulators [34].

In this thesis, we use NMR as our physical testbed for quantum information processing.

NMR is a physical phenomenon that involves placing the atomic nuclei in a strong static

magnetic field and perturbing it by an external electromagnetic field at resonance, such that energy

absorption can occur. In this thesis, we deal with liquid state NMR, where a solute containing

nuclei of interest is dissolved in a liquid solvent to prepare an isotropic solution. In the following,

I describe how qubits and quantum gates can be realized using the NMR methodology.

1.3.1 NMR qubits

1.3.1.1 A nuclear spin in a static external magnetic field

Along with mass and charge, atomic nuclei possess a physical property called spin [35]. A spin

has associated angular momentum I, which is quantized, and for a spin-I particle, it can take

values of the form ~
√
I(I + 1), where I is called the spin quantum number. In addition to spin,

the nuclei also possess magnetic moment µ which is proportional to spin angular momentum

µ = γ~I, (1.50)

where γ is called the gyromagnetic ratio, characteristic of the nucleus. Now we apply a strong

static magnetic field B0 along z-direction which can be described by Zeeman Hamiltonian of the

form

H = −γ~B0Iz = ~ω0Iz, (1.51)

where Iz = σz/2 is z-component of the spin angular momentum I and ω0 = −γB0 is called Lar-

mor frequency. Intuitively, due to interaction with the magnetic field, nuclear spins feel a torque,

and their magnetic moments start precessing about the field with frequency ω0, which usually is

in hundreds of MHz at the high magnetic field employed in NMR. The energy eigenvalues of the

Hamiltonian H are −mγ~B0, where m is called the magnetic quantum number, which is quan-

tized and takes values in the range−I,−I + 1, ...., 0, ..., I − 1, I . Therefore, the energy spectrum

consists of 2I + 1 equally spaced energy levels with a gap of ~ω0.
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In a molecule, the local magnetic field at the sight of the nucleus is different from the applied

static field because the local field depends upon the shielding introduced due to electron clouds of

the surrounding chemical environment. This lead to a slight modification in the Zeeman Hamil-

tonian

H = −γ(1− σ)B0~Iz, (1.52)

where σ is known as chemical shift tensor [36]. Though this local field is tiny compared to B0, it

gives rise to a noticeable shift in Larmor frequency, called chemical shift, which plays a vital part

in structural analysis.

1.3.1.2 Thermal equilibrium state

A qubit can be realized in NMR using an ensemble of spin-1/2 nuclei such as 1H, 13C, 19F,

etc. In the case of a single spin-1/2 nuclei, when the strong static magnetic field B0 is applied, the

degeneracy between energy eigenstates is lifted, forming a two-level system with spacing equal to

~ω0. In this thesis, we use magnetic fields of strength 9.4 T, 11.2 T, and 13.1 T, which corresponds

to 1H Larmor frequency of 400, 500, and 600 MHz, respectively. The ground and the excited

state corresponding to m = 1/2 and m = −1/2 serves as basis states for the qubit, denoted as

|0〉 and |1〉 with energy eigenvalues ~ω0/2 and −~ω0/2. At thermal equilibrium under ordinary

NMR conditions, the spin ensemble follows a Boltzmann distribution at temperature T , which

leads to a slight excess of population in the ground state than the excited state, which amounts

to a net bulk magnetization in the direction of the applied static field. Therefore the density

matrix corresponding to the thermal equilibrium has no coherence (off-diagonal) elements, and

population (diagonal) elements are given as follows [11]

ρeqrr =
e−Er/kBT∑
s e
−Es/kBT

, (1.53)

where kB is the Boltzmann constant and sum is over all the eigenstates of the Hamiltonian. In the

high temperature limit ~ω0 << kBT , ρeqrr can be simplified using the following approximations

e−~ω0/2kBT u 1− ~ω0

2kBT∑
s

e−~ωs/kBT = e−~ω0/2kBT + e~ω0/2kBT u 2. (1.54)
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Therefore

ρeq00 u
1

2
+

~γB0

4kBT

ρeq11 u
1

2
− ~γB0

4kBT
, (1.55)

and the thermal equilibrium density matrix

ρeq =

1
2

+ ε
2

0

0 1
2
− ε

2

 , (1.56)

where ε = ~γB0/2kBT . In terms of Pauli-operators it can be written as

ρeq =
1

2
1 +

ε

2
σz. (1.57)

Intuitively, the above state contains a uniform background represented by 1 and tiny deviation

part (ε ≈ 10−5 under usual NMR conditions) in the state σz indicating highly mixed thermal

equilibrium state since Tr[(ρeq)2] << 1. Achieving pure states is not practical in NMR since it

involves applying very high magnetic fields or extremely low temperatures. However, one can

achieve pseudo pure states (PPS) which mimics the pure state behavior and can be written as

follows

ρPPS =

(
1− ε

2

)
1 + ε|0〉〈0|. (1.58)

A single qubit thermal state is naturally in a pseudo pure state. For multi-qubit systems, PPS

can be prepared in many ways in NMR such as temporal averaging [37], spatial averaging [38],

logical labeling [39], state initialization utilizing long-lived singlet states [40] and NMR line-

selective pulses [41].

The net magnetization is proportional to the ratio of populations which can be written as

follows

ρeq00/ρ
eq
11 = exp(~ω0/kBT ) ' 1 +

~ω0

kBT
(1.59)

with the high temperature approximation. The ratio is almost close unity as ~ω0/kBT ∼ 10−5

which makes the ensemble weakly paramagnetic as only 1 magnetic moment in 105 is aligned

in the direction of external field. Nevertheless this slight population imbalance is detectable and
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1.3 Quantum information processing using NMR

gives observable magnetization in z-direction given by [11, 42]

Mz =
µ0γ

2~2B0

4kBT
, (1.60)

where µ0 is magnetic susceptibility.

1.3.1.3 Internal Interactions among nuclei: multiple qubits

In order to make a quantum register, one needs multiple spins that interact with each other. A pair

of nuclei can exhibit interactions governed by Hamiltonian containing bilinear terms [10, 11].

These interactions can be of two types

(i) Electron mediated indirect interactions

(ii) Direct dipole-dipole interactions

For the case dealt in this thesis, namely, isotropic liquid, the direct dipole-dipole interactions

average out to zero due to the fast tumbling motion of the spins [11]. However, indirect coupling

also known as J- coupling survives and corresponds to Hamiltonian given by (assuming ~ = 1)

Hint =
∑
i

ω0iIzi + 2π
∑
i<j

JijIi · Ij, (1.61)

with indirect spin-spin J-coupling Jij . Here Iαi = σαi/2 are spin operators for the ith spin,

where α ∈ x, y, z and Ii · Ij =
∑

α IαiIαj . In the weak coupling limit |Jij| << |ω0i − ω0j|, the

Hamiltonian can be further simplified to

Hint =
∑
i

ω0iIzi + 2π
∑
i<j

JijIzi Izj. (1.62)

Note that, in the case of heteronuclear spins, this approximation is always satisfied since the

Larmor frequency difference typically falls in the MHz range, and J-coupling constants are in

Hz. For a two-qubit system the above Hamiltonian has four eigenstates which form the basis

{|00〉, |01〉, |10〉, |11〉}. The eigenvalues corresponding to basis states are:
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|00〉 → (ω01 + ω02 + πJ)/2

|01〉 → (ω01 − ω02 − πJ)/2

|00〉 → (−ω01 + ω02 − πJ)/2

|00〉 → (−ω01 − ω02 + πJ)/2. (1.63)

1.3.2 NMR quantum gates

1.3.2.1 External Interactions with radio frequency (RF) fields

As pointed out earlier, Larmor frequency in NMR is the order of hundreds of MHz; hence, the

suitable electromagnetic field required to manipulate the state of the qubit fall in RF range. Con-

sider a linearly polarized RF field 2B1 cos(ωRFt + φ)x̂ with frequency ωRF and phase φ. The

Hamiltonian can be written as (assume ~ = 1)

HRF(t) = −γIx{2B1 cos(ωRFt+ φ)} = 2ω1Ix cos(ωRFt+ φ), (1.64)

where ω1 = −γB1 is effective RF amplitude. The resonance condition is achieved when ωRF =

ω0. Otherwise the difference between the two is called offset. The linear polarized RF field can

be decomposed into left (Bl) and right (Br) circularly polarized RF fields

Bl(t) = B1[cos(ωRFt+ φ)x̂− sin(ωRFt+ φ)ŷ]

Br(t) = B1[cos(ωRFt+ φ)x̂+ sin(ωRFt+ φ)ŷ]. (1.65)

At resonance (ωRF = ω0), Br(t) and Bl(t), respectively, represent field rotating in the same

and opposite direction w.r.t precession of the nuclei. In the frame rotating with nuclear Larmor

frequency, the field Br(t) is stationary and Bl(t) rotates with twice the Larmor frequency. Hence,

in the high field approximation, only Br(t) has effect on the dynamics of the nuclei.

Now in the rotating frame of ωRF,

B′r = B1[cosφx̂+ sinφŷ]. (1.66)
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1.3 Quantum information processing using NMR

In the off resonant case with offset ω0 − ωRF = Ω, an effective field can be defined

Beff =
Ω

γ
ẑ +

ω1

γ
[cosφx̂+ sinφŷ] (1.67)

and accordingly

Heff = ΩIz + ω1[cosφIx + sinφIy]. (1.68)

Therefore, using propagator U = exp(−iHefft), the desired evolution of the state of the nuclear

spin ensemble can be achieved by careful tuning of RF amplitude and exposure time. Often RF

fields are applied in short bursts with high power (∼kHz), called RF pulse. An RF pulse achieving

an angle θ = ωtp can be applied using RF amplitude ω1 for time tp. For example, a π/2 rotation,

which equilibrates the populations and creates coherences starting from the thermal equilibrium

state, can be achieved using 25 kHz RF amplitude for a 10 µs duration. We will denote a pulse of

angle θ about φ axis by (θ)φ.

1.3.2.2 Quantum gates using RF fields

Single qubit gates are simply rotation on the Bloch sphere, and any rotation can be applied using

a combination of RF pulses.

X or NOT gate

The X gate which flips the state |0〉 ↔ |1〉 can be realized by a (π)x pulse

πx = e−iπσx/2 = −i

0 1

1 0

 , (1.69)

where −i factor can be ignored as it introduces an unobservable global phase.

Hadamard gate

The Hadamard gate which creates equal superposition |0〉+|1〉√
2

starting from |0〉 can be realized by

combination of (π)x and (π/2)y pulse

[(π/2)y − (π)x] = e−iπσy/4e−iπσx/2 = − i√
2

1 1

1 −1

 , (1.70)
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where the factor −i can be ignored. Often a pseudo Hadamard gate is used instead of Hadamard

gate

[(π/2)−y] = eiπσy/4 =
1√
2

 1 1

−1 1

 . (1.71)

Controlled-NOT (CNOT) gate

Multi-qubit gates can be realized using a combination of RF pulses and evolution under indirect

coupling Hamiltonian given in Eq. 1.62. An NMR pulse sequence to realize a CNOT gate with

the first qubit as control and second qubit as the target can be following

[(π
2

)2

−y
−
(π

2

)1,2

−z
− τ − (π)1,2

y − τ − (π)1
y −

(π
2

)2

−y

]
= −(1 + i)


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 , (1.72)

where τ = 1/(4J) is the duration of evolution under coupling Hamiltonian given in Eq. 1.62.

1.3.2.3 Numerically optimized pulses

Sometimes it is very non-trivial to find an appropriate combination of RF pulses and coupling

evolutions to realize a generic unitary operator. In these scenarios, one resort to numerically

designed RF modulations. For an on-resonant RF field, we can write total Hamiltonian

Htot = ω1(t)[cosφ(t)Ix + sinφ(t)Iy] +Hint, (1.73)

where ω1(t) and φ(t) are amplitude and phase of the RF field, respectively. So the goal boils

down to find modulation profiles of ω1(t) and φ(t) in such a manner that we achieve a target

unitary operator Utarg by maximizing a cost function called fidelity [43]

F = |Tr[U †targUopt]/N |2, (1.74)

where Uopt is the numerically optimized unitary operator. The optimization tries to maximize F

and stops when an acceptable value is achieved. In some instances, the unitary operator required

to attain final state ρtarg is not known. In these cases, the definition of fidelity can be changed
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1.3 Quantum information processing using NMR

accordingly [43]

F =
Tr[ρtarg ρopt]√

Tr[ρ2
targ] Tr[ρ2

opt]
, (1.75)

where ρopt is optimized state. Various algorithms have been developed to numerically optimize

the pulse sequence, e.g, stochastic search methods [43], GRadient Ascend Pulse Engineering

(GRAPE) [44] and bang-bang (BB) optimal control [45, 46] to name a few. Also, these algorithms

can be appropriately equipped for robust optimization, i.e., to achieve high fidelity even in the

presence of radio-frequency inhomogeneity (RFI). In the next chapter, we utilize BB control to

control an 11 spin system.

1.3.3 Measurement in NMR

As pointed out earlier, NMR qubits are ensembles of spin-1/2 isotopes. A typical NMR liquid

state ensemble with volume ∼ 500µl consists of ∼ 1018 spins. At thermal equilibrium, the

ensemble follows Boltzmann distribution giving rise to net magnetization along the direction of

the static magnetic field applied in z-direction. This net magnetization is rotated to the transverse

plane via a (π/2) RF pulse. Now the net transverse magnetization starts precessing around the

static magnetic field, giving rise to a measurable electromagnetic flux called Free induction decay

(FID). FID is an oscillating function with a decay envelope due to various relaxation processes in

NMR (described in the next section), and one can obtain frequency domain profiles via discrete

Fourier transform. In NMR, the FID is measured in a rotating frame with rotation frequency

termed as reciever frequency. The offset between receiver frequency and Larmor frequency can

be both positive and negative. Now to distinguish the positive and negative offsets, FID along

both x and y axis is measured, which is called quadrature detection.

In the case of an ensemble, the measurement of a quantity corresponding to observable D is

its expectation value, as described in section 1.1.4.2.

〈D〉t = Tr[D ρ(t)], (1.76)

where ρ(t) is the density matrix of the ensemble at time t. In NMR, due to quadrature detection,

the effective observable D is of the form σx + iσy which corresponds to the sum of measurement

of net magnetization along both x and y directions.

In general, for a non-equilibrium state, only single quantum coherence elements of density

25



Chapter 1

matrix can be observed using the above detection operator [10, 11]. To measure all the elements

of a density matrix, one has to resort to a technique called quantum state tomography [47, 48].

1.4 Noise in NMR quantum systems: Relaxations

As described in the section 1.2 that a quantum system is never isolated but invariably inter-

acts with the surrounding environment, NMR spin ensemble also interacts with the surroundings

which lead to decay of population and coherence elements, called relaxation [10, 11, 36]. Using

semiclassical approximation, the environment can be modeled as a stochastic field at the site of

the nuclei. For spin-1/2 nuclei in isotropic liquid, the local stochastic fields can be due to various

processes. Two major processes are following [11]

(i) Dipole-dipole relaxation- Magnitude and direction of the local magnetic field exerted by one

spin on another spin due to direct dipole-dipole interaction become random as the molecule

tumbles.

(ii) Chemical shift anisotropy (CSA): Magnitude and the direction of the local magnetic field

caused by molecular electron currents becomes random as the molecule tumbles.

CSA is much weaker than Dipole-dipole relaxation but becomes comparable at higher magnetic

fields. We can model the stochastic local field with a Gaussian random variable β(t) with zero

mean and autocorrelation function

g(τ) = 〈β(t)β(t+ τ)〉, (1.77)

where 〈 〉 denotes the average over many realization of stochastic variable β(t). The Fourier

transform of g(τ) is called noise spectrum S(ω) which records the amount of noise present at

various frequencies. Depending upon the frequency component, the following two types of re-

laxation processes can take place.

1.4.1 Longitudinal relaxation

The transverse frequency components around Larmor frequency are responsible for longitudinal

relaxation. They introduce random transitions as well as relative phases between energy levels,

which leads to the destruction of coherences and redistribution of populations towards thermal
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1.4 Noise in NMR quantum systems: Relaxations

equilibrium on a timescale often termed as T1 [10, 11, 36]. It is essentially the recovery of net

longitudinal magnetization given by the expectation value of σz/2 operator denoted as Mz. This

relaxation mechanism can be described by the phenomenological differential equation given by

Bloch [49]
dMz(t)

dt
=
Mz,eq −Mz(t)

T1

, (1.78)

where Mz,eq is equilibrium longitudinal magnetization. It leads to following solution

Mz(t) = Mz(0)e−t/T1 +Mz,eq(1− e−t/T1). (1.79)

1.4.2 Transverse relaxation

This type of relaxation occurs due to longitudinal low-frequency components compared to Larmor

frequency. Though these components can not induce transition, they introduce random relative

phases between energy levels. Consequently, this is an energy-conserving process and only leads

to decay of coherences while populations remain unaltered on a timescale often termed as T2

[10]. Similar to longitudinal magnetization, this relaxation mechanism can be described by the

phenomenological differential equation given by Bloch [49]

dMxy(t)

dt
= −Mxy(t)

T2

, (1.80)

where Mxy(0) is initial longitudinal magnetization. It leads to the following solution

Mxy(t) = Mxy(0)e−t/T2 . (1.81)

The exact value of T1 and T2 depends upon the state of matter (solid or liquid or liquid crystals),

solvent, temperature, concentration, external magnetic field, etc. [11]. In general T2 ≤ T1. Note

that in many cases, a simple semiclassical approximation may not be valid, and one has to resort

to the more elaborate mechanisms [42].
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CHAPTER 2

Enhancement of long-lived singlet-order using optimal control

Abstract

Using a bang-bang optimal control technique, we transfer polarization from a set of abun-

dant high-γ nuclei directly to singlet order of a low-γ spin-pair. This approach is analogous

to algorithmic cooling (AC) procedure used in quantum state purification. Specifically, we

apply this method for enhancing the singlet order in a natural abundant 13C- 13C spin pair

by exploiting nine equivalent protons of an 11-spin system. Compared to the standard

method not involving polarization transfer, we find an enhancement of singlet order by

about 3.4 times. In addition, since the singlet magnetization is contributed by the faster

relaxing protons, the recycle delay is halved. Thus effectively we observe a reduction in

the overall experimental time by a factor of 23. We also discuss a possible extension of

AC, known as heat-bath algorithmic cooling (HBAC).

Reported in

Deepak Khurana, and T. S. Mahesh, Bang-bang optimal control of large spin systems:

Enhancement of 13C- 13C singlet-order at natural abundance, Journal of Magnetic Reso-

nance 284, 8-14 (2017).

2.1 Introduction

Not many experimental architectures allow as elaborate control of quantum dynamics as that of

NMR. Several powerful RF control techniques such as composite pulses [50], adiabatic pulses

[51], band-selective/broadband pulses [52–55] are being routinely used in NMR spectroscopy.

Numerical methods such as strongly modulating pulses [43], GRadient Ascent Pulse Engineering

(GRAPE) [44, 56], and Krotov [57–61] have also been used for specific purposes in spectroscopy

as well as quantum information. Here we describe an application of bang-bang (BB) optimal

control that utilizes a sequence of full power radio frequency (RF) pulses with variable phases
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separated by variable delays [45, 46, 62]. Generally, the numerical complexity of optimal control

techniques scales rapidly with the size of the spin system, thus limiting their applications. In this

regard improvements in optimal control techniques such as restricted state space approximation

[63, 64] and matrix recycling [65] have been suggested to control large spin systems. Adding

to this toolkit, BB relies on one-time matrix exponentiation to build basic unitaries and hence

it’s complexity scales much slower, and therefore is applicable also for fairly larger spin systems

[45]. In this work, we utilize the BB control to directly transfer polarization from a set of ancillary

spins to the long-lived singlet-order in a spin-pair.

2.2 Long-lived singlet order (LLS)

Right after its conception in NMR, LLS has gained significant theoretical and experimental inter-

est [66–84] due to its wide range of applications such as study of slow molecular processes [85],

characterizing molecular diffusion [86, 87], precision measurement of scalar couplings [88], ob-

taining molecular structure information [89], and storage of hyper polarization [90–95].

In a pair of two-level quantum particles with individual basis states {|↑〉, |↓〉}, antisymmetric

singlet state is

|S0〉 =
|↑↓〉 − |↓↑〉√

2
(2.1)

and symmetric triplet states are

|T0〉 =
|↑↓〉+ |↓↑〉√

2

|T+〉 = |↑↑〉 and,

|T−〉 = |↓↓〉. (2.2)

For a single spin system (with gyromagnetic ratio γ and spin operators Iα = σα/2, where α ∈

x, y, z ), the density operator corresponding to thermal equilibrium state under high magnetic-

field (B0) and high-temperature (T ) approximation is given by ρ = 1/2 + εIz, where ε =

~γB0/(2kBT ), with ~ being the reduced Planck’s constant and kB being the Boltzmann con-

stant. Typically in NMR, the polarization factor ε ∼ 10−5 and it represents the excess population

in the ground state over the excited state. Similarly, in the case of a two-spin system, an excess
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2.2 Long-lived singlet order (LLS)

population of singlet state is represented by the density operator

ρS = (1− εS)14/4 + εS|S0〉〈S0|, (2.3)

where 14 is the four-dimensional identity operator and the scalar quantity εS quantifies the singlet-

order [71]. Since the dominant intra-pair dipolar relaxation process does not connect subspaces

of different symmetries, the singlet-order often lives much longer than other non-equilibrium

states whose lifetimes are limited by the spin-lattice relaxation time constant T1 [69, 70, 96]. In

favorable cases, singlet life-times as long as over 50 times T1 have also been observed [80, 97].

One way to access singlet-order is to utilize the chemical shift separation (along with J-

coupling) between two spins to prepare a mixture |S0〉〈S0| − |T0〉〈T0| of singlet and triplet states.

This preparation is followed by suppression of chemical shift to impose symmetry, achieved ei-

ther with low-field switching by shuttling the sample out of the magnet [66], or with a strong RF

spin-lock while retaining the high-field [68]. After the desired storage period, the chemical shift

separation is restored, and the singlet-order is converted back into observable single quantum

coherence.

Later, a method was discovered to access singlet-order in systems with chemical equivalence,

but magnetic inequivalence w.r.t. a chemically equivalent ancillary spin-pair [75]. In this case,

each of the chemically equivalent spin-pairs exists in singlet states at high magnetic fields without

requiring external spin-lock to impose symmetry. It was also shown that by exploiting the higher

sensitivity of ancillary 1H-1H spin-pair, one can prepare, store, and detect 13C-13C singlet order

either with isotopic labeling [98] or even at natural abundance [99].

In this chapter, it is shown that using the BB optimal control techniques; we can directly

transfer polarization from ancillary protons to enhance naturally abundant 13C-13C singlet order.

This method is widely applicable in a variety of systems where a pair of spins with or without

chemical equivalence are coupled to a few ancillary spins.

Although the concept of polarization transfer has long been a part of NMR spectroscopy

[100–102], it has been revisited in quantum information while attempting to achieve a small

set of highly pure quantum bits (system qubits) at the expense of purity of a large number of

ancillary quantum bits (reset qubits). This process is known as algorithmic cooling (AC), and

it systematically transfers entropy from system qubits to reset qubits [103, 104]. Motivated by
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these concepts, we refer to the single iteration polarization transfer as AC. Heat bath algorithmic

cooling (HBAC) is a nonunitary extension of AC, which involves disposal of the extra entropy

from the reset qubits to an external bath so that AC can be iteratively applied to achieve higher

purity of system qubits [105].

The chapter is organized as follows: In the next section, I describe BB optimal control in de-

tail. In section 2.4 and 2.5, I describe our spin system and pulse sequence, respectively. In section

2.6, I describe experimental results and simulations. Finally, section 2.7 contains discussions and

conclusions.

2.3 Bang-bang (BB) optimal control

Consider a system in a state ρin that needs to be steered to a target state ρ. We discretize the time

evolution into N segments each of duration ∆t. In the rotating-frames of the RF carriers, let H0

be the internal Hamiltonian of the system and

Hk,n = Ak,n
(
Ikx cosφk,n + Iky sinφk,n

)
= Ak,nZk,nI

k
xZ
†
k,n (2.4)

be the RF Hamiltonian on kth channel and nth segment. Here Ak,n, φk,n are the amplitudes and

phases respectively, Zk,n = exp(−iφk,nIkz ), and Ikx =
∑

i I
k
ix, Iky =

∑
i I

k
iy, I

k
z =

∑
i I

k
iz are the

sums of spin operators of all the spins of the kth nuclear species. The full piecewise constant

Hamiltonian

Hn = H0 +
∑
k

Hk,n (2.5)

achieves an effective unitary evolution U =
∏1

n=N e−iHn∆t.

In this work, we try to find a unitary operator U that prepares the target state

ρ(0) = UρinU
†

= {1− εS(0)− ε∆}
14

4
+ εS(0)|S0〉〈S0|+ ε∆ρ∆, (2.6)

containing a long-lived singlet component |S0〉〈S0|with a maximum singlet-order εS(0). Here ρ∆

is an undesired, though unavoidable, component containing triplet states as well as other artifact
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2.3 Bang-bang (BB) optimal control

coherences. The expectation value of the singlet component |S0〉〈S0| in ρ(0) is

Q = Tr [ρ(0) |S0〉〈S0|] ≈
3εS(0) + 1

4
. (2.7)

{ Ak,n , ϕk,n } 

Uk,n  =  

Random Population 

Un  =     ∏ Uk,n  
k 

Calculate segments 

  ρ (0)    =    U ρin U
†   

U    =     ∏ Un  
 n 

Full unitary and final state 

  Q    =    Tr [ ρ(0) |𝑆0 
 
 
⟨ 𝑆0| ]   

Calculate fitness Q 

Select the best 

     Is fitness  

  Q sufficient ? 

No 

Yes 
End 

Next generation 

1. Selection 

2. Crossover 

3. Mutation 

Xk   =   exp [- i (H0 + Ωk    ) Δt] 

 
Ud  =  exp [- i H0 Δt] 

𝐼𝑥
𝑘
      

One-time processes 

k = 1 

k = 2 

Δt 

n 

ϕ1,n 

Ω1 

Ω2 

Ak,n  =    
0,
Ωk

 

 
Ud 

, if Ak,n  = 0, else

Zk,n  
Xk  

Z†
k,n 

 

Figure 2.1: The flowchart describing BB optimal control with genetic algorithm. A schematic diagram
of BB control is shown in the inset, wherein each rectangular box corresponds to a full power RF pulse,
called a bang.

Therefore by maximizing Q via BB control, we can obtain an unitary operator preparing a

maximum singlet-order. A subsequent spin-lock of duration τ rapidly damps out the short-lived
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component ρ∆ towards the maximally mixed state 14/4, such that the purified state is of the form

ρ(τ) = {1− εS(τ)}14/4 + εS(τ)|S0〉〈S0|, (2.8)

where εS(τ) = εS(0)e−τ/TS is the singlet-order decayed due to the long singlet life-time TS . In

the next section we use AC to enhance the singlet-order from εS to εBBAC
S by polarization transfer

from ancillary spins using BB control.

As opposed to schemes based on smooth RF modulations, BB control employs pulses having

either zero or full RF amplitudes (Ak,n = Ωk or 0) but variable phases (φk,n) to generate arbitrary

unitaries. A flowchart describing various steps of the BB optimal control using genetic algorithm

is shown in Fig. 2.1. Here the delay propagator Ud = exp [−iH0∆t] and basic propagator for the

kth species Xk = exp
[
−i
(
H0 + ΩkI

k
x

)
∆t
]

are calculated once outside the optimization loop.

In general, it is possible to realize a phase-shifted bang operator by simply rotating the basic

operator, i.e.,

Uk,n = exp
[
−i
(
H0 + ΩkZk,nI

k
xZ
†
k,n

)
∆t
]

= Zk,nXkZ
†
k,n, (2.9)

provided [H0, I
k
z ] = 0. This condition holds for Zeeman, J-coupling, Dipolar coupling, as well

as for quadrupolar Hamiltonians. Here Zk,n is a diagonal operator in Zeeman basis and hence is

efficiently computed during the run-time of iterations. RF inhomogeneity can also be accounted

by a one time preparation of a set of basic propagators corresponding to different RF amplitudes.

Thus, the major advantage of BB control is that the exponentiation of Hamiltonian to obtain

the basic unitary operator (Xk) as well as the delay unitary operator (Ud) is rendered a one-time

process that is outside of the iterations. Matrix exponentiation is a bottleneck in conventional

algorithms based on amplitude modulation, particularly for large spin systems. Often it might

be possible to employ efficient state evaluations such as Krylov exponentiation algorithm [106]

for large sparse matrices to speed up optimization. On the other hand, BB protocol relies on the

one-time calculation of the basic propagators and efficient generation of phase modulated bang

operators. As a result, BB method allows quantum control of large spin systems as demonstrated

in the later section. It is even more efficient in designing RF sequences with low duty-cycle

requiring long evolutions of internal Hamiltonian such as polarization transfer operations.
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2.4 NMR Spin System

1 2 
Si 

JCH = 2.7 Hz 

JCC = 12.7 Hz 

Figure 2.2: Structure of 1, 4-Bis (trimethylsilyl) butadiyne. Here protons in the shaded area act as ancillary
spins which provide polarization to 13C-13C singlet-order.

To demonstrate enhancement of singlet-order, we use an 11-spin system including a pair of

naturally abundant, weakly-coupled 13C spins surrounded by nine chemically equivalent 1H spins

of 1, 4-Bis (trimethylsilyl) butadiyne (BTMSB). The sample was prepared by dissolving 120 mg

of BTMSB in 0.7 ml of CDCl3 (0.88 M). We use the protons to directly prepare enhanced 13C-13C

singlet-order. The molecular structure of BTMSB is shown in Fig. 2.2. The molecular symmetry

provides twice the probability of naturally abundant 13C-13C pairs. The chemical shift difference

between the two 13C spins is 2.32 ppm, and the 13C1-13C2 J-coupling constant is 12.7 Hz, while

J-coupling between 13C1 and the closest equivalent protons is 2.7 Hz. The spin-lattice relaxation

time constants (T1) are about 3 s, 6.5 s, and 8.2 s for 1H, 13C1 and 13C2 respectively. The effective

transverse relaxation time constants (T ∗2 ) are, respectively, 0.3 s, 2.5 s, and 2.9 s.

2.5 NMR Pulse sequence

The pulse sequence employed for the preparation and enhancement of 13C-13C singlet-order is

shown in Fig 2.3. The initial thermal equilibrium state of the system is

ρ0 =
1
⊗11
2

211
+ εC

(
IC1
z + IC2

z

)
+ εH

9∑
j=1

IHj
z (2.10)

where εC and εH are the carbon and proton polarizations respectively, and εH/εC = γH/γC ' 4.
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BB for AC 

  (BBAC) BB for HBAC 

HBAC Iteration 

Spin lock Spin lock 

Decoupling 
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1H 

13C 
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Figure 2.3: Pulse sequence for the preparation and enhancement of 13C-13C singlet-order using 1H spins.
Here m can take integral values 0, 1, 2, · · · etc.

Then a BBAC singlet sequence is applied to prepare 13C-13C singlet-order. Thus the reduced

density operator for carbon spins is now

ρ1 =
[
1− εBBAC

S (0)− ε∆
] 14

4
+ εBBAC

S (0)|S0〉〈S0|+ ε∆ρ∆, (2.11)

where εBBAC
S (0) represents the enhanced singlet-order. At the end of the spin-lock of duration

τAC, one obtains a high quality singlet state

ρ2 =
[
1− εBBAC

S (τAC)
] 14

4
+ εBBAC

S (τAC)|S0〉〈S0|, (2.12)

with the singlet-order εBBAC
S (τAC).

Suppose 1H spins have much shorter T1 relaxation time constant compared to the life time

of singlet-order (TS). Then during the spin-lock duration, 1H spins regain polarization by spin-

lattice relaxation and are available for further polarization transfer to 13C-13C singlet-order. In

our pulse sequence this is achieved by another BB pulse. This process (Fig. 2.3) known as HBAC

can be iterated to further enhance the singlet-order in favorable systems. At the end of m HBAC

iterations we obtain the state

ρ3 =
[
1− εHBm

S (τHB)
] 14

4
+ εHBm

S (τHB)|S0〉〈S0|, (2.13)

where εHBm
S (τHB) is the singlet-order after the final spin-lock of duration τHB.
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Figure 2.4: Comparison between entropically achievable singlet-order enhancement and that achievable
using INEPT-CL singlet sequence versus number of ancilla in star-topology systems. Here γX/γA =
γX/γM = 4 is assumed.

Finally, we convert the singlet-order into,

ρ4 =
14

4
− εHBm

S (τHB)
(
IC1
z IC2

y − IC1
y IC2

z + IC1
x IC2

x

)
, (2.14)

where zy and yz terms form the observable single quantum coherences of 13C spins.

2.6 Enhancing LLS

2.6.1 Bounds on achievable singlet-order

Consider a XnAM type of spin-system where only spin A is coupled to magnetically equivalent

X spins. Entropic calculations suggest an upper bound for the polarization transfer from X spins

to A spins by a factor of α =
√
γ2
A + nγ2

X/γA, where γX and γA are gyromagnetic ratios of X

and A spins respectively [102, 107]. If Carravetta-Levitt (CL) singlet sequence [68] is applied

on polarization enhanced A spin and thermally polarized M spin while decoupling X spins, a

enhancement factor of εthS = (α+ 1)/2 can be achieved for singlet-order. However in practice the

achieved enhancement factor is smaller than the entropic value. Fig. 2.4 shows the singlet-order

enhancement factor with entropic α values and with that achievable by INEPT-CL (refocused
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Figure 2.5: 13C spectra of BTMSB obtained by converting 13C-13C singlet-order at natural abundance
into single-quantum coherence using: (a) only CL, (b) INEPT-CL, and (c) BBAC singlet sequences. All
spectra were recorded with WALTZ-16 spin-lock (1.5 kHz, τAC = 10 s). The central peaks corresponding
to 13C-12C pairs are de-emphasized.

INEPT [10] folowed by CL sequence) for γX/γA = γX/γM = 4.

2.6.2 Experimental results and numerical analysis

We implemented the algorithm described in section 2.1 in MATLAB [45]. We used the genetic

algorithm for 5000 generations with a population size of 100. While it is hard to judge the global

optimality, we selected the best out of many solutions obtained. For AC, the best solution was

of total duration 296 ms and consisted 592 segments each of 500 µs duration. For HBAC, the

solution was of duration 248.5 ms and consisted 497 segments.

All experiments were performed using a 9.4 T (400 MHz) Bruker NMR spectrometer at an

ambient temperature of 298 K using a standard high-resolution BBO probe. Fig. 2.5 (a) displays

the 13C spectra corresponding to 13C-13C singlet-order at natural abundance obtained using CL

singlet sequence without involving any polarization transfer [68]. The recycle delay was set to

35 s (approximately five times T1 of carbons) and a total 512 scans were recorded for τAC =

10s. Although the characteristic signature of the singlet state is visible in terms of the antiphase
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Figure 2.6: Variation of enhancement factor with RF inhomogeneity for INEPT-CL sequence and direct
transfer to singlet-order using BBAC .

magnetizations, the signal to noise ratio is rather poor.

Fig. 2.5 (b) and 2.5 (c) display the 13C spectra corresponding to 13C-13C singlet-order using

INEPT-CL and BBAC singlet sequences respectively again recorded with 512 scans for spin-lock

duration τAC = 10s. Since the polarization is mainly contributed by 1H spins, we need a recycle

delay of only 15 s (approximately five times T1 of protons) and accordingly required only half

the experimental time as that of without polarization transfer. The estimated enhancements of

singlet-order by the polarization transfer schemes are, εINEPT−CL
S /εCL

S ≈ 2.0 and εBBAC
S /εCL

S ≈

3.4, leading to an overall reduction in the experimental times by a factor of (2
√

2)2 = 8 and

(3.4
√

2)2 = 23 respectively. One of the reasons for higher enhancement of BBAC sequence

maybe its relatively higher robustness compared to INEPT-CL, as shown in Fig. 2.6. To simulate

the impact of RF inhomogeneity, the fidelity of the singlet order using both INEPT-CL and BBAC

sequence was calculated using various values of the amplitude of the applied RF field in the range

[0.7ω1, 1.3ω1], where ω1 is the nominal amplitude without any RF inhomogeneity. This amounts

to 30% RF inhomogeneity. Moreover, the BBAC sequence required less than 80% of RF needed

by the minimal INEPT-CL sequence in terms of the total nutation angle.

The enhanced singlet-order allows us to conveniently monitor its decay versus the spin-lock

duration τAC. The results shown in Fig. 2.7 indicate the singlet decay constant TS of about 25.9
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Figure 2.7: The decay of singlet-order versus spin-lock duration τAC. The vertical axis is normalized w.r.t.
the first data point. Inversion-recovery curves and corresponding T1 values of both carbons are shown in
the inset.

s. Thus, the singlet-order is approximately 3 to 4 times longer lived compared to the T1 values

of carbons. In this particular spin system, we did not observe any advantage of HBAC over AC.

HBAC is suitable for systems with fast relaxing ancillary spins and very slow relaxing system

spins [108]. In such a system, protons recover their magnetization (after AC) much faster than

the decay of singlet state, so that further polarization transfer can be carried out. In our system,

the T1 to TS contrast was insufficient to observe this effect.

We now numerically analyze the BBAC singlet sequence to understand the dynamics of

singlet-order enhancement. Fig. 2.8 (a) shows the profile of BBAC pulse. Here time discretization

was done with ∆t = 500 µs, and RF amplitude ΩH/(2π) = ΩC/(2π) = 250 Hz. Thus each bang

corresponds to a 45◦ nutation. At the end of the BBAC sequence the singlet enhancement factor

reaches a maximum value of 4 as shown in Fig. 2.8 (b). Experimentally, however, we achieved

an enhancement of only 3.4, presumably due to RF inhomogeneity, hardware non-linearity, and

relaxation effects.

Since it is harder to fully understand the dynamics of eleven spins leading to the enhanced

singlet-order, we analyze the following evolutions. (i) To understand the polarization transfer, we
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Figure 2.8: (a) Profile of BBAC singlet sequence consisting of bangs on proton as well as carbon channels
with amplitudes ΩH and ΩC respectively. Each bang is of duration 0.5 ms. The phases in degrees are
shown above the bangs. The delays are: d1 = 62.5 ms , d2 = 69 ms, d3 = 50 ms, d4 = 5 ms, d5 = 45.5
ms, d6 = 1.5 ms, d7 = 4.5 ms, d8 = 21.5 ms, and d9 = 33.5 ms. Progress of (b) simulated enhancement
factor εBBAC

S /εCL
S , (c) the evolution of εHC1 quantifying the polarization transfer (Eq.2.15) from protons

to carbon spin orders.

take the reduced density matrix of C1 carbon and one of the protons and estimate

εHC1 =

√ ∑
j=x,y,z

(
Tr [ρ IH

j I
C1
z ]
)2
. (2.15)

(ii) To capture the effective generation of the singlet-order, we analyze the reduced density matrix

of the two carbons. Fig 2.8 (c) shows the evolution of εHC1 with time. It builds up until the first

bang on carbon and then decreases with each carbon bang, indicating the subsequent conversions

into the carbon spin orders. Fig. 2.9 (a) and (b) respectively display the evolution of various

populations and coherences in the singlet-triplet basis as a function of time starting from state ρ0

of Eq. 2.10. Sequence starts with a thermal equilibrium populations, which are indicated in the
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inset of Fig. 2.9 (a). The degenerate product states |↑↓〉 and |↓↑〉 are transformed to |S0〉 and |T0〉

respectively, which are initially equally populated. However, the states |↑↑〉 and |↓↓〉 transform to

|T+〉 and |T−〉 respectively, and accordingly exhibit highest and lowest populations. The relative
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Figure 2.9: (a) Various populations in the singlet-triplet basis, and (b) various coherences in the singlet-
triplet basis versus time during the BBAC sequence.

populations are little affected by the proton bangs and are only altered by the carbon bangs.

After the first carbon bang, the population of |T+〉 decreases and of |T−〉 increases, while that

of |T0〉 and |S0〉 remain unaffected. However various single-quantum coherences are also gener-

ated, as shown in the second inset of Fig. 2.9 (a). After the second carbon bang, the population
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difference between |T+〉 and |T−〉 are further decreased, while the zero-quantum coherence be-

tween |S0〉 and |T0〉 are created. The last carbon bang brings a large population into |S0〉 at the

expense of other states. Various coherences still survive to some extent and form the residual part

described in Eq. 2.11. During a subsequent spin-lock, singlet-state becomes the ground state,

the degenerate triplet states quickly equilibrate, and the short-lived coherences decay away, thus

creating enhanced and pure singlet-order.

2.7 Discussions and conclusions

Sophisticated quantum control techniques are recently being used in both spectroscopy as well

as in quantum information to achieve complex and precise spin dynamics [43–46, 109–113].

The challenge in many of such techniques is the numerical complexity involved in evaluating

and optimizing propagators of large spin systems. In this regard, the Bang-Bang (BB) quantum

control technique offers a unique advantage, since it only needs a one-time evaluation of basic

propagators by matrix exponentiation. Therefore, we can synthesize BB controls for larger spin-

systems. Here we have described the various steps in the BB control technique using a flowchart.

Although presently we use the full Hilbert space, it might be possible to achieve a further speed-

up by exploiting the symmetry of the spin system.

In this work, we achieve the quantum control of 11-spin system by transferring polarization

from nine ancillary spins into the singlet-order of a spin-pair. We experimentally demonstrate

this method in a naturally rare 13C-13C spin-pair, with a probability of 0.011%, and obtain an

enhanced singlet-order by a factor of 3.4, compared to a standard method without involving po-

larization transfer. However, owing to the faster T1 relaxation of the ancillary protons, the BB

approach needed only half the experimental time compared to the latter. Thus effectively, we have

approximately 23 times reduction in experimental time. Although the above sequence is neither

unique nor may be the most optimal one, the significant enhancement achieved by it proves the

efficacy of the bang-bang approach.

Exploiting the enhanced sensitivity, we investigated the decay of the singlet-order under spin-

lock and found it to be three to four times longer lived compared to individual spin-lattice relax-

ation time constants. It is interesting to see the feasibility of creating and maintaining long-lived

states in such large spin-systems. This offers an opportunity for huge polarization transfer into
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singlet-order in a naturally-rare homonuclear spin-pair.

We also investigated the heat-bath algorithmic cooling (HBAC) which attempts to further

enhance the singlet-order by iterative transfer of polarization from ancillary spins. HBAC is par-

ticularly suited for systems with fast relaxing ancillary spins and slow relaxing target spins [108].

In principle, the long-lived singlet states are ideal for storing the spin-order between the iterations

where ancillary spins re-thermalize by giving away extra heat to their bath. With this motivation,

we explored HBAC in the 11-spin system described above. However, due to insufficient contrast

between the life times of singlet-order and ancillary spins, as well as an insufficient enhancement

by each iteration, we could not observe any significant advantage of HBAC process in this system.

Note that there already exits methods such as Nuclear Overhausser Effect (NOE) [114], which

exploit cross-relaxation to enhance the polarization of the target qubit. In fact, NOE can be

regarded as one of the processes through which HBAC can be performed [115]. It can achieve

higher polarization for the target qubit (See Ref. [116] for a detailed analysis) by exploiting cross-

relaxation of the qubits as compared to methods which exploit individual relaxations of the qubits

such as Partner Pairing Algorithm (PPA) [117].

The methods described here can be applied to other homonuclear spin-pairs such as naturally

rare 15N-15N or even naturally abundant 31P-31P pairs. We also anticipate finding many other in-

teresting applications of BB control techniques in spectroscopy as well as in quantum information

processing.
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CHAPTER 3

Noise spectroscopy of multi-qubit states

Abstract

Characterizing and understanding noise affecting quantum states has immense benefits in

spectroscopy as well as in realizing quantum devices. Transverse relaxation times under

a set of dynamical decoupling (DD) sequences with varying interpulse delays were earlier

used for obtaining the noise spectral densities of single-qubit coherences. In this work,

using a pair of homonuclear spins and NMR techniques, we experimentally characterize

noise in certain decoherence-free subspaces. We also explore the noise of similar states in

a heteronuclear spin pair. Further, using a 10-qubit system, we investigate noise profiles of

various multiqubit coherences and study the scaling of noise with respect to the coherence

order. Finally, using the experimentally obtained noise spectrum of the 10-qubit NOON

state, we predict the performance of a Uhrig DD sequence and verify it experimentally.

Reported in

Deepak Khurana, Govind Unnikrishnan, T. S. Mahesh, Spectral investigation of the noise

influencing multi-qubit states, Phys. Rev. A 94, 062334 (2016).

3.1 Introduction

The inevitable presence of local or global electromagnetic noise may cause the loss of quantum

coherences of spin systems or induce the redistribution of spin populations. This phenomenon,

which is often described in terms of decoherence or depolarization, appears in NMR as a net

relaxation of transverse or longitudinal magnetization. In order to build robust quantum tech-

nologies, we need to devise strategies to protect the qubit from the detrimental effect of the

decoherence. To this end, passive techniques like decoherence-free subspaces (DFS) [118, 119]

as well as active techniques like dynamical decoupling (DD) [120] and quantum error correct-

ing codes [121, 122] have been developed. While the passive techniques rely on exploiting the
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symmetries in the interaction Hamiltonian, the active techniques focus on systematic modulation

of the quantum states to suppress decoherence. To ensure maximum efficiency, these strategies

must be judiciously optimized according to the characteristic of the environmental noise. Hence

it is crucial to characterize the surrounding environment not only to provides insights into the

physical process of noise affecting the qubit, but also to optimize DFS conditions as well as to

design better controls for active suppression of noise.

Fortunately, all the relevant information to completely characterize the environmental noise is

encoded in the noise spectrum, which records the amount of noise present at various frequencies.

Interestingly, the qubit itself assist us in finding noise spectrum because the surrounding environ-

ment leaves its traces on the dynamics of the qubit while interacting with it. However, these traces

are the collective fingerprint of all the frequency components of noise together. The technique of

filtering out contribution of each frequency component from this collective fingerprint is called

Quantum noise spectroscopy (QNS). The first procedure to carry out QNS was independently

proposed by Yuge et al. [123] and Àlvarez and Suter [124] which uses the filtering capability of

DD sequences [125]. This method is extensively reviewed in Ref [126]. Further, Szańkowski et

al. [127] proposed a method to probe spectra of correlation between noise sources by using two

qubits under application of appropriate DD sequences which is further generalized to the case of

multiple qubits in Ref. [128].

In this chapter, I discuss the noise influencing various types of quantum coherences, including

DFSs, single-quantum (SQ), as well as multiple quantum coherences (MQC). An example of

DFS is the singlet subspace in a two-qubit system [119]. As described in last chapter, an excess

population in the singlet state, over the uniformly distributed triplet states, is termed as a singlet

order. It has been shown that such an order, under favorable circumstances, has much longer

lifetimes than the usual longitudinal relaxation time scales and is therefore known as a long-lived

singlet order (LLS) [68]. Similarly, the coherence between the singlet state and the zero-quantum

triplet state also has longer life-times than the usual transverse relaxation time scales, and is

therefore termed as a long-lived coherence (LLC) [129]. On the other hand, several other SQ

and MQCs lack the symmetry properties and are consequently prone to stronger decoherence.

Recently, longer lifetime of LLS and LLC is exploited in NMR for many applications such as

storage of hyperpolarization [93], studying slow dynamic processes [85], estimation of J-coupling
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with higher precision [130] and many more [71]. Similarly, MQCs have been used for quantum

sensing [131] and probing information scrambling using out-of-time ordered correlations [132,

133]. Hence it imperative to investigate the noise affecting these special coherences to ensure

their robust operation in the aforementioned applications.

The chapter is organized as follows. In the following section, I describe the theoretical for-

malism of QNS. In section 3.3 and 3.4, I describe experimental extraction of the noise spectra

affecting DFS and MQCs, respectively. Finally I conclude in section 3.5.

3.2 Theory of noise spectroscopy

Here I provide a brief review of the theoretical aspects of QNS. We consider the qubit to be

coupled to a bath via a purely dephasing interaction. Assuming the system Hamiltonian HS =

ω0σz/2 and the bath HamiltonianHB, the joint-evolution is described by the Hamiltonian

H = HS +HSB +HB. (3.1)

HereHSB = jSBσzB/2 describes the system-bath interaction with B being the bath operator and

jSB being the system-bath coupling strength. In the interaction picture of the bath Hamiltonian,

the bath operator

B′(t) = e−iHBtBeiHBt (3.2)

becomes time-dependent. After invoking semi-classical approximation and tracing-out the bath

variables, the Hamiltonian reduces to

H′ = HS + jSBb
′(t)σz/2, (3.3)

where b′(t) is a stochastic function. We treat the bath to be classical and b′(t) to be zero-mean

stationary Gaussian process, as has been assumed before [123, 124]. However, an extension to a

non-Gaussian case has also been reported recently [134, 135].

Suppose an external control field is applied for a total time T in the form of DD sequence

involving a series of on resonant π pules to refocus the dephasing caused by interaction Hamil-

tonian. In the interaction representation associated with the DD sequence, the Hamiltonian trans-
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forms to

H′′ = f(t, T )jSBb
′(t)σz/2, (3.4)

where f(t, T ) is the modulation function that switches between +1 and −1 with the application

of every π-pulse (see Fig. 3.1). The Fourier transform of f(t, T ) is known as the Filter function

F (ω, T ) =
∫
dte−iωtf(t, T ).

Noise spectral density S(ω) is defined as the Fourier transform of the autocorrelation function

g(t2 − t1) = 〈b′(t1)b′(t2)〉, i.e.,

S(ω) =

∫ ∞
−∞

dte−iω(t2−t1)g(t2 − t1). (3.5)

The decay of quantum coherence is influenced by the noise spectral density as well as the filter

function [136, 137]. This decay can be modeled in the form exp[−χ(t)], wherein the time-

dependent argument is given by,

χ(t) =
1

2π

∫ ∞
0

dωS(ω)|F (ω, T )|2, (3.6)

for case of a symmetric auto correlation function (S(−ω) = S(ω)) [138–140]. For a given

distribution of pulses, modulation function f(t) can be written as Fourier series

f(t, T ) = Θ(T − t)Θ(t)
∞∑

k=−∞

Ak exp(iωkt), (3.7)

with ωk = kω0 where ω0 is characteristic frequency which is inverse of period of f(t, T ) asso-

ciated with the applied DD sequence. For the CPMG sequence [141, 142] with inter pulse delay

2τ , ω0 = 2π/4τ = π/2τ . Now the filter function can be written as

F (ω, T ) =

∫ T

0

dte−iωt
∑
k

Ake
iωkt =

∑
k

Ake
− iT (ω−ωk)

2 T sinc
[
T (ω − ωk)

2

]
, (3.8)

where sinc(x) = sin(x)/x. After plugging F (ω, T ) in Eq. 3.6 and noting that T sinc(ωT/2) →

2πδ(ω) and T sinc2(ωT/2)→ 2πδ(ω) as T →∞,

χ(T ) ≈ T
∞∑
k=0

|Ak|2S(ωk). (3.9)
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If the decay can be approximated to a exponential with decay rate 1/T2 then

1

T2

≈
∞∑
k=0

|Ak|2S(ωk). (3.10)

Figure 3.1: The modulation functions f(t, T ) (left column) and the corresponding Fourier transforms, i.e.,
Filter functions F (ω, T ) (right column). The 1st order sampling points of the filter functions are illustrated
using a schematic spectral density function S(ω) as shown in the lowest trace of the right column.

In the case of a free-evolution without any DD sequence, the modulation function f(t, T )

becomes constant and therefore, the filter-function F (ω, T ) is a sinc-function centered at ω =

0, and the decay rate 1/T2 depends only on S(0). For the CPMG sequence with uniformly

distributed π pulses at an interval 2τ , f(t) switches between +1 and −1 with a period 4τ . The

schematic diagrams of f(t, T ) and the corresponding filter functions |F (ω, T )|2 for a set of τ

values are shown in Fig. 3.1. In this case, A2
k = (4/π2k2) for odd k and Ak = 0 otherwise.

50



3.2 Theory of noise spectroscopy

Hence
1

T2

=
4

π2

∞∑
l=0

1

(2l + 1)2
S(ω2l+1). (3.11)

Thus the decay rate 1/T2 for a given τ is determined by the harmonics at ω2l+1 = π(2l+1)/2τ , as

illustrated in Fig. 3.1. Hence from the experimentally measured T2 values for τ ∈ [τmin, τmax], one

can extract the spectral density points S(ω2l+1) in the range ω ∈ [π/2τmax, π/2τmin] by inverting

the above equation. In the following we discuss two ways of extracting the noise spectrum S(ω)

from Eq. 3.11.

An approximate way is to truncate the series in Eq. 3.11 to the zeroth order term so that,

S
( π

2τ

)
≈ π2

4T2

. (3.12)

This method is suitable for spectral densities with sharp cut-offs at low-frequencies [143]. Other-

wise, ignoring higher order terms may introduce an error of up to about 10%.

On the other hand, we can account for the zeroth as well as many higher order terms of

spectral density by using a suitable model function for the spectral density. Random isotropic

rotations of liquid molecules usually lead to exponential autocorrelation function and therefore,

the corresponding spectral density is Lorentzian [136]. Multiple relaxation sources may lead to

multi-Lorentzian spectral density, as observed in the experiments described in the next section.

Our phenomenological model thus consists of a linear combination of Lorentzians

SL(ω) =
L∑
j=1

λj
(ω − ωj)2 + λ2

j

. (3.13)

The parameters ωj (center-frequency) and λj (line-width) can be determined by numerically max-

imizing the overlap between the experimental T2 values and those calculated using the model

function SL(ω). Another benefit of obtaining the functional form of spectral density is that it

allows one to evaluate the performance of various DD sequences at arbitrary inter-pulse spacing,

as illustrated in section 3.4.

In the case of multi-qubit systems, all the qubits may be coupled to a common environment,

or each qubit can be coupled to a separate environment. The former and later case correspond

to maximally correlated or partially correlated environments. Hence, along with the self-noise

spectrum due to each noise source, the coherence is also affected by correlation among them.
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In this regard, protocols to completely characterize the environment by monitoring the dynamics

of various coherences of a multi-qubit system, under careful application DD sequences, was

proposed [127, 128]. However, in this work, we apply the same CPMG sequence on all the

qubits, which captures the combined effect of self and correlation noise spectra.

3.3 Noise spectroscopy of long-lived states

In this section, we compare the noise influencing two-qubit coherences in homonuclear as well

as hetronuclear NMR spin systems. Specifically, we focus on SQ coherences and specific super-

positions of singlet and triplet states.

3.3.1 Homonuclaer spin pair

We used the two phenyl 1H nuclei of 2,3,6-trichlorophenol dissolved in dimethyl sulphoxide-D6.

The experiments were carried out at 300 K in two different magnetic fields corresponding to

Larmor frequencies ν0 = 400 MHz as well as ν0 = 600 MHz. The chemical shift difference

∆ν × 106/ν0 = 0.21 ppm and the scalar coupling constant J = 8 Hz. Under weak-coupling

approximation, the NMR Hamiltonian is

H = π∆νIz − π∆νSz + πJ2IzSz, (3.14)

where Iz and Sz are the spin operators.

The natural choice for expressing LLS and LLC is the singlet triplet basis, formed by the

eigenvectors of the isotropic interaction Hamiltonian I · S, i.e.,

|T0〉 =
1√
2

(|01〉+ |10〉),

|T+〉 = |00〉,

|T−〉 = |11〉, and

|S0〉 =
1√
2

(|01〉 − |10〉), (3.15)

where {|00〉, |01〉, |10〉, |11〉} form the Zeeman eigenbasis.
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Figure 3.2: Pulse sequences used to measure the noise spectrum of (a) ρLLS , (b) ρLLC , and (c) ρSL . Here
τ1 = 1/(4J), τ2 = 1/(4J) + 1/(2∆ν), τ3 = 1/(4∆ν), and n is the number of times the loop is repeated.
(d) Structure of 2,3,6-trichlorophenol. The CPMG DD sequence with spin-lock along x-axis is shown in
the inset (DDSL).

In particular, we focus on the following coherences:

ρ
LLS

= |S0〉〈S0| − |T0〉〈T0|

ρ
LLC

= |S0〉〈T0|+ |T0〉〈S0|

ρ
SL

= |T+〉〈T+| − |T−〉〈T−|. (3.16)

In the above, ρ
LLS

, ρ
LLC

, and ρ
SL

are realized by preparing the states −I · S, Ix − Sx, and Ix + Sx

respectively, and applying a strong spin-lock along the x axis [68, 129]. Here we have considered

ρ
SL

for the sake of comparison with the other long-lived states. The pulse sequences correspond-

ing to these states are shown in Fig. 3.2.

We use the multi-Lorentzian model function described in Sec. 3.2 to extract the noise spec-

trum. The best fit was achieved with a minimum of three Lorentzian functions (i.e., L = 3) as

described in Eq. 3.13. We scan over a range of spectral frequencies ω = π/2τ by varying the

duration 2τ between the π pulses, and measure the corresponding T2 values. WALTZ-16 spin-
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Figure 3.3: (a) Experimental decay constants (dots) of 2,3,6-trichlorophenol (averaged for both protons)
in 400 MHz spectrometer for a range of τ values and for different states as indicated. The solid lines
correspond to decay constants obtained from the best fit by the 3-Lorentzian model as described in Eq.
3.13. (b) The corresponding noise spectral density bands. The dashed line at 125 Hz corresponds to the
maximum harmonics sampled with τ = 2 ms.

lock of 2 kHz amplitude was applied along the x-axis during the delays between the π pulses.

The experimental T2 values for all the three states and for τ values ranging from 2 ms to 2 s are

displayed in Fig. 3.3(a). Note that the major source of noise in our experiments is time-dependent

inhomogeneities in the static field (though the inhomogeneities in the magnetic field lead to static

perturbation, the molecular motion makes it time-dependent [144]) which has correlation time

of ms to s. That is why DD sequences with interpulse delay in ms to s range can suppress the

decoherence and can be used for noise spectroscopy. The uncertainties in the noise spectrum

(represented by the width of the bands) are estimated by several iterations of maximizations also

considering the standard deviations in T2 values.

As expected, ρ
LLS

has the lowest noise in the whole-frequency range indicating long-lifetimes.

On the other hand, ρ
SL

has the highest noise indicating a relatively short-lived state. The long-
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Figure 3.4: (a) The experimental decay constants (dots) at various τ delays for the singlet state ρLLS at
two different magnetic fields, i.e., 400 MHz and 600 MHz as indicated. The solid lines correspond to
decay constants obtained from the best fit by the 3-Lorentzian model as described in Eq. 3.13. (b) The
corresponding noise spectra.

lived coherence ρ
LLC

has an intermediate noise-profile. Owing to the hardware limitations, the

highest frequency sampled by the experiments is 125 Hz (indicated by a dotted line in Fig. 3.3(b)),

corresponding τ = 2 ms. The noise-profiles above this cutoff frequency are basically an extrapo-

lation obtained by the model functions.

Interestingly, in all the three spectral-density profiles we observe a hump close to 100 Hz.

Replacing the hydroxyl proton with deuterium did not affect the hump. We have also observed a

systematic dependence of the hump with the spin-lock power, which possibly relates its origin to

an interference between spin-lock and DD sequences. However further investigations are required

to confirm this point.

Although it is well known that singlet state is longer lived at lower fields [145, 146], it is

not obvious how the spectral characteristics of noise changes under a higher field. Therefore

it is useful to compare the noise spectrum at two different fields. With this intention, we have
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measured the noises of singlet state of same system, i.e., the proton pair of 2,3,6-trichlorophenol,

at 400 MHz as well as at 600 MHz spectrometers under identical conditions. The T2 values

and the corresponding spectral density bands are shown in Fig. 3.4. As expected, the noise is

significantly stronger at 600 MHz.

3.3.2 Heteronuclear spin-pair
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180x 
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Figure 3.5: (a) Pulse sequence to measure noise spectrum in a heteronuclear spin system. (b) Molecular
structure of Chloroform. Here singlet state is prepared on 1H and 13C spins with a coupling constant
JCH = 209 Hz between them. The CPMG DD sequence is shown in the inset.

In a hetronuclear spin pair, such as 1H-13C in 13C Chlorform (dissolved in CDCl3; see Fig.

3.5b), the singlet subspace is not a DFS, because a strong magnetic field breaks the symme-

try between two spins and a spin-lock to restore the symmetry is not practical. Therefore, a

heteronuclear singlet-state, though easy to prepare, is no longer an eigenstate of the interaction

Hamiltonian. A pulse sequence to measure their noise spectrum is shown in Fig. 3.5a. It be-

gins with a θ = cos−1(1/4) pulse on 1H spin followed by a pulsed-field-gradient to equalize the

polarizations and prepare the state Iz + Sz. The following RF pulses and delays convert it to

−IxSx−IySy ≡ |S0〉〈S0|− |T0〉〈T0|. A CPMG DD sequence with a variable τ delay followed by

a final 90y on 1H is then used to measure the noise spectrum. The results are shown in Fig. 3.6.

For comparison, we have also included the noise spectra of single-spin states Ix and Sx. Here
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3.4 Noise spectroscopy of Multiple quantum coherences (MQC)

1H spin has longer T2 values and accordingly lower noise profile compared to 13C. Unlike in the

homonuclear case, the heteronuclear singlet has the shortest T2 values and therefore highest noise

profile. Therefore a heteronuclear singlet is not an LLS at high fields [71].
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Figure 3.6: (a) The experimental decay constants (dots) of 13C-Chloroform at various τ delays for single
spin states ρH = Ix, ρC = Sx, and the singlet state ρS at 500 MHz. The solid lines correspond to
decay constants obtained from the best fit by the 3-Lorentzian model as described in Eq. 3.13. (b) The
corresponding noise spectra.

3.4 Noise spectroscopy of Multiple quantum coherences (MQC)

Consider an N -spin star-topology system wherein a central spin (denoted by M ) is uniformly

coupled toN−1 magnetically equivalent spins (denoted byA). Such a system allows a convenient

way to prepare many large quantum coherences. The method involves applying a Hadamard gate

(denoted by H) on the central spin followed by a CNOT gate as described in Fig. 3.7. In thermal

equilibrium, the central spin will have an excess |0〉M population while the surrounding spins

have a Boltzmann distribution over all the states |N − 1, 0〉A to |0, N − 1〉A, wherein the first

and second numbers denote the numbers of spins in |0〉 and |1〉 states respectively. The effect of

Hadamard and CNOT gates can now be described as
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|0〉M
N−1∑
k=0

|N − 1− k, k〉A

H→ |0〉M + |1〉M√
2

N−1∑
k=0

|N − 1− k, k〉A

CNOT−→ 1√
2

N−1∑
k=0

|0〉M |N − 1− k, k〉A + |1〉M |k,N − 1− k〉A.

The last sum represents a collection of coherences with quantum numbers N,N − 2, · · · , 0

for even N and N,N − 2, · · · , 1 for odd N . Such coherences are often referred to as |MSSM〉

(many-some, some-many) states [131]. A special MSSM state is the N -quantum |NOON〉 state

|NOON〉 = (|000..0〉+ |111..1〉)/
√

2. (3.17)
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Conversion  

and Detection 

90-x 90x 

Figure 3.7: Pulse sequence to measure noise spectra of the MSSM states. An initial INEPT (insensitive
nuclei enhanced by polarization transfer) [36] operation is used to transfer magnetization from 1H to 31P.
The PFGs G1 and G2 are chosen such that φ2(k) = −φ1(k) to select out an MSSM state with a particular
lopsidedness l(k). A CPMG-DD sequence with composite π-pulses was used. Dashed lines are guide
for the reader to separate the three compartments according to their purpose: (i) preparation of MQCs
(INEPT+Hadamrd+CNOT) (ii) Noise spectroscopy of MQCs and (iii) Observation of MQCs (conversion
to single quantum coherences).

The MSSM states can be individually studied by selective filtering of their signals using a pair
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3.4 Noise spectroscopy of Multiple quantum coherences (MQC)

of pulsed-field-gradients (PFG) (see Fig. 3.7). If γA and γM denote the respective gyromagnetic

ratios of A and M spins, we can express the dephasing caused by the first PFG by,

φ1(k) ∝ γM + (N − 2k − 1)γA
γA

= l(k), (3.18)

where the term in the right hand side is known as the lopsidedness of the MSSM state and

γM − (N − 1)γA
γA

≤ l(k) ≤ γM + (N − 1)γA
γA

. (3.19)

Figure 3.8: The spectral lines corresponding to various MSSM states with varying lopsidedness l. Each
spectral line is individually normalized. The reference spectrum with all the lines is shown at the front.
The structure of Trimethylphosphite is also shown at the top-left corner.

Each MSSM state is converted back into an observable single-quantum M spin coherence by

the application of a second CNOT

1√
2

N−1∑
k=0

|0〉M |N − 1− k, k〉A + eiφ1(k)|1〉M |k,N − 1− k〉A

CNOT−→

(
N−1∑
k=0

|0〉M + eiφ1(k)|1〉M√
2

)
|N − 1− k, k〉A.
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Selection of the signal from a desired MSSM state with a particular l(k) value is achieved with

the help of a second PFG which introduces a phase φ2(k) = −φ1(k). The noise spectroscopy of

the MSSM states can be studied by inserting the DD sequence just before the second CNOT (see

Fig. 3.7).

Experiments were carried out in a Bruker 500 MHz spectrometer at 300 K. Trimethylphos-

phite (see Fig. 3.8) dissolved in DMSO was used as a 10-spin star-topology system including

a central 31P spin (M spin) and the nine surrounding 1H spins (A spins). The scalar spin-spin

coupling JPH was about 11 Hz. The signals from various MSSM states (obtained with the pulse-

sequence shown in Fig. 3.7) along with a reference spectrum are shown in Fig. 3.8.

Results and discussions: The results of the noise spectroscopy of various MSSM states are

shown in Fig. 3.9. As expected, the spectral density profiles appear to go higher with the magni-

tude of the lopsidedness, and accordingly the NOON state has the highest noise profile.

Figure 3.9: Trimethylphosphite noise-spectra for various MSSM states with different lopsidedness l. The
dashed lines parallel to l-axis represent the maximum frequency (250 Hz) sampled in experiments. The
inset shows the scaling of low-frequency spectral density values with l.

It is interesting to study the scaling of the low-frequency noise (≈ S(0)) versus the lopsid-

edness. The inset of Fig. 3.9 shows the experimental values of low-frequency noise (at low-

est frequencies sampled) and a fit with a shifted parabola c2l
2 + c0. The best fit was found at

c2 = 0.06± 0.01 and c0 = 3.37± 0.34. A quadratic scaling of noise with lopsidedness is obvious
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3.4 Noise spectroscopy of Multiple quantum coherences (MQC)

from the inset in Fig. 3.9.

According to Redfield theory of relaxation, the transverse relaxation is a result of two pro-

cesses - adiabatic and nonadiabatic [136, 147]. The energy conserving adiabatic part arises by

longitudinal noise and leads to dephasing. The nonadiabatic part is due to the transverse noise and

can induce transitions. Tang et al had observed that the completely correlated longitudinal noise

results in relaxation rates that vary quadratically with the coherence order [148]. In our system,

the coherence order is characterized by lopsidedness. Thus the quadratic dependence of spectral

density with lopsidedness points out that the noise is predominantly correlated, i.e., noise affects

all the spins identically. The background part in the scaling (c0) is due remaining contributions

including the nonadiabatic relaxation and the self-relaxation of the probe qubit (31P). It can be

noted that similar studies of scaling of decoherence were earlier reported in a solid state NMR

system by Krojanski et al [149].

An immediate application of extracting the noise spectrum is in evaluating the performances

of various types DD sequences and selecting the optimum sequence for preserving quantum co-

herences. Uhrig dynamical decoupling (UDD) [150], for example involves, a nonuniform distri-

bution of π pulses placed at time instants

tj = τc sin2

(
πj

2Nπ + 2

)
, (3.20)

where Nπ is the total number of π pulses in one period (τc), also known as the order of the UDD

sequence (denoted UDD-Nπ). It can be easily seen that UDD-1 and UDD-2 are identical to a

CPMG sequence.

Having the functional form of the noise spectral density we can now predict the relative decay

rates of a quantum state under a given DD sequence. As an example, the band in Fig. 4.4

shows the the predicated decay rates of the NOON state (spectral density shown in Fig. 3.9)

under UDD-3 sequence for a range of τc values. The corresponding experimental decay rates are

shown by dots. The reasonable agreement between experimental and predicted values of decay

rates demonstrates the benefit of extracting the spectral distribution of noise. Similar results were

obtained in the case of other MSSM states. It should be noted that imperfections in the π-pulses

such as finite duration, sensitivity to RF inhomogeneity over the sample volume, and calibration

errors may introduce additional uncertainties in the noise-spectrum estimation and may affect DD
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performance as well.
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Figure 3.10: Decay rates versus UDD-3 cycle duration τc calculated using Eq. 3.10 for the experimental
noise spectrum of 10-qubit NOON state. The dots correspond to experimental results.

3.5 Conclusions

While we are entering the era of quantum devices, noise remains a hurdle in storing quantum

superpositions. Exploiting decoherence-free-subspaces (DFS) is one of the convenient ways to

preserve quantum coherences. DFS is already being used for storing hyper-polarization [93],

studying slow molecular dynamics [85], characterizing molecular diffusion [86, 87], precise mea-

surements of coupling constants [130], as well as in fault-tolerant quantum computing [151].

However the noises influencing such special quantum coherences have not been hitherto charac-

terized experimentally. In this chapter, we have experimentally characterized and compared noise

spectral densities of various multi-qubit coherences.

We found that the noise spectrum of the long-lived singlet order (LLS) under spin-lock of

a homonuclear spin-pair had the lowest profile indicating the strong protection offered by the

symmetry in DFS resulting in long-livedness of the state. The long-lived-coherence (LLC) be-

tween singlet and the zero-quantum triplet had a higher noise profile, but still lower than the

normal uncorrelated (single-spin) coherence. We have also measured the extent of noise in LLS

under different field strengths and as expected, we found a higher noise with a stronger field,

although the overall spectral features remained similar. On the other hand, the uncorrelated spins

showed lower noise content compared to singlet states in a heteronuclear spin system, indicating

an asymmetry in the system. Further, we have also explored the noise profiles of various higher-

order coherences in a 10-spin system, and found a predominantly quadratic scaling of noise with
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respect to coherence order. Finally, using the noise spectrum of the NOON state we predicted its

decay rates under a 3rd order Uhrig dynamical decoupling sequence and verified the same with

experiments.

We believe that such studies are useful for understanding the physics of noise affecting quan-

tum systems as well as to design ways to suppress decoherence. A better understanding of noise

and their suppression will be crucial not only for the physical realization of quantum devices but

also for general spectroscopic applications.
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CHAPTER 4

Emulation and control of quantum non-Markovian dynamics

Abstract

We experimentally emulate, in a controlled fashion, the non-Markovian dynamics of a

pure dephasing spin-boson model at zero temperature. Specifically, we use a randomized

set of external radio-frequency fields to engineer a desired noise power spectrum to ef-

fectively realize a non-Markovian environment for a single NMR qubit. The information

backflow, characteristic to the non-Markovianity, is captured in the nonmonotonicity of

the decoherence function and von Neumann entropy of the system. Using such emulated

non-Markovian environments, we experimentally study the efficiency of the Carr-Purcell-

Meiboom-Gill dynamical decoupling (DD) sequence to inhibit the loss of coherence. Us-

ing the filter function formalism, we design optimized DD sequences that maximize coher-

ence protection for non-Markovian environments and study their efficiencies experimen-

tally. Finally, we discuss DD-assisted tuning of the effective non-Markovianity.

Reported in

Deepak Khurana, Bijay Kumar Agarwalla, and T. S. Mahesh, Experimental emulation of

quantum non-Markovian dynamics and coherence protection in the presence of informa-

tion back-flow, Phys. Rev. A 99, 022107 (2019).

4.1 Introduction

Despite promising to outperform their classical counterparts by miles, quantum technologies are

inherently plagued by the inevitable interactions with the surrounding environment leading to

decoherence [14], which limits their utilization to full potential. At microscopic level, under

certain assumptions namely weak system-environment coupling, uncorrelated initial state, and

short environmental correlation times, reduced dynamics of the open quantum system (OQS)

can be described by master equation of Lindblad structure with constant Lindblad operator and
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positive decay rates [21, 22] (see section 1.2.3 for a little more detail about assumptions). Such

dynamics is generally labeled as Markovian and corresponding dynamical map describing the

evolution of reduced OQS satisfy semi-group property.

In realistic scenarios, memory effects associated with environment must be taken into consid-

eration when these assumptions are not justified and as a consequence the corresponding dynam-

ical map does not satisfy semi-group property. Therefore, it is essential to go beyond the Marko-

vian description and study non-Markovian effects in the quantum dynamics. Unfortunately, the

definition of non-Markovianity from the theory of classical stochastic process can not be trans-

ferred directly to the quantum regime [152], and a definition of quantum non-Markovianity is

required, which is not based on classical notions. In this regard, several definitions of non-

Markovianity exist in literature [20, 153, 154, 154, 155]. However, there is no general agreement

on one definition and therefore characterization of non-Markovian dynamics is highly context

dependent [154]. Moreover, these memory effects have been shown to be resources for certain

quantum information tasks [156–161] which further motivate to understand the deviation of OQS

dynamics from Markovian description. To this end, recently, several definitions and measures to

quantify the degree of non-Markovianity have emerged [23, 162–168] from quantum information

perspective. These definitions mainly rely on studying time evolution of certain information the-

oretical quantities under the action of the dynamical map. In this work, we use Breuer-Laine-Pilo

(BLP) measure [23] which is based on distinguishability (trace distance [9]) between quantum

states of OQS. Distinguishability is always contractive under the action of the Markovian dynami-

cal map. Therefore, a momentary increase in distinguishability is a signature of non-Markovianity

and physically interpreted as information back-flow from the environment. A comparative study

of these measures for OQS model considered in this paper, namely pure dephasing [169] of a

qubit, is carried out in Ref [170, 171]. All common definitions of non-Markovianity coincide

in this case [20, 172]. However corresponding measures proposed to quantify the amount of

non-Markovianity are not equivalent [170, 171]. We refer the reader to ref [20, 153] for detailed

review of quantum non-Markovian dynamics.

Any rescue strategy developed to counter detrimental impact of decoherence on quantum in-

formation must be quantitatively benchmarked to ensure its robustness against various kinds of

realistic environments. In this regard, non-Markovianity measure defined from quantum infor-
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mation perspective enables one to study the impact of information back-flow on quantum control

protocols in a more quantitative manner [173–179]. Specifically, dynamical decoupling (DD)

[120, 180] is one of the most successful techniques developed in the past two decades. Efficiency

of a DD sequence is related to correlation times of the environment and accordingly various DD

schemes have been designed to suit the type of the environment [180–183, 183–192]. Therefore

it is imperative to experimentally investigate impact of memory effects quantified using non-

Markovianity measures on the efficiency of DD sequences.

To ensure a faithful benchmarking one has to reproduce effect of the environment (mainly

noise spectral density) in a controlled fashion. In this regard, a systematic transition from Marko-

vian to non-Markovian dephasing dynamics was demonstrated in photonic systems [193]. How-

ever, a full control over synthesis of noise spectral density is required for quantum control bench-

marking purposes which can be achieved using artificially engineered environments [194–199].

Equipped with an elaborate control on quantum dynamics, NMR systems are excellent testbed

for these kind of studies. In this chapter, using 1H nuclear spins of water molecules in liquid-state

NMR setup as a qubit-ensemble, we experimentally mimic the non-Markovian dynamics of a pure

dephasing quantum spin-boson model via injection of classically colored noise. We utilize ampli-

tude and phase-modulated external radio-frequency (RF) fields to produce a desired noise power

spectrum [194]. The signature of non-Markovianity is captured in terms of non-monotonicity

of the decay of trace distance [23] (BLP measure) and the behavior of von Neumann entropy

of reduced OQS. Using engineered non-Markovian environments, we experimentally investigate

the efficiency of Carr-Purcell-Meiboom-Gill (CPMG) DD sequence [142, 200] in protecting co-

herence. Further, using filter function formalism [188], we design optimized DD sequences that

achieve a superior coherence protection for a given non-Markovian environment and study their

experimental efficiency. We also indicate the potential application of DD sequences in tuning the

effective non-Markovianity.

4.2 Emulation of non-Markovian dephasing dynamics

In this chapter, we consider the spin-boson pure dephasing Hamiltonian [169]

H = ω0σz/2 +
∑
k

ωkb
†
kbk +

∑
k

σz(gkbk + g∗kb
†
k), (4.1)
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consisting of precession of a single-qubit with a frequency ω0 and Pauli z-operator σz (1st term),

a bosonic environment with creation (annihilation) operator b†k(bk) (2nd term) and the mutual

interaction with coupling constant gk (3rd term). This Hamiltonian model is exactly solvable and

leads to the decay of coherences without affecting the populations. The decoherence function is

of the form Γ0(t) = e−χ0(t),

χ0(t) = 2

∫ ∞
0

dωJ(ω) coth(ω/2kBT )
sin2(ωt/2)

ω2
, (4.2)

where kBT and J(ω) =
∑

k |gk|2δ(ω−ωk) describe the thermal energy and the spectral density of

the environment respectively. In absence of initial system-environment correlation, the reduced

density matrix of OQS in the interaction picture follows a master equation with a single Lindblad

operator

ρ̇ = Φtρ = γ0(t)[σzρ(t)σz − ρ(t)], γ0(t) = −Γ̇0(t)/Γ0(t)

The dynamical map Φt leads to non-Markovian dynamics as decay rate γ0(t) becomes negative

for some t ≥ 0 depending upon temperature and spectral density of the environment. This

holds according to all common definitions of non-Markovianity [20, 172] as pointed out earlier.

However various measures of non-Markovianity are not equivalent [170, 171]. Here we use the

one based on the contractive property of trace distance

D(ρ1, ρ2) = ||ρ1 − ρ2||/2,

where ||ρ|| = Tr(
√
ρ†ρ) [9]. Under a Markovian dynamical map Φ : ρ(0) → ρ(t), the trace

distance is always contractive, i.e.,

D(ρ1(t), ρ2(t)) ≤ D(ρ1(0), ρ2(0))

for all pairs of initial states {ρ1(0), ρ2(0)}. Here, the equality holds for the evolution under a

unitary map. On the other hand, a dynamical map is non-Markovian if there exists a pair of initial

states for which the trace distance shows a non-monotonic behavior. Such a non-monotonicity of

the trace distance is associated with information back-flow from the environment [20, 23, 153].

Accordingly, the BLP measure [23] of non-Markovianity is defined as

N = max
ρ1(0),ρ2(0)

∫
σ>0

σ(t)dt, where, σ(t) = Ḋ(ρ1(t), ρ2(t)).
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In this case non-Markovianity measureN is maximized for any pair of antipodal initial states

on Bloch sphere [201] and σ(t) = Γ̇0(t). Accordingly, non-Markovianity measure takes a simple

form,

N =
∑
k

[Γ0(tfk)− Γ0(tik)],

considering all the intervals [tik, t
f
k ] wherein Γ̇0(t) > 0.

The reduced dynamics of OQS under spin-boson dephasing Hamiltonian (Eq. 4.1) can be

emulated by considering its semi-classical limit [ω0 + ξ(t)]σz/2, where ξ(t) is a stationary Gaus-

sian stochastic process with zero mean and with a correlation function 〈ξ(t1)ξ(t2)〉 = g(t1−t2).

The Fourier transform S(ω) of time averaged g(t) is called noise power spectrum which replaces

πJ(ω) coth(ω/2kBT ) in Eq. 4.2, so that the decoherence function in this limit reduces to

χc0(t) =
1

2π

∫ ∞
0

dωS(ω)|F0(ω, t)|2, (4.3)

where the free-evolution filter-function |F0(ω, t)|2 = 4 sin2(ωt/2)/ω2. It suggests that we can
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Figure 4.1: NMR pulse-sequence used to implement a non-Markovian dephasing dynamics. Here ρth =
(I + εσz)/2 is the initial thermal state with purity factor ε. The final signal is obtained by averaging over
N independent realizations of the stochastic process ξ(t) as in Eq. 4.4.

mimic the non-Markovian dynamics of a single qubit coupled to a bosonic environment with a

synthetic noise power spectrum. We engineer such a power spectrum via a temporal average over

a set of stochastic fields of the form,

ξ(t) = γ
M∑
k=1

a(k) cos(kωbt+ φ), (4.4)
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where γ is strength of noise, a(k) is the amplitude of the kth Fourier component, ωb is the base

frequency, and φ ∈ [−π, π] is a random number with an uniform distribution. Note that though

each of the realizations of ξ(t) is a coherent time-dependent field and leads to unitary dynamics,

a temporal average of many realizations leads to effective non-unitary dynamics. The resulting

noise power spectrum is of the form [194],

S(ω) =
πγ2

2

M∑
k=1

a2(k)[δ(ω − kωb) + δ(ω + kωb)]. (4.5)

In our experiments, we consider the spectral density

J(ω) = λ exp(−ω/ωc) ωs/ωs−1
c , (4.6)

where Ohmicity parameter s = 1, s < 1 and s > 1 corresponds to Ohmic, sub-Ohmic and super-

Ohmic spectrum respectively. Comparing Eqs. 4.2, 4.6 and 4.5, we find that for spectral density

mentioned above

a2(k) =
(kωb)

s

ωs−1
c

e−kωb/ωc coth

(
kωb

2kBT

)
, γ2 = 2λ, (4.7)

which implies we can emulate pure dephasing dynamics with a non-Markovian behavior of a

bosonic reservoir by properly tuning s, γ, T , and ωc. In this chapter, we confine ourselves to zero

temperature (T = 0) case.

The functional forms of N versus the dimensionless coupling constant λ and Ohmicity pa-

rameter s, have been investigated in [170, 171]. It has been shown in earlier works [170, 171, 177]

that dephasing dynamics becomes BLP non-Markovian (N > 0) for s > 2 and T = 0. Interest-

ingly, environments corresponding to s ≤ 2 do not give rise to non-Markovianity, according to

BLP measure, despite having non-zero correlation times.

White Noise 

s = 0 

with large ωc 

Markovian 

Colored Noise 

BLP Markovian BLP non-Markovian 

s ≤ 2 s > 2 

To experimentally emulate the non-Markovian dynamics, we take a NMR sample consists
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4.2 Emulation of non-Markovian dephasing dynamics

of 20% H2O in 80% D2O, with a trace of CuSO4 that shortens 1H longitudinal and transverse

relaxation times to T1 ≈ 200ms and T2 ≈ 180ms respectively. The experiments are carried out

in a Bruker 500 MHz NMR spectrometer at an ambient temperature of 300 K. Here the two

Zeeman levels of the spin-1/2 1H nucleus forms the qubit and stochastic controls required to

engineer a desired S(ω) are realized by transverse radio-frequency (RF) fields whose amplitude

and phase are modulated according to Eq. 4.4. The corresponding NMR pulse-sequence requires

an initial (π/2)y pulse to prepare coherence followed by a stochastic longitudinal control field

Uz(t) = e−iξ(t)σz/2. However, as illustrated in Fig. 4.1, Uz(t) is implemented by a transverse

stochastic unitary operator Ux(t) sandwiched between (π/2)−y and (π/2)y pulses, wherein the

(π/2)−y pulse is nullified with the initial (π/2)y pulse. Finally, an effective dephasing dynamics

is achieved by temporally averaging NMR signals over N = 1000 independent realizations of the

stochastic process ξ(t) (Eq. 4.4) consisting of M = 1000 Fourier components.

We tuned the strength of injected noise λ ∈ [10, 100], base and cut-off frequency ωb = 2π× 4

rad/s and ωc = 2π×320 rad/s respectively, and the ohmicity parameter s ∈ [1, 6] so that the signal

decays out in 2.5 ms (≈ 5 ω−1
c ). Fig. 4.2(a) contrasts the temporal averaged signal in presence of

BLP Markovian (s = 1, λ = 10,N = 0) environment with the BLP non-Markovian environment

(s = 4, λ = 10,N > 0) with corresponding theory and numerical simulations. For the non-

Markovian case, the onset of information back-flow (Γ̇0(t) > 0) occurs at about 495 µs as marked

by the dashed line. In our experiments, since Γ0(t) decays out in 2.5 ms � T2, the intrinsic

transverse dephasing has little effect on the engineered dephasing. However, the discrepancy

between the simulations and experiments is mainly due to other experimental limitations such

as spatial inhomogeneity in RF pulses. The experimentally obtained non-Markovianity measure

N versus Ohmicity parameter s (Fig. 4.2(b)) and coupling constant λ (Fig. 4.2(c)), show an

overall agreement with the corresponding theoretical [170, 171] and numerical simulations. For

free-evolution (Eq. 4.3), the non-Markovianity measure is almost zero for low value of Ohmicity

parameter (s ≤ 2) as well as for high values (s > 6), due to minimal overlap of the spectral

density S(ω) with the high-frequency parts of the filter-function |F0(ω, t)|2. For λ = 10, the

maximum non-Markovianity is obtained for s = 4.5. Unlike the theoretical curves, the finite

size of the temporal ensembles (N = 1000) leads to additional oscillations in experimental as

well as simulated curves (Fig. 4.2(a)), resulting in an overestimation of the non-Markovianity
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Figure 4.2: (a) Temporally averaged decoherence functions for BLP Markovian (s = 1, λ = 10) and
BLP non-Markovian (s = 4, λ = 10) emulated environments. Non-Markovianity measure N versus
(b) ohmicity parameter s for λ = 10 and (c) coupling constant λ for s = 4. The shaded regions for
simulations and error bars in experiments correspond to standard deviations over 10 distinct bins each of
900 realizations, and they capture the finite-ensemble effects. (d) Variation of von-Neumann entropy of
the system with time.
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4.2 Emulation of non-Markovian dephasing dynamics

parameterN in Fig. 4.2(b) and (c). To this end, appropriate smoothening procedure was adopted

to minimize the effect of such spurious signal oscillations (see Appendix). It is also interesting to

look at von-Neumann entropy of the system S(ρ(t)) which provides a thermodynamic perspective

on the transition from Markovian to non-Markovian dynamics. As described in section 1.1.2.6,

for a single qubit with an initial state ρ = 1/2 + εσx/2,

S(ρ(t)) = −Tr[ρ(t) log2 ρ(t)] ≈ 1− ε2Γ2
0(t)/2, (4.8)

(blue-line) along with corresponding simulated (red-line) and experimental (symbols) entropies

are also shown in Fig. 4.2 (d). While the monotonic growth of entropy for s = 1 indicates

Markovian behavior, the slight drop of entropy from t ≈ 0.5 ms for s = 4 is a signature of

non-Markovianity.
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Figure 4.3: Noise spectrum (dashed line) for BLP non-Markovian environment corresponding to s =
4, λ = 10 and filter-functions |F (ω, t)|2 at t = 5 ω−1

c for various DD sequences as well as for free-
evolution (a) and corresponding decoherence functions (b). (c) Circuit used to apply dynamical decoupling
along with noise modulation.
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4.3 Dynamical decoupling for non-Markovian environments

Consider a DD-protected qubit undergoing sequential phase-flips (π pulses) represented by the

rectangular-wave modulation function f(t) ∈ {−1, 1}. In this case, the effective decoherence

function Γ(t) = e−χ
c(t), where χc(t) has a similar form as in Eq. 4.3, except that the filter-

function is replaced with the Fourier transform,

F (ω, t) =

∫ t

0

f(t′)e−iωt
′
dt′. (4.9)

Construction of a DD sequence is based on engineering a filter-function F (ω, t) which minimizes

its overlap with a given noise power spectrum S(ω), and thereby minimizes Γ(t). Therefore, the

performance of a DD sequence depends crucially on the timescale associated with the environ-

mental correlation function. Only in case of s = 0 for very large value of ωc (white noise), decay

of coherence is exponential and DD sequences generally fail. In presence of BLP Markovian

environments (s ≤ 2, N = 0), it has been theoretically shown that the PDD sequence [120] is

most efficient [177] when delay between inversion pulses ∆t is smaller than ω−1
c as expected.

However, PDD sequence becomes inefficient as non-Markovian effects become relevant (s > 2,

N > 0) even when ∆t < ω−1
c . This can be easily understood in terms of filter function formalism

as shown in Fig 4.3(a) for ∆t ≈ 0.5 ω−1
c in presence of BLP non-Markovian environment corre-

sponding to the Ohmicity parameter s = 4 and the coupling constant λ = 10. Along with PDD,

we also plot filter function of CPMG [142, 200] and UDD [183] sequences. Due to substantial

overlap with noise spectrum with filter function, these sequences under perform for s > 2.

If we pack more π pulses in a given total duration, CPMG and PDD filter function peaks will

move to higher frequencies, thus reducing the overlap with noise spectrum. However for a fair

comparison, we keep same number of π pulses over a fixed total duration for all DD sequences.

Each π pulse, instead of being an instantaneous spin flip, has in practice a finite duration, as-

sociated pulse errors, and requires certain energy output from the duty-cycle limited hardware

[144, 192, 202]. For a given duration, the total number of π pulses therefore constitutes the

resource required for DD.

We synthesize non-Markovian DD-sequence (NDD) that maximizes coherence protection pa-

rameter, P =
∫ t

0
dt′Γ(t′)/t [177] for a known non-Markovian environment, by numerically op-
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Figure 4.4: (a) Theoretical and experimental (symbols) decoherence functions with free-evolution
(smooth), CPMG (dash-dot) (b), or NDD (dash) (c) sequences. In (b) and (c) one particular noise realiza-
tion is interleaved with π pulses. (d) Optimal DD sequences for various ohmicity parameter s ∈ {1, 5}.
Corresponding values of non-Markovianity measure are also indicated.
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timizing the time-instants of π pulses keeping the total number of pulses (n) to be a constant.

Specifically, we use genetic algorithm for optimization in this n-dimensional space where genes

are delay between the π pulses. We provide CPMG as initial guess to the algorithm and opti-

mization was constrained by the minimum delay between DD pulses, i.e., width of the DD pulse

itself which was 50µs. The algorithm took up to 500 generations to reach an optimal solution.

The circuit used to apply DD pulses along with noisy modulation is shown in Fig 4.3 (c). We

interleave πz pulses each of duration 50µs with the noise modulation profile for each realization

and the noisy modulation is only applied during free-precession time to maintain high fidelity of

πz pulses.

Filter-functions for NDD sequence designed for BLP non-Markovian environment (N > 0)

corresponding to Ohmicity s = 4 with noise strength λ = 10 is shown in Fig. 4.3 (a) along with

other sequences including free-evolution. Note that NDD filter-function has the minimal overlap

with S(ω) indicating a better coherence protection as evident from the corresponding decoherence

functions plotted in Fig. 4.3 (b). The inefficiency of other sequences can be attributed to the

localization of the noise strength at the intermediate frequencies. Fig. 4.4 (a) compares the

theoretical and experimental (symbols) performances of CPMG sequence (Fig. 4.4 (b)) with

NDD (Fig. 4.4 (c)) and free-evolution for BLP non-Markovian environment corresponding to

s = 4 and λ = 10. Each of the 1000 realizations for emulated environmental x-modulations (see

Fig. 5.7) was interleaved with a total of ten composite πz pulses of width 50 µs . Experimentally,

the fidelity of πz pulse was ≈ 98% which indicates towards 15% radio frequency inhomogeneity.

It is interesting to note that for durations less than 0.5 ms, CPMG shows faint improvement over

free-evolution. However, once the information back-flow sets in, CPMG not only fails to protect

the coherence, but also has a detrimental impact on it. In contrast, the NDD sequence should

have a much better coherence protection as indicated by the theoretical decoherence function.

Experimentally, there is a significant protection for up to 1 ms, and then the performance drops

below free-evolution presumably due to finite pulse-widths, calibration errors, and other pulse-

imperfections. Generation of numerous NDD sequences starting from random guesses and for

various values of Ohmicity parameter s ∈ {1, 5}, revealed a general pattern involving bunching

of π pulses at the beginning and at the end of sequences for BLP non-Markovian environments

(s > 2). This feature explains the exclusion of filter-function at the intermediate frequencies as
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Figure 4.5: Numerically evaluated coherence protection P and non-Markovianity parameter N is plotted
for various DD-sequences versus number of π pulses in (a) and (b). Same parameter plotted for various
value of s under the application of CPMG, NDD as well as free evolution. NDD sequences shown in Fig.
4.4 (d) were used in this case.

observed in Fig. 4.4(a) and consequently the minimization of overlap with the spectral density.

This pattern may help the NDD sequence to take advantage of the inherent information back-flow

by avoiding π pulses in the intermediate time durations.

In Fig. 4.5(a) and Fig. 4.5(b), the protection parameter P and non-Markovianity measure

N , respectively, are plotted versus the number of πz pulses (various ∆t regimes) for CPMG,

UDD and optimal NDD sequences. As expected, in the absence of information back-flow (s =

1, λ = 10), the protection parameter increases linearly before saturation, in contrast to a nonlinear

behavior (before saturation) in the presence of information back-flow (s = 4, λ = 10). For high

value of number of pulses (for shorter ∆t) optimal solution reaches CPMG irrespective of noise

spectrum (Markovian or non-Markovian). Interestingly, independent of noise spectra (s = 1 or

s = 4) and the DD sequence used, the non-Markovianity measure increases with number of π

pulses and starts decreasing after the protection parameter achieves the maximum value. This

behavior indicates that number of spin flips can be regarded as tuning knob to engineer desired

non-Markovian environments.

Since concept of DD is also associated with information back-flow, it is natural to ask the

question whether there is any correlation between protection provided by optimal DD sequences
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and non-Markovianity introduced by them in terms of BLP measure. In this regard, we plot

parameter P as well as N for CPMG and NDD sequences as a function of Ohmicity parameter

s for ∆t = 0.5 ω−1
c and λ = 10 in Fig. 4.5 (c) and (d). Non-Markovianity is higher compared

to free evolution for both CPMG and NDD sequences. However, we do not observe any clear

evidence of correlation between protection and non-Markovianity.

4.4 Conclusion

In this chapter, I described experimentally emulating the non-Markovian dynamics of a pure de-

phasing spin boson model at zero temperature by engineering noise power spectrum with the

help of a temporal averaged set of randomized external fields. We characterized the emulated

non-Markovianity using BLP measure [23] and von Neumann entropy of the system. Emulating

quantum non-Markovian dynamics is important not only from the fundamental point of view to

understand dynamics of information back-flow [20, 23, 153, 155, 162, 171, 193] and thermody-

namic properties such as flow of heat, entropy production [203–207], but also from a practical

perspective of developing coherence protection protocols in presence of environmental memory

effects [173, 174, 176, 177, 179]. With excellent control over quantum dynamics, we believe

that NMR systems are excellent experimental test-beds to study more complex and not exactly

solvable non-Markovian dynamics.

We experimentally investigated the efficiency of CPMG DD sequence in presence of non-

Markovian environments with non-zero BLP measure. Moreover, using the filter function for-

malism [187, 188, 208–211] we designed DD sequences that optimize the position of π pulses

(phase-flips) to maximize coherence protection for a specific non-Markovian environment. We

observed a bunching of π pulses in the beginning and end of the sequence which hints towards

exploiting information-back flow associated with non-Markovianity of dynamics. This pattern

might be insightful to incorporate non-Markovianity into the optimization routines. As the num-

ber of π pulses is increased keeping the total duration fixed, the optimal sequences approach

toward CPMG sequence as expected. BLP measure increases with number of π pulses till maxi-

mum protection is achieved. This aspect can be used as tuning knob to engineer non-Markovianity

in a systematic fashion. We believe that our investigations constitute an important step to study

impact of memory effects of environment on more involved quantum control protocols and con-
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tribute towards understanding non-Markovianity as a resource for quantum technologies.

4.5 Appendix: Estimation of non-Markovianity measure N

For emulating non-Markovian dynamics by noise power spectrum engineering using randomized

control fields, a finite number of realization are possible due to experimental constraints of time

required (five times longitudinal relaxation time 5 × T1 = 2s) for reinitialization after every

realization of ξ(t). It produces oscillation artifact on top of characteristic non monotonicity of

decoherence function due to non-Markovianity Fig. 4.6(a). Smoothing can not be used on time

domain data directly because it can not differentiate between spurious oscillations and concerned

non monotonicity. However, in Fourier domain these two can be separated since the artifact

appears as noise on top of peak due to non-Markovianity in Fourier transform of Γ0(t) (Fig.

4.6(b)). We smoothen out these oscillation using standard data processing techniques (Fig. 4.6(c))

keeping maximum of the peak intact and then we inverse Fourier transform to get smoothened

decoherence function (Fig. 4.6(d)).
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Figure 4.6: Smoothing process to estimate non-Markovianity measure N
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CHAPTER 5

Unambiguous measurement of information scrambling

Abstract

We investigate the scrambling of information in a hierarchical star-topology system using

out-of-time-ordered correlation (OTOC) functions. The system consists of a central qubit

directly interacting with a set of satellite qubits, which in turn interact with a second layer

of satellite qubits. This particular topology not only allows convenient preparation and fil-

tering of multiple quantum coherences between the central qubit and the first layer but also

to engineer scrambling in a controlled manner. Hence, it provides us with an opportunity

to experimentally study scrambling of information localized in multi-spin correlations via

the construction of relevant OTOCs. Since the measurement of OTOC requires a time evo-

lution, the non-scrambling processes such as decoherence and certain experimental errors

create an ambiguity. Therefore, the unambiguous quantification of information scrambling

requires suppressing contributions from decoherence to the OTOC dynamics. To this end,

we propose and experimentally demonstrate a constant time protocol which is able to filter

contribution exclusively from information scrambling.

Reported in

Deepak Khurana, V.R. Krithika , and T. S. Mahesh, Unambiguous measurement of infor-

mation scrambling in a hierarchical star-topology system, arXiv:1906.02692 (2019).

5.1 Introduction

Scrambling of initially localized quantum information into many degrees of freedom via the cre-

ation of non-local correlations leads to a perceived loss of quantum information in practical time

scales. In recent investigations, measurement of information scrambling has been related to many

practical aspects such as diagnosis of quantum chaos [212–214], entanglement [133], detection

of many-body localization [215–218], quantum phase transitions [219, 220], and thermalization
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[221]. The center to all these studies is the experimentally measurable physical quantity called

the out-of-time-ordered correlation (OTOC) functions [212, 213, 222]. An OTOC function is

four point correlation function where the operators are not ordered in time, and its temporal

decay is taken as indication of information scrambling in a many-body quantum system [223].

Despite significant theoretical investigations across condensed matter and high-energy research,

experimental measurement of OTOC functions is challenging because it involves the reversal

of time evolution. Several protocols such as interferometric [224, 225], quantum clock [226],

and quasi-probabilities [227] are proposed. On the experimental side, early success with NMR

[132, 215, 228] and ion-traps platforms [229, 230] have been reported.

In realistic scenarios, decoherence and experimental errors also contribute to the decay of

OTOC, and thereby create an ambiguity in the observation of information scrambling [230, 231].

To address this issue, methods based on the use of quantum teleportation [229, 232] and OTOC

quasi-probabilities [233] have been put forward recently for verified measurement of information

scrambling.

Till now, experimental studies have largely focused on the investigation of scrambling of in-

formation localized in uncorrelated degrees of freedom. Recently, the scrambling of information

localized in many-body correlations, such as multiple quantum coherences (MQCs) has also been

reported [132]. MQCs have been used for practical purposes such as quantum sensing [131], de-

tecting entanglement [133], noise spectroscopy [234] to name a few which makes it imperative to

study the impact of scrambling on these states.

In this regard, star-topology systems are well suited for this purpose because they allow a

controlled and convenient preparation of various MQCs [131, 235]. Further, if the star-topology

system has multiple layers, it provides an opportunity to study scrambling of information local-

ized in multi-spin correlations of inner layers to outer layers. Such hierarchical star-topology

systems (HSTS) are important not only from the perspective of studying information scrambling

but also they can be treated as a model for realistic environments to study dynamics of open quan-

tum systems. For example, 15N impurities around a nitrogen vacancy center in diamond acts the

first layer and surrounding 13C spins constitute the second layer [236].

In this work, using nuclear magnetic resonance (NMR) methods, we study information scram-

bling in a HSTS consisting of a central qubit surrounded by two layers of satellite qubits. We can
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initialize the system in a desired MQC between the central qubit and the first layer. Subsequently,

we drive the dynamics from the scrambling to non-scrambling regime by tuning the nonintegra-

bility of evolution propagator. Moreover, we propose a constant time protocol (CTP) to solely

capture the scrambling dynamics while disregarding the decoherence effects. Finally, we ex-

perimentally demonstrate the CTP protocol for the exclusive study of scrambling dynamics of a

specific MQC.

The paper is organized as follows: In the following section, we briefly review the OTOC

formalism and introduce CTP. In section III, we describe the experimental system and explain

MQC preparation. In section IV, we first investigate the OTOC dynamics corresponding to various

MQCs by numerical methods. Further, we describe the experimental study of the scrambling

dynamics of a particular MQC using CTP. Finally, we conclude in section V.

5.2 Quantifying information scrambling: Out-of-time-ordered
correlation (OTOC) function

Consider two operators B(t) and A(0), with commutator C(t) = [A(0), B(t)] and let C(0) = 0.

OTOC function is then defined as [212, 213, 222]

O(t) = 〈B†(t)A†(0)B(t)A(0)〉β, (5.1)

where B(t) = U †(t)B(0)U(t) is evolved in Heisenberg picture with unitary operator U(t) =

e−iHt with ~ = 1. Here H is the Hamiltonian governing the system dynamics and 〈∗〉β =

Tr(∗ · e−βH)/Z is the average over a thermal ensemble prepared with a temperature 1/(kBβ),

with kB being the Boltzmann constant and Z = Tr(e−βH) being the partition function. If A(0)

and B(t) are unitaries, then the OTOC function can be related to the norm of the commutator

C(t) by

O(t) = Re[O(t)] = 1− 1

2

〈
C†(t)C(t)

〉
β
. (5.2)

In general, as O(t) evolves under the unitary operator U(t), it exhibits occasional revivals to

unity unless there exists a loss of information. This loss of information is either due to decoher-

ence or due to the leakage of information via scrambling. In either case, the above commutation

norm fails to vanish over time, thus preventing the OTOC revivals. However, in practice, both of

these effects lead to an effective loss of OTOC revivals in practical timescales.
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In the following we assume A(0) = ρ(0), the initial state of the system and B(t) is a unitary

operator. Let us consider following two extreme cases.

(i) A pure initial state (ρ2(0) = ρ(0)) corresponding to zero temperature, i.e., β →∞. In this

case

O(t) = Re[〈B†(t)ρ†(0)B(t)ρ(0)〉β→∞]

= Re[Tr{B†(t)ρ(0)B(t)ρ(0)}]. (5.3)

(ii) A highly mixed qubit state corresponding to high-temperature NMR conditions, ρ(0) =

1/2+ερ∆(0), where the traceless part ρ∆(0) is often termed as the deviation density matrix. Here

ε ∝ β ' 0 is the purity factor. Now,

O(t) = Re[〈B†(t)ρ†(0)B(t)ρ(0)〉β→0]

∼ Re[Tr{B†(t)ρ∆(0)B(t)ρ∆(0)}], (5.4)

up to ε2 factor and a constant background (see Appendix A).

Moreover, if B†(t) = U(t) is the evolution propagator, then

O(t) = 〈ρ(t)|ρ(0)〉 or 〈ρ∆(t)|ρ∆(0)〉 (5.5)

as is relevant. Thus in this setting,O(t) can be measured by the overlap between the instantaneous

state with the initial state.

5.3 Unambiguous measurement of OTOC

In order to perform an exclusive study of scrambling, it is important to separate the decoher-

ence effects. To this end, certain protocols based on OTOC quasi probabilities [227, 233] and

quantum teleportation [229, 232] have been proposed. In the following we propose an alternate

approach based on the constant-time protocol (CTP) (illustrated in Fig.5.1) commonly used in

multi-dimensional NMR spectroscopy [237].
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𝑇 

No scrambling 

Scrambling  

duration t 

 

 
Scrambling 
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(𝑇 − 𝑡)/2 (𝑇 + 𝑡)/2 

𝑇 

𝑇/2 𝑇/2 
𝑡 = 0 

0 < 𝑡 < 𝑇 

Figure 5.1: Schematic illustration of CTP protocol. The blue and green bars indicate forward and back-
ward evolutions respectively. While decoherence is active throughout the duration T , scrambling is active
only for the net forward evolution time t.

We decompose the time-evolution unitary operator U(t) into two parts,

U(t) = e−iHt

= eiH(T−t)/2e−iH(T+t)/2

= U †
(
T − t

2

)
U

(
T + t

2

)
. (5.6)

Thus scrambling under the unitary operator effectively happens only for time t, but the decoher-

ence is active throughout the total time T . Hence by carrying out multiple experiments by varying

t for an experimentally feasible fixed T , one can reconstruct unambiguous evolution under scram-

bling Hamiltonian. This protocol can be incorporated in all the standard OTOC measurement

methods [132, 133, 224–228, 230].

5.4 Hierarchical star topology system (HSTS)

In this work, we consider an N -qubit HSTS with a central qubit surrounded by N1 qubits in the

first layer and N2 qubits in the second layer. Specifically, the experimental NMR system consists

of a 31P spin surrounded by a layer of six equivalent 1H spins. Each of 1H spin is further coupled

to three 19F spins in the second layer, as shown in Fig 5.2. Such a system allows us to explore

controlled scrambling of information stored in correlations of the central qubit with the first layer

to the second layer.
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O 

Figure 5.2: Molecule structure of tris(2,2,2-trifluoroethyl) phosphite. One 31P spin, six 1H spins and nine
19F spins act as central spin, first and second layer respectively. Each branch constitutes one 31P spin, two
1H spins and three 19F spins.

Let ~ = 1, α ∈ {x, y, z}, and σPα , σHiα and σFjα be Pauli-α operators for 31P, ith 1H and jth 19F

respectively. We also define the collective terms

Hα =

N1∑
i=1

σHiα and Fα =

N2∑
j=1

σFjα.

The Hamiltonian of a K-branch system can be written as a sum of internal interactions and

external fields,

HK =
K∑
k=1

H(k)
int +H(k)

ext +
∑
α∈x,z

σPα . (5.7)

The branch-wise decomposition of the Hamiltonian is convenient for numerical simulations of

OTOC dynamics with partial system size. Here the kth branch internal interaction Hamiltonian

is

H(k)
int =

πJ

2

(
2∑
i=1

σPz σ
H
mz +

2∑
i=1

3∑
j=1

σHmzσ
F
nz

)
, (5.8)

where m = 2(k − 1) + i and n = 3(k − 1) + j. Thus, in each branch, the central 31P spin is

coupled to two 1H spins and each 1H spin is further coupled to three 19F spins. In our system,
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J = 8.7 Hz happens to be the single scalar coupling constant.

The external Hamiltonian H(k)
ext on the kth branch constitutes the application of equal ampli-

tudes gJ of x and z fields employed to introduce non-integrability in the dynamics:

H(k)
ext =

gJπ

2

∑
α∈x,z

(
2∑
i=1

σHmα +
3∑
j=1

σFnα

)
. (5.9)

The impact of system size and decoherence for such as HSTS are discussed in Appendix B.

5.5 Preparing Multiple quantum coherences (MQCs) in HSTS

Now we describe the preparation of combination MQCs between the central qubit and the first

layer. Suppose the central spin 31P is initialized in |±〉P = (|0〉P ±|1〉P )/
√

2 and the surrounding
1H spins are in the state

|ξN1
n 〉 = |N1 − n, n〉H (5.10)

indicating N1−n spins in |0〉 state and n ∈ [0, N1] spins in |1〉 state. We now apply a CNOT gate

Uc =
{

(|0〉〈0|)P ⊗ 1
H + (|1〉〈1|)P ⊗Hx

}
⊗ 1

F = U †c (5.11)

with central 31P spin as the control and surrounding 1H spins as target. The resulting state is

ρ±q (0) = |ψ±q 〉〈ψ±q | ⊗ 1
F/2N2 (5.12)

with

|ψ±q 〉 =
|0〉P |ξN1

n 〉 ± |1〉P |ξ
N1
N1−n〉√

2
, (5.13)

which represents a combination MQC with quantum number

q = N1 − 2n+ 1. (5.14)

In the following section, we describe scrambling of information out of these MQCs.

5.6 Scrambling dynamics of combination MQCs

Following the discussion preceding Eq. 5.4, we choose

ρ∆(0) = ρxq (0) = ρ+
q (0)− ρ−q (0). (5.15)
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Therefore, we consider the unambiguous study of OTOC dynamics with the following operators:

A(0) = ρxq (0) and

B(t) = U †(t). (5.16)

In this case, the OTOC function becomes

Oq(t) ≈Re
[
〈B†(t)A†(0)B(t)A(0)〉β=0

]
= Tr{U(t)ρxq (0)U †(t) ρxq (0)}

= Tr{ρ(t)ρxq (0)}. (5.17)

The propagator U(t) involves all the spins including those in the second layer and may lead

to an effective leakage of coherence from the initial q-quantum combination MQC subspace as

shown schematically in Fig. 5.3. In this regard, we observed via numerical simulations that under

Hamiltonian considered in this work (Eq. 5.7), the leakage predominantly happens to second

layer instead of other combinational MQCs. In Fig. 5.4, we plot this leakage measured using

quantity Tr[ρ(t)(Fx + Fy)], where ρ(t) = U(t)ρx−1U
†(t) for various values of g which becomes

more and more irregular as g increases.

SP ⊗ SH ⊗ SF 

SP ⊗ SH 
-1Q 

-3Q 

-5Q 

3Q 5Q 7Q 1Q 

Figure 5.3: Leakage of information localized in MQC subspace corresponding to q = −1, i.e, ρx−1(0).
Here SP , SH and SF represent Hilbert spaces corresponding to 31P, 1H and 19F spins respectively. Quan-
titative analysis is shown in Fig. 5.4.
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Figure 5.4: Leakage of information stored in MQC subspace corresponding q = −1 to the second layer
measured using overlap Tr[ρ(t)(Fx + Fy)], where ρ(t) = U(t)ρ−1

x (0)U †(t).

5.6.1 Numerical simulations

We have performed the following numerical simulations to gain more insight into the scrambling

dynamics of combination MQCs. Considering the computational cost, we simulated only the par-

tial system with K = 2 in the Hamiltonian given in Eq. 5.7. Here no decoherence is introduced,

and the observed effects are only due to the scrambling dynamics.

Fig. 5.5 displays the simulated OTOC for various coherence orders q and Jt for various g

values. For the case g = 0, the dynamics is integrable, as shown in Fig. 5.5(a). In this case,

the OTOC function shows periodic oscillations for all the MQCs, without any effective decay,

suggesting no information scrambling. Note that the profiles of q = 5 and q = −3 match exactly.

This is because, the corresponding states |ψ5〉 and |ψ−3〉 differ only by the state of the central
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qubit which does not evolve under the scrambling Hamiltonian in the absence of the external

fields. Similarly, q = 3 and q = −1 also match for the same reason.

However, once the external fields are applied, i.e., g > 0, the dynamics becomes non-

integrable. In this case, the OTOC oscillations become nonperiodic, as shown in Figs. 5.5(b-d).

More importantly, the OTOC profiles now suffer from effective decays due to a gradual loss of

information out of the MQC ρxq (0). In fact, the stronger the strength g of the external fields,

the more efficient is the scrambling. This dependence of scrambling with nonintegrability of

dynamics has also been noted earlier [228] in the context of a spin chain.
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Figure 5.5: Simulated time evolutions of OTOC functions (normalized) for combination MQCs of co-
herence orders q ∈ {−3,−1, 1, 3, 5} for (a) g = 0, (b) g = 0.1, (c) g = 0.2, and (d) g = 0.3. All the
simulations are carried out for a two-branch HSTS (K = 2). Here no additional decoherence is introduced
and all the decays are purely due to the information scrambling.

Further insight can be obtained by looking at the frequency profiles of OTOC functions. Fig.

5.6(e-h) display Fourier transforms F(Oq(t)) for various combination MQCs at different g val-
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Figure 5.6: Corresponding Fourier transforms F [O(t)] of OTOC time domain profile shown in Fig. 5.5.

ues. At g = 0, the spectral lines are sharp, indicating finite frequency components. However, as

we introduce the external fields, i.e., for g > 0, we find the emergence of more frequency com-

ponents, which indicates a stronger leakage of information leading to more efficient scrambling.

As g increases further, we observe an effective smoothening of frequency profiles. At this point,

the time domain decay profiles appear almost exponential decays, and therefore, it becomes hard

to differentiate them from decoherence induced decays. This fact emphasizes the importance of

CTP in practical situations. Further analysis of dependence of long time average of OTOC on

coherence order is described in Appendix C.

In the next subsection, we experimentally apply CTP to reveal information scrambling for

filtered combination quantum coherence q = −1.
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5.6.2 Experiments

The NMR experiments were carried out in a Bruker NMR spectrometer with a static field of 11.2

T. As described in section III, the sample consisted of tris(2,2,2-trifluoroethyl) phosphite (see Fig.

5.2) dissolved in deuterated dimethyl sulphoxide (0.05 ml in 0.5 ml). The sample was maintained

at an ambient temperature of 298 K. The 31P NMR spectra corresponding various filtered MQCs

along with a reference spectrum are shown in Fig. 5.7(a). Each transition is labeled by spin states

|ξN1
n 〉 of the 1H spins.

The experimental protocol is described schematically in Fig. 5.7 (b). Starting from thermal

equilibrium, we prepare ρxq (0) (see Eq. 5.15) using a (π/2)y pulse on 31P followed by a CNOT

gate Uc. Note that the CNOT gate is applied in parallel to all the 1H spins exploiting the star-

topology of the system. Then we use the CTP method to control the scrambling time t with fixed

total time T as described in Fig. 5.1. The final state ρ(t) is converted into the observable single

quantum magnetization of the central spin using a second CNOT gate U †c = Uc. The resulting

signal is

sxq (t) = Tr
[
(σPx ⊗ |ξN1

n 〉〈ξN1
n | ⊗ 1

F ) U †c ρ(t)Uc
]

= Tr
[
Uc(σ

P
x ⊗ |ξN1

n 〉〈ξN1
n | ⊗ 1

F )U †c ρ(t)
]

= Tr
[
Uc
{
|+〉P 〈+|P ⊗ |ξN1

n 〉〈ξN1
n | ⊗ 1

F
}
U †c ρ(t)

]
− Tr

[
Uc
{
|−〉P 〈−|P ⊗ |ξN1

n 〉〈ξN1
n | ⊗ 1

F
}
U †c ρ(t)

]
= Tr

[
ρ+
q (0)ρ(t)

]
− Tr

[
ρ−q (0)ρ(t)

]
= Tr

[
ρxq (0)ρ(t)

]
= Oq(t), (5.18)

where we have used Eq. 5.12 and 5.15. Thus OTOC can be directly extracted from the NMR

signal sxq (t) of the central 31P spin.

The NMR pulse sequence for the preparation of the combination MQCs is shown in Fig.

5.7 (c). We start with the application of a (π/2)x pulse on 19F spins followed by a pulsed-

field-gradient (PFG) G0 along z direction to prepare them in the maximally mixed (1/2)⊗N2

state. Subsequently a Hadamard gate using a (π/2)y is applied on 31P. The CNOT operation is

realized via 1H-31P J-coupling. During this period we refocus the interactions with 19F spins
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Figure 5.7: (a) A reference 31P NMR spectrum (first trace) and spectra corresponding to various quan-
tum numbers q as indicated. The transitions are labeled by corresponding states |ξN1

n 〉 of 1H spins. (b)
Schematic illustration of the experimental protocol to study scrambling dynamics of MQCs. (c) The NMR
pulse sequence to implement the protocol in (b). The open and filled rectangles correspond to π/2 and π
rotation with phases as indicated. Here PFG denotes pulse field gradients along z-direction used to select a
particular coherence pathway between MQCs and SQ (single quantum coherence) and τ = 1/4J indicates
evolution time under coupling Hamiltonian given in Eq. 5.8.
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using a (π)x pulse on 19F. The unambiguous study of scrambling is carried out using the CTP

method as described in the previous section (see Eq. 5.6). The time-reversal step in CTP is

also realized using a (π)x pulse on 19F. We vary the time parameter t by holding the total time

T constant, so that the decoherence effects are same in all the experiments, while scrambling

duration is systematically varied. Finally, MQCs are converted back to an observable single-

quantum coherence. A specific MQC ρxq (0) of a particular quantum number q is filtered out by a

pair of PFGs of strengths G1 and G2 as shown in Fig. 5.7 (c). The ratio of the PFGs to filter the

q-quantum combination MQC is set to [235]

G1

G2

= −γP + (q − 1)γH
γP

, (5.19)

where γP and γH are gyro-magnetic ratios of 31P and 1H respectively. Figs. 5.8 (a-c) display the

experimentally measured OTOC functions corresponding to the quantum number q = −1 for var-

ious values of the nonintegrability parameter g. We have chosen q = −1 coherence because of its

comparatively longer coherence time than the other MQCs. Fig. 5.8(a) displays OTOC evolution

for g = 0 which belongs to the integrable regime and hence does not introduce scrambling. Here

we are able to separate all three types of dynamics as follows:

(i) Only decoherence (without unitary evolution U(t)): It is realized by effectively nullifying

the interaction between 1H spins of the first layer and 19F spins of the second layer using

a (π)x pulse on 19F spins at the center of the time evolution. The decay profile leads to an

effective coherence time T ∗2 ' 140 ms (empty squares in Fig. 5.8(a)).

(ii) Unitary dynamics along with decoherence: It is realized by allowing the interaction of 1H

spins with 19F spins (triangles in Fig. 5.8(a)). This dynamics shows an oscillatory decay of

OTOC, which in practical timescales of observation can be confused with the scrambling.

(iii) Pure unitary dynamics - realized by CTP (circles in Fig. 5.8(a)). Here we observe almost

decay-less oscillations with strong revivals of OTOC confirming the absence of genuine

scrambling. The higher error bars, in this case, are due to lower signal to noise ratio.

Since case (ii) is the combined effect of the case (i) and (iii), one may expect the curve with

triangles to match with the product of curves with squares and circles. However, here we find an
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Figure 5.8: Experimentally measured OTOC (normalized) corresponding to time evolution of q = −1
quantum coherence in (a) integrable (g = 0) and (b-c) non-integrable (g 6= 0) regime. Dashed lines
in (a-c) are obtained by numerical simulation using two-branch (K = 2) HSTS. Corresponding Fourier
transform profiles are shown in (d).

interesting observation: the triangles over-shoot the empty squares at certain time instants (e.g.

near Jt = 1) possibly signaling an information back-flow due to non-Markovianity [20, 153].

In Fig. 5.8(b) and (c) we show time evolution of OTOC with g = 0.1 and g = 0.2 respectively.

Here the presence of external fields leads to nonintegrable dynamics and consequently exhibit

information scrambling. As a result, the OTOC does not show revivals back to the initial value.

One can compare the OTOC data with unitary dynamics + decoherence in (a) (triangles) with

OTOC data with only unitary dynamics (circles) in (c). While both show decaying revivals, the

former is devoid of scrambling while the latter is purely due to scrambling. This suggests the

importance of separating the decoherence effects before quantifying scrambling. Fig. 5.8(d)
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displays the Fourier transform of the OTOC data. As discussed in the previous subsection, we

find broader and more dispersed spectral lines as we increase g, indicating stronger information

scrambling.

Note that in our experiments, the CTP consists of a π pulse whose position is varied to refocus

unitary evolution for a specific time. The successful implementation of the CTP relies upon the

fact that decoherence is unaffected by the control operations during the protocol. The presence

of the π pulse can refocus the slowly varying (low frequency) component of the decoherence and

can cause an error in the separation of scrambling from decoherence. However, as indicated by

excellent agreement of simulated and experimental data in our experiments, it seems that the π

pulse does not have a drastic effect on decoherence present in our system. Still, we believe that

more investigation is required into the noise spectrum of our system as well as the application of

CTP protocol on other experimental platforms to further comment on this issue.

5.7 Conclusions

In this work, we have studied scrambling of information in a double layered star-topology system.

This topology allows us to efficiently prepare multiple quantum coherences involving central

qubit and the first layer qubits. The scrambling is introduced in a controlled manner using the

tunable external fields.

A major hurdle in the unambiguous study of scrambling is to account for the contribution

from decoherence to OTOC dynamics. In this regard, we proposed a constant-time protocol

which enables us to filter out contribution solely from scrambling.

Using a sixteen-spin double layered star-topology NMR system, we experimentally demon-

strated the unambiguous study of scrambling of information stored in the combination multiple

quantum coherence involving central qubit and six satellite qubits in the first layer. With the help

of constant time protocol, we could clearly separate decoherence effects and obtained OTOC

profiles exclusively characterizing scrambling effects. While we observed signatures of non-

Markovian evolutions, it calls for further detailed investigation in this direction.

Although the brute-force simulation of the complete system was computationally too expen-

sive, it was nevertheless easier to tune the external field, control the scrambling rate and measure

the OTOCs in the NMR spectrometer. In a way, it is a demonstration of the supremacy of quan-
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tum simulations over the classical analogs. Therefore, we expect to see more applications of such

star-topology systems in studying many-body phenomena because of convenient manipulation

allowed by higher symmetry.

5.8 Appendix A. OTOC for highly mixed single-qubit initial
state

Eq. 5.4 can be derived as follows

O(t) = Re[〈B†(t)ρ†(0)B(t)ρ(0)〉β→0]

= Re[Tr{B†(t)ρ†(0)B(t)(ρ(0))2}]

= Re
[
Tr
{
B†(t) (1/2 + ερ∆(0))B(t) (1/2 + ερ∆(0))2}]

The right hand side produces following six terms

1

8
Re[Tr{B†(t)B(t)}]→ 1

4
ε

2
Re[Tr{B†(t)B(t)ρ∆(0)}]→ 0

ε2

2
Re[Tr{B†(t)B(t)(ρ∆(0))2}]→ ε2

8
Tr{(ρ∆(0))2}

ε

4
Re[Tr{B†(t)ρ∆(0)B(t)}]→ 0

ε2Re[Tr{B†(t)ρ∆(0)B(t)ρ∆(0)}]→ ∗

ε3Re[Tr{B†(t)ρ∆(0)B(t)(ρ∆(0))2}]→ negligible for ε� 1

As clear from the above, only the term indicated by * has information about the OTOC dynamics.

Plugging these values back, we get

O(t) =
1

4
+
ε2

8
Tr{(ρ∆(0))2}

+ ε2Re[TrB†(t)ρ∆(0)B(t)ρ∆(0)], (5.20)

Hence

O(t) ∼ Re[Tr{B†(t)ρ∆(0)B(t)ρ∆(0)}], (5.21)
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Figure 5.9: Dynamics of OTOC for the experimental system shown in Fig 5.2. Here A(0) = σPy and
B(0) = SFy with [A(0), B(0)] = 0. The OTOC measures scrambling of information from the central qubit
to the third layer. Though evolution in the presence of both x and z field is shown, Hamiltonian gives
rise to scrambling even in the absence of z field. In the inset, variation of OTOC with the nonintegrability
parameter g is shown.

up to ε2 factor and a constant background. It is interesting to note that, in NMR conditions,

other measures of quantum correlations, such as Quantum Discord [238] and deviations in von

Neumann entropy [239], are also measured in units of ε2.

5.9 Appendix B. Impact of system size and decoherence

It is useful to have some idea on how the extent of scrambling scales with the size of HSTS. In

this regard, we consider the scrambling of information initially localized on the central spin (Fig.

5.2) onto the N2 spins in the second layer via N1 spins in the first layer. To this end, we choose

A(0) = σPy and B(t) = U †(t)SFy U(t).

Since simulating the exact dynamics of the entire system with three branches consisting of 16

spins in Fig. 5.2 is computationally expensive, we limit ourselves to partial system sizes. For the

integrable regime, i.e., nonintegrability parameter g = 0, OTOC function remains uniformly unity

since the commutatorC(t) vanishes at all times owing to the fact thatB(t) can only develop multi-

spin orders with protons in the first layer with which it is directly interacting. Hence information
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Figure 5.10: Ambiguity in the estimation of information scrambling due to the presence of decoherence
simulated using two-branch HSTS.

remains localized within the first layer and never scrambled onto the second layer. Even for small

values of g, OTOC function deviates from unity and starts oscillating (see the inset of Fig. 5.9).

Now we set g = 1 and look at the dependence of scrambling on system size as shown in Fig. 5.9.

We use Lindblad based approach to simulate the combined effects of scrambling and decoher-

ence with completely correlated dephasing model [233]. We introduce decoherence in the system

by single-qubit dephasing modeled using the Lindblad equation

dρ

dt
= −i[H, ρ] + γ

N∑
i=1

(
LiρL

†
i −

1

2
{L†iLi, ρ}

)
, (5.22)

where N is number of spins, Li = σiz and γ = 1/(2T ∗2 ) is transverse relaxation rate. To numer-

ically simulate decoherence dynamics of OTOC, we update the density matrix in the following

way

ρ(t)→γdt
∑
i

LiU(dt)ρ(t)U †(dt)L†i

+ L0U(dt)ρ(t)U †(dt)L†0, (5.23)

where L0 =
√
I − γdt

∑
i LiL

†
i is no-jump operator. The above update can be interpreted as

average over stochastic phase jump at each time step with probability γdt. As shown in Fig.
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Figure 5.11: Long-time average of simulated OTOC functions vs. non-integrability parameter g for vari-
ous coherence orders.

5.10, due to dephasing decay of OTOC in integrable regime almost overlaps with that of the

non-integrable case for T ∗2 = 2/J .

5.10 Appendix C. Information scrambling vs coherence order

In Fig. 5.11, we plot the long-time (Jt = 20) average of simulated OTOC given by

A =
1

t

∫ t

0

|O(t′)|dt′ (5.24)

vs. non-integrability parameter g for various coherence orders. As described in subsection 5.6.1,

q = −3 and q = 5 have same profile for g = 0. Same is the case for g = 3 and g = −1. However,

these profile start to differ for g > 0 as indicated by long-time average in Fig. 5.11. The profiles

get completely mixed up at higher value of g. This feature is in contrast to decoherence rate

due to classical noise which shows quadratic behavior with coherence order [234]. Interestingly,

coherence order q = 1 seems to have the most efficient scrambling.
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Summary and Future Outlook

Despite holding the great promise to transform the technologies as we know today, the perfor-

mance of current quantum devices is underwhelming because they are severely crippled by the

presence of the environmental noise. The goal of realizing fault-tolerant devices can only be met

after understanding and then suppressing the impact of the environmental noise. To this end,

in this thesis, we have made an attempt to understand the information exchange between the

quantum system and the surrounding environment from an experimental perspective using NMR

methodologies.

In the first work, we described an optimal control method to enhance the information content

inside subspaces, which are immune to major environmental noise, called long-lived singlet or-

der (LLS) [71]. LLS is important not only from the quantum information perspective but also

for spectroscopy purposes. Here we observe a considerable enhancement, and we also explore

the possibility of iteratively repeating the process to increase the information content in LLS fur-

ther. The iterative process did not produce any improvement due to the inability of LLS to hold

information for long enough time between iteration in the NMR system considered in the work.

Hence, it is a possible future direction to hunt for an appropriate NMR system where iterative

enhancement can be facilitated.

The next experimental investigation was focused on the characterization of Gaussian noise

affecting some special multi-qubit states, including LLS and various other multi-qubit coherences

(MQCs), using quantum noise spectroscopy techniques [123, 124]. Using a two-qubit system, we

observed the lowest noise profile for LLS as expected. Further, in a 10 qubit system, we could

conclude that noise is predominantly correlated using noise profiles of various MQCs. However,

due to no individual control over each qubit, we could only see the collective effect of all the noise

sources. Hence, one future direction could be to use qubit systems with individual control on each

qubit to filter out the impact of noise from each source as well as their correlations according to

theoretical protocols given in Refs [127, 128]. Also, an extension to non-Gaussian noise was

recently reported [134, 135] and it would be interesting to see these non-Gaussian effects of noise

in NMR systems.
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5.10 Appendix C. Information scrambling vs coherence order

In the next work, we engineered non-Markovian environments [20] using stochastic control

fields and experimentally quantified information backflow [23] associated with them. We also

benchmarked the efficiency of protection strategies to tackle noise in the presence of information

backflow. In this work, we have dealt with a single qubit case, and a natural extension would be to

look at non-Markovian dynamics in a multi-qubit system where correlations among noise sources

could bring about interesting features [170]. In this regard, we strongly believe that NMR could

be an excellent platform for these kinds of studies as it offers stable qubits and the possibility of

elaborate control over their dynamics.

In the last work, we investigated the phenomenon of information scrambling. It is a relatively

new field with the potential to further our understanding of various fundamental issues related to

many-body quantum systems, and only a few experimental investigations have been conducted

thus far in this area. In our work, using a 16 qubit system, we analyzed scrambling of information

stored in various MQC subspaces to other degrees of the freedom of the system. To conduct a

verified measurement of information scrambling, we need to separate out the impact of environ-

mental noise because both these processes lead to similar effects in the dynamics of the system

[229]. To this end, we propose and experimentally demonstrate a protocol which filters out con-

tribution only due to scrambling. One immediate future direction could be to remove the impact

of experimental errors along with decoherence. Also, there is considerable theoretical progress to

use information scrambling for practical purposes such as detecting entanglement [230], many-

body localization [216–218] and quantum phase transition [219]. In this regard, NMR systems

have already been utilized to experimentally study many-body localization [215], prethermaliza-

tion [221] and open system dynamics [132] using information scrambling. Hence, it would be

interesting to see more applications of the NMR systems in the experimental investigations of

these many-body phenomena.
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[233] José Raúl González Alonso, Nicole Yunger Halpern, and Justin Dressel. Out-of-time-

ordered-correlator quasiprobabilities robustly witness scrambling. Physical review letters,

122(4):040404, 2019.

[234] Deepak Khurana, Govind Unnikrishnan, and T. S. Mahesh. Spectral investigation of the

noise influencing multiqubit states. Physical Review A, 94(6):062334, 2016.

[235] Abhishek Shukla, Manvendra Sharma, and T. S. Mahesh. Noon states in star-topology

spin-systems: Applications in diffusion studies and rf inhomogeneity mapping. Chemical

Physics Letters, 592:227–231, 2014.

[236] R. Hanson, V. V. Dobrovitski, A. E. Feiguin, O. Gywat, and D. D. Awschalom. Coherent

dynamics of a single spin interacting with an adjustable spin bath. Science, 320(5874):352–

355, 2008.

[237] John Cavanagh, Wayne J. Fairbrother, Arthur G. Palmer III, and Nicholas J. Skelton. Pro-

tein NMR spectroscopy: principles and practice. Elsevier, 1995.

[238] Hemant Katiyar, Soumya S. Roy, T. S. Mahesh, and Apoorva Patel. Evolution of quantum

discord and its stability in two-qubit nmr systems. Physical Review A, 86(1):012309, 2012.

[239] V. R. Krithika, V . S. Anjusha, Udaysinh T Bhosale, and T. S. Mahesh. Nmr studies of

quantum chaos in a two-qubit kicked top. Physical Review E, 99(3):032219, 2019.

128


	Certificate
	Declaration
	Acknowledgments
	Abstract
	List of Publications
	Introduction
	Quantum information processing (QIP)
	Qubits
	Density operator formalism
	Populations and coherences
	Coherence order
	Reduced density operator
	Trace distance between two quantum states
	Distinguishability of quantum states
	Von-Neumann entropy

	Quantum gates
	Measurement of the state of quantum register
	Projective measurement
	Expectation value of an observable


	Why does a quantum system get noisy?
	Open quantum systems
	Dynamical map
	Markovian description 

	Quantum information processing using NMR
	NMR qubits
	A nuclear spin in a static external magnetic field
	Thermal equilibrium state
	Internal Interactions among nuclei: multiple qubits

	NMR quantum gates
	External Interactions with radio frequency (RF) fields
	Quantum gates using RF fields
	Numerically optimized pulses

	Measurement in NMR

	Noise in NMR quantum systems: Relaxations
	Longitudinal relaxation
	Transverse relaxation


	Enhancement of long-lived singlet-order using optimal control
	Introduction
	Long-lived singlet order (LLS)
	Bang-bang (BB) optimal control
	NMR Spin System
	 NMR Pulse sequence
	Enhancing LLS
	Bounds on achievable singlet-order
	 Experimental results and numerical analysis

	Discussions and conclusions

	Noise spectroscopy of multi-qubit states
	Introduction
	Theory of noise spectroscopy
	Noise spectroscopy of long-lived states
	Homonuclaer spin pair
	Heteronuclear spin-pair

	Noise spectroscopy of Multiple quantum coherences (MQC)
	Conclusions

	 Emulation and control of quantum non-Markovian dynamics
	Introduction
	Emulation of non-Markovian dephasing dynamics
	Dynamical decoupling for non-Markovian environments
	Conclusion
	Appendix: Estimation of non-Markovianity measure N

	Unambiguous measurement of information scrambling
	Introduction
	Quantifying information scrambling: Out-of-time-ordered correlation (OTOC) function
	Unambiguous measurement of OTOC 
	Hierarchical star topology system (HSTS)
	Preparing Multiple quantum coherences (MQCs) in HSTS
	Scrambling dynamics of combination MQCs
	Numerical simulations
	Experiments

	Conclusions
	Appendix A. OTOC for highly mixed single-qubit initial state 
	Appendix B. Impact of system size and decoherence
	Appendix C. Information scrambling vs coherence order

	Summary and Future Outlook
	Refrences

