Statistical Potentials for Prediction of Protein-Protein Interactions

IISER PUNE

A thesis submitted towards partial fulfilment of BS-MS Dual Degree Programme

by

Abhilesh Sunil Dhawanjewar

under the guidance of

Dr. M. S. Madhusudhan

Associate Professor, IISER Pune

Certificate

This is to certify that this dissertation entitled "Statistical Potentials for Prediction of Protein-Protein Interactions" submitted towards the partial fulfilment of the BS-MS dual degree programme at the Indian Institute of Science Education and Research Pune represents original research carried out by "Abhilesh Dhawanjewar" at "IISER Pune", under the supervision of "Dr. M.S. Madhusudhan, Associate Professor, Biology" during the academic year 2014-2015.

Supervisor
Date: 25/03/2015
Dr. M.S. Madhusudhan

Declaration

I hereby declare that the matter embodied in the report entitled "Statistical Potentials for Prediction of ProteinProtein Interactions" are the results of the investigations carried out by me at the Department of Biology, Indian Institute of Science Education and Research, Pune, under the supervision of Dr. M.S. Madhusudhan and the same has not been submitted elsewhere for any other degree.

Student

Acknowledgements

I would like to offer my sincere thanks to Dr M.S. Madhusudhan, Associate Professor at the Indian Institute of Science Education and Research, Pune for providing me with the opportunity to work on this project. His invaluable guidance at each and every step of the project helped me develop a scientific outlook and his high energy levels kept me enthused throughout the term of the project and thereafter. I thoroughly enjoyed the countless debugging and brainstorming sessions that we had together. Thanks for being a great mentor.

I would also like to express my gratitude to Dr. Richa Rikhy, Assistant Professor at IISER Pune for the helpful comments she provided during the course of the project. Also, thanks for agreeing to be on my Thesis Advisory Committee.

I thank all the young researchers in the Madhusudhan Lab, Neelesh Soni, Sagar Gore, Kuan Pern Tan, Yogendra Ramtirtha, Parichit Sharma, Shipra Gupta, Neeladri Sen for the valuable discussions and support and also for the numerous cricket and dart games that we enjoyed together.

It would be wrong if I do not thank my friends at IISER Pune, who have provided me with fun and joy and have been very supportive (for all the good and the not so good deeds). Thanks for the countless memories we made together.

Finally, I wholeheartedly thank my parents and the rest of the family, who have been my true support. I thank them for believing in me and letting my follow my heart and study the natural world.

I would also like to thank Kalyanee Shirlekar and Sharvaree Vadgama for the beers they promised, given I put their names here.

Abstract

Protein-Protein Interactions are critical to life, playing crucial roles in a variety of cellular processes. Hence, prediction of protein-protein interactions would help in gaining insights into cellular processes so that we may be able to manipulate and control it. In this study, we have developed knowledge-based pairwise statistical potentials based on experimentally derived structures for the prediction of protein-protein complexes. Structures of protein dimers in the Protein Data Bank (PDB) were used for the construction of the statistical potentials. A total of 96 different pairwise potentials were constructed for different values of five parameters: distance threshold for interactions, interacting atom types, weight type, weighting scheme and reference state. The performance of these potentials was benchmarked using Receiver Operating Characteristics (ROC) curves and Rank-Ordering. The side chain-side chain pairwise potentials were the best performers keeping all other parameters constant. The best performing pairwise potential could discriminate native structures from a sequence-randomized background in a benchmark set of 296 structures with a false positive rate of 1.4% and a true positive rate of 98.6%. This result is an improvement over the MODTIE potential which had a false positive rate of 28.5% and a true positive rate of 71.5%. The pairwise potentials are also complementary to each other, in the sense that they are efficient on different subsets of the benchmark set. Hence, a combination of the different potentials could result in better prediction accuracy. An attempt towards the development of a 5-body potential based on the pairwise potential was also initiated. Two different versions, an unweighted and a weighted potential were developed. The weighted multi-body potentials performed better than the unweighted potential. These multi-body potentials will be further refined, which is a work in progress. This prediction system will be bundled into a web server in the near future.

List of Figures

1.1 Protein Interface 2
1.2 Demonstrative ROC curves 9
2.1 Schematic representation of a 5-body clique 14
3.1 BSA Distributions for training and testing sets 19
3.2 ROC curves for the pairwise potentials 20
3.3 Pairwise potential performance based on interacting atom types 21
3.4 Pairwise potential performance based on distance threshold 22
3.5 Log odds ratio matrix of Residue Pair preferences in pairwise potential 23
3.6 Comparison between MODTIE and our potentials 24
3.7 ROC curves for multi-body potentials 25
3.8 The RalGDS-Ral complex 26
3.9 Hotspot residues in RGL1-Ral 26

List of Tables

2.1 Parameters used for removing redundancy of the PDB dataset 11
3.1 Complementarity between the different potentials at different rank cut-offs. The number of structures that were ranked 1 against their respective backgrounds for the two cases are given in the two columns. 22
3.2 Testing of side chain-side chain potential values for GLY-GLY pairs: Native confirmation scores were rank ordered against decoy conformation scores and the number of structures with native confirmations as best ranked was noted 23
3.3 The predictions regarding the binding of Ral to GEF variants using the pairwise statistical potentials. 26

Contents

1 Introduction 1
1.1 Protein Interfaces 1
1.1.1 General Properties of Protein-Protein Interfaces 2
1.1.2 The Protein Binding Phenomenon 3
1.1.3 Experimental Determination of Protein Interfaces 4
1.1.4 Computational Methods for Studying Protein-Protein Interactions 5
1.2 Knowledge-based Statistical Potentials 6
1.3 Previous Related Work 7
1.4 Classifier Methods 8
2 Methods 10
2.1 Construction of the dataset 10
2.2 Construction of Statistical Potentials 11
2.2.1 Two-Body Potentials 11
2.2.2 Multibody Potentials 14
2.3 Benchmarking of statistical potentials 15
3 Results 18
3.1 Dataset Generation 18
3.2 Benchmarking of the Two-Body Potentials 18
3.2.1 Benchmarking using ROC curves 20
3.2.2 Benchmarking using Rank Ordering 21
3.2.3 Testing Potential Values for GLY-GLY pairs 23
3.2.4 Performance on the testing set 24
3.2.5 Comparison with MODTIE 24
3.2.6 Multibody Potentials 24
3.3 Validation 25
4 Discussions 27
4.1 Statistical Potentials 27
4.2 Pairwise Potentials 28
4.2.1 Testing the performance of pairwise potentials 29
4.3 Multibody Potentials 30
4.4 Validation on the RalGEF-Ral system 30
4.5 Applications 31
References 32
A Supplementary Data vi
A. 1 Training Set PDB codes vi
A. 2 Testing Set PDB codes xi

Chapter 1

Introduction

Abstract

"You see, proteins, as I probably needn't tell you, are immensely complicated groupings of amino acids and certain other specialized compounds, arranged in intricate three-dimensional patterns that are as unstable as sunbeams on a cloudy day. It is this instability that is life, since it is forever changing it's position in an effort to maintain it's identity in the manner of a long rod balanced on an acrobat's nose."

- Isaac Asimov, Pebble in the Sky

1.1 Protein Interfaces

Proteins are generally referred to as Biology's Workforce, as they perform nearly every function required for life. Proteins are polypeptide chains, consisting of amino acids linked in a linear chain. Amino acids, the building blocks of proteins consist of an amino group, a carboxyl group and an amino acid specific side chain. The properties of different amino acids determine the kinds of interatomic interactions between them. To carry out its function, a protein needs to be folded in a specific three dimensional shape. The 3D structure of a protein is largely dependent on its amino acid sequence, as particular sequences of amino acids give rise to linear chains and other compact domains with specific structures.

Most cellular processes require proteins to often work in concert, forming complexes of varying shapes and sizes, transporting other proteins, modifying other proteins etc. Unsurprisingly, Protein - Protein Interactions underlie a range of cellular processes such as mediating signal transduction, translating energy to physical motion, regulating cellular metabolism, immunological response and enzymatic inhibition, hence playing a critical role in many biological pathways (Braun and Gingras, 2012). Some parts of the protein would need to interact with other proteins and hence would form the interface. Proteins inside a cell are diffusing randomly and colliding with one another all the time, but only a small fractions of these collisions result in biologically meaningful complexes and some chemistry (active - such as enzymatic activity, or pas-

Subunit 1
Subunit 2

Figure 1.1: The interface between subunits of an RNA binding protein (PDB: 3S6E chains A \& B) is shown in surface representation. The rest of the protein complex is in ribbon representation (Subunit A is coloured brown and Subunit B is coloured blue). This figure was rendered using Chimera (Pettersen et al., 2004).
sive - such as protein transport).Identifying the general rules behind protein-protein interactions is hence necessary for understanding the full repertoire of cellular pathways. The prediction of protein-protein interfaces can lead to advances in understanding disease pathways which involve aberrant protein-protein interactions such as cancer (Wong et al., 2003) and protein aggregate formations such as the Alzheimer's disease, Huntington's disease, Parkinson's disease, Creutzfeldt-Jakob disease and other Prion disorders (Kaytor and Warren, 1999) .

1.1.1 General Properties of Protein-Protein Interfaces

Protein-Protein interactions have been broadly categorized as homo- or hetero-oligomeric; obligate or nonobligate and transient or permanent (Nooren and Thornton, 2003). If identical proteins come together to form a complex, the resulting complex is termed as a homo-oligomer. Accordingly, assemblies of proteins with different subunits are termed as hetero-oligomeric. If the individual subunits of a complex can exist in solution independently, then the interaction between the subunits is a non-obligate one; in contrast, if the structure and function of the subunits is lost upon separation, it is an obligate interaction. Based on the lifetime of the interactions, protein associations are classified as transient (short-term interactions) or permanent (long-term interactions). These six different types of protein complexes differ in their amino-acid content and residue residue contact preferences (Ofran and Rost, 2003). Most protein complexes are a combination of these categories. The shape of a protein-protein interface (Figure 1.1) has been observed to be planar, globular and protruding, probably due to the symmetry involved in the associations (Argos, 1988, Jones and Thornton, 1996).

Earlier studies concerning protein folding ascribed hydrophobic effect as the major driving force behind protein folding (Dill, 1990). The folding of polypeptide chains buries the non-polar residues in the protein,
minimising the number of thermodynamically unfavourable solute-solvent interactions. This burying of the hydrophobic residues resulting in the reduction of free energy also occurs during the aggregation of protein subunits and hence the hydrophobic effect is fundamental to the stabilisation of protein association as well (Chothia and Janin, 1975). However, contradictions between the measured values for enthalpy and entropy and the expected values for hydrophobic interactions have been noted for several protein association processes suggesting that it is not possible to account for the stability of protein associations on the basis of hydrophobic interactions alone (Ross and Subramanian, 1981). Analyses of multimeric protein structures in contemporary times have lead to the inclusion of electrostatic interactions (both long range coulombic interactions and short range hydrogen bonds and salt bridges) (Sheinerman et al., 2000, Xu et al., 1997), van der Waals forces, and hydrophobicity as major driving forces governing the association of proteins. Other forces such as aromatic stacking (Burley and Petsko, 1985), disulfide bonds, and cation- π interactions (Crowley and Golovin, 2005) also contribute to varying degrees.

1.1.2 The Protein Binding Phenomenon

The subunits in a protein complex are synthesised as separate proteins which then come together and bind in a particular orientation to give rise to the protein complex. The surfaces of the subunits in the monomeric state are completely hydrated. The hydrophilic amino acids residues on the protein surface make stabilising polar contacts and hydrogen bonds with the molecules of the solvent. Hence, for binding to take place between the subunits of a protein complex, the intermolecular interactions between the subunits must be more stabilising than the destabilisation caused by the desolvation of the subunit surfaces. The binding of a protein can be described as a two-step reaction:

$$
\begin{equation*}
A+B \rightleftharpoons A: B \rightleftharpoons A B \tag{1.1}
\end{equation*}
$$

where A and B are the free proteins, $A: B$ is the intermediate complex (also known as the encounter complex) and $A B$ is the bound protein complex (Selzer and Schreiber, 2001). The two subunits diffuse randomly in solution, their motions dictated by the dynamics of Brownian motion, until they reach an area, known as the steering region, the region where both the subunits are close enough to experience mutual electrostatic attraction. These aforementioned long-range electrostatic interactions cause the subunits to collide and form an encounter complex. At this stage, the short range electrostatic forces start acting at the interface of two proteins and contribute to the stabilisation of the encounter complex. Partial desolvation of the interface also contributes to a favourable entropy adding to the stability of the encounter complex (Ross and Subramanian, 1981). The electrostatic attractions between the two subunits hold the subunits associated to each other for a longer time, allowing them to achieve a proper orientation for binding (Sheinerman et al., 2000).

The interaction regions on proteins also contain binding motifs called anchor residues, that help stabilise protein complexes by reducing the kinetic costs associated with structural rearrangements at the protein
binding sites (Rajamani et al., 2004). Molecular Dynamics simulations suggest that the side chains of these anchor residues frequently visit the conformations that are observed in the final bound state. They are also part of the complementary binding pockets often found on protein interfaces. Along with providing molecular recognition, these residues stabilise the encounter complexes that are in a near-native conformation. Further rearrangements in the side chains of amino acid residues, desolvation of the interface and the formation of non-covalent bonds lead to the final association in the stable complex. As a part of these events, certain latch residues present on the protein interface lock the subunits into the final stable conformation (Rajamani et al., 2004).

1.1.3 Experimental Determination of Protein Interfaces

Protein-protein interfaces can be experimentally determined using different methods. Some of the most commonly used methods are:

- X-ray crystallography: The three-dimensional coordinates of the atoms of a protein are estimated by analysing the diffracted angles and intensities of X-ray beams shone at a crystallised protein. Inherently, this method is unsuitable for determining the structures of proteins that are difficult to crystallize. This method also captures only a screenshot of the dynamic positions of the atoms of the protein. Despite these limitations, X-ray crystallography methods are the most popular to determine protein structure. Around 89 \% of structures in the PDB are determined using X-ray Crystallography. However, only about 45 \% of these structures depict protein-protein interactions.
- Nuclear Magnetic Resonance (NMR) spectroscopy: Determination of molecular structures using NMR spectroscopy measures the chemical shifts in the nuclei of the atoms in the protein, which are dependent on nearby atoms and their distances from each other, when the protein is placed in a strong magnetic field. This generates a list of constraints which can then be used to build a model of the protein describing the location of each atom. Since NMR spectroscopy is done on proteins in solutions, several models of the protein can be built, which can provide insight into the dynamics of the protein, unlike X-ray crystallography. A major limitation for this method is that it can only be used to determine the structure of smaller protein complexes. Currently, around 10% of protein structures submitted in the PDB were solved using NMR spectroscopy. However, the number of interactions elucidated by NMR is much smaller.
- Electron Microscopy: Using a focused beam of accelerated electrons as the illumination source, electron microscopy is used to create images of large macromolecular structures. Proteins can be crystallized and then imaged by electron microscopy in a method similar to the one used in X-ray crystallographic methods of protein structure determination. Several images, providing different views may be taken for some symmetrical protein molecules. These images are then analysed and combined together to produce a three-dimensional map of the proteins atoms. This method is useful for producing
low resolution maps of complex shapes but often cannot resolve the positions of individual amino acid residues.
- Chemical cross-linking followed by mass spectrometry: In this method, the protein complex is purified and tagged, its subunits are cross-linked by subjecting them to cross-linking reactions and then identified using mass spectrometry. This method is useful for producing low resolution structures of transient proteins. The cross-linking experiments are subject to several conditions and hence are error-prone processes.

Another set of experimental methods to detect protein interface residues exist such as the yeast twohybrid method, which involves the construction of two plasmids and transforming them into a yeast strain. One of the plasmids encodes protein X with the DNA-binding domain of a transcription factor, while the other plasmid encodes the second protein Y in-frame with a transcription activation domain. Interactions between proteins X and Y reconstitutes an active transcription factor which binds upstream of the reporter genes and enables their expression (Causier and Davies, 2002). However, this method generates a lot of false positives due to non-specific interactions and often needs confirmations from other methods to reduce the false positive rates.

Mutagenesis experiments also aid in the detection of the protein interface residues. Amino acid residues in the protein subunits are systematically mutated and their effect on protein binding is studied with the use of protein expression assays. These experimental methods for the detection of protein-protein interfaces are labor-extensive and expensive, in addition to their general limitations. Hence, there is a need to develop fast and cost-effective computational methods that will enable us to generalize the principles of protein-protein associations and study protein interactions in greater detail.

1.1.4 Computational Methods for Studying Protein-Protein Interactions

Observations by Christian Anfinsen (Anfinsen, 1973) regarding the spontaneous refolding of an unfolded protein chain into its biologically active three-dimensional conformation led to the postulation of the Thermodynamic Hypothesis of Protein Folding. The Thermodynamic Hypothesis states that a native protein folds into a three-dimensional system in equilibrium, in which the state of the whole protein-solvent system corresponds to the global minimum of free energy (Xu et al., 2010). Based on this hypothesis, several computational studies concerning protein folding, protein-protein interactions and protein design depend on the derivation of a potential function to calculate the effective energy of a protein system. By matching the results of quantum mechanical calculations to the empirically determined thermodynamic properties of small molecules, parameters were derived for the development of potential functions (Sippl, 1993). These potential functions are then applied to macroscopic scales based on the assumption that properties of macroscopic states can be approximated by considering them as combinations of a large number of microscopic states. The potential functions developed through this inductive approach are termed as 'physics-based' or 'physical' potential functions. These physics-based potentials are based on atomic level models and hence
are computationally very intensive.
Another set of potential functions are derived by extracting the parameters from a database of known structures (Sippl, 1993). These types of potentials follow the deductive approach and implicitly incorporate a variety of interactions. Therefore, these potentials do not represent true binding energies and hence are termed as 'knowledge-based' or 'pseudo-energy' potential functions. Though these methods do not reflect the true energies, they are algorithmically less intensive and have performed successfully. These potentials can be further divided into two cases. In one set, the knowledge-based potentials are derived by comparing the relative frequencies of interacting pairs in the database with that in a reference state (Miyazawa and Jernigan, 1996). In the other set, these potential functions are derived by optimisation with respect to certain criteria, e.g, by maximising the energy gap between the native conformations and the non-native conformations (Goldstein et al., 1992).

1.2 Knowledge-based Statistical Potentials

Knowledge-based statistical potentials are based on the Boltzmann assumption, that states frequently observed structural features correspond to low-energy states. Tanaka and Scheraga were the first to employ the above assumption to estimate pairwise amino acid interaction potentials by converting the observed frequencies of amino acid pairs into effective free energies (Tanaka and Scheraga, 1976). Since then many variants of pairwise amino acid potentials have extended this idea (Miyazawa and Jernigan, 1996, Sippl, 1993).

The general definition of a database-driven statistical potential as in (Sippl, 1990) is:

$$
\begin{equation*}
E(r)=-k T \ln [f(r)] \tag{1.2}
\end{equation*}
$$

where,
$r=$ a protein structural parameter (eg. interatomic distance)
$E(r)=$ the energy at r
$k=$ Boltzmann's constant
$T=$ absolute temperature

Apart from r, the potential for a particular residue pair also depends upon the nature of atoms involved in the interaction and s, the separation of the respective amino acids in the amino acid sequence. At $s \geq 10$, the atoms can be considered as free particles and then by the Boltzmann approximation :

$$
\begin{equation*}
E^{o b s}(r)=-k T \ln \left[f^{o b s}(r)\right] \tag{1.3}
\end{equation*}
$$

where, $f^{o b s}(r)$ is approximated by the relative frequencies observed in the database.
Since these general potentials incorporate all interaction types between the atoms (electrostatic interactions, hydrogen bonds, van der Waals etc.) and also the influence of the surrounding medium on the interactions, they contain redundant information. In order to isolate the specific information in different potentials, we need to strip the redundant information from the general potentials. This redundant information can be defined in terms of a reference state. A suitable reference for intramolecular protein interactions is (Sippl, 1990):

$$
\begin{equation*}
E^{s}(r)=-k T \ln \left[f^{s}(r)\right] \tag{1.4}
\end{equation*}
$$

where,

$$
\begin{equation*}
f^{s}(r)=\sum a b f^{o b s}(r) \tag{1.5}
\end{equation*}
$$

which is averaged over all atom and residue types. Subtracting this redundant term from the general potentials, we get:

$$
\begin{equation*}
\Delta E^{o b s}(r)=E^{o b s}(r)-E^{s}(r)=-k T\left[\frac{f^{o b s}(r)}{f^{s}(r)}\right] \tag{1.6}
\end{equation*}
$$

The term $f^{o b s}(r)$ comes from the database, whereas the term $f^{s}(r)$ is calculated as defined in the reference state. Hence, this potentials have a large dependence on the choice of reference state used.

1.3 Previous Related Work

Several researchers have attempted the prediction of protein-protein interactions using knowledge-based potentials in the past, and some of these methods have also been able to garner experimental evidence for their predictions.

Yasuda et. al., while working on the extracellular activation of tryptase ϵ used computational docking approaches to understand how tryptase ϵ selectively recognizes the activation sequence in pro-uPA. A lysine residue on loop A of tryptase ϵ (K20A) was predicted to be involved in recognizing the processing site of pro-uPA. Consistent with this prediction, they were able to show that K20A tryptase ϵ mutants failed to convert pro-uPA to uPA (Yasuda et al., 2005).

The PrePPI web server (https: //bhapp.c2b2.columbia.edu/PrePPI/), set up by Honig lab at Columbia University, combines structural and non-structural cues in a bayesian framework to predict protein-protein interactions. The algorithm used in PrePPI generates structural representatives for two query protein sequences. Complexes formed by the structural neighbours of the representatives are then retrieved from the PDB to serve as interaction models. These interaction models are evaluated using five different scores, some of which are statistically derived. The researchers also tested nineteen PrePPI predictions of human interactions using Co-immunoprecipitation (Co-IP) experiments. Fifteen of these predictions were validated using the Co-IP experiments (Zhang et al., 2012).

Another example where knowledge-based bioinformatic predictions were experimentally validated was
the predictions of new substrates for Aurora A kinase. The predictions were made by analysing the available data on Aurora A kinase and their phosphorylation sites and then using distinct types of biological information to generate a ranked list of potentials Aurora A kinase substrates. These predictions were validated by using in vitro kinase assays and mass spectrometry analyses (Sardon et al., 2010).

1.4 Classifier Methods

Diagnostic decision making is an important process involved in the prediction of protein-protein complexes. In order to determine the threshold parameters for diagnosis, we need statistical methods to gauge which of the thresholds gives the most accurate predictions. One such method is the use of Receiver - Operating Characteristic (ROC) curves, which ensures that the number of true cases predicted does not come at the cost of an unreasonable number of false positives (Swets et al., 2000).

A classifier is a mapping that connects the instances to the predictions. Given a classifier and an instance, there are four possible outcomes. If the instance is positive and it is predicted as positive, it is termed true positive; if predicted negative, it is termed as false negative. If the instance is negative and it is predicted as positive, it is counted as a false positive; if predicted negative, it is a true negative (Fawcett, 2004). The two positive rate and the false positive rates of a classifier are defined below:

$$
\begin{align*}
& \text { True positive rate } \approx \frac{\text { Positives correctly classified }}{\text { Total positives }} \tag{1.7}\\
& \text { False positiverate } \approx \frac{\text { Negatives incorrectly classified }}{\text { Total negatives }} \tag{1.8}
\end{align*}
$$

The True Positive Rate (TPR) is also referred to as Sensitivity and (1-False Positive Rate) is also known as Specificity.

ROC curves are two-dimensional graphs in which FPR is plotted on the X-axis and TPR is plotted along the Y-axis. An ROC curve depicts the trade-off between the True Positives and the False Positives. Several points on the ROC curve are important. The point $(0,0)$ never issues any false positives but it also does not return any true positives, whereas, the point $(1,1)$ returns positives indiscriminately. The perfect classifier is represented by the point $(0,1)$. At this point, all positives returned are True positives and none are False positives. Hence, the closer the ROC curve is to this point, the better the performance of the classifier. On the other hand, a random classifier lies on the $x=y$ line, as it is expected to return half the instances with positive predictions and the other half with negative predictions (Fig 1.2). To compare between different classifiers, the ROC curve performances are often reduced to a single scalar value. The Area Under the ROC Curve (AUC) is one such metric which is used to compare classifiers. Since, the AUC is a portion of the unit square, it's value always lies between 0 and 1. The random classifier is represented by a diagonal passing through the points $(0,0)$ and $(1,1)$, which corresponds to an AUC of 0.5 , hence any real world classifier should not have an AUC value of less than 0.5.

Figure 1.2: Sample ROC curves to illustrate the performance of different classifiers. The green line represents a good performing classifier $(A U C \approx 0.9)$. The blue line represents a random classifier $(A U C \approx 0.5)$ whereas the red line corresponds to a bad classifier ($A U C \approx 0.3$)

Chapter 2

Methods

2.1 Construction of the dataset

Three dimensional structures for protein dimers were retrieved from Protein Data Bank (Berman et al., 2000). The search for proteins with 2 chains (Asymmetrical Unit) returned 32871 structures. In order to remove redundancy, the above dataset was culled using the PISCES web server (Wang and Dunbrack, 2005) with the parameters given in Table 2.1. This resulted in a non-redundant dataset comprising of 6870 structures. Further filtering based on Buried Surface Area (BSA) was done. Buried Surface Area is defined as:

$$
\begin{equation*}
B S A=\sum_{n=1}^{N_{\text {subunits }}} A S A_{\text {free }}^{S_{n}}-A S A_{\text {Complex }} \tag{2.1}
\end{equation*}
$$

where, $A S A{ }_{f r e e}^{S_{n}}$, is the solvent accessible surface area of the unbound subunits of the protein complex and $A S A_{\text {Complex }}$ is the solvent accessible surface area for the bound complex. BSA for the dimers was computed as per Eq. 2.1 using MODELLER (Sali and Blundell, 1993) and structures satisfying $400 \AA^{2} \leq$ $B S A \leq 2500 \AA^{2}$ were taken to construct the final dataset. The lower bound on the BSA was put to remove false positives from crystal contact artifacts whereas the upper limit excluded structures with intertwined subunits. The final dataset comprising of 4060 protein dimers was divided into two sets: a training set of 3764 dimers, which were used for constructing the potential and a testing set of 296 dimers, used for benchmarking the statistical potentials. In order to make accurate predictions using statistical potentials, the number of samples in the training set should be large while keeping a reasonable number of samples in the testing set. Hence the division of the dimer set was made such that the testing set is $\sim 10 \%$ of the training set. The PDB codes of the structures comprising the training and the testing set are listed in Appendix 1.

Sequence Percentage Identity	$<=40 \%$
Resolution	$0.0 \sim 3.0$
R-Factor	0.3
Sequence Length	$40 \sim 10000$
Non X-ray entries	Excluded
CA-only entries	Excluded
Cull PDB by	Entry
Cull chains within entries	No

Table 2.1: Parameters used for removing redundancy of the PDB dataset

2.2 Construction of Statistical Potentials

A series of Statistical Potentials were constructed using the protein dimers from the training dataset constructed above. Inter-atomic distances at different thresholds were computed for each structure using the 'cell list' implementation (borrowed from Neelesh Soni). Two amino acid residues were defined as interacting if any relevant atom of residue A of type i was within the distance threshold of any relevant atom of residue B of type j. Residue A and Residue B belong to different subunits of the protein complex. 96 different potentials were built using different values for five parameters : the contacting atom types (main chain-main chain, main chain-side chain, side chain-side chain or all), the weighing scheme for assigning weights to distinct residue interactions (cifa potential vs ipa potential), nature of the weights (derived at a single distance (norm) vs averaged over multiple distance (cmpd)), weights in the reference state (avg vs no_avg) and the distance threshold for contact participation (4,6 , or $8 \AA$). The combination of the different values for these five parameters gave rise to $4 \times 2 \times 2 \times 2 \times 3=96$ different potentials.

2.2.1 Two-Body Potentials

2.2.1.1 The cifa potential

$$
\begin{equation*}
\mathrm{S}_{i, j}=-\log \left[\left(\sum_{\forall \text { interfaces }} \frac{\frac{f_{i j}^{i n t}}{\sum_{\forall a b} c i f a_{a b}^{i n t}} \times \frac{c i f a_{i j}^{i n t}}{\max \left(c i f a_{i j}^{i n t}\right)}}{\frac{f_{i}}{N_{m}} \frac{f_{j}}{N_{n}} \times\left\langle c i f a_{i j}^{i n t}\right\rangle}\right) \div N_{\text {total }}\right] \tag{2.2}
\end{equation*}
$$

where,

$$
\begin{aligned}
& f_{i j}^{\text {int }}=\text { frequency of } i-j \text { residue pairs across the interface } \\
& \text { cifa } a_{i j}^{i n t}=\min \left[\frac{\text { interacting atoms }_{i}}{\text { total atoms }_{i}}, \frac{\text { interacting atoms }{ }_{j}}{\text { total atoms }_{j}}\right] \\
& \text { cifa } a_{a b}^{i n t}=\text { frequency of any residue pair } a-b \text { weighted by their respective cifa } \\
& \frac{f_{i}}{N_{m}}=\text { frequency of residues of type } i \text { in the subunit } m \\
& \frac{f_{j}}{N_{n}}=\text { frequency of residues of type } j \text { in the subunit } n \\
& N_{m}, N_{n}=\text { Number of subunits in subunits } m \text { and } n \text { respectively } \\
& \left\langle c i f a_{i j}^{i n t}\right\rangle=\text { average value of } c i f a \text { observed in the dataset for } i-j \text { pairs across the interface } \\
& N_{\text {total }}=\text { total number of protein complexes in the dataset }
\end{aligned}
$$

The observed probability for residue pairs of type i and j that belonged to different subunits and occurred within a distance threshold in a protein complex was weighted by cifa, the minimum of the fraction of the total atoms in each residue that were within the distance threshold. This weight was further normalised by $\max \left(c i f a_{i j}\right)$, the maximum cifa value for the i, j residue pair observed in the dataset. The probability of the occurrence of an amino acid pair of the type i, j was computed based on the occurrences of the residues i and j in their respective subunits. This probability weighted by the average value of cifa observed in the dataset for the residue pair i, j forms the expected probability for a residue pair of the type i, j.

2.2.1.2 The ipa potential

$$
\begin{equation*}
\mathrm{S}_{i, j}=-\log \left[\left(\sum_{\forall \text { interfaces }} \frac{\frac{f_{i j}^{i n t}}{\sum_{\forall a b} \alpha_{a b}} \times \alpha_{i j}}{\frac{f_{i}}{N_{m}} \frac{f_{j}}{N_{n}} \times\left\langle\alpha_{i j}\right\rangle}\right) \div N_{\text {total }}\right] \tag{2.3}
\end{equation*}
$$

where,

$$
\begin{aligned}
\alpha_{i j} & =\frac{i p a_{i j}^{i n t}}{\max \left(i p a i_{i j}^{i n t}\right)} \\
\text { ipa } & =\text { number of interacting pairs of atoms of residue types } i \text { and } j \\
\alpha_{a b}^{i n t} & =\text { frequency of any residue pair } a-b \text { weighted by their respective } \alpha \\
\frac{f_{i}}{N_{m}} & =\text { frequency of residues of type } i \text { in the subunit } m \\
\frac{f_{j}}{N_{n}} & =\text { frequency of residues of type } j \text { in the subunit } n \\
N_{m}, N_{n} & =\text { Number of subunits in subunits } m \text { and } n \text { respectively } \\
\left\langle\alpha_{i j}^{i n t}\right\rangle & =\text { average value of } \alpha \text { observed in the dataset for } i-j \text { pairs across the interface } \\
N_{\text {total }} & =\text { total number of protein complexes in the dataset }
\end{aligned}
$$

In the second potential, the observed probability for residue pairs of type i and j that occurred within a distance threshold in a protein was weighted by $i p a$, the total number of interacting pairs of atoms between two residues. Similar to the first potential, this weight was further normalised by max $\left({ }^{2} a_{i j}\right)$, the maximum ipa value observed for the i, j residue pair in the dataset. The reference state for this potential was similar to the reference state in the cifa one, with the average value of ipa observed in the dataset for the residue pair i, j as the weight for the expected probability.

As Glycines lacks a side chain, they were handled in the following three ways in the side chain-side chain potentials. In the first scenario, assuming that all atom potential values should be representative of interactions concerning Glycine residues in the side chain-side chain case, the potential values for side chain-side chain interactions involving Glycine were borrowed from the corresponding all atom potentials. In the second scenario, following the assumption that side chain interactions are the major drivers for specificity in protein-protein interactions, the Glycine interactions were given a positive, hence unfavourable value of 1.38. For the third scenario, the potential value for all Glycine interactions was set to 0 , the assumption underlying this scenario was that the occurrence of Glycine on protein-protein interfaces is random and hence the log odds of the observed probability against the expected probability of Glycine pairs is 1 . The performance of the potential values for the three different scenarios were tested on the benchmark test by considering the number of native structures that were ranked the best against the randomised scores.

2.2.2 Multibody Potentials

Pairwise statistical potentials consider a protein-protein interface to be comprised of isolated residue pairs and hence devoid of any structural context. In a bid to include the structural neighbourhood of an amino acid residue while constructing the potential, 5 -body statistical potentials were constructed, following the formulation of the two-body potentials. The interface of each protein complex was decomposed into 5 -body amino acid cliques based on the interatomic distances between the residues. In graph theory, a clique is a special graph in which every vertex is connected to every other vertex in the graph. Two different distance thresholds, the intra-domain distance threshold and the inter-domain distance threshold, were used to define the connections in the clique, (i) the intra-domain threshold of $5 \AA$ and (ii) the inter-domain threshold of 8.5 \AA. We define two amino acids to be connected if any atom of residue A lies within a distance threshold R_{0} of any atom of residue B (Fig 2.1). For these definitions, two cases were tested, Case (I) (the unweighted case), where the potentials were computed according to the formulation given in Eq. 2.4 and Case (II) (the weighted case), where the potentials in Eq. 2.4 were weighted using the average pairwise cifa values (borrowed from the two-body potentials) for the residue pairs constituting the cliques.

Figure 2.1: Schematic representation of a 5-body clique. Residues A_{1}, A_{2} and A_{3} belong to Subunit A of the protein complex whereas Residues B_{1} and B_{2} belong to Subunit B of the protein complex. The contacts between residues from the same subunit are termed as intra-domain contacts (shown by orange arrows) and the contacts between residues from different subunits are termed as inter-domain contacts (depicted by the blue arrows).

$$
\begin{equation*}
\mathrm{S}_{A_{1} A_{2} A_{3} B_{1} B_{2}}=-\log \left[\left(\sum_{\forall \text { interfaces }}^{\frac{f_{A_{1} A_{2} A_{3} B_{1} B_{2}}}{\sum_{A_{1}}\left(f_{\alpha \beta \gamma \delta \epsilon}\right)}} \frac{\forall \alpha, \beta, \gamma, \delta, \epsilon}{\sum_{x=1}^{M} f_{x}^{M}} \frac{f_{A_{2}}^{M}}{\sum_{x=1}^{20} f_{x}^{M}} \frac{f_{A_{3}}^{M}}{\sum_{x=1}^{20} f_{x}^{M}} \frac{f_{B_{1}}^{N}}{\sum_{x=1}^{20} f_{y}^{N}} \frac{f_{B_{2}}^{N}}{\sum_{x=1}^{20} f_{y}^{N}}\right) \div N_{\text {total }}\right] \tag{2.4}
\end{equation*}
$$

where,
$A_{1}, A_{2}, A_{3} \quad$ are residues that belong to subunit M
$B_{1}, B_{2} \quad$ are residues that belong to subunit N
$f_{A_{1} A_{2} A_{3} B_{1} B_{2}}=$ frequency of the clique $A_{1} A_{2} A_{3} B_{1} B_{2}$ across the interface
$f_{\alpha \beta \gamma \delta \epsilon}=$ frequency of any 5 - body clique $\alpha \beta \gamma \delta \epsilon$ across the interface
$\frac{f_{A_{1}}^{M}}{\sum f_{x}^{M}}=$ frequency of the residues of type A_{1} in the subunit M; similarly for $\frac{f_{A_{3}}^{M}}{\sum f_{x}^{M}}$ and $\frac{f_{A_{3}}^{M}}{\sum f_{x}^{M}}$
$\frac{f_{B_{1}}^{M}}{\sum f_{x}^{N}}=$ frequency of the residues of type B_{1} in the subunit N; similarly for $\frac{f_{B_{2}}^{N}}{\sum f_{x}^{N}}$
$N_{\text {total }}=$ total number of protein complexes in the dataset

The observed probability for a clique $A_{1} A_{2} A_{3} B_{1} B_{2}$ was obtained by dividing the number of occurrences of the clique $A_{1} A_{2} A_{3} B_{1} B_{2}$ by the number of all 5 -body cliques observed in the protein. Considering, the choice of each amino acid in a 5-body clique as an independent event, the expectation term was obtained by multiplying the probabilities of picking amino acids A_{i} from their respective protein subunits.

2.3 Benchmarking of statistical potentials

The performance of the statistical potentials was tested on a benchmark set of 296 randomly selected dimers that were excluded during the construction of the potentials. The potential scores for the native structures were obtained by the addition of the potential scores for the individual residue pairs observed across the interface in the native structure. To distinguish the score of a native structure from the score of any non-interactant, these scores were compared against a randomised background set. There are two ways by which such a randomised background set could be obtained for each native structure: (i) physical models are built for the protein subunit by placing the two subunits of a protein complex in different relative orientations. The scores of these physical models then serve as the randomised background. (ii) keeping the structure of the protein complex unaltered, the sequence of the subunits is scrambled, which gives us randomised pairwise interactions across the interface for different scramblings. A number of such scramblings then constitute the randomised set.

The above methods of obtaining the background set are equivalent, we have chosen the latter method for the generation of the background set as it is less time consuming and algorithmically cleaner and easier to implement. For each of the 296 dimers in the benchmark set, 1000 decoy (non-interactants constituting the randomised background) confirmations were built by randomly scrambling the amino acid sequence of the dimers, followed by the computations of statistical potential scores for each of the decoy structures. The scrambling of the amino acid sequence was achieved by replacing each residue on the interface by another residue randomly chosen from the corresponding subunit. To access the significance of the raw statistical potential score, a Z-score was calculated based on the mean and standard deviation of the statistical potential scores for the decoy sets for each dimer (Eq. 2.5).

$$
\begin{equation*}
Z=\frac{x-\mu}{\sigma} \tag{2.5}
\end{equation*}
$$

where,
$x=$ raw score of the native structure
$\mu=$ mean of the raw scores of decoy structures
$\sigma=$ standard deviation of raw scores of decoy structures

Receiver-operator Characteristics (ROC) curves are used to describe the observed false positive and true positive rates at different Z-score thresholds. ROC graphs are two dimensional graphs with Sensitivity or True Positive Rate (Eq. 2.10) plotted along the y-axis and (1-Specificity) or the False Positive Rate (Eq. 2.11) plotted along the x-axis. For the construction of the ROC curves, the various definitions are given in Eq. 2.6-2.9. The Z-score thresholds for the ROC curves ranged from the minimum observed Z-score to the maximum observed Z-score for each potential along with an increment of 0.01 . To compare the different potentials, the ROC curves were integrated to calculate the area under the curve (AUC). The AUC represents the probability that a classifier ranks a randomly chosen positive instance higher than a randomly chosen negative instance, with 0.5 corresponding to a random prediction, and 1 to a perfect classifier (Fawcett, 2004). The optimal Z-score threshold for the best performing potential was taken as the Z-score where a tangent of slope 1 intersects the ROC curve.

$$
\begin{align*}
\text { True Positives }(T P)=\quad & \text { No. of native structures with scores } \\
& \text { lower than the threshold } z-\text { score } \tag{2.6}
\end{align*}
$$

False Positives $(F P)=\quad \begin{aligned} & \text { No. of decoy structures with scores } \\ & \\ & \\ & \text { lower than the threshold } z-\text { score }\end{aligned}$
$\begin{aligned} \text { True Negatives }(T N)=\quad & \text { No. of decoy structures with scores } \\ & \text { higher than the threshold } z-\text { score }\end{aligned}$
$\begin{aligned} \text { False Negatives }(F N)=\quad & \text { No. of native structures with scores } \\ & \text { higher than the threshold } z-\text { score }\end{aligned}$
$\begin{aligned} \text { False Negatives }(F N)=\quad & \text { No. of native structures with scores } \\ & \text { higher than the threshold } z-\text { score }\end{aligned}$

True Positive Rate $(T P R)=\frac{[T P]}{[T P+F N]}$

False Positive Rate $(F P R)=1-\frac{[T N]}{[T N+F P]}$

Chapter 3

Results

3.1 Dataset Generation

For accurate benchmarking of the potentials, the benchmark set used to test the performance of the potentials should be similar to the dataset the statistical potentials were trained on. Since the Buried Surface Area (BSA) of the complex was used as a filtration parameter, the frequency distributions of BSA were compared in the two sets to check for similarity (Figure 3.1). The BSA values for the 3764 structures in the training set and the 296 structures in the benchmark are similarly distributed. The Mean and Median values for the training set were 1279.5 and 1190.2 respectively, whereas the Mean and Median values for the benchmark set were 1279.5 and 1203.67 respectively.

Among the six ways of classifying protein interactions mentioned in the Introductions section (Sec 1.1.1), four categories (obligate, non-obligate, transient and permanent) pertain to the dynamics of protein complexes and it is not possible for us to retrieve this information from the crystal structures of proteins (though some of the studies may include information about the kind of interface, overall such studies are sparse). Concerning the oligomeric state of the protein complexes, we find that 90% (3389 out of 3764) of the structures in the training set are homodimers. Similarly, 88% (264 out of 300) of the structures in the testing set are homodimers.

3.2 Benchmarking of the Two-Body Potentials

The performance of the different statistical potentials was compared using two different methods.

1. Receiver-Operating Characteristic Curves for different Z-score thresholds
2. Rank - Ordering the scores of the native structures against scores from a randomized background set.

Figure 3.1: Histograms depicting the distribution of the Buried Surface Area (BSA) for protein complexes in both the training and the testing set. The number of structures in the training and the testing sets are 3764 and 296 respectively. The binwidth used for plotting the distribution was 25 . The red and blue lines on the plot represent the mean and the median of the distributions respectively. The black curve with grey shading is the kernel density estimation for the distribution.

3.2.1 Benchmarking using ROC curves

The testing of the 96 different statistical potentials was done on a benchmark set of 296 dimers and their performance was compared using ROC curves. The potentials showed a diverse range of performances as can be seen in Figure 3.2. 11 of the 96 potentials had an Area Under the Curve of their ROC curves greater than 0.90 (shown in the inset of Fig 3.2). All eleven of these potentials were variants of the side chain-side chain potentials that were weighted by cifa. The main chain-main chain potentials were the worst performers of all with some of the potentials performing worse than a random classifier.

The highest power of discrimination between the native and non-native interfaces was achieved by the statistical potential built from side chain-side chain interactions across the interface at the threshold distance of $4 \AA$ (4.ss.norm.cifa.avg in Figure 3.2). The weighting parameter for this potential was cifa, calculated at a single distance of $4 \AA$ and the reference state was weighted by the average weight for residue pairs in the dataset. The area under the curve (AUC) for the ROC curve for this potential was 0.9622 . The true positive rates and the false positive rates at the optimal Z-score of -0.7 were 97.8% and $\%$ respectively.

Figure 3.2: A comparison of the performances of the 96 different potentials as represented by their Receiver-Operator curves. Inset: Zoomed in version for the best performing potentials.

3.2.2 Benchmarking using Rank Ordering

After rank ordering the scores of the native and the decoy confirmations, the number of cases where the native confirmation had the best score was also used to compare the performance of the different potentials. On the basis of the interacting atoms, the performance of the potentials was in the order: side chain-side chain $>$ all atoms $>$ main chain-side chain $>$ main chain-main chain (Fig 3.3). The performance of the potentials based on the nature of the weights (i.e. whether they were computed at a single distance (norm) or computed as an average from three different distances (avg)) was comparable across the different potentials. Only in the case of the potentials constructed at the distance threshold of $4 \AA$ side chain-side chain potential, is the norm potential better than cmpd potential.

Figure 3.3: A comparison of the performances of the different potentials as measured by the number of native structures that were ranked 1 against a set of decoy structures. The different facets in the figure describe the performances of the potentials according to the interacting atoms type (all - all atom, mm - main chain-main chain, ms - main chain-side chain and ss - side chain-side chain). The colors differentiate between the potentials based on the nature of the weights, red for cmpd (weight computed as an average at three distances) and cyan for norm (weight computed at a single distance)

The performances of the potentials followed a similar pattern when dissected according to the distance threshold (Fig 3.4). The cifa potential performed better than the ipa potential in all cases. Here again, the side chain-side chain potential at $4 \AA$ with cifa as the weighting parameter computed at a single distance (4.ss.norm.cifa.avg) was the best performer. 137 out of 296 native structures were best ranked when compared against their randomised backgrounds and 240 structures out of 296 have their native structures
ranked under 25.

Figure 3.4: A comparison of the performances of the different potentials as measured by the number of native structures that were ranked 1 against a set of decoy structures. The graph is dissected based on threshold interaction distance and the different potential type; cyan represents the ipa potential whereas red stands for the cifa potential.

The potentials with an Area Under the ROC Curve (AUC) greater than 0.90 were checked for complementarity in terms of protein complex prediction (whether different protein complexes were ranked best by different potentials). The results are summarised in Table 3.1. The union of the best ranked sets (set of structures whose native structures were ranked 1 against a randomised background) for the different potentials was greater than the best ranked set for the best performing statistical potential (4.ss.norm.cifa.avg).

cut_off rank	best performing potential (4.ss.norm.cifa.avg)	Union of AUC ≥ 0.9
≤ 0	137	169
≤ 5	190	217
≤ 10	216	235
≤ 15	224	247
≤ 20	233	252
≤ 25	239	261

Table 3.1: Complementarity between the different potentials at different rank cut-offs. The number of structures that were ranked 1 against their respective backgrounds for the two cases are given in the two columns.

There is a preference for same-interaction pairs and complementarity between opposite charges (eg Lysine pairing up favourably with Glutamate and Aspartate) is also observed in the log-odds ratio matrix (Fig 3.5). Cysteine-Cysteine and Histidine-Histidine are among the best scored residue residue contact pairs. The contact preference scores for the hydrophobic amino acids are overall favourable though any specific preferences are not observed.

Figure 3.5: Log odds ratio of residue pair preferences across protein - protein interfaces for the best two-body potential. The darker the shade, the higher the preference

3.2.3 Testing Potential Values for GLY-GLY pairs

Since, Glycine lacks a side chain, the potential values for GLY-GLY pairs for the side chain-side chain potentials were tested as described in Methods. For the side-chain potentials at 4 and $8 \AA$, assuming that the occurrence of Glycines on the interface is random (column no-effect in Table 3.2), gave the best performance. For the potential at $6 \AA$, however, the assumption that GLY residues are unfavourable worked the best.

potentials	all atom potentials	unfavourable score (1.38)	no-effect (0.00)
4.ss.norm.cifa.avg	109	132	136
6.ss.norm.cifa.avg	100	131	113
8.ss.norm.cifa.avg	91	99	110

Table 3.2: Testing of side chain-side chain potential values for GLY-GLY pairs: Native confirmation scores were rank ordered against decoy conformation scores and the number of structures with native confirmations as best ranked was noted

3.2.4 Performance on the testing set

With a Z-score threshold of -0.7 for the best pairwise potential (4.ss.norm.cifa.avg), 284 out of the 295 native structures testing set had a z-score below the threshold, which corresponds to a true prediction. Among the 11 structures which had a z-score greater than the threshold, 7 structures were incorrectly submitted as dimers in the PDB. The biological assemblies for these structures (PDB codes: 3PNA, 1IFQ, 3MTX, 1PL3, 3QL9, 4CMP, 2XRW) is a monomeric entity, as given in the Protein Data Bank. These false classifications in the PDB may be a result of crystallization artefacts. Since, our potentials could successfully distinguish crystal artefacts from true interactions, these 7 structures were considered as correct predictions. Hence, our potentials could correctly identify 291 out of 295 structures, which translates to a prediction accuracy of 98.6 \%.

3.2.5 Comparison with MODTIE

The performance of the best performer was compared with MODTIE (Davis et al., 2006) (Fig 3.6). Benchmarking for both the potentials was done on the same benchmark set. The Area under the curve for the MODTIE potential was 0.9445 . The true positive rate and the false positive rate at the Z-score threshold of -1.7 was $71.5 \%(211 / 295)$ and $28.5 \%(84 / 295)$ respectively.

Figure 3.6: Performance of the two body potential in comparison to MODTIE. The red part and the cyan part of the plot depict the no. of True Positives and the no. of False Negatives respectively.

3.2.6 Multibody Potentials

The performance of the multi body potentials was accessed in a manner similar to the two-body potentials. For case (i), with the intra-domain distance threshold as $5 \AA$ and the intra-domain distance threshold as $8.5 \AA$, a total of 280114 distinct cliques were observed, out of 323400 distinct possibilities. The Receiver Operating Curve is shown in Fig 3.7. The Area Under the Curve for the ROC of the potential without any weights was 0.3089 , whereas the Area Under the Curve for the potential with the weights was 0.41006 . Both the potentials performed worse than a random classifier.

Figure 3.7: Performance of the multibody potentials as assessed by the ROC curves. The cyan curve represents the ROC for the unweighted 5-body potential whereas the red curve depicts the ROC for the weighted 5-body potential.

3.3 Validation

The potential 4.ss.norm.cifa.avg was tested for its prediction power on the Ral-GEF system. Six variants of GEF were tested for binding with Ral. Experimental evidence shows that four of these variants (RGL1, RGL2, RGL3 and RALGDS) bind Ral in a particular mode, while the other two variants weakly interact with Ral, binding in a different mode. The Z-scores for all the GEFs were below the threshold and hence all six variants are predicted to bind.

Based on the statistical potential scores, we predicted the following hotspot residues, SER:173:A, GLU:34:A, LYS:370:B, ARG:322:B, ARG:42:A and ARG:74:A, in RGL1-Ral complex that upon mutation would weaken the interaction between RGL1 and Ral. These hotspot residues lie in complementary clusters (Fig 3.9) and hence mutating them to other residues would lead to unfavourable interactions, thereby weakening the interaction between RGL1 and Ral.

GEFs	Z-scores
RALGDS	-3.59
RALGPS1	-3.39
RALGPS2	-3.72
RGL1	-3.21
RGL2	-3.11
RGL3	-2.72

Table 3.3: The predictions regarding the binding of Ral to GEF variants using the pairwise statistical potentials.

Figure 3.8: The RalGDS-Ral complex. The Ral subunit is shown in blue in surface representation whereas the RalGDS is depicted in brown, also in surface representation. Image rendered using Chimera (Pettersen et al., 2004)

Figure 3.9: Hotspot residues in the RGL1-Ral Complex. Subunit A is Ral and Subunit B is RGL1. Image rendered using Chimera (Pettersen et al., 2004)

Chapter 4

Discussions

4.1 Statistical Potentials

Due to the labor-intensive and expensive nature of the experimental methods for validation of protein-protein associations, computational methods for the prediction of protein-protein interactions have become quite popular. Between the two different types of computational methods for the prediction of protein associations, namely the physics-based methods and the knowledge-based statistical methods, we have used the latter to develop a way to determine protein binding. We chose statistical potentials because they are algorithmically and computationally much more feasible than the physics-based model. Another limitation of the physicsbased models is their heavy dependence on the accuracy of the structure of the protein. A small discrepancy in the atomic coordinates will lead to a significant deviation in the estimation of the energies, when computed using the physics-based models. Statistical potentials are robust enough that such minor discrepancies do not affect the estimates of potentials by a significant amount.

Statistical potentials help us portray a picture of how interactions between proteins are mediated and can be used as stand-ins for binding free energies. They work on the principle that the most frequently observed amino acid residue pairs are energetically more preferred than the pairs less frequently observed. However, because statistical potentials do not discriminate between interaction types and their strengths (for eg, the strength of a hydrogen bond vs that of a van der Waal's interaction), the statistical potential scores do not correlate perfectly with the binding affinities. To build a statistical potential for predicting binding affinities, known structures will have to be subsetted according to their binding affinities and then statistical potentials built for each subset of the dataset. However, the dearth of data on experimental binding affinities prevents the construction of a meaningful statistical potential. Based on observations made on an experimental dataset, statistical potentials allow us to derive approximate functions which can be used to predict the energy of an unknown system.

4.2 Pairwise Potentials

We tested 96 different pairwise statistical potentials for their ability to predict protein-protein interactions. In both the methods for benchmarking the performance of the potentials, the side chain-side chain potentials were significantly much better than the other potentials. The performance of the other potentials based on the type of interacting atoms follows the order: all atom > main chain-side chain > main chain-main chain. Since, protein associations require specific interactions between the atoms of the constituting amino acid residues, these specificities are provided by the properties of the different side chains. Consistent with this, the side chain-side chain potential has the best power for discriminating between native and nonnative associations, whereas main chain-main chain (which lack any specificity) potentials are the worst performers.

We constructed two statistical potentials using two different weighting schemes cifa and ipa. Between the two different potential types cifa and ipa, we observed that the cifa performed better than the ipa potential when all other parameters are kept constant. The difference between the two different weights is that while cifa aims to capture the contribution of each residue to the interaction between two residues and then considers the contribution of just one residue towards the weighting, the ipa potential weighs the different residue pairs based on the number of interatomic interaction pairs between two different residues.

Since Glycines lack a side chain and are present abundantly on the interface, we need to incorporate them in the side chain-side chain potentials. Three different scenarios were tested in this regard. The potential values for the GLY interactions in the side chain-side chain potentials were derived using a semioptimisation approach. Of the three different scenarios tried, the case which assumes the distribution of Glycines on the interface is random (the ratio of the observed frequency of GLY pairs and the expected frequency of the GLY pairs is 1) gave the best results. Since Glycine lacks a side chain, in our potential, we have considered that it does not discriminate between amino acid residues and interacts with any residue the same way.

Cysteine-Cysteine pairs have the best scores for any residue pair. This observation previously reported by Glaser (Glaser et al., 2001), is expected since the sulphurs in Cysteine have been observed to form disulphide bonds which may play an important role in the stability of protein complexes. Cysteine-Cysteine pairs along with Histidine-Histidine pairs are also found in metal coordination sites across the interface (eg. zinc finger domain). These may be the reasons why Cysteine-Cysteine and Histidine-Histidine residue pairs have high scores. Other residue pairs with favourable contact scores are the oppositely charged residues (for eg. Lysine and Arginine (with positively charged side chains) with Glutamate and Aspartate (with negatively charged side chains)). These residue pairs form salt bridges across the interface and help strengthen the interaction. Also, since the burial of charged amino acid residues is energetically unfavourable they are often observed to be paired with oppositely charged amino acids.

The non-specific van der Waal's force is the major interaction force between the hydrophobic amino acids
(Leucine, Isoleucine, Alanine, Valine, Proline, Methionine, Phenylalanine and Tryptophan). Given the nonspecific nature of this interaction, the hydrophobic residues clump together showing no particular residue pair preferences. As seen in the contact potential matrix, any hydrophobic - hydrophobic residue pair gets a favourable score without showing any particular preferences, except in the case of Tryptophan-Tryptophan pairs which get a higher score than the other hydrophobic pairs.

In the log odds ratio matrix for the pairwise potential, the self-interaction scores between residues are high scoring. This means that like charged residue pairs (eg. Arginine-Arginine pairs) which are expected to get unfavourable scores are assigned favourable scores. A significant proportion of the dimer structures solved are homodimers and our dataset is also comprised of mostly homodimers. Because of the symmetric nature of the homodimers, it is likely that similar residues come closer more often and hence, they have high favourable scores in our score matrices. However, such like charge interactions have been the focus of other studies (Magalhaes et al., 1994, Pednekar et al., 2009) which find that such like charged pairs do occur in protein-protein interactions if the interaction between them is mediated through a water molecule (Heyda et al., 2010). Magalhaes et. al. (Magalhaes et al., 1994) provides examples several where Arginine-Arginine pairs are found in close proximity. Since water molecules cannot be reliably captured in low resolution X-ray crystal structures and also since information about the presence of water in the protein structures in our training set is missing, we cannot explore this possibility. An alternative hypothesis behind this observation might be that at the $4 \AA$ level, there might be significant main chain-main chain interactions which might contribute to the favourable scores for the diagonal elements. Further investigation is needed to pin down the reason behind this observation.

4.2.1 Testing the performance of pairwise potentials

Benchmarking by rank ordering is one of the most robust ways to test the performance of a potential as it imposes the stringent constraint that the native conformation must have the lowest score when compared with 1000 non-native confirmation scores. The results from this benchmark echo the ones observed using the ROC analysis. When this test was applied to compare the performance of a union of best performing potentials versus the performance of any one of these potentials, it was observed that the union of potentials performed better than the best performing potential. This seems to suggest that different potentials are more efficient at discriminating certain types of protein complexes than the other potentials. As an example, a protein from Enterococcus faecalis (PDB Code: 3NAT) was ranked 462 out of 1000 when a side chain-side chain potential was used. However, when a main chain-main chain potential was used on the same protein, it was ranked 1. This suggests that, in this protein, main chain-main chain interactions are more important at the interface than side chain-side chain interactions and hence, a main chain-main chain potential gave us better predictions.

Since, pairwise potentials interpret protein-protein interfaces in terms of isolated residue pair interactions, these potentials ignore the structural context of an amino acid residue in a protein. Often, the surrounding
amino acid residues of a particular residue may be important for bringing that residue in a particular confirmation to facilitate the interaction with the other subunit. This absence of contextual awareness might explain why these pairwise potentials do not predict protein complex formation perfectly.

4.3 Multibody Potentials

Statistical Potentials built using extended stretches of amino acid residues would solve the problem mentioned in the previous section. By taking into account the structural neighbourhood of an amino acid residue during the construction of the potential, we look for clusters of residues. Following the same assumption as in the pairwise potential, that the most frequently observed clusters of amino acid residues correspond to the energetically favourable states, attempts were made at constructing 5-body statistical potentials.

The structural definition of a multi-body clique across a protein interface is more complicated than the simplistic definition used for defining interactions in the pairwise potential case. Two different distance thresholds are now required for the definition, an intra-domain interaction distance and an inter-domain interaction distance. The most optimal values for these parameters are not easy to determine, a smaller, stringent distance threshold will take into account the strongest interactions but we may not sample enough distinct cliques, which would affect the performance of the potential. However, setting a liberal distance threshold, we may be able to get a larger number of multi-body cliques but only at the expense of picking up some false interactions. The problem of weighing the different interactions suffers in a similar way (the definition used in the pairwise case - any atom of residue A lies within any atom of residue B; gives rise to a lot of false interactions when looking at cliques). Our results demonstrate that an appropriate weighting scheme can improve the prediction results significantly (Fig 3.7) . All these problems need substantial sampling to gauge the best definitions for a multi-body cliques. These refinements are being incorporated in the next iterations of multi-body potentials.

4.4 Validation on the RaIGEF-Ral system

The RaIGEF-Ral system is an important signalling pathway involved in oncogenesis. The ability of Ral to bind to six different variants of RalGEFs (RalGDS, RalGPS1, RalGPS2, RGL1, RGL2, RGL3) was tested using our pairwise statistical potentials. All six variants of RalGEFs were predicted to bind to Ral. Four of these variants (RGL1, RGL2, RGL3, RalGDS) are found to bind Ral experimentally, whereas the other two variants might be weakly interacting. Since the statistical potentials make predictions on binding events of two proteins, we suspect that if all the different GEFs are put in a in vitro setting, they will bind to Ral. However, in a cellular context, the bindings may not be strong, with proteins out-competing each other. Also, as statistical potentials are based on average properties of residue-residue interactions, they do not correlate well with binding affinities and hence fail to determine the RalGEF variants which bind Ral more strongly than the other variants.

We predicted some hotspot residues which upon mutations to other residues will weaken the interactions
between RGL1-Ral complex. These hotspots residues sit in complementary clusters and hence the mutation of these residues to residues which disrupt the interaction (oppositely charged residues in case of polar residues) will lead to unfavourable interactions that would destabilise the complex. This observation shows that along with complex level prediction of protein-protein binding, our statistical potential can also help predict important interactions at the residue level.

4.5 Applications

Apart from predicting whether two protein subunits would form a stable association or not, these potentials can be applied to a variety of problems such as the prediction of binding hot spot residues, protein design etc.

Experimental alanine scanning is one of the best methods to determine the contribution of individual residues to the stabilisation of a protein-protein interface. However, this method is very labor-intensive as it involves systematically mutating all the residues in a protein to alanine and measuring the effect of the mutation on the binding of the complex. Statistical potentials such as the one presented in this thesis can be used as an alternative method to predict hot spot residues across protein interfaces. In silico mutagenesis experiments are conducted on the protein of interest and then physical models of the protein are built. The resulting models are then scored using the statistical potential and the scores compared with the native model. Binding Hot Spot residues are then defined as those residues that lead to a large destabilisation in the final score of the protein.

These potentials can also aid in protein design processes. Given a protein structure, a favourable, complementary surface can be designed and optimised using these potentials which would ensure binding. Starting with a generic protein surface, residues on this surface can be tweaked to ensure complementarity with the target protein of interest. This method can also be employed to design novel antibodies.

The pairwise statistical potentials prediction system will be bundled in a web server in the near future, so that researchers can submit their protein complexes and make use of this facility. An ultimate test for the multibody potentials would be to test it on the solutions submitted by computational biologists for the target structures in CAPRI (Critical Assessment of PRediction of Interactions) (Janin, 2002). CAPRI is a community-wide, blind test experiment which tests the ability of protein-protein docking algorithms to predict modes of association between two proteins based on their three-dimensional structures.

References

Anfinsen, C B. Principles that govern the folding of protein chains. Science (New York, N. Y.), 181(4096): 223--230, 1973. ISSN 0036-8075. doi: 10.1126/science.181.4096.223.

Argos, Patrick. An investigation of protein subunit and domain interfaces. Protein Engineering, Design and Selection, 2(2):101--113, 1988. ISSN 17410126. doi: 10.1093/protein/2.2.101.

Berman, H M; Westbrook, J; Feng, Z; Gilliland, G; Bhat, T N; Weissig, H; Shindyalov, I N, and Bourne, P E. The Protein Data Bank. Nucleic acids research, 28(1):235--242, 2000. ISSN 0305-1048. doi: 10.1093/nar/28.1.235.

Braun, Pascal and Gingras, Anne Claude. History of protein-protein interactions: From egg-white to complex networks. Proteomics, 12:1478--1498, 2012. ISSN 16159853. doi: 10.1002/pmic. 201100563.

Burley, SK and Petsko, GA. Aromatic-aromatic interaction: a mechanism of protein structure stabilization. Science, 229(4708):23--28, 1985.

Causier, Barry and Davies, Brendan. Analysing protein-protein interactions with the yeast two-hybrid system. Plant Molecular Biology, 50(1989):855--870, 2002.

Chothia, C and Janin, J. Principles of protein-protein recognition. Nature, 256:705--8, 1975. ISSN 00280836. URL http://www.ncbi.nlm.nih.gov/pubmed/1153006.

Crowley, Peter B and Golovin, Adel. Cation-pi interactions in protein-protein interfaces. Proteins, 59 (February):231--239, 2005. ISSN 1097-0134. doi: 10.1002/prot.20417.

Davis, Fred P; Braberg, Hannes; Shen, Min-Yi; Pieper, Ursula; Sali, Andrej, and Madhusudhan, M S. Protein complex compositions predicted by structural similarity. Nucleic acids research, 34(10):2943--52, January 2006. ISSN 1362-4962. doi: 10.1093/nar/gk|353. URL http://www.pubmedcentral.nih.gov/ articlerender.fcgi?artid=1474056\&tool=pmcentrez\&rendertype=abstract.

Dill, K a. Dominant forces in protein folding. Biochemistry, 29(31):7133--7155, 1990. ISSN 0006-2960. doi: 10.1021/bi00483a001.

Fawcett, Tom. ROC Graphs : Notes and Practical Considerations for Researchers. ReCALL, 31:1--38, 2004. ISSN 08997667. doi: 10.1.1.10.9777. URL http://citeseerx.ist.psu.edu/viewdoc/download?doi= 10.1.1.10.9777\&rep=rep1\&type=pdf.

Glaser, Fabian; Steinberg, David M; Vakser, Ilya a; Ben-tal, Nir, and E-mail, Israel. Residue Frequencies and Pairing Preferences at Protein - Protein Interfaces protein - protein interfaces of known high-resoluresidue - residue contact preferences . The residue statistical strength of the data set . Differences between amino acid dist. Interfaces, 102(November 2000):89--102, 2001.

Goldstein, R a; Luthey-Schulten, Z a, and Wolynes, P G. Protein tertiary structure recognition using optimized Hamiltonians with local interactions. Proceedings of the National Academy of Sciences of the United States of America, 89(October):9029--9033, 1992. ISSN 0027-8424. doi: 10.1073/pnas.89.19.9029.

Heyda, Jan; Mason, Philip E., and Jungwirth, Pavel. Attractive interactions between side chains of histidinehistidine and histidine-arginine-based cationic dipeptides in water. Journal of Physical Chemistry B, 114: 8744--8749, 2010. ISSN 15206106. doi: 10.1021/jp101031v.

Janin, Joël. Welcome to CAPRI: A Critical Assessment of PRedicted Interactions. Proteins: Structure, Function and Genetics, 47(August 1999):257, 2002. ISSN 08873585. doi: 10.1002/prot.10111.

Jones, S and Thornton, J M. Principles of protein-protein interactions. Proceedings of the National Academy of Sciences of the United States of America, 93(January):13--20, 1996. ISSN 0027-8424. doi: 10.1073/ pnas.93.1.13.

Kaytor, Michael D. and Warren, Stephen T. Aberrant protein deposition and neurological disease, 1999. ISSN 00219258.

Magalhaes, a.; Maigret, B.; Hoflack, J.; Gomes, J. N F, and Scheraga, H. a. Contribution of unusual ArginineArginine short-range interactions to stabilization and recognition in proteins. Journal of Protein Chemistry, 13(2):195--215, 1994. ISSN 02778033. doi: 10.1007/BF01891978.

Miyazawa, Sanzo and Jernigan, Robert L. Residue-residue potentials with a favorable contact pair term and an unfavorable high packing density term, for simulation and threading. Journal of molecular biology, 256:623--644, 1996. ISSN 0022-2836. doi: 10.1006/jmbi.1996.0114.

Nooren, I. M a and Thornton, Janet M. Diversity of protein-protein interactions. EMBO Journal, 22(14): 3486--3492, 2003. ISSN 02614189. doi: 10.1093/emboj/cdg359.

Ofran, Yanay and Rost, Burkhard. Analysing six types of protein-protein interfaces. Journal of Molecular Biology, 325(02):377--387, 2003. ISSN 00222836. doi: 10.1016/S0022-2836(02)01223-8.

Pednekar, Deepa; Tendulkar, Abhijit, and Durani, Susheel. Electrostatics-defying interaction between arginine termini as a thermodynamic driving force in protein-protein interaction. Proteins: Structure, Function and Bioinformatics, 74:155--163, 2009. ISSN 08873585. doi: 10.1002/prot. 22142.

Pettersen, Eric F.; Goddard, Thomas D.; Huang, Conrad C.; Couch, Gregory S.; Greenblatt, Daniel M.; Meng, Elaine C., and Ferrin, Thomas E. UCSF Chimera - A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25:1605--1612, 2004. ISSN 01928651. doi: 10.1002/ jcc. 20084.

Rajamani, Deepa; Thiel, Spencer; Vajda, Sandor, and Camacho, Carlos J. Anchor residues in proteinprotein interactions. Proceedings of the National Academy of Sciences of the United States of America, 101(31):11287--11292, 2004. ISSN 0027-8424. doi: 10.1073/pnas. 0401942101.

Ross, P D and Subramanian, S. Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry, 20:3096--3102, 1981. ISSN 0006-2960. doi: 10.1021/bi00514a017.

Sali, A and Blundell, T L. Comparative protein modelling by satisfaction of spatial restraints. Journal of molecular biology, 234:779--815, 1993. ISSN 0022-2836. doi: 10.1006/jmbi.1993.1626.

Sardon, Teresa; Pache, Roland a; Stein, Amelie; Molina, Henrik; Vernos, Isabelle, and Aloy, Patrick. Uncovering new substrates for Aurora A kinase. EMBO reports, 11(12):977--984, 2010. ISSN 1469-221X. doi: 10.1038/embor.2010.171. URL http://dx.doi.org/10.1038/embor .2010.171.

Selzer, Tzvia and Schreiber, Gideon. New Insights into the Mechanism of Protein - Protein Association. Change, 198(May):190--198, 2001. ISSN 0887-3585. doi: 10.1002/2001. URL http://onlinelibrary. wiley.com/doi/10.1002/prot.1139/full.

Sheinerman, Felix B.; Norel, Raquel, and Honig, Barry. Electrostatic aspects of protein-protein interactions. Current Opinion in Structural Biology, 10:153--159, 2000. ISSN 0959440X. doi: 10.1016/S0959-440X(00) 00065-8.

Sippl, M J. Calculation of conformational ensembles from potentials of mean force. An approach to the knowledge-based prediction of local structures in globular proteins., 1990. ISSN 0022-2836.

Sippl, M J. Boltzmann's principle, knowledge-based mean fields and protein folding. An approach to the computational determination of protein structures. Journal of computer-aided molecular design, 7:473-501, 1993. ISSN 0920-654X. doi: 10.1007/BF02337562.

Swets, J a; Dawes, R M, and Monahan, J. Better decisions through science. Scientific American, 283: 82--87, 2000. ISSN 0036-8733. doi: 10.1038/scientificamerican1000-82.

Tanaka, S and Scheraga, H a. Medium- and long-range interaction parameters between amino acids for predicting three-dimensional structures of proteins. Macromolecules, 9(6):945--50, 1976. ISSN 00249297. doi: 10.1021/ma60054a013. URL http://www.ncbi.nlm.nih.gov/pubmed/1004017.

Wang, Guoli and Dunbrack, Roland L. PISCES: Recent improvements to a PDB sequence culling server. Nucleic Acids Research, 33(10):94--98, 2005. ISSN 03051048. doi: 10.1093/nar/gki402.

Wong, Johnson M S; Ionescu, Daniela, and Ingles, C James. Interaction between BRCA2 and replication protein A is compromised by a cancer-predisposing mutation in BRCA2. Oncogene, 22:28--33, 2003. ISSN 09509232. doi: 10.1038/sj.onc. 1206071.

Xu, D; Tsai, C J, and Nussinov, R. Hydrogen bonds and salt bridges across protein-protein interfaces. Protein engineering, 10(9):999--1012, 1997. ISSN 0269-2139. doi: 10.1093/protein/10.9.999.

Xu, Y.; Xu, D., and Liang, J. Computational Methods for Protein Structure Prediction and Modeling: Volume 2. Structure Prediction. Biological and Medical Physics, Biomedical Engineering. Springer, 2010. ISBN 9780387688251. URL https://books.google.co.in/books?id=nVyitwIJ4QwC.

Yasuda, Shinsuke; Morokawa, Nasa; Wong, G. William; Rossi, Andrea; Madhusudhan, Mallur S.; Šali, Andrej; Askew, Yuko S.; Adachi, Roberto; Silverman, Gary a.; Krilis, Steven a., and Stevens, Richard L. Urokinase-type plasminogen activator is a preferred substrate of the human epithelium serine protease tryptase ϵ /PRSS22. Blood, 105(10):3893--3901, 2005. ISSN 00064971. doi: 10.1182/ blood-2003-10-3501.

Zhang, Qiangfeng Cliff; Petrey, Donald; Deng, Lei; Qiang, Li; Shi, Yu; Thu, Chan Aye; Bisikirska, Brygida; Lefebvre, Celine; Accili, Domenico; Hunter, Tony; Maniatis, Tom; Califano, Andrea, and Honig, Barry. Structure-based prediction of protein-protein interactions on a genome-wide scale. Nature, 490:556--560, 2012. ISSN 0028-0836. doi: 10.1038/nature11503. URL http://dx.doi. org/10. 1038/nature11503.

Appendix A

Supplementary Data

A. 1 Training Set PDB codes

1A25	1A2O	1A6J	1AAZ	1AC6	1ADU	1AMU	1AOE	1AOH	1AOR	1AQU	1AT3	1ATZ	1AU1
1AYO	1AZT	1AZW	1B3U	$1 \mathrm{B4} 3$	$1 \mathrm{B88}$	1BC5	1BCM	1BEH	1BF6	1BIN	1BJA	1BMT	1BQU
1BXT	1BYF	1C3R	1 C 94	$1 \mathrm{C9O}$	1-14	$1 \mathrm{Cl9}$	1CJA	1CKU	1COL	1COZ	1CP2	1CQ3	1CRU
1CZP	1D0Q	1D20	1DBW	1DDV	1DEB	1DEK	1DJ7	1DJT	1DLE	1DM9	1DNP	1DOW	1DQE
1DVK	1DWU	1DYN	1 DYO	1DYS	1DZK	1EOB	1 E30	1E5R	1E6C	1E8C	1E9G	1EAJ	1 ECE
1EDM	1EEJ	1EEO	1EGA	1 EI7	1EJD	1EJF	1EK6	1EKE	1EM9	1EPA	1EQ9	1EUJ	1EUV
1EXT	1EYV	1EZG	1 F 08	1FOK	1FOL	1F1C	1F35	1F39	1F46	1F6B	1F7D	1F86	1F9M
1FIW	1FJ2	1FJR	1FM0	1FMT	1FN8	1FN9	1FNN	1FOC	1FP3	1FQT	1FS5	1FSG	1 FUU
1G61	$1 \mathrm{G71}$	1G8Q	1GEQ	1GG4	1GGG	1GHE	1GIQ	1GL4	1GNW	1GNX	1GOI	1GPE	1GQA
1GTD	1GU2	1GU7	1GUD	1GVE	1GVF	1GVK	1GVU	1GXM	1GYG	1GYO	1H03	1H10	1H2B
1H32	1H3F	1H3L	1H4P	1H4R	1H4X	1H6G	1H7S	1H80	1H8G	1H8P	$1 \mathrm{H97}$	1 H9O	1 HEK
1HKQ	1HLC	1HPL	1HRU	1HSL	1HST	1HY5	1119	1131	1132	114J	114 N	114 U	117K
1 IHN	1112	1IJY	1IN0	1107	1100	1 IPS	1IQ4	1 IRD	1IRX	1ISI	1 IT 2	1 ITH	1 ITV
1IWM	1IX9	1IXC	1IYB	1125	1Jow	1J1N	1J2X	1J3M	1 J 6 R	1 J 71	1 J 7 J	1 J 83	1JAT
1JEK	1 JET	1JFL	1JH6	1JHF	$1 \mathrm{JI1}$	1JIH	1 JLO	$1 \mathrm{JL9}$	1JMK	1JMT	1JO0	1JR2	1JS8
1JVN	1JYA	1K07	1K0E	1K38	1K3S	1K4Z	1K66	1K68	1K6D	1K8Q	1KAG	1 KAP	1KCF
1KHV	1KJN	1KMT	1KNQ	1 KOL	1KPT	1 KRH	1KU1	1KUG	1KUT	1KWA	1 KXI	1KXJ	1KYF
1L1E	1L1J	$1 \mathrm{L4I}$	1L5J	1L6R	1L7A	1L7M	1L8R	1L9M	1LB6	1LEH	1LF6	1LK0	1LKK
1LM4	1LM5	1LM7	1LNZ	1LQT	1LWJ	1LXD	1LYQ	1MOZ	1M1F	1M1Z	1M2D	1M45	1M48
1M55	1M6U	1M8A	1 MBY	1MI1	1MIW	1MJH	1MK4	1MKI	1MKZ	1MOL	1MPG	1MQS	1MQV
1MY7	1MZG	1N08	1NOS	1N1B	1N2Z	1N45	1N46	1N7H	1N8V	1NBQ	1NCN	1ND4	1NNW
1NO7	1NOW	1NPE	1NQ7	1NQJ	1NS5	1NSZ	1NTV	1NU0	1NU4	1NUB	1NUL	1 NUU	1NXM
100W	1012	$105 \cup$	1063	1071	1081	108B	10AI	10BB	10 BO	1OBX	10CU	1ODZ	10F3
10FZ	10H0	10HU	10IZ	10 J 5	10MZ	10N2	100H	10QJ	10W4	1POK	1P1X	1P4U	1P5T
1P7W	1P9L	1P9Y	1PAM	1PBW	1PD3	1PE9	1PFB	1PGU	1PKH	1PP3	1PP4	1PQ4	1PQH
1PS1	1PT6	1 PUI	1PX5	1 PXY	1PZL	1PZX	1Q1A	1Q30	1Q67	1Q77	1Q7F	1Q8Y	1QAH
1QDL	1QEX	1QF8	1QFT	1QGR	1QH5	1QJC	1QJJ	1QJS	1QKR	1QKS	1QLS	1QO2	1QOZ
1QSD	1QUP	1QW9	1QWT	1QYA	1QYR	1R12	1R1D	1 R77	1R7A	1R7L	1R9D	1RD5	1REG
1RG8	1RHF	1RHY	1RIF	1RKI	1RKQ	1RP0	1RRL	1RRM	1RW0	1RYL	1RZU	1RZX	1SOP
1S4K	1S4N	1S5P	1 S 98	1S9R	1SEI	1SFD	1SFL	1SH0	1SH8	1SJ1	1SMO	1SMX	1SQJ
1SQU	1SUL	1SW6	1SWV	1Szo	1SZH	1SZW	1 TOI	1TOP	1T1V	1T2L	1T3G	1 T 40	1T6F
1T6T	1T7R	1 T92	1 1BX	1TDQ	1TE2	1TE5	1 TH8	1 THT	1TIQ	1 TL9	1TLT	1TOA	1TR8
1TVF	1TVN	1TW4	1 U 00	1 U 07	1 U 19	1U5K	1U5U	1U7B	IUAX	1UC7	1UCG	1UCR	1UEB

1UG3	1UJ2	1UJN	1UJW	1UKC	1UMU	1UMZ	1UOC	1UPK	1UPS	1UQT	1URH	1URJ	1URS
1 UTI	1UV7	1UWW	1UWZ	1UXZ	1UZ3	1V1A	1V1P	1 V 37	1 V 47	1 V74	1V8H	1 V 96	1V9K
1VA6	1VBK	1VC1	1VC4	1VCD	1VDR	1VDW	1VH5	1VHX	1VI2	1 VIA	1 VIO	1VJ7	1VJL
1VJQ	1VJU	1 VKI	1VL4	1VM7	1VMA	1Vmo	1VP2	1VPV	1VQQ	1VQU	1VS3	1VYB	1VZY
1W32	1W5R	1W94	1W9C	1W9P	1W9S	1WB4	1WB7	1WC3	1WDU	1WDV	1WEH	1WKO	1WKR
1WLG	1WMH	1WMS	1WMX	1WN1	1WOQ	1WPN	1WQ6	1WR8	1WRA	1WSC	1WSR	1WUF	1WV2
1WVG	1WWL	1WWM	1WWP	1WZ9	1WZD	1X2I	1X61	1X70	1X9Z	1XAH	1XCR	1XFS	1XG2
1XGS	1XHK	1XI3	1XIY	1XJU	1XK9	1XM7	1XM8	1XOC	1XOF	1XQA	1XQR	1XRP	1XRS
1XSZ	1XTN	1 XVI	1XVS	1XVW	1XYZ	1XZO	1YOU	1Y1M	1Y1P	1Y3T	1Y44	1Y4T	1Y5H
1 Y 71	1Y7Y	1Y9Z	1YAC	1YBX	1YC0	$1 \mathrm{YC5}$	1YCD	1YDY	1YF2	1YGA	1YLM	1YLQ	1YLX
1YMT	1YNP	1YOC	1YOD	1YOZ	1YPF	1YPQ	1YPY	1YQ1	1YQ5	1YQD	1YQH	1YRK	1YRR
1YZ4	1YZH	1YZY	1Z1Y	1Z2W	1Z2Z	1Z3E	1Z6U	$1 \mathrm{Z72}$	$1 \mathrm{Z85}$	$1 \mathrm{Z96}$	1ZB1	1ZC6	1ZEE
1ZH8	1 ZHH	1ZJ8	1ZKC	1ZKD	1ZKI	1ZLP	1ZPL	1ZQ9	1ZSO	1ZTD	1ZUO	1ZUY	1ZVT
1ZY4	$1 \mathrm{ZY7}$	1ZYS	1ZZW	2A0S	2A1K	2A2M	2A2R	2A35	2A5L	2A6A	2A6P	2A70	2A8N
2A9D	2AB5	2ABQ	2ABW	2ACV	2AE2	2AEE	2AFB	2AFC	2AFW	2AG4	2AHF	2AHX	2AIB
2AJA	2AMX	2ANX	2APO	2AQ6	2AQP	2ARO	2ARC	2AS9	2ASU	2AUW	2AVN	2AYT	2AZ4
2B0R	2B1L	2B2N	2B3R	2B3Y	2B4M	2B6C	2B82	2B8N	$2 \mathrm{B97}$	2B9D	2B9H	2B9R	2BBA
2BCO	2BGH	2BHG	2BJD	2BJN	2BKL	2BKM	2BLF	2BLN	2BM5	2BON	2BPH	2BPO	2BPS
2BRW	2BRY	2 BSJ	2BT6	2BU3	2BV4	2BVF	2BWF	2BWR	2BYC	2BZ9	2C0G	2 C 31	$2 \mathrm{C40}$
2C5U	$2 \mathrm{C77}$	$2 \mathrm{C8J}$	2 C 95	2CAR	2CAY	2CB8	2CCO	$2 \mathrm{CC3}$	2CFA	2CFO	2CGK	2 Cl 5	2 CIA
2CJ4	2CJP	2CKD	2CN3	$2 \mathrm{CO5}$	2CU3	2CUN	2CV8	2CVH	2 CVI	2CX6	2CX7	2CXD	2 CY 9
2D1G	2D1H	2D42	2D4G	2D5C	2DB0	2DB7	2DBS	2DC0	2DC3	2DC4	2DEB	2DFJ	2DFY
2DI4	2DOK	2DPR	2DPS	2DPY	2DQ4	2DQA	2DQL	2DQW	2DS5	2DSJ	2DTC	2DUR	2DXU
2DYJ	2E12	2E2E	2E3P	2E5Y	2E85	2E8G	2E8Y	2EAB	2EAV	2EAY	2EBE	2EBJ	2EEN
2EF8	2EG4	2EGG	2EGJ	2EGZ	2EHP	2EIH	2EIS	2 EIX	2EJA	2EJN	2EJQ	2EKC	2ERV
2EUC	2EXO	2EXV	2F20	2 F 23	2 F 25	2 F 31	2 F 37	2 F 30	2F4E	2F4M	2 F 51	2F5J	2F5Y
2F7L	2F8M	2 F 8 Y	$2 \mathrm{F9H}$	2F9S	2FAE	2 FAO	2FAZ	2FCO	2 FCT	2FCW	2FEA	2FFG	2FFI
2FFU	2FH5	2FHP	2 FHQ	2FHZ	2 FIA	2FJR	2 FK 5	2FLU	2FNO	2FNA	2FNO	2FP1	2FPR
2FSH	2FSK	2FT0	2FTR	2FTX	2FU4	2FV7	2FVU	2FYX	2FZF	2G09	2G3W	2G58	2G6T
2G7Z	2G8L	2GA1	2GAI	2GAK	2GCL	2GCO	2GD9	2GDQ	2GEC	2GF3	2GF4	2GFF	2GGS
2GGZ	2GHA	2GHV	2GIY	2GJ3	2GLZ	2GMF	2GMQ	2GN4	2GOM	2GOP	2GP4	2GPY	2GPZ
2GRR	2GRU	2GS9	2GSO	2GSV	2GT1	2GV9	2GVY	2GZ6	2GZB	2GZX	2 H 1 C	2H1E	2 H 1 Y
2H34	2 H 3 H	2H7Z	2 H 98	2HAL	2HB0	2HBA	2HDI	2HDV	2HEK	2HEV	2HF1	2HF2	2HF9
2HFS	2 HIO	2 HIH	2 HIN	2HJ3	2HJV	2HKE	2HLC	2HLS	2HNL	2HP4	2 HPL	2HQ4	2HQ9
2HQY	2HRA	2 HRV	2 HSI	2HTA	2HU9	2HW6	2HWY	2102	210 E	2115	211Y	2127	2120
214R	214 S	2158	215G	216 H	216K	216 L	2174	219x	2 IA 1	$21 A B$	21 BO	$218 N$	21 C 2
21 CH	2ID1	2IDL	$21 E P$	2IEW	2IG3	2IM8	2IMZ	21 N 5	2INW	2 Q J	21 PP	21 RU	2ISM
21TB	2ITM	2IUY	$21 \times N$	21XO	2IXS	2IYG	2IYK	2 IZ6	2 J 16	2 J 1 V	2J4D	2J5B	2 J 5 Y
2 J 81	2J9W	2 JBV	2 JBX	2 JCB	2JD4	2JDA	2 JDJ	2JE8	2JEM	2JEP	2JF7	2JFZ	2JGB
2 JHN	$2 \mathrm{2JIG}$	2 JIK	2JJ7	2JK9	2JKG	2JKH	2MSB	2NLI	2NLV	2NOG	2NRV	2NS9	2NTE
2NTT	2NTX	2 NUJ	2NV0	2NW0	2 NYU	2NZ5	2016	201E	201K	201Q	202K	2O2T	2030
203B	2031	205A	2 OH	205N	2062	206L	206P	207G	2085	2049	2OAF	2 BB	$20 \mathrm{B9}$
20D0	20D4	20DA	2ODM	20EE	20ER	2OFC	20FP	2OFY	20G1	20GI	2OJL	20KC	2OKG
2027	20LW	20M6	200 C	2001	20PI	2021	20QA	20QB	20QC	20QQ	2ORV	20RW	2OTN
20US	20vs	20WA	20WL	20xC	20XL	20 Y 9	20YK	2 Z 5	2OZJ	2OZV	$20 Z Z$	2P08	2POM
2P11	2 P 12	2P13	2P1A	2P1G	2P35	2P38	2P3P	2P4P	2P4Z	2P62	2P6C	2P6H	2P6X
2P71	2 P 8 J	2P9R	2 PA 2	2PBF	2PD2	2PF6	2PFI	2PHK	2PIE	2 PIF	2PK3	2PKE	2PKF
2PLG	2 LLR	2 PMA	2PNZ	2POF	2 PPT	2PPW	2PQG	2PQV	2PR7	2PR8	2PRV	2 PRX	2PSP
2PW0	2PX6	2PYG	2PZ0	2PZE	2PZI	2 Q03	2Q0N	2Q24	2Q2B	2Q2G	2Q3F	2Q3G	2Q3X
2Q5C	2Q5W	$2 \mathrm{Q6O}$	2Q7T	2Q7X	2 Q 3	2Q8X	$2 \mathrm{Q9O}$	2QA9	2QAI	2QB7	2QCQ	2QCU	2QCX
2QDQ	2QDR	2QE8	2QEB	2QF4	2QF9	2QG3	2QH5	2QH9	2QHQ	2QJ3	2QJ8	2QJV	2QJZ
2QKH	2QKL	2QMW	2QN4	2QND	2QOS	2QRR	2QS8	2QSJ	2QSQ	2QSX	2QTY	2QVO	2QV5
2QX5	2QXX	2QXY	2QY1	2QY6	2QYC	2QYV	2QZ7	2QZA	2QZC	2R15	2R19	2R25	2R2A
2R5X	2R6J	2R60	2R6Z	2 R 76	2R85	2R8B	2R8Q	2R8R	2RA4	2RAD	2RB6	2 RBD	2RBG

2REE	2REK	2RFM	2RG4	2RG8	2R19	2 RJI	2RJW	2RKK	2RL8	2RMP	2SCP	2SQC	2UVF
2UWI	2UXT	2V1Q	2 V 1 Y	2V25	2V27	2V2F	2V33	2 V 3 T	2V3Z	2V5C	2V5E	2V6U	2V6V
2V8P	2 V 94	2V9B	2 V 9 T	2 VA 8	2 VCY	2VD3	2VE3	2VGX	2VH1	2VH3	2VHA	2VHF	2VK7
2VKP	2VLQ	2VLU	2VNG	2 VOB	2VOK	2VOZ	2VP8	2VPN	2VPP	2VPV	2VQ3	2VQH	2VQQ
2VRN	2VVE	2VVG	2VVW	2VXB	2VXG	2VYı	2VZC	2W00	2W1J	2W1K	2W2G	2W3G	2W3Y
2W50	2W53	2W56	2W59	2W5F	2W5z	2W7A	2W7V	2W7Z	2W8D	2W8M	2W9J	2W9T	2W9x
2WB7	2WB9	2WCR	2WD6	2WE8	2WEE	2WEK	2WFH	2WFV	2WG7	2WHN	2WIV	2WJ9	2WKF
2WNH	2WNY	2WOD	2WOK	2WP4	2WPX	2WRZ	2WTP	2WUQ	2WVQ	2WZ1	2×02	2X03	2XOK
2X1Q	2×32	2X3J	2X4D	2X4K	2X5Q	2X61	2X6R	2X7X	2X8S	2X98	2X9J	2X9Q	2XCJ
2XE4	2XEP	2XES	2XET	2XEX	2XFA	2XFV	2XGG	2XGU	2XHA	2XHF	2XHS	2XI8	2XI9
2XMJ	2XMO	2XMX	2 XOC	2XOL	2XOT	2XPP	2XQX	2XR1	2XSs	2XSW	2XT2	2XTL	2XTM
2XTY	2XUA	2xus	2 XVC	2XVM	2XXN	2XYI	2XZ4	2XZ8	2XZI	2Y1H	2Y2X	2 Y 43	2 Y 4 J
2Y7E	2 Y 71	2Y7S	2Y8E	2 Y 8 U	2Y9M	$2 \mathrm{YB7}$	2 YCH	2YEQ	2YFQ	$2 \mathrm{YG2}$	2YHN	2YJ6	2YJG
2YKT	2 YMY	2YN1	2 YN 5	$2 \mathrm{YN7}$	2YNA	2YOA	2YOC	2YOR	2YQY	2YQZ	2 YR 1	2YV9	2YVR
2YWW	2YXD	2YXE	2YXO	2YXW	2YY6	2 YYB	2 YYS	2 YYV	2 ZOU	$2 \mathrm{Z22}$	$2 \mathrm{Z26}$	2Z5B	2Z5D
$2 \mathrm{Z64}$	$2 \mathrm{Z73}$	2Z8F	2Z8G	2ZAY	2ZBI	2ZC2	2ZCA	2ZFU	2ZGY	2ZKT	2ZMV	2ZOS	2ZOU
2ZSI	2ZTB	2ZU9	2ZVD	2ZVR	2ZWA	2ZWI	2ZWR	2ZX2	2ZXD	2ZYR	$2 Z Z 8$	$2 Z Z V$	3 307
3AOY	3A1D	3 A 1 S	3 A 21	3A24	3 A 35	3 A 43	3A45	3 A 4 M	3A4R	3 A 4 T	3A54	3A5I	3 A 6 S
3A9F	3A9L	3AAG	3AAY	3AB1	3ABG	3ADR	3AEH	3AEI	3AFF	3AFM	3AGX	3AHN	3AIH
3AJ6	3AJA	3AJR	3AKJ	3AL3	3AMI	3AMN	3ANW	3AOF	3 APQ	3APR	3APT	3APU	3APZ
3AQ9	3AQG	3AQL	3AS5	3ASL	3ATY	3AU4	3AVR	3AWU	3AXA	3AXD	3AYC	3AZD	3AZO
3B0F	3B0P	$3 \mathrm{B4N}$	3B4Q	3B5E	3B51	3B5Q	3B6H	$3 \mathrm{B73}$	3B7S	3B85	3BA3	3 BBD	3BBZ
3BDV	3BE3	3BEU	3BF7	3BFV	3BGA	3BGE	3BGH	3BGY	3BH4	3BHD	3BHW	3BIT	3BJ4
3BMX	3BNW	3BO6	3 BOH	3BOO	3BP3	3BQ9	3BQO	3BQP	3BRN	3BRS	3BS6	$3 \mathrm{BS7}$	3BTP
3BUS	3BVO	3 BVP	3BW1	3BWS	3 BWV	3BXP	3BXW	3BYP	3BZB	3BZY	3C0G	3 COU	3 C 1 A
3C3R	3 C 4 N	3 C 4 S	3 C 4 V	3 C 57	3 C 5 N	3C7M	$3 \mathrm{C8C}$	3C8L	3C9F	3C9G	$3 \mathrm{C9H}$	3C9Q	3CB2
3CBW	3CEG	3CEI	3CEU	3CEX	3CFU	3CG6	3CG7	3 CHH	3 CIO	3CIT	3CJP	3CK1	3CKC
3CLK	3 CNH	3 CNR	3CNY	3 COB	3 COK	3COL	3 cov	$3 \mathrm{CP7}$	3 CPT	3CQB	3CQC	3CQL	3CRN
3CT6	3CU2	$3 \mathrm{CU5}$	3CUC	3CV0	3CWC	3CWF	3 CWV	3 CX 3	3CYG	3CZ1	3CZB	3 CZH	3D21
3D34	3 D 37	3D3B	3D3Q	3D4J	3 D 59	3D5J	3D5P	3D61	3D6R	3D6W	3D7A	3D8C	3D8D
3D8U	3D9Y	3DA5	3DAD	$3 \mathrm{DB0}$	3DBA	3DBG	$3 \mathrm{DC6}$	3DCD	3DDE	3DDL	3DEP	3DEU	3DGP
3DKA	3DLQ	3DME	3DNF	3DNS	3DNT	3DO8	3 DOH	3DR2	3DRF	3DRN	3DRW	3DS2	3DSK
3DTB	3DTN	3DUP	3DWM	3DWV	3DXO	3 DXQ	3DXR	3DYJ	3DYN	3DZV	3E0X	3E11	3E2V
3E3R	3E48	3E4W	3 E 57	3E58	3E7H	3E7J	3E9C	3E9G	3EA0	3EAE	3EAG	3EB8	3EB9
3EC3	3EC4	3EC9	3ECN	3ECQ	3ECR	3EDN	3EDP	3EDV	3EE6	3EEA	3EEF	3EEQ	3EFP
3EGR	3EHD	3EIP	3EJW	3ELK	3EMX	3EN9	3ENC	3ENP	3E06	3EOP	3EOQ	3EOZ	3EP0
3EPS	3EQX	3EQZ	3ERP	3ERX	3ESA	3ESL	3ETC	3ETO	3ETQ	3ETZ	3EU7	3EUS	3EVI
3EVY	3EWI	3EWL	3EWM	3EWO	3EYY	3EZH	3F08	3FOP	3 F 13	3F1P	3 F 42	3F4A	3F5H
3F66	3 F 69	3F6C	3F6I	3F6K	3 F 60	3 F 70	3F7E	3F7Q	3F8B	$3 \mathrm{F95}$	$3 \mathrm{F9U}$	3FB9	3FBG
3 FCD	3FCG	3FCM	3FD4	3FD7	3 FDI	3FDW	3FDX	3FE3	3FE4	3FF1	3FF5	3FG7	$3 F G V$
3FHW	3FID	3 FIL	$3 F J V$	3FLA	3FLE	3FLT	3FM2	3FM3	3FN1	3FN5	3FNC	3FO3	3FO5
3FPK	3FPN	3FPR	3FQD	3FQM	3FSO	3FUT	3FVD	3 FVV	3FVW	3FW3	3FYF	3FZY	3G12
3G1E	3G1J	3G1P	3G23	3G2F	3G2M	3G3R	3G3S	3G46	3G48	3G4D	3G4E	3G5J	3G68
3G8K	3GAE	3GAX	3GAZ	3GBV	3GBY	3GD4	3GDI	3GF5	3GF6	3GFF	3GFV	3GGN	3GHD
3G17	3GID	3GJ0	3GKN	3GKX	3GLV	3GME	3GMG	3GNL	3GO6	3GOC	3GPK	3GPV	3GQS
3GRA	3GRD	3GRI	3GRN	3GRO	3GRZ	3GUD	3GUE	3GUU	3GV4	3GVE	3GWB	3GWL	3GWR
3GXH	3GYC	3 GYZ	3GZ5	3GZA	3H05	3 H 1 Q	3H2B	3 H 2 S	3H30	3H3A	3 H 3 N	3H5J	3H5L
3H7J	3H7O	3H8Q	3 H 8 V	3HA2	3HAM	3HBW	3HCS	3HCW	3 HCY	3HDF	3HDT	3HEB	3HFH
3HGT	3HHF	3HHI	3 HIS	3HJ4	3HJ6	3HJG	3HK0	3HKL	3 HKS	3 HKV	3HL1	3HL6	3HLK
3HM4	3HME	3HMT	3 HNO	3HN5	3HO6	3 HOB	3HPE	3HPK	3HQR	3HRQ	3HRS	3HS3	$3 \mathrm{HU5}$
3HV1	3HV2	3HWJ	3HWO	3HWP	3HYO	3 HYJ	3100	311 A	3111	313 Q	313 W	3141	3140
3157	3150	315 R	315 W	316 D	316 S	317 J	3183	318 N	319 F	31 A 1	3148	31 AU	3183
$318 W$	31 BX	$3 \mathrm{IC5}$	3 ICY	31 D 9	3IDF	3 IE 4	31 E 5	31 EG	3IGE	31 HS	31HT	31 HV	$311 C$
3IJL	3IJM	3IJW	31KB	3INO	3101	31OL	3IPF	31 PJ	31 PO	3IQ0	31Q2	3IQC	3IQU

$3 \mathrm{IR9}$	31 RB	3156	3ITE	$31 T Q$	$317 W$	31 U 1	3IUK	$31 \cup 0$	3IUP	3 IUS	3IUW	3IUY	3IV7
3IVL	3 IVV	31WF	3IWG	31X1	31×3	31×7	31×9	3JQ1	3JR7	3JRR	3 JRU	3JSB	3JSL
3JT0	3JTN	3 JUU	3JW8	3 JWI	3JXF	3 JXO	3KOZ	3K1R	3K1W	3K2A	3K2N	3K2O	3K2Z
3K51	3 K 50	3K6F	3K60	3K7B	3K85	3K8G	3K8R	3K9V	3KA5	3KB1	3KB2	3KBQ	3KBY
3KD3	3KD4	3KD6	3KDG	3KEA	3KEP	3KEW	3KEZ	3KF6	3KFA	3KG8	3KG9	3KGK	3KHE
3KHN	3KK7	3KKS	3KLQ	3KM5	3KMA	3KMI	3KMR	3KNB	3KPE	3KS9	3KSM	3KSU	3KTZ
3KUZ	3KWR	3KY9	3 KYJ	3KZY	3L01	3L0Q	3LOR	3L12	3L15	3L18	3L32	3L46	3 L 50
3L6I	3L6T	3L6V	3L6X	3L70	3L81	3L8C	3L8E	3L8M	3L9J	3LAE	3LAG	3LAZ	3LB2
3LET	3LF5	3LFR	3LFT	3LG3	3LGB	3LHN	3LHX	3 LID	3LIF	3LIU	3LJB	3LJS	3LKB
3LKL	3LLM	3LLP	3LLZ	3LM2	3LMH	3LMN	3LNN	3LNY	3LQ9	3LQM	3LS1	3LS8	3LST
3LUO	3LVC	3LWE	3LX4	3LX6	3LXQ	3LY0	3LYP	3LYX	3M33	3M6Z	3M7A	3M8J	3M8T
3 MAB	3MAL	3MAZ	3MB4	3MBC	3MC9	3MCA	3MCB	3MCF	3MCS	3MCW	3MD1	3MD9	3MDF
3ME4	3ME7	3MEA	3MER	3MFD	3MG1	3MGD	3MGG	3MH9	3MIT	3MIZ	3MJQ	3MK4	3 MKL
3MNL	3MOZ	3MPC	3MPD	3MQ2	3MR0	3MTI	3MTK	3MTR	3MUQ	3MUX	3MVC	3MVP	3MWB
3MWX	3MX3	3MXO	3MYU	3MYV	3MYX	3MZ2	3N01	3N08	3N10	3N1E	3N41	3N6Y	3N72
3N89	$3 \mathrm{N9B}$	3 N 9 V	3NA5	3NBC	3NCE	3NCX	3NDA	3NDO	3NEK	3NEQ	3NFH	3NFQ	3NGF
3NHM	3N17	3NIQ	3NJ2	3NJE	3NK6	3NKL	3NKU	3NME	3NMW	3NNG	3NNN	3NNS	3NO8
3NPF	3NPP	3NQN	3NR1	3NRF	3NRH	3NRL	3NRX	3NT8	3NTK	3NTX	3NUF	3NW0	3NWP
3NY3	3 NYI	3NZE	3NZN	3NZZ	300A	300L	300 Q	300x	3014	302 U	3053	305 Y	3060
3066	306W	307A	3083	308Q	30AJ	3OBE	3OBF	30BH	30BL	$30 B Q$	30BY	3000	30CP
$30 \mathrm{G5}$	$30 \mathrm{G6}$	3067	30GN	30HE	3012	30KW	30KZ	30 L 3	30MD	30MT	3ON3	30N9	30 NM
300 V	300X	30P6	3OPE	30QI	3072	3OTN	30VP	30WC	30WG	30XP	30 Y 2	30 YO	30YY
30ZD	30Z1	30ZX	3P09	3 POU	3 P 1 U	3P2E	3P3Q	3 P 3 V	3P5R	3P69	3P6A	3P9X	3PAF
3PC6	3PD7	3PE5	3PES	3PET	3PF8	3PG7	3PGG	$3 P G S$	3PH9	3PHG	3 PHX	3 3IV	3PJP
$3 \mathrm{PM6}$	3 PMC	3PMG	3PNR	3 PQH	3PQU	3 PRB	3PSM	3PSQ	3PT3	3PT8	$3 \mathrm{PU8}$	3PVE	3 PWX
3Q18	3Q1।	3Q2J	3Q49	3Q6K	3Q6V	3Q72	3Q7R	3Q87	3QAT	3QAX	3QB8	3QC2	3QC4
3QE2	3QEE	3QEK	3QF2	3QHB	3QHP	3QHQ	3Q17	3QIJ	3QIS	3QN9	3QPI	3QR2	3QR7
3QRC	3QSL	3QSZ	3QT5	3QTA	3QTG	3QTM	3QU5	3QUF	3QVL	3QVM	3QW9	3QWG	3QX1
3QYE	3QYY	3QZ4	3QZM	3QZR	3 R 07	3ROJ	3R15	3R1J	3R27	3R41	3R42	3R4R	3R4S
3R5Z	3R62	3R6A	3R7A	3R7G	3RA5	3RAO	3RAU	3RB5	3 RBY	3RC4	3RDK	3RE1	3RE4
3RFS	3RGC	3RGH	3RH0	3RHY	3RHZ	3RI0	3RJT	3RK1	3RKC	3RLS	3RMH	3 RNQ	3RO3
3ROI	3ROT	3RP2	3 RPJ	3RQ9	3RS1	3RUX	3RV6	3RY0	3 RY 3	3SOR	3SOT	3S2X	3 S 4 K
3S5B	3S5F	3S5W	3 S63	3S6E	3S7D	3581	3S8K	3S8P	$3 \mathrm{S93}$	$3 \mathrm{S95}$	$359 \cup$	3SAF	3SAO
3 SCZ	3SD4	3SEI	3SEO	3SFW	3SG8	3SGH	3SHP	3SIM	3SIT	3SJ5	3SKV	3SLU	3SLZ
$3 \mathrm{SO6}$	3SOJ	3SOK	3 SON	3 SOV	3SP1	3SP4	3SPE	3SQF	3SQJ	3SRI	3STY	3SUB	3SUK
3SWH	3SYL	3SZ6	3 TOP	3 T 13	3T10	$3 T 47$	3T4L	3T5G	3T5X	3T6K	3T8B	3T9G	3T9K
3TB6	3TBH	3TC8	3TCA	3 TCN	3 TCR	3 TCV	$3 T D N$	3 3TDQ	3TDV	3TE8	3TEB	3TEJ	3TEK
3 3TEV	3TFG	3 TII	3 TIQ	3TKF	3TL1	$3 T L Q$	3TM8	3 3TOD	3 TOV	3 TP2	3 3TP9	3TQF	3TQW
3 TRB	3TSA	3TSJ	3TSM	3TTM	3TUF	3TV1	3TVA	3TVT	3 3TWD	3TWE	3TWF	3TWK	$3 \mathrm{TX3}$
$3 T Y Q$	3TZG	3TZT	3U0H	300J	3U1D	3010	3U1X	3 U 21	3 U 23	3U3B	$3 \cup 47$	3 U 4 Y	$3 \mathrm{U} \mathbf{Z}$
3U7R	3072	3 O 0	3 U 8 V	3096	3U9J	349 Q	3UAN	3UC4	3UEC	3UES	3UGF	3UHA	3 UID
3UIW	3UL3	3ULJ	3 ULL	3ULT	3ULY	3UMZ	3UN7	$3 \mathrm{OO3}$	3UP1	3 UP3	3UPV	3UR8	3URR
3USH	3USS	3USY	3UT4	3UUG	3UV0	3UV1	3 UXN	$3 \mathrm{YY7}$	3 YYJ	3V0D	3V1E	3V30	3 V 33
3V3L	3V43	3V48	3V67	3V69	3V8D	3V81	3 V 97	3 V 98	3VAS	3VAY	3VCC	3VCF	3 VDH
3VEJ	3VF1	3 VFZ	3VHS	3VJA	3VJE	3VJP	3VK5	3VKG	3VMT	3VO2	3VOQ	3VPP	3VPS
3VRC	3VTA	3 VTH	3VTX	$3 \mathrm{VU2}$	$3 \mathrm{VU4}$	3VU9	3VUP	3VUS	3VV1	3VV3	3VV5	$3 \mathrm{VX3}$	3VX4
3VYP	3VZI	3W08	3WOE	3W0K	3W19	3W10	3W2Y	3W3W	3W4S	3W57	3W5F	3W5S	3W6P
3W7T	3W9s	3 W 9 V	3WA4	3WA8	3WAE	3WAS	3WDF	3WDW	3WE2	3WE5	3WEA	3WEU	3WFI
3WH9	3WHT	3WI7	3WJ9	3WKY	3WL2	3WL4	3WL6	3WMD	3WMG	3WMI	3WNO	3WOL	3WPW
3WQO	3WUR	3WV4	3WWN	3WX1	3WYD	3ZBD	3ZBO	3ZD2	3ZFI	3ZG6	3ZGJ	3ZH5	3ZHO
3ZIH	3ZIL	3 ZIT	$3 Z 1 \mathrm{U}$	3ZJE	3ZK9	3ZL1	3ZME	3ZMR	$3 \mathrm{ZO9}$	3 ZPY	3ZQS	3ZRG	3ZTP
3ZWF	3 ZXC	3ZXF	3 ZXN	$3 \mathrm{ZY7}$	3ZYG	3ZYL	3ZYR	3ZYW	4A0E	4A0Z	4A2O	4A37	4A48
4A6F	4A6V	4A7U	4A7W	4A8H	4AAZ	4ACV	4ADN	4ADT	4ADY	4ADZ	4AE4	4AEE	4AEF
4AGG	4AHC	4AJW	4AKL	4AKM	4ALF	4AM6	4AMJ	4APX	4AQN	4ARV	4ASR	4AU9	4AUC

4AUP	4AVB	4AVR	4AWX	4AXK	4AXN	4AYO	4AYA	4AYG	4B0Z	4B1Y	4B2N	4B3B	4B45
4B5Q	4B61	4B6G	4B6M	4B6X	4B8B	4B8E	4B91	$4 \mathrm{B9} 93$	4B9G	4BD2	4BEG	4BFA	4BG2
4BGO	4BHR	4BI3	4BLU	4BND	4BOP	4BPG	4BPZ	4BQ4	4BQ9	4BQN	4BQU	4BRC	4BS6
4BSZ	4BUC	4 BUU	4 BVQ	4 BVX	4BWO	4BWV	4BX8	4BXH	4 COR	4C16	4C1D	4C1L	4 C 1 S
4C23	4C29	4C3D	$4 \mathrm{C76}$	4C7A	4C7D	4C8B	$4 \mathrm{C97}$	$4 \mathrm{C9Y}$	4CA1	4CB7	4CBP	4CDJ	4CEM
4CGR	4CGS	4CGY	4 CHF	4CHH	$4 \mathrm{Cl7}$	4 Cl 8	4CJ0	4CJ9	4CK4	4CMR	4CQ8	4CRW	4CSD
4CU9	4CUA	4CXF	4CXV	4CZJ	4CZX	4D05	4D00	4DOY	4D2C	4D2O	4D81	4D91	4D9S
4DBG	4DCB	4DCZ	4DEY	4DGF	4DGH	4DHK	4DI8	4DIX	4DJB	4DJG	4DKC	4DKN	4DLH
4DLQ	4DM4	4DO4	4DO7	4DOI	4DOK	4DOO	4DOV	4DQ9	4DQZ	4DS2	4DSD	4DT5	4DTE
4DY0	4DYH	4DYN	4DYW	4DZM	4DZZ	4E15	4E19	4E1Y	4E3Y	4E57	4E5V	4E5W	4E6F
4E7S	4E8U	4E94	4E9J	4EBR	4ECO	4EDH	4EE6	4EEI	4EET	4EF0	4EFO	4EGO	4EGD
4EH1	4EHS	4EHU	4EIO	4EI7	4EIB	4EIR	4EIS	4EIV	4EJR	4EMT	4EP4	4EPP	4EQB
4EQQ	4ERC	4ERY	4ES8	4ETV	4ETZ	4EUK	4EUU	4EVQ	4EVU	4EVW	4EW5	4EWI	4EWL
4EYG	4EYZ	4EZG	4FOD	4F14	4F1J	4F27	4F3V	4F3Y	4F44	4F4F	4F7K	4F70	4 F 82
4FCH	4FCZ	4FD4	4FD9	4FDI	4FDX	4FDY	4FEK	4FET	4FGQ	4FHR	4FID	4FKB	4FKZ
4FP1	4FPW	4FQ5	4FQD	4FRF	4FRX	4FXQ	4FYP	4FYT	4FZL	4FZP	4FZV	4GOI	4GOM
4G0S	4G1I	4G2B	4G2C	4G2U	4G37	4G3B	4G3C	4G3V	4G4K	4G4L	4G4M	4G6Q	4G6U
4G7X	4G8K	4G9M	4G9S	4GBF	4GBO	4GBS	4GC1	4GCN	4GCS	4GE6	4GEK	4GGG	4GHB
4GIW	4GKC	4GKF	4GKG	4GKM	4GKP	4GL6	4GMN	4GNE	4GNI	4GNS	4GNU	4GOF	4GQ6
4GUC	4GVB	4GVF	4GVO	4GXB	4GXL	4GYT	4H05	4H0A	4H0C	4HOK	4H2D	4H4D	4 H 51
4H5S	4H61	4H6Q	4H7X	4 H 87	4H8F	4H8M	4HAP	4HBQ	4HC8	4HCE	4 HCl	4HDH	4HEH
4HEO	4HEQ	4HFS	4HG2	4HH6	4HHV	$4 \mathrm{HI7}$	$4 \mathrm{HI8}$	4HIA	4 HIL	4HJD	4HJZ	4HKE	4HKG
4HLO	4HL2	4HLS	4HN9	4HNE	4HNH	4HP8	4HQZ	4HR1	4HRZ	4HS5	4HSS	4HT3	4HU5
4HW8	4 HWU	4HWV	4HY4	4 HYJ	4HYL	4HYN	4HZR	411K	411 U	412 Z	413 G	414K	4140
415 T	416P	416 R	4182	4184	4186	4193	4IB2	4ID2	4ID3	4IGA	4IGW	4IHE	4 HZ
4IJ5	4IJR	4IJZ	41 KN	4ILO	4ILV	4IMQ	4IN0	4IN9	4INA	4INE	4INO	4 INZ	4102
4IU3	4IUP	4IX3	4IXA	4IXJ	$41 \times N$	4IYB	4IZB	4IZK	4J05	4J0X	4 J 1 Y	4J2G	4 J 2 K
4J3H	4J5R	4 J 60	4 J 73	4J7Q	4J8B	4J8C	4J8E	4J8S	4J9C	4JBS	4JCH	4JCW	4JDE
4JE1	4JE6	4JEM	4JES	4JF3	4JGG	4JGI	4JGP	4JGW	4JGX	4JIX	4JJo	4JJH	4JK8
4JLI	4JMD	4JN3	4JOQ	4JPQ	4JQT	4JR6	4JT4	4JUI	4JVU	4JX0	4JXB	4JXD	4JXE
4JY3	4JZP	4JZQ	4JZZ	4K00	4K02	4K05	4KOD	4K12	4K1C	4K28	4K2W	4K35	4K3L
4K4K	4K5A	4K6J	4K7J	4K7K	4 K 8 Y	4K9Q	4KBM	4KCE	4KDX	4KED	4KF8	4KFS	4KFW
4KGD	4KGH	4KH6	4KH7	4KH9	4KHO	4KJM	4KJR	4KMD	4KN8	4KNC	4KNK	4KP2	4KPO
4KQR	4KRG	4KRT	4KT1	4KT3	4 KTW	4KUJ	4KUN	4KV2	4KV9	4KWY	4KX8	4KYU	4KYX
4L00	4LOR	4L3N	4L3R	4L3T	4L4W	4L51	4L5G	4L68	4L6S	4L6U	4L7A	4L7X	4L8I
4L90	4L9U	4LA2	4LAS	4LBA	4 LCl	4LE7	4LEB	4LEC	4LIR	4LJI	4LJL	4LK2	4LLD
4LN2	4LN9	4LNL	4LOW	4LP4	4LPS	4LQ8	4LQC	4LQX	4LS4	4LUB	4LV5	4LW8	4LWK
4LXO	4LXQ	4 MOH	4M1A	4M1B	4M1Q	4M3O	4M4D	4M8R	4M91	4MAC	4MAE	4MAK	4MAL
4MDU	4ME9	4MES	4MF9	4MG3	4MH1	4MHV	4MIK	4MIX	4MJ2	4MJD	4MJG	4MJK	4MLM
4MLZ	4MM2	4MMG	4MN5	4MN7	4MNW	4MO1	4MOV	4MPB	4MPM	4MPS	4MQB	4MR0	4MTL
4MUV	4MVE	4MW0	4MY6	4MYA	4MYP	4MYV	4MZ3	4MZJ	4MZZ	4N01	4N04	4N06	4NOK
4NOR	4NOV	4N3P	4N3V	4 N 4 U	4N6A	4N6C	4N6F	4N7F	4N7W	4N82	4N8O	4N8Y	4N9Z
4NC7	4NCR	4NE2	4NET	4NFC	4NHB	4NIR	4NJH	4NKT	4NN2	4NOF	4 NOH	4NPL	4NQ8
4NSD	4NSV	4NTG	4NTQ	4NWO	4NX8	4NZV	401J	401s	4 O 2 H	4021	402T	4 O V	4042
405P	4071	407H	407J	408 V	409D	409K	4095	4OEV	4OF6	4OFK	4OFQ	40H7	40 HJ
40K9	4OKE	4OLK	40LT	40M7	40MV	4ON1	40NW	4ONY	4000	4004	40PM	4OTE	4OUC
40Vs	40VT	40WI	40X6	4OZE	4P0J	4POT	4P21	4P2L	4P32	4P3F	4P5E	4P5F	4P5N
4P7B	4P7C	4P70	4P93	4PAB	4PAS	4PE0	4PFZ	4PH8	4PI3	4PIC	4PID	4PIV	4PKC
4PM4	4PMK	4PMO	4PN6	4PO6	4POW	4PQ1	4PQ9	4PR3	4PSF	4PSR	4PTB	4PUI	4PVC
4PXW	4PXY	4PYS	4PZ7	4Q14	4Q2T	4Q3H	4Q4K	4Q53	4Q5G	4Q60	4Q69	4Q6J	4Q6U
4Q7E	4Q70	4Q7Q	4Q82	4Q88	4Q8L	4Q9A	4Q9B	4Q9T	4Q9W	4QAK	4QAM	4QAN	4QAS
4QBN	4QC6	4QE0	4QF3	4QGO	4QHJ	4Q10	4QJB	4QJI	4QM9	4QMI	4QO2	4QPM	4QPV
4QSE	4QT9	4QUV	4QWO	4QYB	4R01	4R1K	4R1S	4R23	4R7X	4 R 80	4R86	4R80	4R8R
4R9X	4RD8	4RHA	4RHP	4RK6	4RK9	4RPC	4RS2	4TKR	4TL1	4TMX	4TQL	4TR6	4TR7

	4U13	4U4	4 U 99	4U9C						4UQY		4USQ	4UUU

A. 2 Testing Set PDB codes

3L6U	1Y2K	2WW4	1IFQ	2WNS	2F06	2WNW	2OFK	2BKX	4PFY	4FAJ	4GAI	4089	3WPU
1AE9	2 PMQ	2GAX	3T7Y	1VQ0	1P1C	3RPD	3LLH	$107 Z$	1PL3	3ANO	2DST	3T7H	10 B 8
1EP3	4HU4	3MTX	4PMZ	1N7K	3SNX	4NV5	2P97	4EFP	4NV0	1R1G	1XFF	3LJD	3PNA
4DFR	4QXD	4C27	1000	3NCV	3N8H	4AR9	3ORE	3H8K	1MSP	3 POA	4JG9	1HDH	4KS9
2 VIF	3LOS	1SE0	4A27	4IPV	3QIV	1XXL	4PU7	4KW3	1 F74	2VLI	4BUB	3W42	419F
3KWS	3MJE	4TVY	3LYN	2F22	1 LBV	4R33	1AQL	$4 \mathrm{IC3}$	1NRJ	4KXQ	3D3M	3D30	1DBX
4JTM	4ALY	1QOR	4IGQ	2Q7S	1 RKU	1TV8	2AVT	1 EX2	1XO1	3CWR	2V6X	3D3W	2VT8
10F5	2W70	4P3H	2QAS	3GWO	3KAL	3C3K	3NUA	4LZF	3 ZXO	1XX6	2BE3	3GMX	4HFM
3AOS	2XZO	3CGG	2W9M	4B9F	3NEH	31 EV	3071	1 Y 89	3VB8	3P8A	3RC8	2NNC	3QR3
3TJ8	4JIF	3B0Z	3MMH	4K70	4 CMP	3QKX	1 JY 5	2RE3	4GER	4AB5	4LEV	4MS4	4N65
4V24	4M8K	3VOT	2EPG	1 Q60	3W20	2VOP	2WH6	1QWR	3 U 4 V	20KF	2D4Y	3AJG	1Y6Z
4BE3	4TPW	4GUD	1158	4HQM	3 C 81	1VKY	1S1D	4 PQH	3L41	200Q	1JR8	3BOF	3PQC
3C8Z	4WSO	4EAE	21 HY	3HZ4	3MES	3KOJ	4LHK	4PAG	4TWC	3 H 3 H	2EKO	4N6J	3RG9
2WT9	2QZT	4GD5	$3 \mathrm{CB7}$	2HXR	3TG9	2 FFY	2AC7	3RT9	1TW0	4GRJ	4ACY	1DMU	1KW2
3FPQ	3 F 52	1L8D	3MOL	4KE7	3B2Y	2 C 3 V	3UOR	4EBG	215 E	256B	30TX	4ART	4OSE
1KZQ	4PSE	4CGX	4BQM	4UVJ	4PZ4	2CD9	3FHU	21 KK	1G4M	3 POJ	1D4T	3NMR	3PP2
4L9D	4M66	4L9A	3KST	2FAW	3BFQ	3LMB	30JI	2J15	2JBA	2IUT	3CSX	2JBH	2QTW
2AJ7	1PCX	4GT4	4061	1GGP	21 FT	3R8C	3HVA	3TJ4	1 AOC	4OBE	1PSR	4RCM	10AH
1AOZ	2YPD	416G	3D8P	4B7L	3NAR	4PZA	206K	4 K 92	3FFV	3BQA	2XH3	2145	1VR9

