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Abstract

Dynamics on complex networks, such as tra�c on roads or information pack-
ets on network of routers, display a variety of collective and emergent prop-
erties. Of practical interest are congestion and extreme events phenomena,
which ultimately control the smooth functioning of networks. To get a deeper
understanding of these phenomena, we employ a continuous-time random
walk model with probabilistic routing protocol for tra�c �ows in complex
networks such that it contains the most relevant characteristics of real-world
systems. We study the collective behavior through phase transitions in con-
gestion and individual behavior of nodes through extreme events. We observe
that increasing the outgoing �ux enlarges the free-�ow region in the param-
eter space. Moreover, a degree-dependent out�ux can completely eradicate
the congested state in the parameter space. In accordance with the previous
results for a parameter-free model, we see that in most cases, small degree
nodes are more prone to experience extreme events than the hubs. We also
notice a striking relation between the �ux �uctuations and extreme event
probability on nodes.
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Chapter 1

Introduction

Networks are all around us - in the form of road networks, communication
networks and the Internet to name a few. Networks are formed by us - net-
work of friends, family members and colleagues. Networks are even inside
us - the network of veins and arteries, neurons etc. We rely on networks at
every moment, in one way or the other. Be it �nding the optimal way to
go from place A to B, gossiping about a friend's friend, or e�ective blood
circulation to all parts of the body, smooth �ow of tra�c on networks is
of critical importance to us. Tra�c jams, unresponsive webpages, cardiac
arrest due to artery blockage are just a few examples of e�ects of tra�c dis-
ruption on networks. Like all complex systems, networks too, are inherently
and unavoidably vulnerable to failures. They undergo many local failures.
However, a global failure, such as congestion, occurs when small, seemingly
innocuous local failures unite leading to an organized accident. The largest
power blackout that occurred in India in 2012, pushing half the nation's
population into darkness and incurring huge �nancial losses is a burning ex-
ample of power-grid failures due to congestion in networks. Thus, to avoid
such losses, it is vital to study tra�c �ow on networks. One of the widely
studied transport phenomena is congestion on networks[1]. Congestion is
generally studied by de�ning a routing protocol for random walkers gener-
ated on the network and capacity of the nodes to service them. Thus, a node
is said to be in a congested state when it exceeds its capacity to service the
incoming �ux of walkers. Using this framework, several results on stability of
networks, cascading failure to congestion transition have been obtained. A
recently studied phenomena on networks is extreme events (EE)[2]. Unlike
congestion, an extreme event may not be related to the handling capacity of
the nodes, but is de�ned as exceedance over a prescribed quantile. As op-
posed to congestion, EE arise from natural �uctuations in the tra�c passing
through a node and not due to constraints imposed by its capacity. Theoret-

2



ically, congestion can be completely removed from the system by �ne-tuning
appropriate parameters. However, EE can never be absolutely eradicated as
�uctuations are inherent to any system which is probabilistic in nature. As
congestion and EE are di�erent in de�nition, their e�ect on the network is
also di�erent. A single congested node drives the entire network in a state of
congestion. However, no studies as of now suggest individual EE can cause
a global failure. EE have so far been studied using a random walk model[2].
The simple model claims, contrary to popular intuition, that lower degree
nodes would experience relatively more number of EE than the higher de-
gree nodes. Again, this is opposite to how nodes get congested, the hubs
being the �rst. Hence, network design principles so far have mostly focused
on hubs. However, such an approach might fail in context of EE. Are smaller
degree nodes vulnerable to attacks even in a realistic frameworks? Motivated
by this unique and non-trivial behavior, we aim to study EE and congestion-
phase transitions on a simple and realistic tra�c model on complex networks.

In the following sections, we discuss relevant preliminary concepts of
graph theory, characteristics of real-world networks and give a brief overview
of dynamics on networks.

1.1 Networks

Many situations in daily life can be described by means of a diagram con-
sisting of a set of points together with lines joining certain pairs of these
points [3]. The set of points is called nodes or vertices denoted by N and
the pairwise connections are called edges or links denoted by E. A set of
nodes and edges de�ne a graph, for example G = (N,E). Graphs are gen-
erally referred as networks in non-mathematical communities. When edges
have certain value associated with them, they are called weighted networks.
Links/edges may also have directions associated with them. When all the
links have no directions or point in both the directions, it is called an undi-
rected graph/network. When all the links point in only one direction, it is
called a directed network. A graph can be de�ned using an adjacency matrix
or adjacency lists. We use a N ×N adjacency matrix A to represent a graph
G(N,E). The elements of the matrix are de�ned as,

Aij =

{
1, if i and j share an edge

0, otherwise
(1.1)
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such that

2E =
N∑
i=1

N∑
j=1

Aij (1.2)

The degree of the ith node, denoted by ki(c), is de�ned as the number of
non-zero elements in that row. Degree of a node represents the number of
links connected to that node. The adjacency matrix of an undirected graph
is a symmetric matrix, i.e. Aij = Aji and that of a directed graph is anti-
symmetric, i.e. Aij 6= Aji. An interesting property of the adjacency matrix
is that An gives the number of paths of length n in between the nodes. We
demonstrate an example of an adjacency matrix of a graph G(N,E) with
N = 5 nodes and E = 7 edges [4].

Figure 1.1: Graph G(N,E) with N = 5 and E = 7 andAdjacency Matrix
A

Henceforth, for all our calculations, we use an undirected graph repre-
sented by an adjacency matrix.

Many complex systems such as communication, transportation and social
systems can be modeled using networks. Empirical studies of real-world net-
works show that these networks have certain characteristic properties which
seem to arise from their topology. The two extremes of network models are
random and regular networks. In a regular network, all the nodes have same
degree whereas for a random network [5], we start with N nodes and then
connect every pair of nodes with probability p, creating a graph with approx-
imately pN(N−1)/2 edges distributed randomly. Real-world networks di�er
from random and regular networks due to their peculiar characteristics.

The three peculiar characteristics of real-world networks are small world
property, clustering co-e�cient and degree distribution. According to the
small world property, even if the size of the network is large, the distance
between nodes is relatively short. The most popular demonstration of the
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small-world property is the "six degrees of separation" concept [6], unveiled
by Stanley Miligram, who concluded that there was a path of acquaintances
with a typical length of about 6 between most pairs of people in the United
States [7]. Mathematically, a network is called small world if the average dis-
tance scales logarithmically or slower with node number N . Random graphs
also posses this property. On the other hand, in regular graphs, the aver-
age distance increases linearly with number of nodes N . Another important
property is clustering in real-world networks, especially observed in social
networks. It is basically the formation of triangles in a network. An example
of clustering is a set of acquaintances in which every member knows every
other member. In most real networks, the value of the clustering co-e�cient
[8] is much larger than it is in a random network with the same number
of nodes and edges. The property which makes real-world networks robust
to random attacks is the probability distribution of degrees of nodes of the
network. Degree distribution of a random network is a Poisson distribution
with a peak at P (< k >), where < k > is the average degree of the network.
In most large networks, including the World Wide Web(www)[9], the degree
distribution has a power law tail.

P (k) ∼ k−γ (1.3)

Such networks are called scale-free networks. Barabasi and Albert(1999)[10]
devised an algorithm to construct a scale-free network. The key concepts
of this algorithm are growth and preferential attachment. Prior to this al-
gorithm, all network models started with a �xed number of nodes N which
were then randomly connected or rewired keeping N constant. Unlike these
models, real-world networks are actually formed by attaching new nodes over
time to a nucleus of nodes existing at time t = 0. For example, the www
grows exponentially in time by adding new web pages. Secondly, while con-
structing a random graph, two nodes are connected randomly, independent
of their degree. However, most real networks show preferential attachment
where the chances of connecting to a node depends on the degree of the node.
Thus, a network built using these two principles evolves into a scale-invariant
state with the probability that a node has a degree k follows a power law
with an exponent 2 < γ < 3. Like real-world networks, scale-free networks
are also robust towards failure. As scale-free networks are closest to the real-
world networks, we use a scale-free network with N = 1000 nodes as the
underlying network for our analysis.
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1.2 Dynamics on networks

Random walk is a rudimentary model in statistical physics which has nu-
merous applications in a wide variety of �elds. Simply put, random walk
can be de�ned as a series of steps taken at random. The path traced by
a drunkard or a molecule in the air or animals foraging in a grassland are
classic examples of random walk. Consider a walker standing at the origin
of the number line. At each time-step, it moves to the right or left with
probability p or (1 − p) respectively. This is a simple random walk model
in one dimension. Similarly, we can construct a random walk on a lattice or
any network where each walker chooses to jump to one of its nearest neigh-
bors with equal probability. Random walks are studied in both discrete and
continuous space and time. A continuous time random walk(CRTW) can be
de�ned as a random walk where a walker waits for a random amount of time
between successive jumps. Weiner process, which characterizes Brownian
motion [11], is a popular example of CTRW in which jumps are continuous
and normally distributed whereas waiting times follow an exponential dis-
tribution. Random walk is one of the simplest ways to explore a network
and study its properties. However, the accumulation of walkers/packets on a
node is not involved in the random walk model. Hence, it does not re�ect a
real tra�c system completely. In the basic tra�c dynamics model[12] [13], an
iterative process, all the nodes can generate and deliver walkers/packets. At
each time step, packets are generated with a probability p on each node and
assigned a random destination node, di�erent from its source. Each packet
is delivered from source to destination following a particular routing strat-
egy. Each node is endowed with a queue which may follow �rst-in-�rst-out
or some other rule to send packets at each time step. Each node has its own
delivering capacity or out�ux, C, which is the maximum number of packets
it can deliver in one time step. Once a packet reaches its destination, it is
removed from the network.

The basic model has been altered to make it realistic, by making the
packet-generating and packet-delivering capacity dependent on the degree of
the node[14][15] or selecting the source and destination in-homogeneously.
The most famous routing strategy is the shortest path routing strategy
(SPRS), where packets are transferred along the shortest path between the
source and the destination. However, networks cannot handle heavy tra�c
if packets always follow SPRS [14] [16] [17]. An improvement to SPRS is the
tra�c awareness strategy where waiting time and queue length at neighbor-
ing nodes are considered along with shortest path length from neighboring
node to the destination [18] [19]. In a heterogeneous network, tra�c aware-
ness strategy shortens the maximal time that is required for a packet to reach
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its destination and enhances the tra�c capacity, the quantitative measure of
congestion, compared to SPRS. However, in SPRS the transition from free-
�ow to jammed state as number of packets generated increase is smooth,
unlike in the tra�c awareness strategy where the transition is discontinu-
ous. Thus, delay in congestion due to tra�c awareness strategy comes at
a cost of abrupt congested state without prior warnings. Many strategies,
such as above, have been proposed considering global topological informa-
tion, which are mostly pragmatic for small networks. However, for large
networks, like the Internet, strategies based on local information are favored
due to the heavy cost incurred in searching global information on networks.
Thus, based on these results, it was concluded [13] that under the conditions
of heterogeneous delivering capacity of each node, the random walks strategy
is the best strategy for routing packets. Random walk on complex networks
has been studied with special attention to scale-free networks to see how the
underlying network topology can a�ect the asymptotic di�usion of walker
[20]. On a heterogeneous network, random walkers are not distributed uni-
formly over time, but are concentrated on the higher degree nodes. Thus,
higher degree nodes are more prone to congestion. However, higher degree
nodes are less susceptible to EE [2], contrary to our intuition. To explore
this contrasting behavior, we adopt the random walk model and modify it
by adding a probabilistic routing protocol to study EE and congestion on
networks.

Many empirical studies have revealed that tra�c is not only dependent
on the characteristics of the underlying network structure, but is also signif-
icantly a�ected by routing strategies. In order to improve transport perfor-
mance on real networks, the following strategies are predominantly used:

1. Soft strategies, where the focus is to design e�cient routing strategies.

2. Hard strategies, where the focus is to make appropriate changes in the
underlying network structure. They are called hard strategies because
making topological changes is expensive.

The strategies we have discussed so far fall into the realm of soft strate-
gies. Hard strategies are costlier than soft strategies, as adding or rewiring
links consumes �nances, manpower among other things. However, removing
links from network can be implemented at a low cost. Studies show that
removing links could alleviate or even mitigate cascades of overloading on
networks[21]and may help to enhance synchronization in complex networks
of dynamical systems [22]. For example, in biology, removing metabolic
reactions, which represent links in the metabolic network, could improve
metabolic performances and rescue defective metabolic networks [23].

7



The next chapter contains a detailed description of the model adopted
from [1]. It is basically a modi�ed random walk model where we add cor-
relations to make the model realistic in nature. We discuss the behavior of
individual nodes and the system as a whole, based on probability of generat-
ing and rejecting walkers. In chapter 3, we discuss probability for occurrence
of EE in a conservative model where the total number of walkers are constant
and in the free-�ow state of non-conservative model where the total number
of walkers is oscillating. We observe the e�ect of rejection probability and
outgoing �ux from a node on EE. In chapter 4, we study the e�ect of out-
going �ux on phase transitions. In Chapter 5, we conclude by summarizing
the results and outlining the further scope of this work.
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Chapter 2

Model of Dynamics

We use a standard random walk model along with a probabilistic routing
rule [1] to study tra�c dynamics on a network. We describe the dynamics
of non-interacting walkers by adopting a routing protocol in a continuous-
time random walk model on a network. Each walker has a source and a
destination. Once a walker reaches its destination, it is thrown out of the
system, i.e it is destroyed. Each node is endowed with a queue of in�nite
capacity in which walkers are stored. However, we try to impose constraints
to restrict the unbounded increase in queue length. Consider a node i with
a set of neighbors v(i). A walker at node i jumps in the queue of a randomly
chosen neighbor j ∈ v(i). Now the destiny of the walker depends on a) if
node j is its destination and b) on the state of congestion of node j, in which
case it may reject the walker and send it back to node i. We model both of
these as probabilistic events.

In our model, we consider an undirected network of N nodes and E edges.
We represent the network with an adjacency matrix, A, where A(i, j) =
1 when node i and node j share an edge, otherwise it is 0. The degree
of a node i is represented as ki. A walker is produced at a node i with
probability pi at time t. At any time t, certain number of walkers at every
node attempt to jump onto one of the neighboring nodes at random. Every
neighbor is chosen with an equal probability, Pi,j = Ai,j/ki. Let wi be the
number of walkers on node i. We assume that node j rejects a walker with
a probability η(wj), which is non-decreasing with wj. We also assume that
µj is the probability that j is the destination node of a walker. If wi ≥ 0, a
walker follows the following probabilistic jump rule: With probability η(wj)
the walker is rejected from the arrival node and remains on the departure
node. Otherwise, walker is either killed during the jump, with probability
µj, or with probability (1− µj) enters the queue on node j. Figure2.1 shows
the routing algorithm for a walker at node i.
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Figure 2.1: Routing algorithm for a walker on a node i
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In this study, we focus on a simple case where µi = µ, pi = p and
η(wi) = ηθ(wi − n∗) where θ(x) indicates the Heaviside step function for all
node i. Thus, as per the routing protocol, node i refuses to accept a walker
with probability η if wi ≥ n∗. Thus, here n∗ is the threshold queue length
for a node.

The statistics of the length of the queues {wi} is used to analyze the
model. We do not need to use the information about trajectories of walkers,
which lets us ignore the fate of individual walkers. This justi�es our decision
to use probabilistic modeling for the birth and death processes. Walkers are
killed only during the jumping process and not when they are waiting in
the queue. Again, this supports our probabilistic model as a walker should
be removed from the system as soon as it reaches its destination. We have
analytically computed the transition probability for a walker to go from node
i to j, j ∈ v(i), which is given by,

Pi,j =
Ai,j(1− ηΘ(wj − n∗))

ki −
∑

j∈v(i) ηAi,jΘ(wj − n∗)
(2.1)

The asymptotic behaviour of the system is determined by the relation
between birth (p) and death (µ) probabilities. If p >> µ, incoming �ux
is greater than outgoing �ux, resulting in an over-loaded network. As p
is independent of time, the system eventually moves in a non-equilibrium
steady state in which queues increase with constant speed. We call this state
of the system as a congested state. To quantify the state of the system, we
introduce following observable [24]

ρ = limℵ(t+τ)−ℵ(t)
τNp

where ρ is called the order parameter, ℵ(t) = Σiwi(t) is the total number of
walkers at time t on the network, p = N−1Σipi is the average birth probability
and τ is the observation time. To check the state of congestion of any node
i, we can compute local order parameter by replacing ℵ(t) by wi(t) and
p by pi. A system (node) is congested, in the steady state, if the (local)
order parameter is greater than 0. Higher the order parameter, higher are
the number of individual nodes in a congested state. Another important
parameter in our model is the outgoing �ux from a node, Ω, at any time t.
Our primary aim is to study EE on a real-world system. However, to study
EE, we need the system to be in a steady-state.

We consider two scenarios with the above model where we study EE:

1. Conservative system: No birth and death processes. n∗ is degree-
dependent.

2. Non-conservative system: Non-zero birth and death probabilities.

11



2.1 Properties of the Model and Analysis of the

dynamics

We discuss the non-conservative model in detail. To begin with the simplest
case, let us consider µ = 0.2, η = 0 and Ω = 1 walker. In this case, we
allow only one walker to make a jump from each node at any time t. Also,
η = 0 implies no routing protocol. The simulations are performed on a scale-
free network with 1000 nodes, with degree distribution P (k) ∝ k−γ with
2 < γ < 3. Figure2.2 displays two typical time series of the total number
of walkers ℵ(t) in a free-�ow and congested states which are obtained by
varying the birth/death probability ratio p/µ. In the free-�ow state, the
total number of particles �uctuates around a stationary value whereas in the
congested state, the number of particles constantly increase with time. In
case of a regular network, all nodes have same degree and congestion phase
appears around pc = µ i.e when p/µ = 1. From the �gures, we can clearly see
that the threshold pc = µ holds true only for homogeneous networks (regular
lattices) and in the absence of large degree �uctuations (scale-free graph).
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Figure 2.2: Number of Walkers as a function of time on a scale-free
network (left) and regular network(K=8)(right) of 1000 nodes, µ = 0.2. Free-
�ow state occurs at p = 0.02 for scale-free network and p = 0.19 for regular
network. Scale-free network gets congested at p = 0.022 and regular network
at p = 0.2.

To understand the dynamics at each node when the system is in a free-
�ow state or a congested state, we look at the local order parameter. When
the system is in a free-�ow state, ρ = 0 and the local order parameter, ρi for
every node i is also zero. However, when the system is in a congested state,
all its nodes may not be congested. We expect each node to fall in one of
the following categories when η > 0:

1. Free nodes with exponentially decreasing distribution of walk-
ers: The number of walkers on free nodes are always less than the
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threshold n∗. Therefore, wfreenodes < n∗. Additionally, the local order
parameter ρi = 0, otherwise they will eventually get congested.

2. Congested nodes with non-normalizable distribution: The num-
ber of walkers on congested nodes are always greater than the threshold
n∗. Therefore, wcongestednodes > n∗ Additionally, the local order param-
eter ρi > 0 for all the congested nodes.

3. Fickle nodes/unstable nodes with a distribution that peaks
around wi = n∗i = n∗: Fickle nodes are trickier than the others. The
probability that their queue will be empty decreases exponentially with
n∗ and disappears only for n∗ →∞

We see the time series and distribution of walkers on a node for each of the
above categories in Figure2.3 and Figure2.4
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Figure 2.3: w(t) Timeseries of a free node, �ckle node and a congested node.
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Figure 2.4: Distribution of walkers for nodes with k=15 (free node),
k=35 (�ckle node) and k=117 (congested node) on a scale-free network of
1000 nodes, µ = 0.2, p = 0.07, η = 0.75 and ρ = 0.0014.

A node i is congested, if ρi > 0. As discussed earlier, higher the or-
der parameter, more the number of congested nodes. However, order pa-
rameter/congestion parameter doesn't give any information about the time
required for the system to enter a congested state. It is known that the lo-
cal order parameter varies linearly with k [1] Thus, higher degree nodes are
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more likely to get congested. Therefore, for every p, there exists a real-valued
threshold k∗(p) such that all nodes with k > k∗ are congested whereas nodes
with k < k∗ are not congested. In a heterogeneous network, not all nodes
get congested at the same time. The birth probability p, at which a node
gets congested depends on its degree, beginning with the highest degree hub.
As we can see in Figure2.5, as we increase p, more number of nodes are con-
gested i.e ρi > 0. We can also see that the hubs are the ones to get congested
�rst.
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Figure 2.5: Local Order Parameter ρki for birth probabilities p = 0.02,
p = 0.035 and p = 0.07 on a scale-free network of 1000 nodes; µ = 0.2,
η = 0.0.

Next, we introduce the rejection probability η(wi) = ηθ(wi − n∗). The
e�ect of introduction of rejection probability becomes clear upon observing
behavior of the order parameter as a function of birth probability. From
Figure2.6, we can clearly see that increasing rejection probability changes
the nature of phase transition from a continuous to a discontinuous one.
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Figure 2.6: Order Parameter as a function of birth probability on a
scale-free network of 1000 nodes. µ = 0.2, n∗ = 10, Continuous to discontin-
uous phase transition as η = 0, η = 0.5 and η = 0.9.
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Macroscopically, rejection probability changes the nature of phase transi-
tion. Microscopically, its e�ect can be seen when the system is in a free-�ow
state. Barabasi observed that many real-world networks are bound by a uni-
versal relation between the �ux �uctuations σ and average �ux < f > on
individual nodes, given by

σ ∼< f >α

where α = 1/2 or α = 1 [10]. The universality of this relation has been
challenged over the past few years, leading to system-dependent scaling laws
[25] [26]. In our system, varying the rejection probability gives us the demon-
stration of the changing dependence between �ux �uctuations and average
�ux, shown in Figure2.7.

To summarize, we have analyzed a simple model used to demonstrate
congestion phenomena on a scale-free network. We discuss the properties of
this model in detail, and examine how various parameters of the model a�ect
the individual nodes as well as the system as a whole.
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Chapter 3

Extreme Events

As discussed in the previous chapter, a node experiences congestion when it
is so overloaded with walkers/packets that quality of service deteriorates, re-
sulting in queuing delay or packet loss. Extreme event, as the name suggests,
is de�ned as exceedance above a prescribed quantile. Unlike congestion, it
is not necessary that extreme events (EE) be related to the node capac-
ity. EE arise from the natural �uctuation in the tra�c passing through a
node and not due to external constraints, such as capacity of a node. EE in a
parameter-free model have been thoroughly studied [2]. The transport model
used is random walk on complex networks [20]. Using this simple random
walk model, probabilities of occurrence of EE on the nodes are obtained.
Contrary to expectation, it is observed that the lower degree nodes are more
susceptible to EE than the higher degree ones. The extreme event threshold
for a node i, τi, is de�ned as

τi =< w >i +qσi (3.1)

where q ∈ <, mean number of walkers < w > and standard deviation σ are
calculated from the values obtained from the simulations when the system
attains a steady state. In order to de�ne EE, it is imperative for the system
to be in an equilibrium stationary state. The threshold τ , used to de�ne
EE, can be arbitrarily chosen. It was shown in [2] that the extreme event
probability scales with the choice of threshold τ or q. As value of τ decreases,
the di�erence in the probability of EE for smaller degree nodes and hubs
decreases. As threshold τ decreases, more number of events are quali�ed
as EE, thereby resulting in a higher probability of occurrence of EE. These
results hold true not only for scale-free graphs but also for random and small-
world networks. To check the robustness of the result, random walk with a
constraint on the path chosen by the walker to go from node i to node j is
implemented. The walker has to follow the shortest path between the source
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and destination. Even with the shortest path routing algorithm, it is found
that the smaller degree nodes are more susceptible to EE than the hubs.
This result not only holds for a system with constant number of walkers, but
also for a system where number of walkers �uctuate uniformly about a mean
value.

In all our calculations, we use q = 4. We present one more reason to
explain the choice of q = 4. According to Chebyshev's inequality [27], for any
probability distribution, no more than 1/λ2 values can lie outside λ times the
standard deviation from the mean of the distribution. Quantitatively, almost
90 percent of all the values fall within 3σ from the mean of the distribution.
As the name suggests, extreme event is supposed to be an event that happens
very rarely. Now, we call the values falling beyond 4σ from the mean of the
distribution to be EE. This implies that the tail of the distribution must be
long enough to make meaningful conclusions from the results obtained. For
a scale-free network with 1000 nodes and 9816 walkers, the probability of EE
is shown in Figure[3.1](left). Each point in this �gure represents an average
over all the nodes with same degree. This is called as average probability of
EE.
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Figure 3.1: Probability of EE as a function of degree k, averaged over
nodes of same degree on a scale-free network with 1000 nodes, 4908 edges
and 10000 walkers.

This model doesn't have any extrinsic parameters apart from q. Hence, it
could be called as a parameter-free model. Also, the dynamics is a discrete-
time dynamics. Real-world systems are incredibly complex due to correla-
tions and consist of processes that vary on a continuous time-scale. Thus,
it is imperative to modify the model by incorporating realistic features. In
the following sections, we study EE in a realistic framework on two types of
systems: conservative and non-conservative.
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3.1 Extreme Events in Conservative Model

In this section, we examine EE probabilities in a model consisting of realistic
parameters. The conservative model has �xed number of walkers. Therefore,
birth probability and death probability are zero in all the cases to be discussed
in this section. Let us consider W walkers randomly distributed over a scale-
free network with N = 1000 nodes at time t = 0. With p = 0 and µ = 0, we
have three more parameters to consider, rejection probability η, threshold
queue length n∗ and outgoing �ux from a node Ω. In this case, we take the
threshold queue length, n∗, degree dependent. For the standard random walk
problem, the mean number walkers on a node is given by

< f >=
Wk

2E
(3.2)

where f(w) is the distribution of walkers on a node with degree k. We de�ne
n∗ =< f >. Now, we need a de�ne a way to call an event an extreme event.
Therefore, the extreme event threshold τ is de�ned as

τ =< w > +4σ (3.3)

where mean, < w >, and standard deviation, σ, are calculated from the
values obtained from simulations, leaving transients. We have W = 10000
walkers on a scale-free network with 1000 nodes and 4908 edges.

The number of walkers in the system is conserved. Therefore, we elim-
inate two parameters viz., birth probability p and death probability µ. We
can come closest to the standard random walk by eliminating routing and
allowing each walker to make a transition at every time t. We observe in Fig-
ure[3.1](right) that this limiting case shows similar behavior to the standard
random walk case.

For a routing-free tra�c model on a network, higher degree nodes attract
more walkers than the lower degree nodes. The threshold queue length for
each node is crucial to route the walkers on the network. In a conservative
system, if we use a constant threshold for all the nodes, it might make the re-
sults biased. For example, keeping a low threshold might lead to not using the
full potential of the higher degree nodes to manage tra�c or over-crowding
the lower degree nodes. The outcome may also depend on the total number
of nodes in the system. Hence, we de�ne n∗ =< w >srw where < w >srw are
the mean number of walkers calculated for a standard random walk model
with total number of walkers W . The mean and variance for a given node,
in the standard random walk model, can be written as

< w >srw=
WK

2E
, σ2 = W

K

2E
(1− K

2E
) (3.4)
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Figure 3.2: Average Probability of EE Vs k (left) and Standard Devi-
ation Vs Mean (right), on a scale-free network with 1000 nodes and 10000
walkers, for various combinations of η and out�ux Ω.

In the �rst set of �gures [3.2] , η = 0 i.e no routing. Here, we see that
irrespective of the number of walkers allowed to hop from each node at any
time t, the probability of EE is lower for higher degree nodes than for the
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lower degree nodes. Upon careful observation of the right-hand side �gures,
it is clear that the mean number of walkers on nodes do not vary with out�ux
or the rejection probability. It is also important to note that mean number
of walkers in the conservative case is similar to that in the standard random
walk case. An example is provided in Figure[3.3], where η = 0.5 and out�ux
Ω varies from 25% to 100%. A comparison with the standard random walk
case with same number of walkers on a similar network is shown for reference.
However, introduction of out�ux and rejection probability changes the �ux
�uctuations in the system. Also, these �uctuations are much lesser than
those observed in the standard random walk case. It must also be noted
that, reducing the out�ux results in lesser relative �uctuations in the system,
given by the slope of the curve.
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Figure 3.3: Mean < w >, as a function of degree (left) and standard deviation
σ, as a function of degree (right) for η = 0.5 and out�ux varying from 25%
to 100%. Comparison with the standard random walk is shown in green.

Hence, the threshold for EE decreases and this leads to more EE and
hence, increased probability. In the limiting case, all the nodes have simi-
lar probability for occurrence for EE. Also, in cases where the �uctuations
are very high, no EE are recorded. This could be seen as a continuous-time
random walk in some sense, where whether a walker hops onto a neighbor-
ing queue depends on the number of walkers in the host's queue and being
rejected can be considered as waiting time. Thus, we see a similar trend in
occurrence probability of EE in a conservative system with a tra�c routing
protocol as is seen in the previous work [2].

Thus, we see that the previously obtained results hold true even in the
case of a continuous-time random walk, with a routing scheme.

20



3.2 Extreme events in Non-conservative Model

In the non-conservative model, the number of walkers need not be �xed at
any time t. Thus, we have non-zero birth and death probabilities. Hence,
it may or may not be a �nite system. As the system grows with time, it is
immaterial what value of n∗ is chosen as a threshold value. It doesn't change
the behavior of the system qualitatively. Also, the long-term behavior is
determined by the relation between birth and death probability, i.e the value
of p/µ. We keep µ = 0.2 throughout this study and vary the birth probability
p, rejection probability η and outgoing �ux Ω. The non-conservative system
can be in a free-�ow state or a congested state, depending on the value of
these parameters. However, the existence of a stationary state is crucial for
de�ning EE. Hence, we study EE probabilities only in the free-�ow state of
the system. Similar to the conservative case, the EE threshold τ is de�ned
as

τ =< w > +4σ (3.5)

where mean, < w >, and standard deviation, σ, are calculated from the
values obtained from the simulations, leaving transients.

The number of walkers in the non-conservative model may �uctuate
around a �nite value or grow with a constant rate. The threshold queue
length n∗ = 10 and death probability µ = 0.2 are kept constant, as varying
these parameters does not change the results qualitatively. As discussed al-
ready, existence of a stationary distribution is crucial in calculating the EE
probabilities. Thus, the EE probabilities cannot be computed for a system
with non-equilibrium steady state. However, they can be calculated for a
system with small �uctuations in total number of walkers [2]. In a free-�ow
state, the system attains a stationary state where it is occupied by a �nite
(oscillating) number of walkers. Hence, we study EE when the system is in
a free-�ow state.

We look at this system by varying out�ux Ω and rejection probability η,
ensuring that it is in a free-�ow state. For Ω = 1 walker, we plot probability
of occurrence for EE as a function of degree, averaged over nodes with same
degree. For each value of Ω, η varies from 0 to 1. For each of these cases,
we plot mean number of walkers against standard deviation to observe how
the changing relationship between mean and standard deviation can a�ect
occurrence of EE. We show simulations for Ω = 1 walker, Ω = 2 walkers ,
Ω = 5 walkers and Ω(t) = 10% of walkers. All the results in this section
are obtained by averaging over 10 realizations with randomly chosen initial
conditions over a scale-free network with 1000 nodes and 4908 edges.
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1. Out�ux: Ω = 1 walker (Figure3.4) and Out�ux: Ω = 2 walkers (Fig-
ure3.6). We see how average number of walkers, their standard devia-
tion and probability of occurrence of EE vary with η.
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Figure 3.4: Out�ux Ω = 1 walker, η = 0.25 and p = 0.02
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Figure 3.5: Out�ux Ω = 1 walker, η = 0.75 and p = 0.06
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Figure 3.6: Out�ux Ω = 2 walkers, η = 0.25 and p = 0.04
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Figure 3.7: Out�ux Ω = 2 walkers, η = 0.75 and p = 0.1

We examine two cases for each value of out�ux, in a free-�ow state:
η = 0.25 and η = 0.75. For both the values of out�ux Ω, standard
deviation varies linearly with mean number of walkers when η = 0.25
(Figure3.4, 3.6) whereas the dependence is non-linear for η = 0.75
(Figure3.5, 3.7). We can notice that, the mean number of walkers for a
node of particular degree is higher for higher value of η. When η = 0.25,
mean number of walkers is lesser than the out�ux Ω for non-hub nodes.
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Hence, we can say that all the walkers present on non-hub nodes jump
at almost every time-step. In this limit, the system follows a random
walk model for non-hubs nodes. Hence, we observe a pattern similar
to random walk model for occurrence of EE.

When η = 0.75, mean number of walkers is more than the out�ux
Ω. Hence, most of the walkers tend to be stagnant at each node,
unlike the random walk model. Also, we see a non-linear dependence
between �ux �uctuations and node degree. We observe that as standard
deviation increases, the probability for occurrence of EE decreases and
as standard deviation decreases, the probability for occurrence of EE
increases.

2. Out�ux: Ω = 5 walkers:

We have η = 0.25, p = 0.13 (Figure3.8) and η = 0.75, p = 0.15 (Fig-
ure3.9). As we can see, the standard deviation varies linearly with
mean number of walkers in both the cases. Here, only hubs have mean
number of walkers more than 5. Hence, we can safely say that for non-
hubs, almost all the walkers are allowed to hop. We can see that this
is similar to the random walk case where all the walkers jump at every
time step. Hence, in that limit, we obtain higher probability for occur-
rence of EE on lower degree nodes as compared to the higher degree
nodes.
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Figure 3.8: Out�ux Ω = 5 walkers, η = 0.25 and p = 0.13
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Figure 3.9: Out�ux Ω = 5 walkers, η = 0.75 and p = 0.15

3. Out�ux Ω = 10% of walkers: An asymptotic distribution of walkers
on the network depends on the degree of the node. Hence, it is only
reasonable to take a case where out�ux is degree dependent. Here,
10% of walkers from each node are allowed to make a transition at
every time step. Hence, the nodes with higher occupation will send
out more walkers. For this network, the mean and standard deviation
show a non-linear dependence for p < 0.12 and behave linearly for
values p > 0.12, independent of the rejection probability. The system
is always in free-�ow or near free-�ow state. For p = 0.12, the relation
between average �ux and �uctuations varies with rejection probability
and so does the probability of occurrence of EE. We look at η = 0.25
(Figure3.10) and η = 0.75 (Figure3.11). We observe a similar behavior
as seen for the cases when Ω = 1 walker and Ω = 2 walkers. However,
in this case, the out�ux is di�erent for each node at every time-step.
Hence, we can only say that a linear dependency between mean and
standard deviation results in smaller-degree nodes experiencing more
EE.
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Figure 3.10: Out�ux Ω = 10% walkers, η = 0.25 and p = 0.12
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Figure 3.11: Out�ux Ω = 10% walkers, η = 0.75 and p = 0.12

Thus, we observe that the when mean and standard deviation have a
linear dependence, the smaller degree nodes are more likely to encounter EE
than the hubs.
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Chapter 4

Phase Transitions in

Non-Conservative Model

As we've seen so far, the rejection probability changes the nature of phase
transition in our model. Another important parameter of the model is the
out�ux Ω. In this section, we discuss the e�ect of Ω on the order parameter
and the critical value of the ratio p/µ where the transition changes from a
continuous to a discontinuous one. As discussed in chapter 2, higher the order
parameter, more is the number of nodes in a congested state. We consider
the following four cases for our analysis:

1. Out�ux: Ω = 1 walker

2. Out�ux: Ω = 2 walkers

3. Out�ux: Ω = 5 walkers

4. Out�ux: Ω = 10% walkers

The �rst case, Ω = 1 walker is nearly similar to model in [1]. At each
time t, only a single walker attempts to hop onto its nearest neighbor. For
η = 0, η = 0.25 and η = 0.5, we see a continuous transition. As the
rejection probability increases, the appearance of congested state is delayed.
However, the delay comes at the cost of sudden emergence of the congested
state without any warning. Also, as η increases, the transition point shifts
to the left, i.e the network gets congested faster, when most of the walkers
are rejected as a function of walker-generation probability. This implies that
the network can perform its best when η is at neither of the extremes.

As per case 1, in�ux of walkers at any nodes is unbounded whereas the
out�ux is restricted to 1 walker. For example, a node with degree k = 40
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Figure 4.1: Phase Transition. Out�ux Ω = 1 walker
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Figure 4.2: Phase Transition. Out�ux Ω = 2 walkers
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Figure 4.3: Phase Transition. Out�ux Ω = 5 walkers, scale-free network
with 1000 nodes, µ = 0.2, n∗ = 10 and averaged over 8 realizations in each
of the above �gures. 28



may accept 40 walkers at a single time-step while releasing at most 1 walker.
Although globally the in�ux and out�ux of walkers may seem to be balanced,
it is not the case on an individual node. This biases the system towards
accumulating walkers on a particular node. Also, the in�ux is supported by
a time-independent parameter, the birth probability, which keeps generating
walkers at a node independent of the queue of walkers at that node. Hence, it
only natural for a network to get congested in this framework. To make this
model more realistic, we allow at most 2 walkers to hop onto their nearest
neighbors from each node at a time t. We consider one more case by allowing
at most 5 walkers to hop onto their nearest neighbors from each node at any
time t. We observe that as out�ux increases, the transition point shifts to the
right. Also, the value of the order parameter for every pair (p, η) decreases.
Thus, increasing the out�ux not only delays the appearance of congested
state but also reduces the amount of congestion for a particular value of
rejection probability η and ratio of birth to death probability p/µ. Thus,
increasing the out�ux could make the system more e�cient.
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Figure 4.4: Phase Transition. Out�ux Ω = 10% walkers

As we have seen in the previous chapter, average number of walkers on a
node increase with its degree. Hence, a node with higher degree is likely to
accumulate more walkers than the one with a lower degree. In this light, an
out�ux independent of degree would result in relatively more out�ux from
lower degree nodes than higher degree ones, relative to their mean occupation
number. Now, we allow at most 10% walkers from each node at any time t to
hop onto their nearest neighbor. Even with such a small degree-dependent
out�ux condition, we notice interesting behavior of the system. The order
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parameter lies very close to 0, independent of rejection probability η and
ratio of birth to death probability p/µ. Thus, releasing just 10% of walkers
makes the network almost congestion-free. Thus, a degree-dependent out�ux
might help us attain an all-time congestion-free state.

To summarize, we examined four di�erent cases to study congestion
phase transitions on a scale-free network. We varied the out�ux and stud-
ied the phase transition diagrams. We observed that increasing the degree-
independent out�ux increases the tra�c e�ciency over the network while
making the out�ux degree-dependent can potentially lead to a congestion-
free state.
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Chapter 5

Conclusion

Complex systems are characterized by large number of elements, non-linear
interactions and highly-correlated random variables and display a wide ar-
ray of emergent properties. Networks are increasingly used to model complex
systems as �nding interconnections between di�erent components of a system
can provide valuable information about the system, which is not captured
by studying individual components. In this work, we study extreme events
and congestion phenomena, two widely studied phenomena on complex sys-
tems, in a network framework, using a modi�ed random walk model. These
phenomena are critical for the smooth tra�c-�ow on a network.

We �rst examine congestion phase transitions on a scale-free network.
Typically, when we introduce birth or death processes in the random walk
algorithm, two distinct phases are observed: Free-�ow state and congested
state. The number of walkers over the network grows steadily in the con-
gested state whereas the free-�ow state is characterized by �uctuating, yet
�nite number of walkers over the network in the steady state. This system
exhibits, in many cases, continuous phase transitions from the free-�ow to
the congested state. Previous studies have shown that introduction of re-
jection probability, a routing parameter, brings about a discontinuous phase
transition in the congestion parameter as a function of walker-generating
probability. We introduce an additional parameter in the system, the outgo-
ing �ux from each node at every time step. For a degree-independent out�ux
from each node, we observe that increasing the out�ux enlarges the free-�ow
region in the parameter space while a degree-dependent out�ux could make
the system congestion-free for all values of other parameters. These results
could be used to e�ciently route information packets on the Internet or ve-
hicular tra�c on the roads to maximize tra�c capacity and avoid congestion.

We then examine extreme events on complex networks. Previous studies
have used a discrete-time simple random walk model to show that smaller de-
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gree nodes have a higher chance to encounter extreme events than the hubs.
We modify this simple model by introducing a routing protocol and limiting
the out�ux from each node, thereby making it continuous in nature. The
results obtained are in accord with the previous work, thereby expanding the
scope of the model. We then introduce birth and death processes, making
the system non-conservative, representing a non-equilibrium process. We ob-
serve that the system stays in a free-�ow regime when the birth and death
probabilities balance each other over the network. We study the dynamics
of this non-conservative system by varying rejection probability and out�ux.
For out�ux values of 1 walker, 2 walkers and 10% of walkers, we see that at
lower values of rejection probability, smaller degree nodes show higher prob-
ability for extreme events than hubs, while for out�ux of 5 walkers, smaller
degree nodes always have higher probability for extreme events, irrespective
of the value of rejection probability. This could be attributed to the linear
relationship between the mean and the standard deviation for a given node.
Thus, when mean and standard deviation have a linear dependence, we hy-
pothesize that the smaller degree nodes are more likely to encounter extreme
events than the hubs.

Hubs are more prone to congestion and smaller degree nodes to extreme
events. Most of the network designs concentrate on hubs to increase the
tra�c capacity and e�ciency. However, in the light of these new results,
we need to upgrade the existing network design principles to incorporate
mechanisms to make the network invulnerable to extreme events, which are
unavoidable due to their inherent nature.

Further aim of our work is to �nd the most critical parameters that char-
acterize the model. We also aim at investigating the reason behind non-linear
relation between �ux �uctuations and average �ux using the di�usion proper-
ties of random walkers. We also wish to devise methods to predict possibility
of extreme events based only on the relationship between the �ux �uctua-
tions and the average �ux over a node in the network. We aim to build
an analytical framework for the results obtained. For our analysis, we have
used an undirected network. However, many real-world systems are directed
networks, having nodes which are only used for generating or transferring
walkers. Thus, we need to modify our model to obtain results for directed
networks.

Our simple model provides a basic framework to study extreme events on
complex networks, characterized by correlations of real-world tra�c �ows.
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