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Abstract

Options are starting to gain importance as some of the most widely accepted and used

financial instruments for investing purposes. Despite some of their obvious advan-

tages, since the pricing of options depends on the behavior of the underlying stock,

it becomes difficult to explicitly determine a fair price of the option if the stock itself

is a complicated stochastic process. Since one cannot hope to have an accurate theo-

retical distribution for the underlying stock, one may attempt to formulate a theory

that specifies the market dynamics on the basis of the underlying assets like stocks

and bonds. The behavior of these assets is in turn specified by stochastic differential

equations that involve parameters like the interest rate and volatility, which can be

determined. The particular values of these parameters, which in conjunction with the

proposed theory give us the same price of the vanilla option as is directly observed

from the market, can be regarded as the implied values of those parameters. These

can be used to formulate fair prices of other financial instruments like exotic options.

In this project, we consider vanilla European call options, the simplest of fi-

nancial instruments, and attempt to show under what conditions we can determine

one of these parameters, called the volatility, from available statistical data related to

the option price. We start with a few preliminaries and results, like Lévy’s Theorem,

from stochastic calculus in Chapter 1. In Chapter 2, we discuss basic terminology

and results related to discrete-time and continuous-time trading in financial markets,

like the No Arbitrage condition in the admissible class for complete markets. We then

give a short summary of the Black-Scholes model and the definition of implied volatil-

ity. From Chapter 3 onwards, we move on to the more general Markov-modulated

market model, where we give a brief description of the model and mention the general

PDE satisfied by the price of a European call option in this model. In Chapter 4,

we propose some approaches to define the implied volatility. We try out one of these

approaches- by treating it as an inverse problem, we prove that in certain conditions,

the notion of implied volatility is well-defined in the Markov-modulated model, even

though there is no explicit formula for the price of a call option. Finally in Chap-

ter 5, we conduct a numerical experiment that exhibits the methodology of relevant

computations to determine the implied volatility.
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Chapter 1

Itō Calculus and Brownian Motion

This chapter contains some prerequisite concepts and results, which we will need in

our study of market models of stock prices following stochastic differential equations

based on Brownian motion. We shall re-visit Itō calculus and a few properties of

Brownian motion. We will restrict ourselves to a particular class of Itō integrals. See

[22], [25], [27], [28], [30], [32], [33] and [34].

1.1 Itō Calculus

Definition 1.1.1. Let {τn}n be a sequence of partitions

τn = {0 = tn0 < tn1 < ... < tnin <∞},

such that limn→∞ t
n
in =∞ and limn→∞ supj≤in−1|tnj+1 − tnj | = 0.

Let X be a càdlàg process on [0,∞). If 〈X〉t = limn→∞
∑

tni ∈τn,tni+1<t
|Xtni+1

−Xtni
|2

exists for every t, the function t→ 〈X〉t is called the quadratic variation of X along

{τn}n.

Theorem 1.1.1. Let X : [0,∞)→ R be continuous with continuous quadratic varia-

tion 〈X〉t, and let F be twice continuously differentiable with all derivatives bounded.

1



CHAPTER 1. ITŌ CALCULUS AND BROWNIAN MOTION

Then

F (Xt) = F (X0) +

∫ t

0

F ′(Xs)dXs +
1

2

∫ t

0

F ′′(Xs)d〈X〉s,

where
∫ t

0
F ′(Xs)dXs = limn→∞

∑
tni ≤t

F ′(Xtni
)(Xtni+1

−Xtni
). Note that we choose the

leftmost point of the interval Xtni
as the argument of F ′.

Proof. Let t > 0. Then by Taylor’s theorem,

F (Xtni+1
)− F (Xtni

) = F ′(Xtni
)(Xtni+1

−Xtni
) +

1

2
F ′′(Xt̃ni

)∆(Xtni
)2

= F ′(Xtni
)∆Xtni

+ F ′′(Xtni
)∆(Xtni

)2 +
1

2
(F ′′(Xt̃ni

)− F ′′(Xtni
))(∆Xtni

)2,

where t̃ni ∈ (tni , t
n
i+1).

Define Rn = F ′′(Xt̃ni
)− F ′′(Xtni

) and δ = maxi|∆Xt̃ni
|. Then

|Rn(tni )| ≤ 1

2
max|x−y|δn |F ′′(x)− F ′′(y)|(∆Xtni

)2 ≤ εn(∆Xtni
)2,

since F ′′ is uniformly continuous on [0, t].

The last term in the Taylor expansion vanishes and we can sum both sides over

the tni ’s in the partition.

1.
∑

(F (Xn
t i+ 1)− F (Xtni

)) = F (Xt)− F (x0)

2.
∑

1
2
F ′′(Xtni

)(∆Xtni
)2 →

∫ t
0
F ′′(Xs)d〈X〉s

3.
∑
F ′(Xtni

)∆Xtni
→
∫ t

0
F ′(Xs)dXs.

Plugging these values into the summed-over Taylor expansion gives us Itō’s formula.

Definition 1.1.2 (Itō Integral). Let {Ht}t≥0 be an adapted càdlàg process and Xt a

continuous local martingale. If the limit

lim
n→∞

∑
t≥tni

Htni
(ω)(Xtni+1

(ω)−Xtni
(ω))

exists for all t ≥ 0 P -almost surely, then the above limit, denoted by
∫ t

0
HsdXs is

called the stochastic integral of H with respect to X.

2



1.1. Itō Calculus

The following lemma, which we state without proof, will be useful:

Lemma 1.1.1. Let {Ht}t≥0 and Xt be defined as above. Then Mt =
∫ t

0
HsdXs is a

local martingale.

Lemma 1.1.2. If {Xt}t≥0 is a local martingale, then X2
t − 〈X〉t is also a local mar-

tingale.

Proof. Let f(x) = x2. From Itō’s formula,

f(Xt) = f(X0) +

∫ t

0

f ′(Xs)dXs +
1

2

∫ t

0

f ′′(Xs)d〈X〉s

=⇒ X2
t = X2

0 + 2

∫ t

0

XsdXs + 〈X〉t,

X2
t − 〈X〉t = X2

0 + 2

∫ t

0

XsdXs.

In the R.H.S, the integrand is an adapted càdlàg and the integrator is a local

martingale. Hence the integral is a local martingale by the previous lemma.

Lemma 1.1.3. Let X be a continuous local martingale with 〈X〉 = 0 P -almost surely.

Then Xt = X0 almost surely.

Proof. Set Mt = X2
t −〈X〉t = X2

t . This is a local martingale by the previous lemma.

Let τ ′n and τ ′′n be such that Xt∧τ ′n and X2
t∧τ ′′n are martingales for all n. Then

Xt∧τn and X2
t∧τn are also martingales for all n, where τn = τ ′n ∧ τ ′′n . Now

0 ≤ E[(Xt −X0)2|X0] = E( lim
n→∞

(Xτn∧t −X0)2),

by continuity of Xt.

E( lim
n→∞

(Xτn∧t −X0)2) ≤ lim
n→∞

E(Xτn∧t −X0)2

= lim
n→∞

E(X2
τn∧t −X

2
0 − 2X0(Xτn∧t −X0)),

lim
n→∞

E(X2
τn∧t −X

2
0 − 2X0(Xτn∧t −X0)) = lim

n→∞
E(X2

τn∧t −X
2
0 ),

3



CHAPTER 1. ITŌ CALCULUS AND BROWNIAN MOTION

since Xτn∧t is a martingale, and

lim
n→∞

E(X2
τn∧t −X

2
0 ) = lim

n→∞
0 = 0,

since X2
τn∧t is a martingale.

Hence Xt = X0 almost surely for every t.

Theorem 1.1.2 (Independence of Itō Calculus of the Partition Choice). The value

of the Itō Integral is independent of the choice of partition {τn}.

Proof. Let X be a local martingale. Fix a partition sequence to be used in the Itō

formula:

X2
t −X2

0 = 2

∫ t

0

XsdXs + 〈X〉t.

The LHS is independent of the partition choice, whereas the RHS is defined using

the chosen partition. Consider two different partitions {τ 1
n}n and {τ 2

n}n and suppose

that the RHS of the above equation corresponding to these choices are I1
t + 〈X〉1t and

I2
t + 〈X〉2t respectively. These two are equal to each other.

Now Mt = 〈X〉1t − 〈X〉2t = I2
t − I1

t . Both I1
t and I2

t are local martingales from

lemma 1.2.1. Hence Mt is also a local martingale. But since Mt is a process of finite

variation, its quadratic variation 〈M〉t = 0 for all t almost surely.

Hence Mt = M0 = 0 from lemma 1.2.3, which implies that 〈X〉1t = 〈X〉2t and

I2
t = I1

t for all t almost surely.

1.2 Brownian Motion

We recall the definition of Brownian motion and its quadratic variation process

Definition 1.2.1 (Standard Brownian Motion). A real-valued stochastic process {Bt}t≥0

on a probability space (Ω,F , P ) is called Standard Brownian Motion if

1. B0 = 0,

2. t 7→ Bt(ω) is continuous almost surely,

4



1.2. Brownian Motion

3. Bt − Bs is independent of Fs and has normal distribution N(0, t − s), where

0 ≤ s < t.

Definition 1.2.2 (Geometric Brownian Motion). A stochastic process St is said to

follow a Geometric Brownian Motion (GBM) if it satisfies the following stochastic

differential equation:

dSt = µStdt+ σStdWt,

where Wt is a Wiener process or standard Brownian motion, and µ and σ (respectively

called the drift and volatility) are constants.

If St is a geometric brownian motion process, we further assume that S0 is

strictly positive.

Theorem 1.2.1 (Lévy’s Theorem). Fix ω ∈ Ω and consider the path t 7→ Bt(ω). For

almost every such path, 〈B〉t(ω) = t, for all t ≥ 0.

Proof. Let s0 > 0 and {τn}n be a sequence of partitions. Define

Xn =
∑
tni ≤s0

(B(tni+1)−B(tni ))2,

Y n
i = B(tni+1)−B(tni ).

Thus, Xn =
∑

tni ≤s0
(Y n

i )2. Now Y n
i ∼ N(0, tni+1 − tni ) by definition, and

E((Y n
i )2) = V (Y n

i ) = tni+1 − tni ,

since E(Y n
i = 0). Also,

V ((Y n
i )2) = E((Y n

i )4)− (E((Y n
i )2))2

= 3(V (Y n
i ))2 − (V (Y n

i ))2

= 2(tni+1 − tni )2.

=⇒ V (Xn) = 2
∑

(tni+1 − tni )2 ≤ ||τn||s0.

Since the mesh size goes to 0 as n→∞, limn→∞ V (Xn) = 0, or (Xn−E(Xn))→

5
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0 in L2. Furthermore, E(Xn) =
∑

tni ≤s0
E((Y n

i )2) =
∑

tni ≤s0
(tni+1 − tni ) = max{tni ≤

s0}. Thus, we conclude that limn→∞E(Xn) = s0.

Hence (Xn− s0)→ 0 in L2, or Xn → s0 in probability, which implies that there

is a subsequence {Xnk}k such that Xnk → s0 almost surely as k →∞.

Next, we have to show that 〈B〉t does not depend on the choice of the partition

sequence. Hence

〈B〉s0 = lim
k→∞

Xnk = s0

almost surely. Now take the enumeration Q+ = {s0, s1, ...} and let Ni ⊂ Ω such that

〈B〉si 6= si if and only if ω ∈ Ni.

Then P (∪iNi) = 0. Let A ⊂ Ω such that Bt(ω) is not continuous for ω ∈ A.

Hence, for ω not belonging to N = A∪i≥1Ni, 〈B〉si(ω) = si for all i, and P (N ) = 0.

If t > 0, there exists a subsequence sik → t and from the continuity of t 7→ Bt(ω)

for all ω ∈ N c,

〈B〉t(ω) = lim
k→∞
〈B〉sik (ω) = lim

k→∞
sik = t.

We can use Itō’s formula to obtain an explicit form for a process St which follows

Geometric Brownian Motion

dSt = µStdt+ σStdWt.

Since the coefficients µSt and σSt are Lipschitz in s, the above SDE has a strong

solution that is continuous almost surely. Let f(St) := log(St) for t < τ(ω), where

τ := min{t > 0;St ≤ 0}. Then

d logSt = df(St) = f ′(St)dSt +
1

2
f ′′(St)S

2
t σ

2dt

=
1

St
(σStdW + µStdt)−

1

2
σ2dt

= σdBt + (µ− σ2

2
)dt.

6



1.2. Brownian Motion

It follows that for t < τ ,

logSt = logS0 + σBt + (µ− σ2

2
)t

=⇒ St = S0 exp(σBt + (µ− σ2

2
)t).

Now it remains to show that the solution does not exist for τ(ω) < ∞. Let ω

be such that τ(ω) <∞ and the solution exists for τ(ω), and let t ↑ τ(ω). Then using

the continuity of {St}t≥0 at τ(ω),

0 = lim
t↑τ(ω)

St = Sτ(ω)− = S0 exp(σBτ(ω)−+(µ−σ
2

2
)τ(ω)−) = S0 exp(σBτ(ω)+(µ−σ

2

2
)τ(ω)) 6= 0

almost surely, which is a contradiction proving that no solution exists for τ(ω) <∞.

7
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Chapter 2

Introduction to Trading in

Financial Markets

We shall begin by defining several notions in a discrete-time market model, and then

go on to generalize these notions in the context of continuous-time markets. For

references used herein, see [18], [19], [20], [21], [24] and [22].

2.1 Some Market-Related Definitions

Definition 2.1.1 (Bond). A riskless securrity earning a fixed interest at rate r in

each unit of time. An investor can invest in or borrow a bond a rate of interest r,

and it follows deterministic pricing dynamics.

Definition 2.1.2 (Stock). Shares of a stock of some specified company are traded in

the market. Prices of stocks are modelled as random processes.

Definition 2.1.3 (Option). The right, but not the obligation, to buy or sell stock

from or to a particular party, at some fixed price K (called strike price). If the holder

of the option can buy or sell the stock only at the end of some fixed time period, then

that option is called European option.

If the holder of the option can do so before the terminal time as well, then that

option is called an American option.

9



CHAPTER 2. INTRODUCTION TO TRADING IN FINANCIAL MARKETS

Suppose times t1, t2, ..., tk are the only times when stock can be traded (trading

times), ξ1
k are the number of shares and ξ0

k the number of bonds held on the kth day.

Let the price of the stock on the kth day (after the trading time) be Sk. Then ξik
can be set strategically depeding on the history of the stock process in the following

way:

ξik = πik(S0, S1, ..., Sk−1),

where πik are real functions on Rk, k ≥ 1.

Definition 2.1.4 (Self-financing Strategy). A trading strategy in which no money is

put in and there is no surplus on any day except the initial investment x, that is,

ξ1
k−1 + ξ0

k−1(1 + r)k−1 = ξ1
kSk−1 + ξ0

k(1 + r)k−1.

Suppose Sk can take only finitely many values and we consider a time horizon

of N days. Let

Ω = {(s0, s1, ..., sN) ∈ RN+1 : P (S0 = s0, ..., SN = sN) > 0},

P ((S0, ..., SN) ∈ Ω) = 1.

Without loss of generality, let the underlying probability space be (Ω,F , P ) and

Si(s0, ..., sN) = si.

A self-financing strategy is represented as θ = {x, π1
1, ..., π

1
k}. The value of the

portfolio (on the kth day after the trading time) is

Vk(θ)(s0, ..., sN) = [x+
k∑
j=1

π1
j (s0, ..., sj−1)(sjβ

j − sj−1β
j−1)](1 + r)k,

where β = (1 + r)−1.

Definition 2.1.5 (Arbitrage Opportunity). A self-financing strategy θ = (0, π1) such

that

1. Vn(θ)(s0, ..., sN) ≥ 0 ∀ (s0, ..., sN) ∈ Ω,

2. Vn(θ)(s1
0, ..., s

1
N) > 0 for some (s1

0, ..., s
1
N) ∈ Ω.

10



2.2. Continuous Time Trading

2.2 Continuous Time Trading

Let there be k stocks whose prices at t ∈ [0, T ] are (S1
t , ..., S

k
t ) and a bond priced S0

t .

We assume that S0
u ≤ S0

t for u < t, and Sit are r.c.l.l processes. The discounted

prices are S̃it = Sit(S
0
t )
−1. Let Gt be the smallest σ-algebra with respect to which Siu

are measurable (0 ≤ i ≤ k, 0 ≤ u ≤ t).

A self-financing simple strategy has an initial investment x and aitj , 1 ≤ i ≤ k,

0 ≤ j ≤ m, are bounded Gtj -measurable random variables.

We assume that the portfolio changes at times 0 ≤ t0 < t1 < ... < tm ≤ T , and

Ft denotes the σ-algebra obtained on completing Gt and forcing it to satisfy the usual

conditions.

aitj denotes the number of shares of the ith stock held during (tj, tj+1].

πit =
∑

j π
i
tj
1(tj ,tj+1](t), π

i
t is Ft-measurable and left-continuous.

Let the strategy be denoted by θ = (x, π1, ..., πk). The discounted value of the

portfolio is

Ṽt(θ) = x+
k∑
j=1

m−1∑
i=0

ajti(S̃
j
ti+1∧t − S̃

j
ti∧t).

A contingent claim is attainable via a simple strategy θ at time T if X = VT (θ) =

S0
T ṼT (θ).

Definition 2.2.1 (Arbitrage Opportunity (Continuous trading)). A simple strategy

θ = (0, π) is an arbitrage opportunity if

P (ṼT (θ) ≥ 0) = 1;P (ṼT (θ) > 0) > 0.

We assume that Sit are continuous semi-martingale processes.

Definition 2.2.2 (Trading Strategy). Let Ft be the filtration generated by S =

(S0, ..., Sk). θ = (π0, ..., πk) is a trading strategy if

1. each πit is Ft-predictable,

2. exists for i = 0, ..., k.

11



CHAPTER 2. INTRODUCTION TO TRADING IN FINANCIAL MARKETS

Definition 2.2.3 (Value of the Portfolio). The value of a portfolio is the stochastic

process

Vt(θ) =
k∑
i=0

πitS
i
t ,

where t > 0.

Definition 2.2.4 (Gains Process). The stochastic process:

Gt(θ) =
k∑
i=1

∫ t

0

πiudS
i
u.

The discounted versions of the above processes can be obtained by replacing

the stock price with the discounted stock price in the respective formulae.

Definition 2.2.5 (Self-Financing Strategy). θ = (π0, ..., πk) is self-financing if Ṽt(θ) =

Ṽ0(θ) + G̃t(θ) almost surely, for 0 ≤ t ≤ T .

Definition 2.2.6 (Admissible Strategy). A self-financing strategy θ is admissible if

∃m <∞ such that

P (Ṽt(θ) ≥ −m ∀ t) = 1.

An arbitrage opportunity is an admissible strategy such that ṼT (θ) ≥ 0 almost

surely, and P (ṼT (θ) > 0) > 0.

S̃ = (S̃1, ..., S̃k) has the no arbitrage property if no arbitrage opportunity exists.

Definition 2.2.7 (Equivalent Measure). Let (X, σ) be a measurable space and let µ

and ν be measures defined on σ. Then µ and ν are said to be equivalent iff for every

measurable set A, µ(A) = 0⇐⇒ ν(A) = 0.

Definition 2.2.8. Let P be the underlying probability measure with respect to which

the market model is presented. Let the discounted stock price process be denoted by

S̃it. Then the class of equivalent martingale measures with respect to P is defined as

M(P ) := {Q : Q ≡ P and S̃it is a Q-local martingale, 1 ≤ i ≤ k}.

Theorem 2.2.1. Let Q be an equivalent martingale measure to P. For an admissible

strategy θ = (x, π),

Ut =
k∑
i=1

∫ t

0

πiudS̃
i
u

12



2.3. Implied Volatility

is a Q-local martingale and Q-supermartingale, that is, M(P ) 6= φ =⇒ no arbitrage

in the admissible class.

Proof. Since the stochastic integral with respect to a local martingale is itself a

local martingale, Ut is a local martingale.

If {τn} is an increasing sequence of stopping times such that P (τn = T ) → 1

and Un
t = Ut∧τn is a Q-martingale, then for s ≤ t, EQ(Un

t |Fs) = Un
s .

Un
t ≥ −m for some m (admissibility), so we can use Fatou’s lemma on it:

EQ(Ut|Fs) = EQ(lim inf Un
t |Fs) ≤ lim inf EQ(Un

t |Fs) = lim inf Un
s = Us,

so Ut is a Q-supermartingale. Therefore

EQ(Ut) ≤ EQ(U0) = 0,

P (UT ≥ 0) = 1 =⇒ Q(UT ≥ 0) = 1.

EQ(UT ) ≤ 0 =⇒ Q(UT = 0) = 1 =⇒ P (UT = 0) = 1.

Thus, the no arbitrage condition is satisfied.

2.3 Implied Volatility

Definition 2.3.1 (Black-Scholes Equation for a Call Option). Let the stock price

process be denoted by St. If St = S for a particular time t, let us denote the price

of a European call option at that time t by C(t, S). We assume that the stock price

follows a geometric Brownian motion:

dSt = µStdt+ σStdWt,

13



CHAPTER 2. INTRODUCTION TO TRADING IN FINANCIAL MARKETS

where µ and σ are constant parameters. From this, we obtain the following PDE

for the call option price, the Black-Scholes PDE for the call option:

rSt
∂C

∂S
+
∂C

∂t
+

1

2
σ2S2

t

∂2C

∂S2
− rC = 0, (2.3.1)

where r is the rate of interest on the bond.

Definition 2.3.2 (Implied Volatility). Let r be the interest rate of the bond and C

the observed initial market price of the call option with strike price K and termi-

nal time T . Using boundary conditions appropriate to the European call option, we

obtain a solution B(S, T, r,K, σ) to the Black-Scholes equation. If we can solve the

equation B(S, T, r,K, σ) = C for σ, then the solution σ(K,T ) is known as the im-

plied volatility and its graphical representation with respect to K and T is called

the volatility surface.

The volatility is constant in the default Black-Scholes model, but actually varies

with time and strike price. For a general option-pricing model, the implied volatility

is defined similarly - we will have a different function φ instead of B.

Definition 2.3.3 (Greeks). Greeks measure the sensitivity of option prices to various

market parameters. Following are the greeks and their respective formulae for call

options under the default Black-Scholes model:

1. Delta = ∂C
∂S

= e−qTφ(d1),

where q is the dividend paid by the stock and

d1 = log(St/K)+(r+σ2/2)(T−t)
σ
√
T−t .

2. gamma = ∂2C
∂S2 = e−qT φ(d1)

σS
√
T

3. vega =∂C
∂σ

= e−qTφ(d1)S
√
T

4. theta =−∂C
∂T

= −e−qTSφ(d1) σ
2
√
T

+ qe−qTSN(d1)− rKe−rTN(d2),

where d2 = d1 − σ
√
T − t.

14



Chapter 3

Regime-Switching Market Model

3.1 Drawbacks of the Black-Scholes Model

Even though the Black-Scholes model is widely used, it suffers from a few drawbacks.

In the Black-Scholes model, the parameters µ and σ (that describe the stock price

process) are constant and the stock price of a European call option follows geometric

Brownian motion as mentioned in the definition of the Black-Scholes equation. In

other words, the implied volatility is supposed to be independent of the strike price

and time of maturity. One way to depict the relation of implied volatility to the

strike price and time of maturity is by using the volatility surface, which is flat in

the Black-Scholes model (figure 3.1). However, empirical observations show that the

volatility surface is actually skewed, a property that is referred to as the volatility

smile (figure 3.2).

Among the various generalizations of the Black-Scholes model (see [2], [3], [4],

[5], [9], [10], [11], [12], [13], [26], [31] and [35]), we consider a particular model, as

given in [1], [7], [8], [14], [15] and [17].

15
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3.2 A Generalization of the Black-Scholes Model

We assume that the state of the market corresponds to that of a finite state, continu-

ous time Markov chain; in other words, we say that the market is composed of several

“regimes”, and each regime characterizes such a state. We denote such a Markov

chain by {Xt, t ≥ 0} that takes the values {1, 2, . . . , k} (used in above equation), and

for which

P (Xt+δt = j|Xt = i) = λijδt+ o(δt),

where Λ = [λij] is the generating Q-matrix of the Markov chain, satisfying the prop-

erties λij ≥ 0 for i 6= j and λii = −
∑k

i 6=j λij. The transition probabilities between

states are given by pij :=
|λij |
λii

.

We assume that the market consists of a single stock St, whose price is a stochas-

tic process that follows a Markov-modulated geometric Brownian motion:

dSt = r(Xt−)Stdt+ σ(Xt−)StdWt,

and of a single risk-free asset Bt that satisfies:

dBt = Btr(Xt)dt,

where S0, B0 > 0, t ≥ 0, Wt is a standard Weiner process independent of the Markov

chain {Xt, t ≥ 0}, and r, σ ∈ Rk.

The derivation of the price equation for a European call option is more involved

in this case, since the market described by the regime-switching model is incomplete.

A market is called incomplete when not all contingent claims can be attained us-

ing only self-financing strategies. In an incomplete market, there are several price

functions that satisfy No Arbitrage.

Therefore we employ an optimal strategy to hedge the call option, which we

try to approximate as close as possible to a self-financing by minimizing its quadratic

residual risk (which is a measure of the cash flow), subject to a constraint. Using this

procedure, we obtain a unique, locally risk-minimizing price function of a call option

that satisfies the following parabolic PDE:

16



3.2. A Generalization of the Black-Scholes Model

Figure 3.1: Flat volatility surface

Figure 3.2: Volatility ”smile” (source- http://relavalue.blogspot.in/2013_12_

01_archive.html)

∂φ(t, s)

∂t
+ sR

∂φ(t, s)

∂s
+

1

2
s2diag(σ2)

∂2φ(t, s)

∂s2
+ Λφ(t, s) = Rφ(t, s); (3.2.1)
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1. φi(T, s) = (s−K)+,

2. φi(t, 0) = 0,

for all s and i = 1, 2, . . . , k, and where K is the strike price of the option and Λ

is a k×k rate matrix, i.e., its off-diagonal entries are non-negative and the sum of each

of its row is zero. The solution φ(t, s), a vector-valued function φ : [0, T ]×R+ → Rk,

is the price function in the regime-switching model. It denotes the price of a European

call option at time t when the stock price St = s.

In the above equation, we define R ∈ Rk×k such that R(i, i) = r(i) for i =

1, 2, . . . , k and R(i, j) = 0 for i 6= j. Furthermore, if A,B ∈ Rk, then we de-

note the k-vector with ith component A(i)B(i) by AB, and we use the convention

that diag(AB) ∈ Rk×k such that diag(AB)(i, i) = A(i)B(i) for i = 1, 2, . . . , k and

diag(AB)(i, j) = 0 for i 6= j.

Remark. No closed-form explicit solution is known, but it can be proved that a smooth

unique solution exists for the above PDE. However, there exists an integral represen-

tation of the price function, which we have mentioned in section 5.1.
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Chapter 4

Notion of Implied Volatility in the

Regime-Switching Model

4.1 Introduction

The implied volatility is an important parameter that is widely used in considerations

related to transactions involving and pricing of options. In this chapter, we seek to

establish that in a Markov-modulated market, and under certain conditions, it is

possible to determine the implied volatility if we are given the price function of a

European call option.

Let us first discuss an intuitive approach to define implied volatility in the

regime-switching market. We assume that we can observe Xt, r and Λ from the

market, in addition to St and φ(t, St, Xt). Suppose we observe the values of these

quantities at specific points of time t1, t2, . . . , tk close enough so that Xti = x for all

i = 1, 2, . . . , k. Let the observed value of φ at time ti be denoted by yi. Thus, we can

potentially obtain k equations:

φ(t1, St1 , x, σ) = y1

φ(t2, St2 , x, σ) = y2

...

φ(tk, Stk , x, σ) = yk,

19
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which can be collectively written using a vector function Φ as

Φ(t, s, x, σ) = y,

where we define t := (t1, t2, . . . , tk), s := (St1 , St2 , . . . , Stk) and y := (y1, y2, . . . , yk).

So now we have a vector-valued function Φ and a map σ 7→ y. If the latter map

is invertible, we can obtain the implied volatility using y and Φ. However, proving

that the inverse function theorem can indeed be used for this map is mathematically

intractable and we consider a different approach where we just have a single time

t instead of an n-tuple t. Therefore we must only deal with a single φ(t, St) and

attempt to prove that the map σ 7→ φ is invertible.

4.2 A Few Results

For this section, we will require the following result:

Lemma 4.2.1. Consider the following PDE:

(
∂

∂t
+Aσ

)
φ = f(t, s) +Rg(t, s),

on (0, T )× (0,∞), with the following boundary conditions:

1. φ(T, s)(i) = 0 for all s ≥ 0 and for all i,

2. φ(t, 0)(i) = 0 for all t ∈ [0, T ] and for all i,

where Aσφ(t, s, i) := Ris
∂φ(t,s,i)

∂s
+ 1

2
s2σ2

i
∂2φ(t,s,i)

∂s2
+
∑

j Λijφ(t, s, j) , and φ(t, s), f(t, s) ∈
Rk. Let the function f(t, s) have at most quadratic growth with respect to s. Then

the above initial boundary value problem has a unique classical solution φ that also

has at most quadratic growth with respect to s.

Proof. Let τn := inf{τ > t; |Sτ − s| ≥ n} and define

g
(n)
1 (t, s, i) := IE

[ ∫ τn∧T

t

e−
∫ t′
t R(Xu) du|f(t′, St′ , Xt′)| dt′

∣∣∣∣St = s,Xt = i

]
.
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Using the definition of τn and the quadratic growth condition on f , we can say

that the above quantity

g
(n)
1 (t, s, i) ≤ cIE

[ ∫ T

t

|1 + St′|2 dt′
∣∣∣∣St = s,Xt = i

]
.

Now if we can show that

IE

[ ∫ T

0

S2
t′ dt

′
]
<∞,

then g
(n)
1 (t, s, i) will also be bounded and we will be done. We know that

St′ = S0 exp

[ ∫ t′

0

{µ(Xu)−
1

2
σ2(Xu)} du+

∫ t′

0

σ(Xu) dWu

]
.

Let c := maxi∈S{µ(i)− 1
2
σ2(i)} and d := maxi∈S{σ2(i)}; then clearly,

S2
t′ ≤ S2

0 exp

(
2

∫ t′

0

c du

)
exp

(
2

∫ t′

0

σ(Xu)dWu

)
. (4.2.1)

It is enough to show the RHS has a finite expectation. Consider:∫ t′

0

σ(Xu)dWu =
∞∑
n=1

∫ Tn∧t′

Tn−1∧t′
σ(XTn−1) dWu

=
∞∑
n=1

∫ Tn∧t′

Tn−1∧t′
σ(XTn−1)(WTn∧t′ −WTn−1∧t′).

If FXt′ is the filtration generated by {Xt}t≥0, then the conditional distribution of∫ t′
0
σ(Xu)dWu given FXt′ is a normal distribution with zero mean and variance

V =
∞∑
n=1

σ2(XTn−1)[(Tn ∧ t′)− (Tn−1 ∧ t′)].
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From the expression of the variance of a lognormal random variable, we obtain

IE

[
exp

(
2

∫ t′

0

σ(Xu)dWu

)]
= IE

[
exp

( ∞∑
n=1

σ2(XTn−1)[(Tn ∧ t′)− (Tn−1 ∧ t′)]
)]

≤ IE

[
exp

(
d
∞∑
n=1

[(Tn ∧ t′)− (Tn−1 ∧ t′)]
)]

= exp(dτ).

Now using the above and equation (4.2.1),

IE(S2
t′) ≤ S2

0e
2ct′edt

′
= S0e

(2c+d)t′ ,

and therefore, ∫ T

0

IE(St′) dt
′ = S0

∫ T

0

e(2c+d)t′ dt′

=
S0

2c+ d
(e(2c+d)T − 1) <∞.

We also state a particular version of the Feynman-Kac theorem here without

proof (refer to Theorem 7.6, [23] for a proof of the generalized version). The theorem

is stated under the assumptions given as (7.2) to (7.4) in [23].

Theorem 4.2.1 (Feynman-Kac Representation). Suppose that v(t, s) : [0, T ]×Rk →
Rk is continuous, is of class C1,2([0, T )× Rk) and satisfies the Cauchy problem

−∂v
∂t

+ rv = Av + g;

v(T, s) = 0,

as well as the polynomial growth condition

max
0≤t≤T

|v(t, s)| ≤M(1 + ||s||2µ);

for some M > 0 and µ ≥ 1. Then v(t, x) admits the stochastic representation
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v(t, x) = IEt,x

[ ∫ T

t

g(τ,Xs)e
−
∫ τ
t r(θ,Xθ) dθ dτ

]
.

Remark. From here on, we refer to the solution of the PDE (3.2.1) as φ. In the

following theorem, we write φ as φσ to emphasize its dependence on the parameter σ.

Similarly, φσ+h denotes the solution of a PDE obtained by replacing σ in (3.2.1) by

σ + h.

Theorem 4.2.2. The price function, φ, is continuous with respect to the volatility

coefficient σ.

Proof. We can re-write equation (3.2.1) as:

∂φ(t, s)

∂t
+Aφ(t, s) = Rφ(t, s),

where A := Rs ∂
∂s

+ 1
2
s2diag(σ2) ∂

2

∂s2
+ Λ and h ∈ Rk. Now define g1(h; t, s) :=

φσ+h(t, s) − φσ(t, s). We want to show that g1(h) → 0 as h → 0. Therefore (g1(h),

φσ, φσ+h, Aσ and Aσ+h depend on t and s, and we will not be explicitly specifying

that in the following equations),

∂g1(h)

∂t
=
∂φσ+h

∂t
− ∂φσ

∂t

= Aσφσ −Aσ+hφσ+h +R(φσ+h − φσ)

= (Aσ −Aσ+h)φσ+h −Aσ(φσ+h − φσ) +R(φσ+h − φσ)

= (Aσ −Aσ+h)φσ+h −Aσg1(h) +Rg1(h).

The terminal conditions on φ(t, s) in equation (3.2.1) do not depend on σ.

In other words, φσ(t, s) and φσ+h(t, s) take the same values and therefore g1(h; t, s)

vanishes at the terminal points (T, s) (for all s ≥ 0) and (t, 0) (for all t ∈ [0, T ]).

Therefore we get the following PDE in g1(h; t, s):

∂g1(h; t, s)

∂t
+Aσg1(h; t, s) = (Aσ −Aσ+h)φσ+h(t, s) +Rg1(h; t, s),

with the following boundary conditions:
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1. g1(h;T, s)(i) = 0 for all s ≥ 0 and for all i,

2. g1(h; t, 0)(i) = 0 for all t ∈ [0, T ] and for all i.

We also have

Aσ+h −Aσ =
1

2
s2diag[(σ + h)2]

∂2

∂s2
− 1

2
s2diag(σ2)

∂2

∂s2

=
1

2
s2diag[h2 + 2σh]

∂2

∂s2
.

(4.2.2)

Therefore the equation in g1(h; t, s)(i) can finally be written as

∂g1(h; t, s)(i)

∂t
+Aσg1(h; t, s)(i) =

−s2

2
diag(h2 +2σh)

∂2

∂s2
φσ+h(t, s)(i)+Rg1(h; t, s)(i).

(4.2.3)

Rg1(h; t, s)(i) can be brought over from the RHS of (4.2.3) to the LHS and

incorporated into the operator Aσ. In the remaining term on the RHS, ∂
2φ
∂s2

is bounded

in s and multiplied by s2. Thus, the source term has at most quadratic growth in

s, and by Lemma 4.2.1, there exists a unique classical solution g1(h; t, s) to the PDE

above, that also has at most quadratic growth in s. Therefore we can use Remark

3.5.5 in [29] to specify g1(h; t, s) explicitly as follows:

g1(h; t, s)(i) = IE

[ ∫ T

t

e−
∫ τ
t r(Xu)du

(
−S2

τ

2

)
(h(Xτ )

2 + 2σ(Xτ )h(Xτ ))
∂2

∂s2
φσ+h(τ, Sτ )(Xτ ) dτ

∣∣∣∣
St = s,Xt = i

]
,

where S0 > 0, Xt is a Markov chain with rate matrix Λ and St satisfies the SDE

dSt = St[r(Xt)dt+ σ(Xt)dWt],

and h(Xt) denotes the X th
t component of the k-vector h.

By the Feynman-Kac theorem, the expectation above exists. The norm of g1
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(for convenience, we omit the function parameters for the time being) is:

‖g1‖ =

∥∥∥∥IE

[ ∫ T

t

e−
∫ τ
t r(Xu)du

(
−S2

τ

2

)
(h2 + 2σh)

∂2

∂s2
φσ+h dτ

∣∣∣∣St = s,Xt = i

]∥∥∥∥
≤ IE

[ ∫ T

t

∣∣∣∣e− ∫ τt r(Xu)du

(
−S2

τ

2

)
(h2 + 2σh)

∂2

∂s2
φσ+h

∣∣∣∣ dτ ∣∣∣∣St = s,Xt = i

]
.

Since the expectation exists, the integrand in the expectation above, say η, is

in L1. Suppose we have a decreasing sequence h1 > h2 > . . . in Rk that converges to

0. Let us denote by ηj and (g1)j the functions obtained by substituting h with hj in

η and g1 respectively. Then |ηn| < η1 for all j, where η1 is in L1 and ηn → 0 for each

(τ, ω). Therefore by the dominated convergence theorem, (g1)n → 0, or g1(h)→ 0 as

h→ 0.

Lemma 4.2.2. The double derivative of the price function with respect to s, say ψ,

is continuous with respect to σ.

Proof. After differentiating equation (3.2.1) twice with respect to s, we get

∂ψ

∂t
+ s(R + 2diag(σ2))

∂ψ

∂s
+
s2

2
diag(σ2)

∂2ψ

∂s2
+ Λψ = −(R + diag(σ2))ψ; (4.2.4)

1. ψ(T, s)(i) = 0 for all s ≥ 0 and for all i,

2. ψ(t, 0)(i) = 0 for all t ∈ [0, T ] and for all i.

The above equation can be re-written as

∂ψ

∂t
+A′ψ = −(R + diag(σ2))ψ,

where A′ := s(R + 2diag(σ2)) ∂
∂s

+ 1
2
s2diag(σ2) ∂

2

∂s2
+ Λ. Therefore,

A′σ+h −A′σ = diag(h2 + 2σh)

(
2s

∂

∂s
+
s2

2

∂2

∂s2

)
.

Let us define g2(h; t, s)(i) := ψσ+h(t, s)(i)−ψσ(t, s)(i) (as earlier, we write ψ as
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ψσ to emphasize its dependence on σ). Then

∂g2(h)

∂t
=
∂ψσ+h

∂t
− ∂ψσ

∂t

= A′σψσ +Rψσ + diag(σ2)ψσ −A′σ+hψσ+h −Rψσ+h − diag(σ2 + h2 + 2σh)ψσ+h

= (A′σ −A′σ+h)ψσ+h − (A′σ +R + diag(σ2))(ψσ+h − ψσ)− diag(h2 + 2σh)ψσ+h.

Thus, we obtain the following PDE in g2(h; t, s)(i):

∂g2(h; t, s)(i)

∂t
+A′σg2(h; t, s)(i) = −(R + diag(σ2))g2(h; t, s)(i)−

[
diag(h2 + 2σh)

×
(
ψσ+h(t, s)(i) + 2s

∂ψσ+h(t, s)(i)

∂s
+
s2

2

∂2ψσ+h(t, s)(i)

∂s2

)]
;

1. g2(h;T, s)(i) = 0 for all s ≥ 0 and for all i,

2. g2(h; t, 0)(i) = 0 for all t ∈ [0, T ] and for all i.

Once again, we can segregate the source term, which only involves the second or

higher derivatives of φ with respect to s. These derivatives are bounded in s and are

multiplied by 1, s or s2. Therefore the source term as a whole has at most quadratic

growth in s, and we can use Lemma 4.2.1 and Remark 3.5.5 in [29] to explicitly write

g2(h; t, s)(i) as:

g2(h; t, s)(i) = IE

[ ∫ T

t

e−
∫ τ
t r(Xu)+σ2(Xu) du − (h(Xτ )

2 + 2σ(Xτ )h(Xτ ))

×
{
φσ+h(τ, Sτ )(Xτ ) + 2Sτ

∂φσ+h(τ, Sτ )(Xτ )

∂s
+
S2
τ

2

∂2φσ+h(τ, Sτ )(Xτ )

∂s2

}
dτ

∣∣∣∣
St = s,Xt = i

]
,

where S0 > 0, Xt is a Markov chain with rate matrix Λ and St satisfies the SDE

dSt = St[(r(Xt) + 2σ2(Xt))dt+ σ(Xt)dWt].
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As before,

g2(h; t, s)(i) ≤ IE

[ ∫ T

t

∣∣∣∣e− ∫ τt r(Xu)+σ2(Xu) du − (h(Xτ )
2 + 2σ(Xτ )h(Xτ ))

×
{
φσ+h(τ, Sτ )(Xτ ) + 2Sτ

∂φσ+h(τ, Sτ )(Xτ )

∂s
+
S2
τ

2

∂2φσ+h(τ, Sτ )(Xτ )

∂s2

}∣∣∣∣ dτ ∣∣∣∣
St = s,Xt = i

]
,

We can now use the same reasoning as in Theorem 4.2.2 to establish that g2 → 0

as h→ 0 for each (t, s, i).

Lemma 4.2.3. ψ is continuous with respect to Λ.

Proof. The equation in ψ(t, s)(i) and the operator definition are the same as those

in Lemma 4.2.2. This time, we write ψ as ψΛ since we are studying how it changes

with a small perturbation in the parameter Λ. Let h ∈ Rk×k such that all its off-

diagonal terms are non-negative and the sum of each of its rows is zero. Define

g3(h; t, s)(i) := ψΛ+h(t, s)(i)− ψΛ(t, s)(i); thus we get

∂g3(h)

∂t
=
∂ψΛ+h

∂t
− ∂ψΛ

∂t

= A′ΛψΛ + (R + diag(σ2))ψΛ −A′Λ+hψΛ+h − (R + diag(σ2))ψΛ+h

= (A′Λ −A′Λ+h)ψΛ+h − (A′Λ +R + diag(σ2))(ψΛ+h − ψΛ).

Therefore, the PDE in g3(h; t, s)(i) is

∂g3(h; t, s)(i)

∂t
+A′Λg3(h; t, s)(i) = −hψΛ+h − (R + diag(σ2))g3(h; t, s)(i);

1. g3(h;T, s)(i) = 0 for all s ≥ 0 and for all i,

2. g3(h; t, 0)(i) = 0 for all t ∈ [0, T ] and for all i.

Again, the source term has at most quadratic growth in s, and Lemma 4.2.1

and Remark 3.5.5 in [29] allow us to obtain an expression for g3(h; t, s)(i):

g3(h; t, s)(i) = IE

[ ∫ T

t

e−
∫ τ
t r(Xu)+σ2(Xu) du(−hψΛ+h(τ, Sτ )(Xτ )) dτ

∣∣∣∣St = s,Xt = i

]
,

27



CHAPTER 4. NOTION OF IMPLIED VOLATILITY IN THE REGIME-SWITCHING MODEL

where S0 > 0, Xt is a Markov chain with rate matrix Λ and St satisfies the SDE

dSt = St[(r(Xt) + 2σ2(Xt))dt+ σ(Xt)dWt].

Similarly as in previous results, we get the following inequality involving g3:

g3(h; t, s)(i) ≤ IE

[ ∫ T

t

|e−
∫ τ
t r(Xu)+σ2(Xu) du(−hψΛ+h(τ, Sτ )(Xτ ))| dτ

∣∣∣∣St = s,Xt = i

]
,

and similarly as in those results, we can prove that g3 → 0 as h → 0 for each

(t, s, i). One important difference is in the definition of the sequence hn: this time we

have hn+1(i, j) < hn(i, j) for all i, j = 1, 2, . . . , k and for all n = 1, 2, . . ..

Theorem 4.2.3 (Existence of Vega). The price function φ is differentiable with re-

spect to the volatility coefficient σ.

Proof. Consider the following Cauchy problem:

∂V (t, s)(i)

∂t
+Aσ0V (t, s)(i) +

(
∂A
∂σ

)
σ0

φσ0(t, s)(i) = 0, (4.2.5)

with the boundary condition V (T, s)(i) = 0 for all i and s ≥ 0, and for some

σ = σ0. Now, define g4(h; t, s)(i) as follows:

g4(h; t, s)(i) :=
1

‖h‖
(φσ0+h(t, s)(i)− φσ0(t, s)(i)− V (t, s)(i)h) .

Note that by setting t = T in the above, we get g4(h;T, s)(i) = 0. To prove

differentiability of φ(t, s)(i) with respect to σ, we must show that g4(h; t, s)(i) vanishes

28



4.2. A Few Results

as h→ 0. Differentiating the above equation with respect to t,

∂g4(h)

∂t
=

1

‖h‖

(
∂φσ0+h

∂t
− ∂φσ0

∂t
− ∂V

∂t
h

)
= − 1

‖h‖

(
Aσ0+hφσ0+h −Aσ0φσ0 −Aσ0V h−

(
∂A
∂σ

)
σ0

φσ0h

)

= − 1

‖h‖

(
(Aσ0+h −Aσ0)φσ0+h + (Aσ0φσ0+h −Aσ0φσ0 −Aσ0V h)−

(
∂A
∂σ

)
σ0

φσ0h

)

= −Aσ0g4(h) +
1

‖h‖

((
∂A
∂σ

)
σ0

φσ0h− (Aσ0+h −Aσ0)φσ0+h

)
.

Thus, we get the following PDE for g4(h):

(
∂

∂t
+Aσ0

)
g4(h) =

1

‖h‖

[(
∂A
∂σ

)
σ0

φσ0 .h− (Aσ0+h −Aσ0)φσ0+h

]
(4.2.6)

Next, we shall expand some of the terms in the above equation. Differentiating

A with respect to σ,(
∂A
∂σ

)
σ0

φσ0 =
1

2
s2

(
∂

∂σ
[diag(σ2)]

)
σ0

∂2φσ0

∂s2

= s2M(t, s),

where we defineM(t, s) as a diagonal matrixMii = (σ0)i
∂2(φσ0 )i
∂s2

. Also, replac-

ing σ in equation (4.2.2) with σ0 gives us

Aσ0+h −Aσ0 =
1

2
s2diag[h2 + 2σ0h]

∂2

∂s2
.

Plugging in the above expressions for Aσ0+h − Aσ0 and
(
∂A
∂σ

)
σ0
φσ0 in equation
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(4.2.6), we get(
∂

∂t
+Aσ0

)
g4(h) =

1

2 ‖h‖
s2

[
2M.h− diag(h2 + 2σ0h)

∂2φσ0+h

∂s2

]
=

1

2 ‖h‖
s2

[
−diag(h2)

∂2φσ0+h

∂s2
+ 2

(
Mh− diag(σ0h)

∂2φσ0+h

∂s2

)]
=

1

2 ‖h‖
s2

[
−diag(h2)

∂2φσ0+h

∂s2
+ 2

(
Mh− diag

(
σ0
∂2φσ0+h

∂s2

)
h

)]
=

1

2 ‖h‖
s2

[
−diag(h2)

∂2φσ0+h

∂s2
+ 2

(
M− diag

(
σ0
∂2φσ0+h

∂s2

))
h

]

If we denote the right-hand side of the above equation as fh, then we get an

alternative representation of g4(h) in the form of the following PDE, where fh acts

as the source term: (
∂

∂t
+Aσ0

)
g4(h) = fh, (4.2.7)

with g4(h;T, s)(i) = 0 for all s and i, and g4(h; t, 0)(i) = 0 for all i and t ≤ T .

Now, let us look at

fh(t, s) =
1

2 ‖h‖
s2

[
−diag(h2)

∂2φσ0+h

∂s2
+ 2

(
diag

(
σ0
∂2φσ0

∂s2

)
− diag

(
σ0
∂2φσ0+h

∂s2

))
h

]
= s2

[
− 1

2 ‖h‖
diag(h2)

∂2φσ0+h

∂s2
+ diag

(
σ0
∂2φσ0

∂s2
− σ0

∂2φσ0+h

∂s2

)
h

‖h‖

]

as h→ 0. The first term, −diag(h2)
2‖h‖ vanishes as h→ 0. The second term also vanishes as

h→ 0 since ∂2φ
∂s2

is continuous with respect to σ by Lemma 4.2.2. Therefore, fh → 0

as h → 0. Since fh has at most quadratic growth in s, it satisfies the hypothesis

of Lemma 4.2.1 and therefore, we can conclude that the above PDE has a unique

classical solution g4(h; t, s)(i), which has at most quadratic growth with respect to s.

Therefore by Remark 3.5.5 of [29], g1(h; t, s)(i) can be explicitly specified using the

Feynman-Kac formula:

g4(h; t, s)(i) = IE

[∫ T

t

fh(τ, Sτ )(Xτ ) dτ

∣∣∣∣St = s,Xt = i

]
.
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Again, g4(h; t, s)(i) satisfies

‖g4(h; t, s)(i)‖ ≤ IE

[∫ T

t

|fh(τ, Sτ )(Xτ )| dτ
∣∣∣∣St = s,Xt = i

]
,

where we know that the integrand converges to zero as h→ 0 and we can employ the

same route, utilizing the dominated convergence theorem, as seen before to establish

that g4 → 0 as h→ 0 for each (t, s, i).

As seen in definition 2.3.3, the derivative of the price function with respect to

the implied volatility is known as vega.

4.3 Obtaining Implied Volatility from Price Func-

tion

Theorem 4.3.1. The Vega, V , is continuous with respect to Λ.

Proof. As we saw in Theorem 4.2.3 the PDE in vega is as follows:

∂V (t, s)(i)

∂t
+AV (t, s)(i) +

∂A
∂σ

= RV (t, s)(i);

1. V (T, s)(i) = 0 for all s ≥ 0 and for all i,

2. V (t, 0)(i) = 0 for all t ∈ [0, T ] and for all i.

Let g5(h; t, s)(i) := VΛ+h(t, s)(i)−VΛ(t, s)(i). We also note that ∂AΛ+h

∂σ
= ∂AΛ

∂σ
=

∂A
∂σ

. Then we have

∂g5(h)

∂t
=
∂VΛ+h

∂t
− ∂VΛ

∂t

= RVΛ+h −AΛ+hVΛ+h −
∂A
∂σ

σΛ+h −RVΛ −AΛVΛ +
∂A
∂σ

σΛ

= (AΛ −AΛ+h)VΛ+h −AΛ(VΛ+h − VΛ) +R(VΛ+h − VΛ)− ∂A
∂σ

(φΛ+h − φΛ).
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The resultant PDE in g5(h; t, s)(i) is

∂g5(h; t, s)(i)

∂t
+AΛg5(h; t, s)(i) =Rg5(h; t, s)(i)− hVΛ+h(t, s)(i)

− ∂A
∂σ

(φΛ+h(t, s)(i)− φΛ(t, s)(i))

As seen in Theorem 4.2.3, ∂A
∂σ
φ(t, s)(i) is a diagonal matrix with

(
∂A
∂σ
φ(t, s)(i)

)
ii

=

s2σi
∂2φ(t,s)(i)

∂s2
. Therefore the above PDE becomes

∂g5(h; t, s)(i)

∂t
+AΛg5(h; t, s)(i) =Rg5(h; t, s)(i)− hVΛ+h(t, s)(i)

− s2σi

(
∂2φΛ+h(t, s)(i)

∂s2
− ∂φΛ(t, s)(i)

∂s2

)
;

1. g5(h;T, s)(i) = 0 for all s ≥ 0 and for all i,

2. g5(h; t, 0)(i) = 0 for all t ∈ [0, T ] and for all i.

The RHS has at most quadratic growth in s, therefore we can use Lemma 4.2.1

and Remark 3.5.5 in [29] to write g5(h; t, s)(i) explicitly as

g3(h; t, s)(i) = IE

[ ∫ T

t

e−
∫ τ
t r(Xu) du

{
− h(Xτ )VΛ+h(τ, Sτ )(Xτ )− s2σ(Xτ )

×
(
∂2φΛ+h(τ, Sτ )(Xτ )

∂s2
− ∂φΛ(τ, Sτ )(Xτ )

∂s2

)}
dτ

∣∣∣∣St = s,Xt = i

]
,

where S0 > 0, Xt is a Markov chain with rate matrix Λ and St satisfies the SDE

dSt = St[r(Xt)dt+ σ(Xt)dWt].

The proof follows from the same argument as at the end of Theorem 4.2.3.

When Λ = 0, there are no transitions between the regimes, i.e., Xt = X0 for all

t. The stock therefore follows the SDE:

dSt = St(r(X0)dt+ σ(X0)dWt),

which is just the geometric Brownian motion followed by the stock price in the Black-

Scholes model, since r(X0) and σX0 are just constants. In fact, if we plug in Λ = 0
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4.3. Obtaining Implied Volatility from Price Function

in equation (3.2.1), we just get k different decoupled equations for the Black-Scholes

model (compare equations (3.2.1) and (2.3.1)). It is known that in the Black-Scholes

model, the partial derivative of the solution with respect to the scalar volatitlity

parameter is positive. Furthermore due to the decoupling, for Λ = 0, ∂φi
∂σj

= 0 ∀i 6= j,

and thus the vega matrix is just a diagonal matrix with positive entries and therefore

non-singular.

Let Nδ be a small open neighborhood in “vega-space” around
(
∂φ
∂σ

)
Λ=0

, so that

all V ∈ Nδ are also non-singular. Due to the continuity of the Λ 7→ V map (Theorem

4.3.1), the pre-image of Nδ under this map, say U, is also an open set in Λ-space that

contains Λ = 0, which is the inverse image of
(
∂φ
∂σ

)
Λ=0

.

Hence, there exists an open neighborhood U around Λ = 0 such that for all

Λ ∈ U, the corresponding vega
(
∂φ
∂σ

)
Λ

is non-singular and therefore invertible. We

already established in Theorem 4.2.2 that the map σ 7→ φ is continuous; therefore

a sufficient condition for its invertibility at some point σ = σ0 is for the Jacobian

matrix
(
∂φ
∂σ

)
σ0

to be invertible, which is exactly the case for all Λ ∈ U.

We can thus say that for sufficiently small Λ, we can invert the map σ 7→ φ and

obtain the implied volatility if the price function is given. We summarize this in the

following theorem:

Theorem 4.3.2. There exists a δ > 0 such that if Λ ∈ Bδ(0) ⊂ Rk×k, where Λ is a

rate matrix, then the notion of implied volatility is well-defined for a market model

(as described in section 3.2) characterized by such values of Λ.
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Chapter 5

Numerical Experiment

5.1 Overview

We wish to conduct a numerical experiment to see if the implied volatility, as pro-

posed in Chapter 4, can be computed for typical values of market parameters with

some standard numerical techniques with reasonable efficiency. We consider a typical

initial value of σ (say σ0) and numerically compute the option price φ using some

results given in [16]. Then we assume that option price is an observed quantity and

work backwards to get the implied volatility, as described in the definition of implied

volatility in Chapter 2.

5.2 Theory and Numerical Scheme

We consider a typical set of values for σ (= σ0), rate matrix Λ, time to maturity T ,

strike price K and the transition probablility matrix P . The first part of the program

involves direct computation of the Black-Scholes price η from the given quantities,

which is then plugged into the following integral equation (refer to Theorem 2.1 and

equations (4), (5) in [16]) to numerically compute the option price:
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φ(t, s, i) = e−λi(T−t)ηi(t, s) +

∫ T−t

0

λie
−(λi+r(i))v

×
∑
j

pij

∫ ∞
0

φ(t+ v, x, j)
e
− 1

2

((
ln(x

s
)−
(
r(i)−σ

2(i)
2

)
v

)
1

σ(i)
√
v

)2

√
2πσ(i)

√
vx

dx dv;

(5.2.1)

1. φ(T, s, i) = (s−K)+ for all s and i,

2. φ(t, 0, i) = 0 for all t ∈ [0, T ] and for all i,

where ηi(t, s) is the Black-Scholes price for a call option with interest rate r(i) and

volatility σ(i), and λi := −[Λ]ii.

To numerically perform the integrations in the above formula, we must first

compute the multiplier of φ in the integrand for integration with respect to x above.

Then we employ the step-by-step quadrature method over the variables x and v (refer

to Section 4 in [16]). Suppose we obtain the price function C = φ(0, s, i) as a result

of these computations; we can now pretend that this is the observed option price at

time zero. We define the following vector function in σ:

f(σ) := φσ(0, s, i)− C = 0,

and we want to solve f(σ) = 0 in σ, i.e., to numerically determine the zero of f(σ).

Since this is a vector-valued equation, we use a generalization of the Newton-

Raphson method (see [6]), where we start with a guess σ1 for a zero of f(σ), and a

better approximation for the actual zero is given iteratively by:

σn+1 = σn − V −1f,

where V is the Jacobian matrix ∂f
∂σ

= ∂(φ−C)
∂σ

= ∂φ
∂σ

evaluated at σ = σn.

After several iterations, we expect σn to converge to the “actual value” σ0 that

we started with. If that happens, we would have obtained the implied volatility for a

typical market using standard numerical techniques.
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5.3 Numerical Results

We consider a two-regime market, which means that it is modulated by a two-state

Markov chain. The variables t and s are discretized, with the number of discrete steps

being 16 and 100 respectively. The following values for the various given quantities

are considered:

1. P =

[
0 1

1 0

]
, the transition probability matrix for the two-state Markov chain,

2. Time to maturity T = 1,

3. Strike price K = 1,

4. Rate of interest for bond r = [0.3, 0.3],

5. Starting guess for σ, σ1 = [0.01, 0.01].

Also, we run different instances of the program with different sets of values of

σ0 and Λ in each instance. The different combinations of values for σ0 and Λ are as

follows:

1. Λ = [0.1, 0.2], σ0 = [0.3, 0.4]

2. Λ = [0.1, 0.2], σ0 = [0.4, 0.3]

3. Λ = [0.1, 0.2], σ0 = [0.4, 0.5]

4. Λ = [0.1, 0.2], σ0 = [0.5, 0.3]

5. Λ = [0.2, 0.1], σ0 = [0.3, 0.4]

6. Λ = [0.2, 0.1], σ0 = [0.4, 0.3]

7. Λ = [0.2, 0.1], σ0 = [0.5, 0.4]

8. Λ = [0.1, 0.2], σ0 = [0.2, 0.4]

Table 5.1 lists the values of σ0 and Λ for which our guess eventually converges to

the actual value of volatility, the numerically-obtained option price (the “observed”

price C) and the number of steps taken for it to converge (error less than 10−3). The

convergence of σ vector is also shown graphically for some of these cases.
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Table 5.1: Numerical Experiment Results

Λ σ0 Observed Price C Number of Steps for Convergence

[0.1, 0.2] [0.3, 0.4] [0.134, 0.167] 12
[0.1, 0.2] [0.4, 0.3] [0.169, 0.135] 7
[0.1, 0.2] [0.4, 0.5] [0.172, 0.205] 4
[0.1, 0.2] [0.5, 0.3] [0.206, 0.139] 15
[0.2, 0.1] [0.3, 0.4] [0.135, 0.169] 7
[0.2, 0.1] [0.4, 0.3] [0.167, 0.134] 12
[0.2, 0.1] [0.5, 0.4] [0.205, 0.172] 4
[0.1, 0.2] [0.2, 0.4] [0.098, 0.165] 6

Figure 5.1: Λ = [0.1, 0.2]; σ0 = [0.3, 0.4]
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Figure 5.2: Λ = [0.1, 0.2]; σ0 = [0.4, 0.3]
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Figure 5.3: Λ = [0.1, 0.2]; σ0 = [0.4, 0.5]
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Figure 5.4: Λ = [0.1, 0.2]; σ0 = [0.5, 0.3]
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Figure 5.5: Λ = [0.2, 0.1]; σ0 = [0.3, 0.4]
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Figure 5.6: Λ = [0.2, 0.1]; σ0 = [0.4, 0.3]
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Figure 5.7: Λ = [0.2, 0.1]; σ0 = [0.5, 0.4]
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Figure 5.8: Λ = [0.1, 0.2]; σ0 = [0.2, 0.4]
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Appendix A

MATLAB Source Code

The MATLAB source code used to implement the program in Chapter 5 is as follows:

clear

tic;

t_steps=16; s_steps=100;

BSprice=zeros(t_steps,s_steps,2);

price=zeros(t_steps,s_steps,2,3);

C1=zeros(t_steps,2);

C2=zeros(1,2);

C3=zeros(t_steps,2);

G=zeros(t_steps,s_steps,s_steps,2);

x_int=zeros(t_steps,s_steps,2); %Integrand w.r.t. x

V=zeros(20,20);

T=1; %Time to maturity

dt=T/(t_steps-1); %Time step-size

K=1.0; %Strike price

X0=0;

k1=20;

dx=(5*K)/s_steps;

P= [0,1;1,0]; %Transition probability matrix

lambda=[.1,.2]; %Lambda
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R=[0.03,0.03]; %Interest rate

sigma0= [0.2,0.4]; %"Correct" value of volatility

for j=1:s_steps

for i=1:2

for p=1:3

price(1,j,i,p)=max(0.0,dx*(j-1)-K);

end

end

end

SND= 0.5+ 0.5*erf((1/sqrt(2))*(-4+0.001*(1:4000)));

p=1; sigma=sigma0;

%Calculation of Black-Scholes price; numerical solution of Volterra

%integral equation

for k=1:2

rp=R(k)+(1.0/2)*sigma(k)^2;

rm=R(k)-(1.0/2)*sigma(k)^2;

for i=2:t_steps

tm=(i-1)*dt; %tm: Time to expiry := T-t

dn= sigma(k)*sqrt(tm);

for j=1:s_steps

s=j*dx;

x= (log(s/K)+rm*tm)/dn;

if x > 4.0

ph= 1.0;

elseif x<-4.0

ph= 0.0;

elseif x<0.0

x2=floor(1000*(4.0+x))+1;

ph= SND(x2);

elseif x>0.0

x2=floor(1000.0*(4.0 - x))+1;

ph= 1 - SND(x2);
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end

x3= K*exp(-R(k)*tm)*ph;

y= (log(s/K)+rp*tm)/dn;

if y > 4.0

ph= 1.0;

elseif y<-4.0

ph= 0.0;

elseif y<0.0

x2=floor(1000*(4.0+y))+1;

ph= SND(x2);

elseif y>0.0

x2=floor(1000.0*(4.0 - y))+1;

ph= 1 - SND(x2);

end

BSprice(i,j,k)= s*ph - x3;

end

end

end

for i=1:2

C2(i)= (1.0/(sqrt(2*pi)))/sigma(i);

for kk=2:t_steps

C1(kk,i) = lambda(i)*(exp(-(R(i)+lambda(i))*((kk-1)*dt)) /

sqrt((kk-1)*dt));

C3(kk,i) = exp(-lambda(i)*(kk-1)*dt);

for j=1:s_steps

for jj=1:s_steps

G(kk,j,jj,i)=exp(-0.5*((

log(jj/j)-(R(i)-0.5*sigma(i)^2)*((kk-1)*dt))/

(sigma(i)*sqrt((kk-1)*dt) ))^2);

end

end

end

end
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%Calculation of price function for all t, s, i

for k=2:t_steps

for j=1:s_steps

for i=1:2

v_int=0;

for kk=2:k

jj=1;

%-------------- Integration w.r.t. x ----------------

x3 =0;

for ii=1:2

x3=x3 + price(k-kk+1,jj,ii,p)* P( i, ii);

end

x_int(kk,j,i) = 0.5 * x3 * G(kk,j,jj,i)/jj;

for jj=2:s_steps-1

x3 =0;

for ii=1:2

x3=x3 + price(k-kk+1,jj,ii,p)* P( i, ii);

end

x_int(kk,j,i) = x_int(kk,j,i)+x3*G(kk,j,jj,i)/jj;

end

jj=s_steps;

x3 =0;

for ii=1:2

x3=x3 + price(k-kk+1,jj,ii,p)* P( i, ii);

end

x_int(kk,j,i) = x_int(kk,j,i)+0.5* x3*G(kk,j,jj,i)/jj;

%-----------------------------------------------------

v_int = v_int + x_int(kk,j,i) * C1(kk,i) * dt;

end

price(k,j,i,p)=C3(k,i)*BSprice(k,j,i) + v_int * C2(i);

end

end

end
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c=[price(t_steps,k1,1,1), price(t_steps,k1,2,1)]; %Observed price

established

sigma1= [0.01,0.01]; %Starting guess for volatility

h=.001; %Small error in either component of volatility

for l=1:15 %15 iterations in the Newton-Raphson method

for p=1:3

if p==1

sigma=sigma1;

elseif p==2

sigma=sigma1+h*[1,0];

else

sigma=sigma1+h*[0,1];

end

for k=1:2

rp=R(k)+(1.0/2)*sigma(k)^2;

rm=R(k)-(1.0/2)*sigma(k)^2;

for i=2:t_steps

tm=(i-1)*dt; %tm is time to expiry:=T-t

dn= sigma(k)*sqrt(tm);

for j=1:s_steps

s=j*dx;

x= (log(s/K)+rm*tm)/dn;

if x > 4.0

ph= 1.0;

elseif x<-4.0

ph= 0.0;

elseif x<0.0

x2=floor(1000*(4.0+x))+1;

ph= SND(x2);

elseif x>0.0

x2=floor(1000.0*(4.0 - x))+1;
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ph= 1 - SND(x2);

end

x3= K*exp(-R(k)*tm)*ph;

y= (log(s/K)+rp*tm)/dn;

if y > 4.0

ph= 1.0;

elseif y<-4.0

ph= 0.0;

elseif y<0.0

x2=floor(1000*(4.0+y))+1;

ph= SND(x2);

elseif y>0.0

x2=floor(1000.0*(4.0 - y))+1;

ph= 1 - SND(x2);

end

BSprice(i,j,k)= s*ph - x3;

end

end

end

for i=1:2

C2(i)= (1.0/(sqrt(2*pi)))/sigma(i);

for kk=2:t_steps

C1(kk,i) =

lambda(i)*(exp(-(R(i)+lambda(i))*((kk-1)*dt)) /

sqrt((kk-1)*dt));

C3(kk,i) = exp(-lambda(i)*(kk-1)*dt);

for j=1:s_steps

for jj=1:s_steps

G(kk,j,jj,i)=exp(-0.5*((

log(jj/j)-(R(i)-0.5*sigma(i)^2)*((kk-1)*dt))/

(sigma(i)*sqrt((kk-1)*dt) ))^2);

end

end
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end

end

for k=2:t_steps

for j=1:s_steps

for i=1:2

v_int=0;

for kk=2:k

jj=1;

x3 =0;

for ii=1:2

x3=x3 + price(k-kk+1,jj,ii,p)* P( i, ii);

end

x_int(kk,j,i) = 0.5 * x3 * G(kk,j,jj,i)/jj;

for jj=2:s_steps-1

x3 =0;

for ii=1:2

x3=x3 + price(k-kk+1,jj,ii,p)* P( i, ii);

end

x_int(kk,j,i) =

x_int(kk,j,i)+x3*G(kk,j,jj,i)/jj;

end

jj=s_steps;

x3 =0;

for ii=1:2

x3=x3 + price(k-kk+1,jj,ii,p)* P( i, ii);

end

x_int(kk,j,i) = x_int(kk,j,i)+0.5*

x3*G(kk,j,jj,i)/jj;

v_int = v_int + x_int(kk,j,i) * C1(kk,i) * dt;

end

price(k,j,i,p)=C3(k,i)*BSprice(k,j,i) + v_int *

C2(i);

end
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end

end

end

V11=(price(t_steps,k1,1,2)-price(t_steps,k1,1,1))/h;

V12=(price(t_steps,k1,1,3)-price(t_steps,k1,1,1))/h;

V21=(price(t_steps,k1,2,2)-price(t_steps,k1,2,1))/h;

V22=(price(t_steps,k1,2,3)-price(t_steps,k1,2,1))/h;

V=[V11,V12;V21,V22]; %Jacobian matrix, effectively vega

f=[price(t_steps,k1,1,1), price(t_steps,k1,2,1)] - c;

hh=(inv(V)*f’)’; % One iteration step of

error(l,:)=hh; % the Newton-Raphson

sigma1 = sigma1 - hh; % method

sigma_estimate(l,:)= sigma1;

end

xlswrite(’result.xls’,[P; lambda; R; sigma0; c; sigma_estimate;

error])
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