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Chapter 1

Introduction

In the last two decades, the physics of ultracold atoms has attracted a number
of physicists whose work has resulted in a tremendous progress both in the
theoretical and experimental fields. Ultracold atoms find direct applications
in many aspects of physics namely, condensed matter physics, non-linear
physics, quantum optics, and quantum information. Various cooling and
trapping methods were developed since the ’70s, and in 1980, laser based
techniques such as laser cooling and magneto-optical trapping were found.
These discoveries have been awarded with several Nobel Prizes in Physics.

In the year 1925, Albert Einstein, based on a paper by Satyendra Nath Bose,
predicted the occurrence of phase transition in a gas of non-interacting atoms
which leads to the condensation of atoms in the lowest energy, a consequence
of quantum statistical effects. After the discovery of superfluidity in liquid
Helium, F. London proposed that superfluidity could be a manifestation of
Bose-Einstein condensation (BEC). The first microscopic theory of inter-
acting Bose gases was given by Bogoliubov in 1947 and later in the years
1951-1956, Landau and Lifshitz, and, Penrose and Onsager [36] introduced
the concept of non-diagonal long-range order. Despite the huge literature
on the theory of BEC, the initial experiments opened up a series of new
questions. Though early experimental studies on dilute atomic gases began
in 1970s, focusing on spin-polarized hydrogen atoms, the first experimental
realizations of BEC were seen only in 1995 in the atoms of 87Rb [5], 23Na
[14] and 7Li [8]. BECs were then observed in other atomic species such as
spin-polarized hydrogen, metastable 4He [15] and in 41K [30] only in 2001.

The most important feature of trapped Bose gases is their inhomogeneity,
which allows the investigation of many physical quantities that was not pos-
sible in previous experiments on liquid Helium. In particular, BECs show up
not only in the momentum space but also in coordinate space which allows
making direct experimental investigation of the condensate feasible [37].
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INTRODUCTION

1.1 Bose-Einstein condensation

The occurrence of Bose-Einstein condensation, a new state of matter for
bosons, was first predicted by Albert Einstein [17] motivated by the letter on
photon-statistics written by Satyendra Nath Bose [7]. BEC is a phenomenon
in which a finite fraction of the total number of bosons occupy the lowest
energy quantum state, provided the system is below the critical temperature

T
c

=

2⇡~2
mk

B

✓
n

⇣(3/2)

◆
2/3

[20]. This macroscopic occupation of the single-

particle state is observed when the phase-space density is such that n�3 >

⇣(3/2). Here, � =

s
2⇡~2
mk

B

T
is the thermal de-Broglie wavelength with m

being the mass of the atom, k
B

the Boltzmann constant, T the temperature
and ⇣(3/2) = 2.312 is the Riemann- zeta function at 3/2.

The concepts of non-diagonal long range order and spontaneous breaking of
gauge-symmetry are the basic concepts underlying the phenomenon of BEC
[37]. Consider the one-body density matrix of a uniform and isotropic system
of N particles occupying a volume V in the absence of external potentials,
n(1)

(r, r0, t) = h ˆ †
(r, t) ˆ (r0, t)i where,  †

(r, t) and  (r, t) are field operators
creating and annihilating a particle at r respectively. In thermodynamic
limit (N,V ! 1), the one-body density matrix depends only on the relative
distance s = r� r0:

n(1)

(s) =
1

V

Z
dp n(p) e�ip·s/~ (1.1)

where p is the momentum. For normal momentum distribution, the one-
body density matrix vanishes as s ! 1 but if instead the momentum distri-
bution exhibits a singular behaviour, n(p) = N

0

�(p)+ ñ(p), the density ma-
trix does not vanish at large distances but tends to a finite value n

0

= N
0

/V
thus exhibiting long-range order.

Inter atomic interactions play a very important role in the physics of atomic
condensates. The short-range interactions depend predominantly on the
s-wave scattering length a [13]. Repulsive short-range interaction, charac-
terized by positive scattering length, results in a stable BEC irrespective
of trap, dimension, or number of atoms. Attractive short-range interaction
(a < 0) results in a collapse of the atoms of the condensate in two-dimension
(2D) and three-dimension (3D), however the presence of trap can stabilize
the condensate if the number of atoms is below a critical value N

cr

which
depends on the geometry of the trap, and can be calculated using the Gross-
Pitaevskii equation. Fig. 1.1 shows the energy per particle (in units of
~!), as a function of the variational parameter w of the Gaussian ansatz
 (r) = (N/⇡3/2a3

ho

w3

)

1/2

exp (�r2/2a2
ho

w2

) for the ground state of a BEC
in spherical trap. We see that the local minimum disappears at N = N

cr

.
For a spherical trap, this happens at N

cr

|a|
a

ho

= 0.575. [37].
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Figure 1.1: Energy per particle (in units of ~!) as a function of the variational
parameter w for a BEC with attractive short-range interactions in a spherical
trap, plotted for various values of N |a|/a

ho

. The local minimum disappears
at N = N

cr

The presence of dipole-dipole interactions changes the whole picture as we
shall discuss in chapter 2.

1.1.1 Gross-Pitaevskii Equation

Consider a nonuniform system of N bosons with mass m interacting via a
two-body potential V (r � r0), in an external trap V

ext

. In the language of
second quantization, the system is described by the Hamiltonian [13]

ˆH =

Z
dr ˆ †

(r)


� ~2
2m

r2

+ V
ext

(r)

�
ˆ

 (r)

+

1

2

Z
drdr0 ˆ †

(r) ˆ †
(r0)V (r� r0) ˆ (r0) ˆ (r) (1.2)

Employing the mean-field description formulated by Bogoliubov (1947), we
separate the condensate contribution from the bosonic field operator.

ˆ

 (r, t) =  (r, t) + ˆ

 

0
(r, t) (1.3)

where  (r, t) ⌘ hˆ (r, t)i is the condensate wave function and ˆ

 

0
(r, t) is a

small perturbation. We write the time-evolution of the field operator ˆ

 (r, t)

3



INTRODUCTION

using the Heisenberg equation.

i~@
ˆ

 (r, t)

@t
= [

ˆ

 (r, t), ˆH]

=


� ~2

2m
r2

+ V
ext

+

Z
dr0 ˆ (r, t)V (r� r0) ˆ (r0, t)

�
ˆ

 (r, t)

(1.4)

Since we consider only short-range contact potential characterized by the
s-wave scattering length a, we substitute V (r � r0) = g�(r � r0) [13] where
g = 4⇡~2aN/m. Replacing the field operator ˆ

 with classical field  in Eq.
1.4, we obtain the following closed equation for the order parameter.

i~@ (r, t)
@t

=


� ~2
2m

r2

+ V
ext

(r) + g| (r, t)|2
�
 (r, t) (1.5)

Eq. 1.5 is called the time-dependent Gross-Pitaevskii equation (GPE) and
was derived independently by Gross (1961 and 1963) and Pitaevskii (1961).
It is also known as the Non-Linear Schrödinger Equation (NLSE) and is
the main theoretical tool used in the study of non-uniform Bose gases at
low temperature. The GPE is also widely used in various fields of physics
namely, non-linear optics, plasma physics etc.

1.1.2 Elementary Excitations

The first excitation spectrum of a weakly interacting gas of bosons was cal-
culated by Bogoliubov. It plays an important role in our understanding of
superfluidity of Bose gases. Since the first experimental observation of BEC,
there has been an increased study of elementary excitations in these systems
and several theoretical works have been made exploring the behaviour of
trapped Bose gases.

We begin by calculating the dispersion relation ✏(k) = ~!(k) of the Bo-
goliubov excitations of the BEC by linearizing the time dependent GPE 1.5
around the ground state  (r). We consider solutions of the form

 (r, t) = e�iµt/~ ⇥ (r) + u(r)e�i!t

+ v⇤(r)ei!t)
⇤

(1.6)

where u and v are the amplitudes of small perturbations with Bogoliubov
frequency !. We keep only the linear terms in u and v in the GPE 1.5 to
obtain the following equations.

~!u(r) = [H
0

� µ+ 2g 2

(r)]u(r) + g 2rv(r) (1.7)
�~!v(r) = [H

0

� µ+ 2g 2

(r)]v(r) + g 2ru(r) (1.8)

with H
0

= �(~2/2m)r2

+V
ext

(r). These coupled equations 1.7 and 1.8 let us
calculate the eigenfrequencies ! and their energies ~!. This was introduced
by Pitaevskii in 1961. One can also take the quantum- mechanical approach

4



1.1. BOSE-EINSTEIN CONDENSATION

to derive the same. Purely real values for ! implies stability of the ground
state  whereas non-zero imaginary part of ! suggests instability of  .

The amplitudes u and v for a uniform gas are plane waves of the form
u(r) = u

0

eik·r and v(r) = v
0

eik·r and the dispersion law takes the famous
Bogoliubov form

(~!)2 =
✓
~2k2
2m

◆✓
~2k2
2m

+ 2gn

◆
(1.9)

where k is the excitation wavefactor and n = | |2 is the density. At large
momenta this reduces to the free- particle energy ~2k2/2m and at small
momenta, Eq. 1.9 results in phonon dispersion ! = ck with c =

p
gn/m

being the sound velocity.

Landau’s criteria for Superfluidity:

0.00 0.01 0.02 0.03 0.04 0.05
0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07

0.0 0.5 1.0 1.5 2.0
0

1

2

3

4

k
é

eHkéL

Figure 1.2: Plot of Bogoliubov excitations ✏(˜k) as a function of ˜k for a
weakly interacting Bose gas (blue solid) and ideal Bose gas (red dashed).

(Inset: Magnified plot showing the lower ˜k region).
d✏(̨k)

dk
! 0 at lower ˜k

values for ideal Bose gas, making the critical velocity v
r

= 0, thus exhibiting
no superfluidity.

When the velocity of a fluid v is such that

v < v
cr

(1.10)

where, v
cr

= mink
✏(k)

|k| , there will be a persistent flow without friction re-

sulting in superfluidity. Thus, Eq. 1.10 gives the Landau’s criteria for su-
perfluidity. Fig. 1.2 shows ✏(˜k) (k scaled by ˜k = k⇠ where ⇠ is the healing
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INTRODUCTION

length) as a function of ˜k for a weakly interacting Bose gas and ideal Bose

gas. For an ideal Bose gas, at low ˜k values,
d✏(˜k)

d˜k
! 0, making the critical

velocity v
cr

= 0. This implies that though ideal Bose gases can form BECs,
they can never exhibit superfluidity. However, weakly interacting Bose gases
satisfy the Landau criteria for superfluidity at zero temperature, with the
critical velocity being the velocity of sound [37]. Thus, not all BECs can be
superfluids.

1.2 Solitons in BEC

Soliton, or a solitary wave, which is an exact analytical solution of the time-
dependent GPE, is a localized disturbance which propagates without chang-
ing its form. The origin of formation of such solitons lies in the non- linearity
and the non- locality present in the media. They preserve their form as the
non-linearity and dispersion effects cancel each other out. Solitons were first
observed and described by a Scottish engineer named John Scott Russell in
1845 while conducting experiments to determine the most efficient design for
canal boats [32]. It was only in mid 1960s that Russell’s early idea was appre-
ciated, when scientists began to study nonlinear wave propagation. Today,
solitons appear in almost every field: hydrodynamics, meteorology, nonlin-
ear optics, laser physics, plasma physics, particle physics and many more.
Solitons in BEC are typically of two types, dark solitons that are formed
in condensates with repulsive interactions, and, bright solitons [37], formed
in the case of attractive interactions. In this thesis we shall focus only on
bright solitons.

1.2.1 1D Bright Solitons

In BECs with only short-range contact interaction, stable solitons are found
only in one-dimension [1]. This can be seen by observing the energy E of a
self-attractive BEC (g

D

< 0) in dimension D confined by a harmonic trap.

E =

Z  ~2
2m

| |2 + V | |2 + g
D

2

| |4
�
dDr

If we consider a BEC with size L and attractive contact interaction, we see
that the kinetic term in the energy expression behaves as 1/L2, the trap as
L2, and the contact interaction term behaves as 1/LD. Thus,

E ⇠ C
kin

L2

+ C
pot

L2

+

C
int

LD

.

In the absence of the external trap, for D = 2 both kinetic and interaction
energy scale as L�2 and the system either expands (when kinetic energy
dominates the interaction energy) or collapses (when interaction dominates
over kinetic energy). Similarly, for D = 3, the absence of local minimum in

6



1.3. DIPOLAR BEC

the energy E (Fig. 1.3) indicates that the system either expands or collapses
for any values of g.

When D = 1, the dispersion and attractive inter-atomic interaction balance
each other resulting in the formation of a stable soliton. As seen in Fig.
1.3(a), the energy functional has a minimum. The quasi-1D GPE

i~@ (z, t)
@t

=


� ~2
2m

+ g
1D

| (z, t)|2
�
 (z, t) (1.11)

possesses a bright solitonic solution of the form [26]

 (z, t) =  
0

sech[(z � vt)/⇣] exp[i(kz � !t)] (1.12)

where, n
0

= | 
0

|2 is the central density, v is the velocity of the soliton,
⇣ = ~/

p
m|g|n

0

is the spatial width of the soliton, k is the soliton wave
number and ! is the frequency.

The very first bright solitons were observed in experiments performed at
Rice University [43] and at the Ecole Normale Supérieure in Paris [21]. Both
these groups have reported to observe 1D bright solitons in 7 Li condensates.
Fig. 1.4 shows the soliton train formation.

1.2.2 Multi-dimensional Solitons

The last decades have witnessed intensive investigations, both theoretical
and experimental, on multi-dimensional bright solitons in various non-linear
setups, especially in systems possessing nonlocal-nonlinearity (NL-NL) [42, 6,
4] such as atomic Bose-Einstein condensates (BECs) with permanent [35, 44]
or induced dipole moments [28], photo refractive materials [22], nematic liq-
uid crystals [11, 33] and others [24, 9, 27]. 2D optical bright solitons [12] as
well as 3D light bullets [29] in a non-local medium have been reported. In
addition, the non-locality also induces long-range interactions between soli-
tons and hence significantly influence the inter-soliton collisional dynamics
[35, 22, 31, 16] and may lead to the formation of soliton complexes [23, 41].
The existence of bright solitons in condensates has been demonstrated ex-
perimentally in quasi-1D alkali-atom BECs, however the 2D counterpart still
remains an open challenge. But the achievements of the dipolar condensates
[19, 2, 25] show promising possibilities of realizations of 2D bright solitons.

1.3 Dipolar BEC

The experimental productions of BECs of Chromium [19], Erbium [2], and
Dysprosium [25] atoms (they have large magnetic moment of m = 6µ

B

, 7µ
B

,
and, 10µ

B

respectively, where µ
B

is the Bohr magneton) have given rise to
growing interests in dipolar condensates. It is interesting that application of
feshbach resonances may help suppressing short-range interactions resulting

7
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Figure 1.3: Energy as a function of the variational parameter L (Gaussian
width of attractive BEC in the absence of a trap) for (a) D = 1, with
g
1

= 0.1, (b) D = 2, with g
2

= 1 (upper curve) and g
2

= 2 (lower curve)

and, (c) D = 3 in the absence of a trap. The energy shows a minimum only
in the D = 1 case resulting in stable solitons, whereas D = 2, 3 results in
instability of the condensate.

8



1.3. DIPOLAR BEC

Figure 1.4: Soliton train formation. (a) The solid curve is the density and
the dashed curve is the phase of the condensate. Initially, we start with
an equilibrium condensate profile for 104 atoms with a scattering length of
200a

0

. The scattering length is then instantaneously changed to a = �3a
0

.
The trap parameters are obtained from [43]. (b) Soliton train near the two
turning points and near the center of oscillation.
Courtesy: Figures taken from [3, 43]
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Figure 1.5: Dispersion law ✏
0

(q) for (a) � = 0.5, µ/~! = 343 and (b)� =

0.53, µ/~! = 46 (upper curve) and � = 0.47, µ/~! = 54 (lower curve).
Here, � = g/g

d

. Solid lines show numerical results, and dotted lines are the
result of lowest branch of spectrum. We see the roton minimum in (b) at
q = (16µ(1/2� �)/15~2!2m)

1/2.
Courtesy: Fig. taken from [39].

in purely dipolar gases. Dipole-dipole interactions (DDI) strongly influence
the physics of the condensates and may completely change their properties.
Two major characteristics of DDI are its long-range and anisotropic nature.
These have important consequences on the properties of the condensate. Due
to its long-range character, in the presence of DDI, all the partial waves con-
tribute, contrary to the short-range interactions where it is dominated by
only the s-wave.

An interesting feature of dipolar condensates is that they can exhibit a roton-
maxon behaviour in the excitation spectrum which originates due to the
momentum dependence of the interparticle interaction [39]. This behaviour
was initially observed only in superfluid Helium and now such exhibition
in trapped dipolar condensates brings interesting possibilities on manip-
ulations of superfluid properties of trapped condensates. Fig. 1.5 shows
the maxon- roton behaviour of a pancake-shaped dipolar condensates with
dipoles aligned perpendicular to the trap plane.

The potential due to the dipole-dipole interaction is given by,

V
d

(r) = g
d

1� 3 cos

2 ✓

r3
(1.13)

where, g
d

=

�Nd2

4⇡✏
0

with � being a tuning parameter, r is the radial vector
between the two dipoles and ✓ is the angle between r and the dipole vector
d as shown in Fig. 3.1(b). On including the DDI term, the non-linear GPE

10



1.4. TUNING THE INTERACTION PARAMETERS

takes the following form.

i~@ (r, t)
@t

=

"
�~2
2m

r2

+ V (r) + g| (r, t)|2

+

Z
dr0V

d

(r� r0)| (r0, t)|2
#
 (r, t) (1.14)

The integral term in Eq. 1.14 introduces non-locality and non-linearity sim-
ilar to that in nematic liquid crystals [34], and photorefractive screening
solitons.

1.4 Tuning the Interaction Parameters

Tuning of g:
The short-range attraction parameter g can be tuned by changing the s- wave
scattering length, a. This is achieved via a Feshbach Resonance, which
arises when the short-range interaction energy between two atoms equals
the energy of the bound state. This can be achieved by tuning the magnetic
moments using a magnetic field leading to magnetically tuned feshbach and
by optical methods resulting in an optical feshbach. The s- wave scattering
length a as a function of the magnetic field B is as follows [10].

a(B) = a
bg

✓
1� �

B �B
0

◆
(1.15)

where a
bg

is the scattering length associated with the background potential
V
bg

, and � is the resonant width and B
0

is the resonance position where
a ! ±1. Fig. 1.6 shows the scattering length a and molecular state energy
E near a magnetically tuned feshbach resonance.

Tuning of gd:
The dipolar interaction parameter g

d

can be tuned by using the tuning pa-
rameter � = (3 cos

2 � � 1)/2, which can be changed from �1/2 to 1 by
varying the angle � between the z axis and the direction of dipole moment
as shown in Fig. 1.7. This changes the dipolar interaction from attractive
to repulsive, and at a particular angle, called the magic angle, ↵

m

= 54.7�,
the dipolar interaction averages to zero [18].
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Figure 1.6: Scattering length a (Panel(a)) and molecular state energy E
(Panel (b)) near a magnetically tunes Feshbach resonance. The binding
energy is defined to be positive, E

b

= �E. The inset shows the universal
regime near the point of resonance where a is very large and positive.
Courtesy: Fig. taken from [10].

Figure 1.7: Tunability of the magnetic dipole interaction. Using time-varying
magnetic fields, the dipoles are rapidly rotated around the z axis. The angle
� between the dipole orientation and the z axis determines the strength and
sign of the effective interaction. � = 0: the magnetic dipoles are polarized
along the z direction. � = ⇡/2: the sign of the effective interaction is inverted
and the absolute value is only half of the polarized case. � = 54.7�(magic
angle): the dipolar interaction averages to zero.
Courtesy: Fig. taken from [18].
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1.5. OVERVIEW

1.5 Overview

This thesis is organized as follows:

In chapter 2 we discuss two-dimensional bright solitons in dipolar BECs
with dipoles aligned perpendicular [35], and parallel [44] to the 2D plane,
summarizing the phonon instability and soliton stability conditions. We
point out the difficulties in experimental observation of these solitons and
hence the need to explore new configurations.

In chapter 3 we explore the case of two-dimensional bright solitons in dipolar
BECs with tilted dipoles. We derive the condition for phonon instability, and
show the crucial dependence of soliton stability on the tilting angle ↵. Lastly
we discuss the stability regime for the specific cases of Chromium, Erbium
and Dysprosium atoms.

In chapter 4 we give a summary of all the chapters.
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Chapter 2

2D Bright Solitons in Dipolar

BECs

Multi-dimensional solitons find many applications in the field of matter waves
and nonlinear optics. They have been experimentally observed in nematic
liquid crystals [34] and in photorefractive solitons [40]. However, multidimen-
sional solitons have not been observed in BECs with attractive short-range
interactions as they are unstable against collapse. The nonlocality and the
nonlinearity introduced by the dipolar interaction provides a possibility to
stabilize two-dimensional bright solitons in dipolar BECs [35]. But so far
there have been no reports of experimental observation of these solitons.

In this chapter we discuss 2D bright solitons in dipolar BECs, the theoretical
work done so far on them and the experimental difficulties faced in finding
them. So far, theorists have looked at two kinds of alignments of the dipoles
w.r.t. to the 2D plane that contains them - dipoles aligned perpendicular to
the 2D plane, and, parallel to it. The following sections describe both the
cases briefly.

2.1 Dipoles Perpendicular to 2D Plane

This alignment was studied by Luis Santos and his group at Hannover in
Germany [35]. The model consisted of a BEC of N particles confined to
the xy 2D plane by a strong harmonic trap !

z

along the z axis, with their
electric dipole d (also valid for magnetic dipole) pointing along the z axis
(See Fig. 2.1). The solitons formed are isotropic with equal widths along
the x and y directions, as seen in Fig. 2.2(a).

Considering the Gaussian ansatz for the wave function,

 (r̄) =
1

⇡3/4l
3/2

z

L
⇢

L
1/2

z

exp

✓
�x2 + y2

2l2
z

L2

⇢

� z2

2l2
z

L2

z

◆
,
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2.2. DIPOLES PARALLEL TO 2D PLANE

where, l
z

=

q
~

m!

z

and L
⇢

and, L
z

are dimensionless parameters related to
the Gaussian widths, the energy obtained was the following:

2E

~!
z

=

1

L2

⇢

+

1

2L2

z

+

L2

z

2

+

1p
2⇡L2

⇢

L
z


g̃

4⇡
+

g̃
d

3

f

✓
L
⇢

L
z

◆�
(2.1)

where,
g̃(g̃

d

) =

2

~!
z

l3
z

g(g
d

)

f() =
1

2 � 1


22 + 1� 32p

2 � 1

tan�1

p
2 � 1

�

with  = L
⇢

/L
z

. From inspection, we see that the energy has a minimum
in L

⇢

if
g̃
d

3

p
2⇡

< 1 +

g̃

2(2⇡)3/2
<

�2g̃
d

3

p
2⇡

This happens only when g
d

< 0 (g
d

can be made negative with the help of
rotating fields as discussed in Section 1.7) and the ratio � =

g

d

g

is such that

|�| > 3

8⇡
⇠ 0.12 (2.2)

Thus 2D bright solitons can be found in dipolar BECs with dipoles aligned
perpendicular to the 2D plane only when the DDI term g

d

< 0 and the ratio
|�| > 0.12.

Figure 2.1: Schematic setup of dipolar BEC in the xy plane with strong
harmonic trap along z axis with dipoles aligned (a) perpendicular to the 2D
plane, and , (b) parallel to the 2D plane.

2.2 Dipoles Parallel to 2D Plane

This case was studied by a group in Israel [44] where the model was similar
to the case discussed in section 2.1, only the dipoles were aligned parallel to
the 2D plane containing the BEC (as shown in Fig. 2.1). This arrangement
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2D BRIGHT SOLITONS IN DIPOLAR BECS

makes the DDI anisotropic in the 2D plane. This is seen in Fig. 2.2(b) where
the soliton is elongated along the x axis.

Considering the following Gaussian ansatz,

 (r̄) =
1

⇡3/4l
1/2

x

l
1/2

y

l
1/2

z

exp

✓
� x2

2l2
x

� y2

2l2
y

� z2

2l2
z

◆
,

the following energy is obtained:

E =

1

4

✓
1

l2
x

+

1

l2
y

+

1

l2
z

◆
+

l2
z

4

+

1p
2⇡l

x

l
y

l
z

h g

4⇡
+

g
d

3

h(
x

,
y

)

i
(2.3)

where,


x(y)

=

l
x(y)

l
z

h(
x

,
y

) =

Z
1

0

3x2
x


y

dx
p

1 + (2
x

� 1)x2
q
1 + (2

y

� 1)x2
� 1

Investigating this energy expression, we see that there exists a minimum only
when g

d

> 0 and,

� =

g
d

g
>

3

4⇡
⇠ 0.24 (2.4)

Thus 2D bright solitons can be found in dipolar BECs with dipoles aligned
parallel to the 2D plane when the DDI term g

d

> 0 and the ratio � > 0.24.

Figure 2.2: Condensate density | |2 for the ground state of a 2D bright
soliton with g̃ = 20 and |�| = 0.4 for (a) isotropic perpendicular case (b)
anisotropic parallel case, obtained from numerical solutions of the GPE.
Courtesy: These plots have been borrowed from Chinmayee Mishra.
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2.3. PHONON INSTABILITY AND THE GAS OF SOLITONS

2.3 Phonon Instability and the Gas of Solitons

The partially attractive behavior of the DDI leads to phonon instability
(PI) in dipolar BECs. In 2D dipolar BECs, post PI dynamics results in
the transient formation a gas of attractive, inelastic 2D bright solitons that
eventually fuse into a larger bright soliton. This is in contrast to 2D and 3D
BECs with only short-range interactions, where the condensates just collapse
[38].

Consider the 2D homogenous solution of Eq. 1.5:

 
2D

(r, t) =
p
n
2D

exp

✓
�iµ

2D

t

~

◆

where n
2D

is the homogenous 2D density and µ
2D

is the 2D chemical poten-
tial. Solving for µ

2D

from the GPE 1.5, we get the following expressions in
the perpendicular and the parallel cases respectively.

µ
2D(?)

=

gn
2Dp

2⇡l
z

✓
1 +

8⇡�

3

◆

µ
2D(k) =

gn
2Dp

2⇡l
z

✓
1� 4⇡�

3

◆
(2.5)

When µ < 0, the Bogoliubov excitations, ✏( ! 0) ⇠ p
µ are purely

imaginary resulting in phonon instability. Thus, setting µ < 0 in Eqs. 2.5,
we obtain the condition for PI are the following:

?case : � < � 3

8⇡

k case : � >
3

4⇡
(2.6)

We note that the conditions for the formation of stable solitons 2.2 and 2.4
are the same as the conditions for phonon instability 2.6. The fact that
these two conditions are identical is not accidental, but it shows that post
phonon instability dynamics may lead to the formation of bright solitons.
The following Fig. 2.3 shows the formation of 2D soliton gas after phonon
instability.

2.4 Experimental Difficulties

As discussed earlier in section 2.1, we require g
d

< 0 for the formation of 2D
bright solitons in dipolar BECs with perpendicular dipoles. The DDI param-
eter g

d

can be made negative by changing the tuning parameter �. However,
this seems impossible to be achieved experimentally. In the parallel config-
uration, the regime for stability of the 2D bright solitons in the parameter
space is extremely small, again making it difficult to produce them experi-
mentally. Thus so far, there have been no reports of experimental production

17



2D BRIGHT SOLITONS IN DIPOLAR BECS

Figure 2.3: The 2D soliton gas after phonon instability of a homogeneous
dipolar BEC with µ = �0.2 and g/(

p
2⇡l

z

) = 10. (top) ?- configuration,
� = �0.2, t = 484/!

z

; (bottom) k- configuration, � = 0.3, and t = 108/!
z

.
Courtesy: Fig. taken from [38]

of 2D bright solitons in dipolar BECs.

In this thesis we alter the configuration of the system by tilting the dipoles
at an angle ↵ w.r.t the z axis. As we shall show, this gives a better control
of the system and helps in tuning of the interaction parameters, which is
crucial in the experimental achievement of 2D bright solitons.

2.5 Summary

In this chapter we discussed the properties of 2D bright solitons in a dipolar
BEC with dipoles aligned in the two different configurations - perpendicular
and parallel, focusing on phonon instability and the stability regions of the
solitons. We also discussed the difficulties faced in the experimental realiza-
tions of these solitons and hence the need to explore new configurations in
order to observe them experimentally.
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Chapter 3

2D Bright solitons in Dipolar

BECs with Tilted dipoles

3.1 Setup and Model

We consider a dipolar BEC containing N atoms with mass m and electric
or magnetic dipolar moment d oriented in the xz plane making an angle ↵
w.r.t. the z axis using external magnetic fields as shown in Fig. 3.1. Since
we are interested in 2D self- trapped solutions of the GPE, we consider no
external traps in the xy plane and a sufficiently strong trap along the z di-
rection given by V

ext

(r) = m!2

z

/2 in order to hold the condensate in the 2D
plane.

The atoms interact amongst each other via two kinds of interactions: (i)
Short-range contact interaction: we consider repulsive short-range interac-
tion between the atoms of the condensate characterized by a positive s -
wave scattering length a. The coupling constant for the interaction is given
by g = 4⇡~2aN/m. (ii) Long-range dipole-dipole interaction (DDI): the
atoms interact via the dipole -dipole potential: V

d

(r) = g
d

(1 � 3 cos

2 ✓)/r3,
where r is the radial vector joining the two dipoles, ✓ is the angle between r
and d, and, g

d

= �d2 is the strength of the dipole-potential with � being a
parameter tunable using rotating fields [18].

3.1.1 Model: Reduced 2D GPE

We closely follow the methods illustrated in [35]. At sufficiently low tem-
peratures, we can describe the above system using the following non-local,
non-linear Schödinger equation (NLGPE):

i~@ (r, t)
@t

=


� ~2

2m
r2

+ V
ext

(r) + g| (r, t)|2

+

Z
dr0V

d

(r� r0)| (r0, t)|2
�
 (r, t) (3.1)
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x y
z

x
z↵

r

✓

(a) (b)

Figure 3.1: (a) Schematic setup of dipolar BEC in the xy plane with strong
harmonic trap along z axis. (b) Dipoles aligned in the xz plane making an
angle ↵ with the z axis and angle ✓ between the radial vector r and the
dipole moment d.

where  (r, t), normalized to unity by
R
dr| (r, t)|2 = 1, is the BEC wave

function. Since there is a strong trap along the z axis and the condensate
lies on the xy 2D plane, we can factorize  (r) as  (r) =  (x, y)�

0

(z). We
consider the trapping such that the system is frozen in the ground state of
the harmonic oscillator along the z axis, given by �

0

=

1

⇡

1/4

l

1/2

z

e�z

2

/2l

2

z , where

l
z

=

q
~

m!

z

. Using Fourier transform of the dipole potential and convolution
theorem, and by multiplying Eq. 3.1 with �⇤

0

(0) and integrating over dz and
dk

z

we obtain the following quasi-2D NLGPE:

i~@ (x, y, t)
@t

=


� ~2

2m
r2

x,y

+

gp
2⇡l

z

| (x, y, t)|2 + 2g
d

3l
z

⇥
Z

d2k

(2⇡)2
ei(kxx+k

y

y)f(k
⇢

l
z

)ñ(k
x

, k
y

)

�
 (x, y, t) (3.2)

where ñ(k
x

, k
y

) is the Fourier transform of the 2D condensate density | (x, y)|2
with k2

⇢

= k2
x

+ k2
y

and the function,

f(k) =

p
2⇡(3 cos2 ↵� 1) + 3⇡ek

2

/2

Erfc

✓
kp
2

◆

⇥(sin

2 ↵ cos

2 ✓
k

� cos

2 ↵) (3.3)

where Erfc(x) is the complimentary error function, and k
x

= k
⇢

cos ✓
k

. Using
the reduced 2D NLGP Eq. 3.2 we study the formation and dynamics of 2D
bright solitons in the following sections.
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3.2. BOGOLIUBOV EXCITATIONS IN A 2D HOMOGENEOUS BEC

3.2 Bogoliubov Excitations in a 2D Homogeneous
BEC

In this section we calculate the Bogoliubov excitations for our system for
which we first calculate the chemical potential µ

2D

. The time-dependent
homogeneous solution of Eq. 3.2 is given by  (x, y, t) =

p
n
2D

e�iµ

2D

t/~

where n
2D

is the homogeneous density and µ
2D

is the 2D chemical potential.
Substituting this into Eq. 3.2 and solving for the 2D chemical potential we
obtain:

µ
2D

=

gn
2Dp

2⇡l
z


1 +

4⇡

3

�(3 cos2 ↵� 1)

�
(3.4)

where � =

g

d

|g| determines the relative strength between short- range contact
interaction and the long-range dipolar interaction. We then calculate the
elementary excitations of the above homogeneous solution using the method
illustrated in Section 1.1.2. They are of the following form:

� (x, y, t) = u
0

e�i(k.⇢�!kt)
+ v

0

ei(k.⇢�!kt) (3.5)

with the dispersion given by,

✏k = ~!k =

vuutE
k

"
E

k

+

2gn
2Dp

2⇡l
z

 
1 +

2

p
2⇡

3

�f(k)

!#
(3.6)

where E
k

= ~2(k2
x

+ k2
y

)/2m.

3.2.1 Phonon Instability and Soliton Formation

As seen from Eq. 3.6, the phonon modes ✏(k ! 0) ' p
µk become imaginary

(and hence unstable) when µ < 0 which gives us the following condition for
phonon instability (PI).

g < �4⇡g
d

3

�
3 cos

2 ↵� 1

�
(3.7)

or,
|�| > 3

4⇡|3 cos2 ↵� 1| (3.8)

We note that setting ↵ = 0 (⇡/2) reduces to the perpendicular (parallel)
configuration giving the phonon instability condition |�| > 0.12 (0.24) as
discussed in Section 2.3.

Fig. 3.2 shows the phonon instability regions as a function of � and ↵ in the
two different scenarios (a) g > 0 and (b) g < 0. We shall focus on only the
former case (g > 0) as in the latter case, PI always leads to instability of
the condensate against local collapses similar to 2D non-dipolar BEC with
short-range interactions. When g > 0 post PI dynamics is characterized by
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Figure 3.2: Phonon instability regions (shaded) as a function � and tilting
angle ↵ for (a) g>0 and (b) g<0. Dashed line in Fig. 3.2 (a) indicates the
magic angle ↵

m

across which dipolar characteristics need to be reversed for
stable solitons. In the former case post PI dynamics is characterized by the
formation of 2D solitons, while in the latter case the BEC becomes unstable
against local collapses.

the formation of 2D bright soliton gas, if µ
2D

⌧ ~!
z

[38].

The phonon instability region as a function of � and ↵ with g>0 (Fig. 3.2a)
gives us the first estimate for the stability regions of the 2D bright solitons.
As is clear from Fig. 3.2(a), there exist two islands of stable regions separated
at the magic angle ↵

m

= 54.7� (0.95 radians) below which we need g
d

< 0

and above which we need g
d

> 0 for the formation of stable bright solitons.

We note that sufficiently increasing the strength of dipolar interaction g
d

,
the condensate tends to enter the collapse instability region. This gives us
the upper cut- off for |�| in the PI region for the stability of solitons which
we estimate using Gaussian variational calculations in the following section.

3.3 Gaussian Calculations

In this section, we analyze the stability of 2D bright solitons in a dipolar
BEC with tilted dipoles using a three- dimensional variational analysis. We
consider the following Gaussian-like ansatz to determine the stability regime
of 2D bright solitons as a function of the parameters g, g

d

, and, ↵.

 (r) =
1

⇡3/4l
3/2

z

p
L
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L
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L
z
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
� 1

2l2
z

✓
x2

L2
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+
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(3.9)

Here, L
x

, L
y

and L
z

are dimensionless parameters related to the widths of
the Gaussian along x, y and z directions respectively, and l

z

=

q
~

m!

z

as
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3.3. GAUSSIAN CALCULATIONS

mentioned previously in section 3.1.1. The Gaussian analysis well captures
the two boundaries of the stability regime: (a) Expansion instability: the
repulsive nature due to g dominates over the attraction due to g

d

making
the solitons unstable against 2D expansion, and, (b) Collapse instability:
attractive interaction due to g

d

dominates repulsive interaction due to g
resulting in a 3D collapse.

3.3.1 Energy of the System

The energy of the system is obtained by using the above Gaussian ansatz
3.9 for the condensate wave function in the following energy expression:

E =

Z
dr


~2
2m

|r (r)|2 + V
ext

(r)| (r)|2 + g

2

| (r)|4
�

+

1

2

Z
d3r0 V

d

(r� r0) | (r)|2 | (r0)|2 (3.10)

The last term in the energy functional describes the non-local, nonlinear
dipolar interaction, which can be evaluated with the help of Fourier trans-
formation and convolution theorem, and thus simplifying to

Z
dr

Z
dr0 V

d

(r� r0) | (r)|2 | (r0)|2 =

Z
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and,

ñ(k) = exp


� l2
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�
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y

L2

y

+ k2
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(3.13)

After simplifying the integrals, and scaling the interaction parameters as
g̃(g̃

d

) = g(g
d

)/
p
2⇡~!

z

l3
z

, we thus arrive at the final expression for the energy
of our system.
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2D BRIGHT SOLITONS IN DIPOLAR BECS WITH TILTED DIPOLES

(Derivation of the DDI term is shown in details in Appendix B.1). Putting
↵ = 0 and ↵ = ⇡/2 reduces the energy expression for the perpendicular (Eq.
2.1) and parallel (Eq. 2.3) configurations respectively. The following Fig.
3.3 shows equal energy surfaces around the local minimum of the energy 3.14
as a function of the variational parameters L

x

, L
y

and L
z

.
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Figure 3.3: Equi-energy surfaces around the local minimum of the energy
3.14 as a function of variational parameters L

x

, L
y

and L
z

. The centre of the
inner (black) surface gives the equilibrium widths {w0

x

, w0

y

, w0

z

} of the bright
soliton. The plots (a) and (b) are for g̃ = 100,� = �0.2 and ↵ = 0.42 radians
with {w0

x

, w0

y

, w0

z

} ! {19.9, 22, 0.997}, and, the plots (c) and (d) correspond
to g̃ = 20,� = 0.5 and ↵ = 1.3 radians with {w0

x

, w0

y

, w0

z

} ! {13.3, 6.7, 0.99}

3.3.2 Stability Regime

In order to obtain the stability regime, we minimize the energy functional
3.14 w.r.t. the Gaussian widths L

x

, L
y

and L
z

. Since the energy involves an
integral term that is not solvable analytically, we use numerical methods for
minimization. Depending on the values of the parameters g, g

d

and ↵, the
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3.3. GAUSSIAN CALCULATIONS

minimum may or may not exist. The existence of a minimum in the energy
functional suggests the stability of the bright solitons. Fig. 3.4 shows the
regions in the g�g

d

�↵ parameter space where stable solitons can be formed.
As is seen in the figure, this regime for ↵ = ⇡/2 is very small as compared
to ↵ = 0, consistent with the discussion in Section 2.4.This is in general true
and not just for ↵ = 0 and ⇡/2. The stability regime for ↵ > ↵

m

is much
smaller compared to that for ↵ < ↵

m

. We also note that by increasing the
tuning angle ↵ from 0 to ↵

m

, we increase the region of stable solitons in the
g � gd phase space. Similarly, increasing ↵ from ↵

m

to ⇡/2, increases the
stability regime.

Figure 3.4: Regions for the formation of stable soliton (coloured) in the
g � g

d

� ↵ phase space for (a) ↵ < ↵
m

and (b) ↵ > ↵
m

. The regions have
been obtained for ↵ = 0 (red), 0.4 (blue), and 0.6 (green) in Fig 3.4(a), and
↵ = 1.2 (red), 1.3 (blue), 1.4 (green) and 1.5(grey) in Fig.3.4(b)

3.3.3 Anisotropic Solitons

When the dipoles are aligned perpendicular to the 2D xy plane (↵ = 0), the
solitons are isotropic and the Gaussian solution has equal widths L

x

= L
y

.
However, tilting the dipoles towards the x-direction, causes the DDI in the
xy plane to behave anisotropically, becoming partially repulsive and partially
attractive. When ↵ > ↵

m

, this is characterized by L
x

> L
y

(the condensate
is elongated along the x axis), and when ↵ < ↵

m

, we have L
x

< L
y

(the
condensate is elongated along the y-axis), thus giving rise to anisotropic
solitons. This can be seen in Fig. 3.5, which shows the density plots for
the ground state of the bright solitons for different ↵ values. On increasing
↵, the anisotropic behaviour increases, and as seen in Fig. 3.6, maximum
anisotropy is exhibited when the dipoles are aligned parallel to the 2D plane
(↵ = ⇡/2). We also see that anisotropy increases with increase in |g

d

|, keep-
ing g fixed, (see Fig. 3.6 (a),(c)) and, with increase in g keeping g

d

fixed
(Fig. 3.6 (b),(d)).
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2D BRIGHT SOLITONS IN DIPOLAR BECS WITH TILTED DIPOLES

Figure 3.5: Condensate density | |2 plots for the ground state of a 2D bright
soliton by numerical solutions of the GPE for g̃ = 20, |�| = 0.4 and (a) ↵ = 0,
(b) ↵ = 0.6, (c) ↵ = 1.4, (d) ↵ = ⇡/2. The soliton is isotropic for ↵ = 0 and
maximally anisotropic for ↵ = ⇡/2.
Courtesy: These plots have been borrowed from Chinmayee Mishra.
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To quantify the in-plane anisotropy, we define the ratio � = w0

i

/w0

j

in the
xy plane where i, j 2 x, y with w0

j

> w0

i

so that � is always less than unity.
Thus for the ↵ < ↵

m

region where � < 0 we have � = w0

x

/w0

y

, since the
soliton is more elongated along the y-axis (see Fig. 3.6a), and in the ↵ > ↵

m

region where � > 0, we get � = w0

y

/w0

x

(see Fig. 3.6b). We discuss the two
cases: (a) � < 0(0  ↵ < ↵

m

) and (b) � > 0(↵
m

< ↵  ⇡/2) separately and
the results are shown in Figs. 3.6 c-f.

When � < 0, increasing ↵ from 0 to ↵
m

has two effects: (i) the soliton
becomes anisotropic with w0

y

> w0

x

since DDI is more attractive along the
y direction compared to x and, (ii) both w0

x

and w0

y

increase monotonously
with ↵ since the effective attractive interaction in the condensate is reduced.
Interestingly, � = w0

x

/w0

y

as a function of ↵ shows a non-monotonous be-
haviour leading to a local minimum, i.e., as ↵ increases the anisotropy of
the soliton increases (the ratio � decreases), and surprisingly close to the
expansion instability we observe a healing processes, the anisotropic char-
acter starts to diminish, before it becomes unstable against 2D expansion if
↵ � ↵

c

(< ↵
m

), a critical angle determined by the explicit values of inter-
action parameters g and g

d

. Each curves in Figs. 3.6c-d terminates on the
point at which the soliton becomes unstable against expansion.

When ⇡/2, the dipoles are aligned along the x axis, we get maximally
anisotropic solitons for a fixed g and g

d

(see Figs. 3.6e-f). Such a soliton is
more prone to collapse instability with a slight increase in DDI. As shown in
Figs. 3.6e-f, the anisotropy of the soliton can be reduced by simply tilting
the dipoles out of the 2D plane, which may enhance the stability of the soli-
tons, and involves no additional complications to the current experimental
setups.

3.4 Variational Calculations

In this section we calculate the lowest- lying modes of our system using the
Lagrangian formalism [45]. This helps us to understand better, the stability
and dynamics of the 2D solitary waves. The Lagrangian density of our
system is as follows

L =

i
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We consider the following time-dependent Gaussian like solution
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27



2D BRIGHT SOLITONS IN DIPOLAR BECS WITH TILTED DIPOLES
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Figure 3.6: Equilibrium structure of the soliton for (a) � < 0 (0  ↵  ↵
m

)
and (b) � > 0 (↵

m

< ⇡/2). The thick (red) arrow shows the orientation of
the dipoles in the system. For the case (a) the soliton is more elongated in
along the y axis and hence the ratio � = w0

x

/w0

y

. � as a function of ↵ for case
(a) is shown in (c) for fixed g

d

with different g values and vice versa in (d).
The point at which each curves terminates marks the expansion instability
of the soliton. For case (b) the soliton is more elongated along the x axis,
and hence we define � = w0

y

/w0

x

, and the corresponding plots as a function
of ↵ are shown in (e) and (f). In this case the starting points for the curves
mark the stability against expansion.
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where ⌘
0

(center of the condensate), w
⌘

(width), ↵
⌘

(the slope), �
⌘

(curvature
radius �1/2

) are the time-dependent variational parameters. We aim to find
the equations of motion governing the evolution of these parameters. For
this, we first calculate the Lagrangian by integrating the Lagrangian density
over all space

L = hLi =
Z

drL (3.17)

and hence obtaining,
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We now solve the Euler-Lagrange equations for the parameters.
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3.4.1 Equations of Motion

Solving 3.19 for ↵
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, we get
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Next, we perform a gauge transform of the Lagrangian 3.18 to simplify the
problem of elimination of the ↵ and �. The following gauge transform leaves
the action S invariant, preserving the equations of motion.
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(3.22)
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The new Lagrangian obtained is as follows
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ẇ2

⌘

2

� ~2
2m2w2

⌘

#
� mż2
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Now solving for the equations of motion for w
⌘

we get the following set of
coupled integro- differential equations
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The above equations represent the a particle with coordinates (w
x

, w
y

, w
z

)

in the effective potential
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The equilibrium condensate widths are then obtained by minimizing the
effective potential U

eff

3.30 w.r.t. w
⌘

.

3.4.2 Small Oscillations

To study small oscillations of the soliton, we find the frequencies of the
three (a) normal, (b) breathing, and, (c) quadrupole modes by finding the
eigenvalues of the second derivative (Hessian matrix) of the effective potential
U
eff

3.30.
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where,

U
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@2U
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0

Since the Hessian matrix is symmetric, diagonalization gives us the frequency
modes. We find the frequencies for the breathing and the quadrupole modes
for a fixed g and ↵ and plot them as a function of � in the following Fig.
3.7. This gives us the lower and upper cut-off of � in order to find stable
solitons.

30



3.5. CALCULATIONS FOR SPECIFIC ATOMS

Figure 3.7: Breathing (blue solid) and quadrupole (red dashed) modes for
g̃ = 20, and ↵ = 0.42 with 

0

= L
⇢

/L
z

3.5 Calculations for Specific Atoms

In this section we calculate the region of stable solitons for specific cases
of Chromium, Erbium and Dysprosium atoms. We consider condensates
of N = 10000 atoms confined to the xy 2D plane by a harmonic trap of
frequency !

z

= 2⇡ kHz. We take the tuning parameter � to be 1 in the
positive � region and �1/2 in the negative � region. Using these values, we
calculate the DDI parameter g̃

d

for the respective atoms using the following
formula.

g
d

=

�Nµ
0

m2

4⇡
(3.32)

g̃
d

=

g
dp

2⇡l3
z

~!
z

(3.33)

where µ
0

= 4⇡ ⇥ 10

�7 is the permeability of free space, m is the dipole
moment of the atom (= 6µ

B

, 7µ
B

and 10µ
B

for Chromium, Erbium and
Dysprosium respectively) and l

z

=

p
~/M!

z

with M being the mass of the
atom (= 52 au, 167 au, and 162.5 au for Chromium, Erbium and Dysprosium
respectively). This gives us the g̃

d

values of 21.763 for Chromium, 170.483
for Erbium and 333.956 for Dysprosium. We then find the region of stability
of the bright solitons by spanning the ↵�� space. Fig. 3.8 shows the stable
soliton regime in the ↵� � parameter space for a BEC of Chromium atoms.
As consistent with our discussions in the previous sections, the regime for
stability of solitons is very less in ↵ > ↵

m

region as compared to the ↵ < ↵
m

region.
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Figure 3.8: Plots showing the region of stable soliton in terms of the scat-
tering length a (in Bohr radius a

0

) and the tilting angle ↵ for (a) chromium
(b) erbium and (c)dysprosium atoms.
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Chapter 4

Summary

In this thesis we have studied the physics of 2D bright solitons in dipolar
BECs with tilted dipoles.

In chapter 1 we briefly introduced Bose- Einstein condensation and derived
the Gross-Pitaevskii Equation which well captures the properties of BECs at
very low temperatures. We then discussed about one-dimensional and multi-
dimensional solitons in BECs with only self attracting interactions. Next,
we learnt that dipolar interactions may stabilize multi-dimensional solitons
in BECs.

In chapter 2 we discussed about two-dimensional solitons in the two differ-
ent configurations, focusing on conditions of phonon instability which may
lead to the formation of a gas of many solitons that merge to form a bigger
soliton.

In chapter 3 we explored a new configuration by tilting the dipoles of the
BEC. We first calculated the energy functional using variational method with
Gaussian ansatz, and then obtained the stability regime in the g � g

d

phase
for various ↵ by minimizing the energy functional and looking for a local
minimum. We saw that the region of stable solitons increases with increase
in ↵ in the two islands (↵ < ↵

m

and ↵ > ↵
m

). We also observed the increase
in anisotropy on increasing ↵ and discussed the interesting behaviour shown
by the ratio � = L

x

/L
y

in the ↵ < ↵
m

region. We then obtained the stability
regions for specific cases of Chromium, Erbium and Dysprosium atoms.

In the future, we would like to study interactions between the solitons, in-
vestigating soliton-soliton scattering in the 2D plane. Different outcomes are
expected depending on the angle between the direction of collision and the
direction of polarization of the soliton.
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Appendix A

List of useful Integrals
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Appendix B

Long Calculations

B.1 Calculation of DDI term in the Energy
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B.1. CALCULATION OF DDI TERM IN THE ENERGY
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B.2 Calculation of DDI term in Lagrangian 3.18
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B.3 Calculation of DDI term in µ 3.4
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