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Abstract

Standard model of cosmology describes the origin of universe successfully, however

it does not explain the reason for flatness of universe and horizon problem. The most

popular approach to solve these problems is to introduce an era of exponential expansion

in early universe, known as inflation. In this thesis, first we discussed the problems that

standard model of cosmology suffers then how inflation solve them. There are several

models of single field inflationary cosmology, e.g., chaotic, natural and hybrid. These

models must satisfy some criteria that include sufficient inflation, CMB anisotropy data.

Single field model requires nearly flat potential (satisfy slow roll conditions) that involve

very weakly coupled field. Thus it has naturalness problem. Natural inflation solve this

problem because it include flat potential naturally. We analyze the natural inflation model

and studied their phenomenology in present observation data from Planck.
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Chapter 1

Inflation

Big bang theory successfully explains the origin of the universe. It assumes the uni-

verse to be isotropic and homogeneous. At large scale observation of cosmic microwave

background (CMB) radiation agrees with it up to a large extent. However, precise mea-

surements show anisotropy in temperature fluctuations. Apart from it, there are other

problems in the standard model of cosmology that can not be resolved, e.g., flatness prob-

lem, the horizon problem, and density fluctuation in the CMB. Inflation was proposed

[1] as a solution to these cosmological problems. Cosmological inflation is an epoch of

exponential expansion assumed to happen in the very early universe. Inflation provides

correct initial conditions for the standard big bang cosmology. It also solves the problems

at the macroscopic scale, i.e., density fluctuation. There are many models of inflation

that have been proposed [2], which are in good agreement with the observational data.

However, the exact initial conditions are still unknown. This question is very important

because inflation was initially proposed to solve similar initial condition problems of the

big bang model. In this thesis, we will describe these problems, mentioned above, of the

standard model of the big bang and discuss inflation as a possible solution. Additionally,

we will analyze the popular model of inflation i.e., natural inflation.

In this chapter, we discuss the standard model of cosmology after that, the theory of

inflation paradigm will be introduced. For a detailed review on cosmology and inflation

see [3, 4, 5, 6, 7] and references therein.
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Inflation

1.1 Standard Model of Cosmology

The big bang model assumes that the universe is homogeneous and isotropic on large

scale. The observation of the cosmic microwave background radiation (CMBR) is the

evidence for this assumption. Therefore, Universe can be described by the Friedmann-

Robertson-Walker (FRW) metric which is the most general metric of a homogeneous and

isotropic Universe,

ds2 = dt2−a(t)2
[

dr2

1− kr2 + r2 (dθ
2 + sin2

θ dφ
2)] , (1.1)

where r, θ and φ are comoving coordinates–independent of time. t is the physical

time, can be written as a−1(t)dt = dτ , where τ is the conformal time and a(t) is the

scale-factor. k = 1/0/− 1, is releted with curveture of the spatial-part of FRW met-

ric, reprsents the positively curved closed universe/flat universe/negatively curved open

universe respectiviely, for a homogeneous and isotropic universe. From Einstein general

theory of relativity we can obtain Friedmann equation,

(
ȧ
a

)2

+
k
a2 =

8πG
3

ρ , (1.2)

ρ̇ + 3
ȧ
a
(ρ +P) = 0, (1.3)

ä
a
= −4πG

3
(ρ + 3P), (1.4)

where P is the total pressure, ρ is the total energy density, G is the gravitational constant.

First equation (1.2) represents the total energy density of the universe, second equation

(1.3) represents the evolution of the energy density with time and third equation (1.4) is

derived from first and second equation and it quantifies acceleration of the universe.
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1.1 Standard Model of Cosmology

Equation 1.3 is satisfied for all the individual components that include matter (bary-

onic as well as dark), radiation, and the cosmological constant. Conservation of total

stress energy tensor of the universe,

∇µT µν = 0, (1.5)

where T 0
0 = ρ , T i

j = −Pδ i
j and T 0

i = T i
0 = 0 for a homogenous and isotropic universe.

Equation (1.2-1.4) can also be obtained from the equation (1.5). This is due to the Bianchi

identity, which is an alternative way to derive Einstein equations. Physical distance xph(t)

can be written as a(t) xco, where xco is the comoving distance. For a homogeneous and

isotropic universe ẋph(t) = ȧ(t) xco . Therefore, expansion of the universe can be de-

scribed in the terms of the Hubble parameter:

H(t) =
ẋph(t)
xph(t)

=
ȧ(t)
a(t)

. (1.6)

The equation of state for ideal fluid can be written as P=ωρ , where ω is a constant.

For the different components, ω is given as,

• Radiation/hot matter: ω = 1
3 .

• Cosmological constant: ω = −1.

• Dust/cold non relativistic matter: ω = 0.

Using above equation of state, we find,

ρ = ρ0

(a0

a

)3(1+ω)
, (1.7)

where a0 is the scale factor for energy density ρ0. Scale factor is normalized such that,

today a0 = 1. After substituting values of ω in the equation 1.7 we get,
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Inflation

• For radiation/hot matter: ρ(t) ∝ a−4(t). Energy density of the radiation changes

not only because of the change in number density, but also due to the change in the

energy.

• Vacuum energy: ω = −1, ρ = constant.

• For dust/cold non relativistic matter ρ(t) ∝ a−3(t). Energy density dilutes due to

the change in number density,

Let us describe the parameters that determine the characteristics of the universe,

Hubble parameter H: The expansion rate of the universe.

Dimensionless density parameter: Ω(t) and its value today Ω0.

Therefore, first Friedmann equation can be written as,

Ω(t)−1 =
k

a2H2 , Ω(t) ≡ ρ(t)
ρc(t)

=
8πGρ

3H2 , ρc(t) =
3H2

8πG
. (1.8)

From the equation (1.8), we can see that Ω(t) is the measure of the spatial curvature of

the universe. There are three possibile scenarios,

• Ω(t) = 1→ k = 0 and ρ = ρc −→ flat universe.

• Ω(t) > 0→ sign(k) > 0 and ρ > ρc −→ closed universe.

• Ω(t) < 0→ sign(k) < 0 and ρ < ρc −→ open universe.

We can see from the first expression in equation 1.8, that cosmological evolution does not

alter the sign of right hand side, therefore, if the universe started with ρ > ρc then ρ(t)

will always be greater than ρc(t).

The most accepted model for stanadard cosmological evolution, i.e. in agreement

with CMB [11], large scale structures[12], Hubble constant measurement and the expan-

sion of the universe [13, 14], is ΛCDM model. Observational data suggests that our
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1.2 Short Comings of Big Bang Cosmology

universe is spatially flat (k = 0) to a great accuracy, Ω0 = 1.0005± 0.00333 [11], with

Ωm ' 0.3 and ΩΛ ' 0.7. Value of H is around 70 Km s−1 Mpc−1. See recent Planck

results for values of cosmological parameters [15].

Using the Friedmann equation (1.2) and equation (1.7) assuming spatially flat uni-

verse we can rewrite the evolution of scale factor,

(ȧ)2
∝ a−(1+3ω). (1.9)

Subsequently, if a(t) has power law behaviour, a(t) ∝ tq, then it can be shown that,

a(t) ∝ t2/(3+3ω), when ω 6= 1, (1.10)

hence, in the radiation dominated era: a(t) ∝ t1/2, and for matter dominated era: a(t) ∝

t2/3.

Comoving horizon is defined as the distance travelled by the light since t = 0. This is

given by,

η =
∫ t

0

dt ′

a(t ′)
. (1.11)

The light emitted from a distant source is redshifted because of expansion of the universe.

The red shift z is given by,

1+ z≡ λobserved

λemitted
=

a0

a
, (1.12)

Since a(t) is a function of time, we can also write the redshift in terms of time t for

matter/radiation dominated era.

1.2 Short Comings of Big Bang Cosmology

Standard big bang model is successful, but it has some of the shortcomings

• The flatness problem,
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Inflation

• The horizon problem,

• Temperature anisotropy in CMB.

1.2.1 The Flatness Problem

Friedmann equation:

H2 =
1

3M2
pl
[
ρr

a4 +
ρm

a3 + .....]− k
a2 (1.13)

Where, ρr and ρm are the radiation and matter density respectively. We choose to work in

the unit of Mpl and the conversion is given by 1
3M2

pl
= 8πG.

Observation suggests that the universe is spatially flat, but the reason for flatness

can not be explained by the standard model of cosmology; it has to be taken to set the

initial conditions in ΛCDM. In Friedmann equation 1.13, on the left-hand side, we can

see Hubble parameter square, which is the total energy of the universe on the right-hand

side, is the various components of the universe that contribute to the total energy density

of the universe. Friedmann equation also tells the evolution of different denisties with the

scale factor, e.g., ρr evolved as 1/a4 whereas ρm as 1/a3. Curvature constant k decreases

as a−2.

1 = Ωtotal−
k

a2H2 (1.14)

Ωtotal is dimensionless parameter corresponds to total energy density of the universe. We

can define the parameter to measure the flatness as:

|1−Ωtotal|=
1

a2H2 =
1
ȧ2 (1.15)

We can see that deviation of Ωtotal with 1 is the ratio of curvature and energy density. We

can go backward in time and as we know this deviation |1−Ωtotal|today we further can
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1.2 Short Comings of Big Bang Cosmology

track |1−Ωtotal| at the epoch of BBN,

|1−Ωtotal|T=TN

|1−Ωtotal|T=T0

=

(
ȧ2

N

ȧ2
0

)
'
(

T 2
0

T 2
N

)
∼ O(10−16), (1.16)

where we have used, T ∼ 1
a , T0 ∼ 10−13 GeV is the present temperature of CMB radiation

and nucleosynthesis happened at a temperature TN ∼ 1 MeV [5].

In order to get the correct value of |1−Ωtotal| today, its value must be fine-tuned

to extremely close to zero at early times. However, there is no reason for such fine-tuned

value of |1−Ωtotal| in the early universe.

1.2.2 The Horizon Problem

We observed universe to be isotropic and homogeneous at large scale. The radius of

observable universe today can be given as Robs(t0) ∼ 1
H0
∼ t0. The evolution of R can be

given as:

Robs(ti) = Robs(t0)
( ai

a0

)
≈ t0

( ai

a0

)
. (1.17)

We can compare the horizon size with the Hubble size. Horizon measures the distance

light travel within an amount of time. It tells how far light travel since the begining. Let

us assume scale factor a(t) ∼ 1
tε then size becomes:

Rcausal(ti) = a(ti)
∫ ti

0

dt
a(t)

≈ ε

ε−1
ti. (1.18)

This is horizon radius. Let us calculate the ratio of radius of Hubble and horizon,

Robs(ti)
Rcausal(ti)

∼ ε−1
ε

(
ȧi

ȧ0
) >> 1 (1.19)

This imply that observed region today is much much bigger than the light can travel

(horizon). This leads to a problem how causally disconnected patches will communicate

to make the isotropic and homogeneous universe as we see today.
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Inflation

1.2.3 Temperature anisotropy in CMB

Universe is homogeneous and isotropic on large scale i.e. � 1Mpc. As we come on

smaller scale � 1Mpc universe is dominated by non-linearities (galaxy, cluster, super-

cluster etc.). These fluctuatuions in the energy densities δρ

ρ
also seen in Cosmic back-

ground radiation (CMB). Scale factor is inversely proportional to the temperature of the

universe (a(t)∼ 1
T ) thus ratio of size of the observed universe to causal horizon today can

be calculated as:

∼
( 1015GeV

10−13GeV

)ε−1
∼ e60(ε−1). (1.20)

FIGURE 1.1: CMB measure of sky

reported by WMAP

FIGURE 1.2: Variation of tempera-

ture fluctuations (δT ) with l.

We represent the CMB temperature map measured by WMAP in figure 1.1. The

average temperature measurement of CMB is around 2.7K. The color difference in figure

1.1 represents anisotropy in temperature of CMB where blue color represents over den-

sity, and red color describes under density regions that cause anisotropy in the temperature

of the last scattering surface i.e., CMB. These temperature fluctuations are on the aver-

age is the order of δT /T ∼ 10−5. Figure 1.2, shows the variation in these temperature

fluctuations as a function of multipole l.
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1.3 Inflationary cosmology

1.3 Inflationary cosmology

These problems can be addressed by introducing smoothing fluid component density ρs

which evolves as a−2ε . Therefore Friedman equation becomes:

H2 =
1

3M2
pl
[
ρr

a4 +
ρm

a3 + .....]− k
a2 +

ρs

a2ε
. (1.21)

When ε < 1 then ρs will dominate the energy density of the universe. Let us assume the

equation of state parameter of this new fluid as:

ε =
3
2
(1+w). (1.22)

Here w = p
ρ

is the equation of state of the fluid. Inflation is exponential expansion due

to ρs. The small patch expands exponentially and becomes so big to match the present

universe horizon. The amount of inflation can be defined as:

N = ln
aend

ain
=
∫ tend

tin
Hdt. (1.23)

Here ain and aend are the scale factor at the time when inflation starts and when it ends. N

is the number of e-fold before end of inflation. The number of e-fold can be approximated

as:
aend

ain
≤

H−1
in f

H−1
0

(1.24)

Here Hin f is the size at the time of inflation and H0 is size at today. Therefore this tells the

amount of inflation needed to match the isotropy and homogeneity of the universe today.

Now, H−1 ∼ 1/T 2 and a∼ 1/T so the number of e-fold can be written as:

Ntotal ≥ ln
Tend

T0
∼ 60 (1.25)

From the CMB observation we need Ntotal ∼ 60 which is similar what we need in Eq.

1.20. Therefore inflation solves horizon as well flatness problem together.
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Inflation

1.4 Inflationary Models

There are many possible models for inflation. The simplest one could be cosmological

constant; however, this is ruled out because it will never end the inflation. Therefore

it should include a field with its dynamics so that after sufficient inflation, exponential

expansion ceases.

There are many particle physics models are proposed that include single or multi

fields, e.g. Power Law model [21], Hilltop model [22], Natural inflation [23, 24], D-brane

inflation [25, 26, 27], Exponential potential in supergravity inspired models [28, 29, 30,

31, 32], Hybrid model [33, 34], α attactors [35], Higgs inflation [36, 37, 38, 39] etc. In

this thesis we will discuss natural inflation and its impact on observations.

1.4.1 Single Field Slow-Roll Theories of Inflation

This model is based on a single field that has nearly flat potential so that its energy den-

sity changes very slowly during inflation. Most of the contributions are from the field

itself. Contributions from others are negligible. The field that drives inflation is known as

inflaton. When potential decreases sufficiently then inflation

When inflation ends, the field starts oscillating in the vacuum, and the reheating

phase started. During reheating, inflaton radiates into other particles.

FIGURE 1.3: Schematic diagram of potential for slow roll inflaton. Inflation era is

represented by verticle dashed line. [48].

10



1.4 Inflationary Models

Let us consider an inflaton field φ , and its potential is represented by V (φ ). The

energy density and pressure of φ can be written as,

ρφ =
1
2

φ̇
2 +V (φ ), (1.26)

Pφ =
1
2

φ̇
2−V (φ ). (1.27)

The equation of motion of the inflaton field is,

φ̈ + 3Hφ̇ +V ′ = 0, (1.28)

where φ̇ is the derivative of homogeneous inflaton field with respect to t and V ′ is the

derivative of the potential with respect to the field φ .

To check a potential to be slow roll, it is useful to construct parameters known as

slow-roll parameters [6],

εV ≡
M2

pl

2

(
V ′

V

)2

, |ηV | ≡M2
pl
|V ′′|
V

, (1.29)

where M2
pl =

1
8πG .

For slow roll, εV << 1 and |ηV | << 1. We further discuss it in the next chapter.

First condition corresponds to φ̇ 2 << V (φ ) which is responsible to start inflation. The

second parameter tells about the amount of inflation. Inflation stops when εV ∼O(1) and

|ηV | ∼O(1). Amount of inflation can be quantify by number of e-fold which is given by,

N =
1

M2
pl

∫
φ

φend

V
V ′

dφ . (1.30)

The lower bound for sufficient inflation is in the range N = 50−60 [49].
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Chapter 2

Natural inflation

Inflation was proposed to solve the problems of Standard model of cosmology [2], i.e.,

the horizon problem, flatness of the observed universe, and existence of monopole. In-

flationary cosmology assumes there is an epoch when the universe expands exponentially

(eHt). We have discussed how inflation solves these problems in detail in the previous

chapter.

There are various models proposed to provide the inflation including single or more

field inflation: chaotic [3], natural [4], hybid [5] etc. These models must satisfy con-

straints: provide sufficient inflation and constraints from CMB anisotropy [1, 6] and

structure formation. Inflationary model drive from single field suggest to satisfy the ob-

servations field potential need to be flat. More specifically single field potential should

satisfy [7] ∆V /(∆φ )4 ≤ O(10−6−10−8).

2.1 Slow roll field

Let us study the slow roll conditions in details. The energy density and pressure density

of scalar field φ that act as inflaton are given by:

ρ =
1
2

φ̇
2 +V (φ ),
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Natural inflation

p =
1
2

φ̇
2−V (φ ). (2.1)

Using (2.1) in Einstein equations we get:

H2 =
8π

3M2
pl

[1
2

φ̇
2 +V (φ )

]
,

φ̈ + 3Hφ̇ +V ′(φ ) = 0. (2.2)

During inflaton era accelerated expansion of universe takes place so

ä > 0 =⇒ φ̇ 2 <V (φ ). To have sufficient inflation to explain the present observa-

tions single field must satisfy the following conditions:

φ̇
2 <<V (φ ) and φ̈ << 3Hφ̇ (2.3)

Another way to write these conditions is to define slow roll parameters which are given

as [8]

ε =
M2

pl

16π

(V ′(φ )
V (φ )

)2
, η =

M2
pl

8π

V
′′
(φ )

V (φ )
(2.4)

For slow roll ε << 1 and |η |<< 1. Inflation will end when this conditions start violating

thus the end of the inflation can be parametrized from number of e-folding. It is defined

as:

N = log
a f

ai
=
∫ t f

ti
Hdt

For potential V (φ ), if start of inflation is at φ1 and end at φ2 the number of e-folding can

be written as:

N =
−8π

M2
pl

∫
φ2

φ1

V (φ )

V ′(φ )
dφ . (2.5)

The simplest one field inflation model of particle physics require quartic self couplings to

be very small, i.e., λ < O( ∆V
(∆φ )4 ) . O(10−12) [9, 10] which is unnatural model.

2.2 Natural inflation

One of the plausible ways to resolve this problem is if some symmetry restricts couplings

to be very small. The most popular way to achieve a weakly coupled field is known as

18



2.2 Natural inflation

natural inflation [4]. In this scenario, if there is global symmetry breaking, then pseudo

Nambu Goldstone boson arises with flat potential. However, if an additional symmetry

breaks explicitly, then the potential is almost flat. The couplings are inversely proportional

to the scale of breaking; thus, for a large breaking scale field will be very weakly coupled

as required for inflation.

In this chapter, we discuss one of the model of natural inflation. The potential is of

the form [4, 11]

V (φ ) = Λ4

[
1+ cos

(nφ

f

)]
(2.6)

We assume n=1 to have single minima. The potential is plotted in Fig 2.1. Mininum is at

π f . The inflation is in the interval φ1 and φ2 both are in [0,π f ]. Slow roll parameters can

ϕ

V
(ϕ

)

FIGURE 2.1: Inflaton potential.

be computed as:

ε =
M2

pl sin2[φ/ f ]

16 f 2π(1+ cos φ

f )
2

, (2.7)

η =
M2

pl cos φ

f

8 f 2π(1+ cos φ

f )
. (2.8)

Therefore the conditions can be written as:

sin φ

f

(1+ cos φ

f )
<

√
48π f
Mpl

(2.9)
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√√√√ 2|cos φ

f |

(1+ cos φ

f )
<

√
48π f
Mpl

(2.10)

This requires f ≥ Mpl√
48π

. The inflation ends when these conditions are violated. Deepend-

ing on f the end of inflation φ2 will be set. As f increases φ2 approaches to π f .

As we discussed earlier, any model must provide sufficient inflation. This is quan-

tized in terms of e-folding. In this framework the number of e-folding is calculated to

be:

N =
8π f
M2

pl

∫
φ2

φ1

(1+ cos φ

f )

sin φ

f

(2.11)

=
8π f
M2

pl

∫
φ2

φ1

cot
φ

2 f
(2.12)

=
8π f
M2

pl
log
[sin φ2

2 f

sin φ1
2 f

]
(2.13)

To explain the observations N must be ≥ 60.

Another constraint one needs to consider in the model is due to the precise mea-

surement of CMB anisotropy, i.e., P1/2
ξ

(k) ∼ 10−5. Therefore it sets a limit on Λ.

Power is defined as: P1/2
ξ

(k) = 15
2

δρ

ρ
.

Where δρ

ρ
is perturbation amplitude. Let us consider after 60 e folding the inflation

ends and largest amplitude produced by φ max << π f as the value of φ . In this model,

power is calculated to be:

P1/2
ξ

(k) =
π2 f
M3

pl

9
2π

(
8π

3
)3/2

(1+ cos φ max

f )3/2

sin φ max

f

(2.14)

This can be approximated to

P1/2
ξ

(k) ≈ 1.4π2 f
M3

pl
(

16π

3
)3/2 f

φ max (2.15)

φ max

f can be obtained from the limit on the number of e-folding. If Λ ∼ 1015 GeV (Grand

unified theory scale) mass of field comes out to be mφ ∼ 1011−1013 GeV. The comoving
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2.3 Results and Conclusions

length scale of the fluctuation k−1 crosses the radius (Ha)−1 at the time of inflation. The

field value is φk. The number of e-folds at the time can be computed from the Eq. (2.13).

Todays horizon size is 3000h−1Mpc therefore the comoving length scale can be written

as:

k−1 ∼ (3000h−1Mpc)eN(k)−60, (2.16)

here N(k) is the number of e-fold from φk to end of inflation. Perturbation amplitude at

the Hubble radius crossing the length scale k−1 is given by:

(
δρ

ρ
)k ≈ P1/2

ξ
(k) ≈ k

−
M2

pl
16π f 2 (2.17)

2.3 Results and Conclusions

To constraint a inflationary model from CMB anisotropy usually power spectrum is de-

fined as power law in k as |δk|2 ∼ kns , and the parameter ns is given by:

ns = 1−
M2

pl

8π f 2 (2.18)

for f ∼ 1 spectrum is scale invariant. However for f = Mpl/
√

8π , ns = 0. Another

bounds due to density fluctuation can be given on amount of tensor fluctuation. To con-

straint usually defined a parameter r which account for tensor to scalar ratio and defined

as:

r =
P1/2

T

P1/2
ξ

= 16ε (2.19)

ε is slow roll paramter when φ = φ max:

ε ≈ 1
32π2

(Mpl

f

)2(φ max

f

)2
(2.20)

To test any inflatiory model one can plot the constraints on [r,n] plane. The current value

on r and ns is given by [1]:

ns = 0.9649±0.0042( TT, TE,EE+lowE+lensing), (2.21)

r < 0.068( TT, TE,EE) (2.22)
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For the model, let us choose some benchmark for f = 0.6,0.7,1,2,5 of Mpl

TABLE 2.1: Spectral index in natural inflation model.

f ns
0.4 Mpl 0.75132
0.5 Mpl 0.840845
0.6 Mpl 0.889476
0.7 Mpl 0.918798

Mpl 0.960211

We have provided the spectral index ns for various value of f in the Table 2.1.

Precise measurement from Planck put constraint, i.e., f < 0.7Mpl .

The value of tensor to scalar ratio r lowered to 0.068 that can constrain the interval

number of e-fold as it sets the φ max. Planck provides the constrained plots in [r,n] plane.

Here we have presented the resulting plot in 2.2 from Planck 2018 [1]. The plot from

FIGURE 2.2: Observed limit on (ns− r) plane from Planck 2018 [1]. Here r is at

k = 0.0002 Mpc−1

Planck (see Figure 2.2), show the region of allowed parameter space in n and r at at k =

0.0002 Mpc−1 plane. Colored regions are for different models, e.g., several polynomials

of fields, Low scale SUSY, R2 inflation, natural inflation etc. Legends are self explanatory.
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2.3 Results and Conclusions

Small circle corresponds to number of e-fold 50 and n = 60 represented by larger circle.

Blue, red and gray region are corresponding to observation data from Planck. Violet

colored region show the allowed parameter space for natural inflation. We can see still

some of the region is allowed from current Planck data. However, future measurement

seems to push it further and it might not remain allowed in its simplest form.
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