
Response to Queries

I would like to thank my TAC examiner for her valuable comments. The following

are my responses to the comments, in the same order in which they have been given.

1 A section mentioning some of the previous studies using statistical poten-

tials for the prediction of protein-protein interactions with experimental vali-

dations has been added to the introduction section (Section 1.3 on page 7).

1.3 Previous Related Work

Several researchers have attempted the prediction of protein-protein interactions

using knowledge-based potentials in the past, and some of these methods have also

been able to garner experimental evidence for their predictions.

Yasuda et. al., while working on the extracellular activation of tryptase ϵ used

computational docking approaches to understand how tryptase ϵ selectively recog-

nizes the activation sequence in pro-uPA. A lysine residue on loop A of tryptase ϵ

(K20A) was predicted to be involved in recognizing the processing site of pro-uPA.

Consistent with this prediction, they were able to show that K20A tryptase ϵ mutants

failed to convert pro-uPA to uPA (Yasuda et al., 2005).

The PrePPI web server (https://bhapp.c2b2.columbia.edu/PrePPI/), set up

by Honig lab at Columbia University, combines structural and non-structural cues in

a bayesian framework to predict protein-protein interactions. The algorithm used in

PrePPI generates structural representatives for two query protein sequences. Com-

plexes formed by the structural neighbours of the representatives are then retrieved

from the PDB to serve as interaction models. These interaction models are eval-

uated using five different scores, some of which are statistically derived. The re-

searchers also tested nineteen PrePPI predictions of human interactions using Co-

immunoprecipitation (Co-IP) experiments. Fifteen of these predictions were validated

using the Co-IP experiments (Zhang et. al., 2012).

Another example where knowledge-based bioinformatic predictions were exper-

imentally validated was the predictions of new substrates for Aurora A kinase. The

predictions were made by analysing the available data on Aurora A kinase and their

phosphorylation sites and then using distinct types of biological information to gen-

erate a ranked list of potentials Aurora A kinase substrates. These predictions were

validated by using in vitro kinase assays and mass spectrometry analyses (Sardon

et. al., 2010).
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2 This question has been addressed in the Results section (Section 3.1 on page

18).

Among the six ways of classifying protein interactions mentioned in the Introduc-

tion section (Sec 1.1.1), four categories (obligate, non-obligate, transient and perma-

nent) pertain to the dynamics of protein complexes and it is not possible for us to

retrieve this information from the crystal structures of proteins (though some of the

studies may include information about the kind of interface, overall such studies are

sparse). Concerning the oligomeric state of the protein complexes, we find that 90 %

(3389 out of 3764) of the structures in the training set are homodimers. Similarly, 88

% (264 out of 300) of the structures in the testing set are homodimers.

3 Relevant information has been added in Section 2.1 (page 10)

In order to make accurate predictions using statistical methods, the number of

samples in the training set should be large while keeping a reasonable number of

samples in the testing set. Hence, the division of the dimer set was made such that

the testing set is ∼ 10 % of the training set.

4 All typographical errors have been corrected

5 A more comprehensive description of Figure 3.5 is given in Section 4.2 in the

Discussions section (page 28, 29)

Cysteine-Cysteine pairs have the best scores for any residue pair. This obser-

vation previously reported by Glaser (Glaser et. al., 2001), is expected since the

sulphurs in Cysteine have been observed to form disulphide bonds which may play

an important role in the stability of protein complexes. Cysteine-Cysteine pairs along

with Histidine-Histidine pairs are also found inmetal coordination sites across the inter-

face (eg. zinc finger domain). These may be the reasons why Cysteine-Cysteine and

Histidine-Histidine residue pairs have high scores. Other residue pairs with favourable

contact scores are the oppositely charged residues (for eg. Lysine and Arginine (with

positively charged side chains) with Glutamate and Aspartate (with negatively charged

side chains)). These residue pairs form salt bridges across the interface and help

strengthen the interaction. Also, since the burial of charged amino acid residues is en-

ergetically unfavourable they are often observed to be paired with oppositely charged

amino acids.

The non-specific van der Waal's force is the major interaction force between the

hydrophobic amino acids (Leucine, Isoleucine, Alanine, Valine, Proline, Methionine,

Phenylalanine and Tryptophan). Given the non-specific nature of this interaction, the

hydrophobic residues clump together showing no particular residue pair preferences.
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As seen in the contact potential matrix, any hydrophobic - hydrophobic residue pair

gets a favourable score without showing any particular preferences, except in the case

of Tryptophan-Tryptophan pairs which get a higher score than the other hydrophobic

pairs.

In the log odds ratio matrix for the pairwise potential, the self-interaction scores

between residues are high scoring. This means that like charged residue pairs (eg.

Arginine-Arginine pairs) which are expected to get unfavourable scores are assigned

favourable scores. A significant proportion of the dimer structures solved are ho-

modimers and our dataset is also comprised of mostly homodimers. Because of the

symmetric nature of the homodimers, it is likely that similar residues come closer more

often and hence, they have high favourable scores in our score matrices. However,

such like charge interactions have been the focus of other studies (Magalhaes et.

al., 1994, Pednekar et. al., 2009) which find that such like charged pairs do occur

in protein-protein interactions if the interaction between them is mediated through a

water molecule (Heyda et.al, 2010). Magalhaes et. al. (Magalhaes et. al., 1994)

provides several examples where Arginine-Arginine pairs are found in close proxim-

ity. Since water molecules cannot be reliably captured in low resolution X-ray crystal

structures and also since information about the presence of water in the protein struc-

tures in our training set is missing, we cannot explore this possibility. An alternative

hypothesis behind this observation might be that at the 4 Å level, there might be sig-

nificant main chain-main chain interactions which might contribute to the favourable

scores for the diagonal elements. Further investigation is needed to pin down the

reason behind this observation.

6 Comments have been added regarding this question in Section 4.1 (page 27)

Statistical potentials help us portray a picture of how interactions between pro-

teins are mediated and can be used as stand-ins for binding free energies. They work

on the principle that the most frequently observed amino acid residue pairs are ener-

getically more preferred than the pairs less frequently observed. However, because

statistical potentials do not discriminate between interaction types and their strengths

(for eg, the strength of a hydrogen bond vs that of a van der Waal's interaction), the

statistical potential scores do not correlate perfectly with the binding affinities. To build

a statistical potential for predicting binding affinities, known structures will have to be

subsetted according to their binding affinities and then statistical potentials built for

each subset of the dataset. However, the dearth of data on experimental binding

affinities prevents the construction of a meaningful statistical potential. Based on ob-

servations made on an experimental dataset, statistical potentials allow us to derive

approximate functions which can be used to predict the energy of an unknown system.

3



Apart from the responses to the TAC queries, the following sections were added

after the initial submission of the Thesis.

In the results section, on page 24.

3.2.4 Performance on the testing set

With a Z-score threshold of -0.7 for the best pairwise potential (4.ss.norm.cifa.avg),

284 out of the 295 native structures testing set had a z-score below the threshold,

which corresponds to a true prediction. Among the 11 structures which had a z-

score greater than the threshold, 7 structures were incorrectly submitted as dimers

in the PDB. The biological assemblies for these structures (PDB codes: 3PNA, 1IFQ,

3MTX, 1PL3, 3QL9, 4CMP, 2XRW) is a monomeric entity, as given in the Protein

Data Bank. These false classifications in the PDB may be a result of crystallization

artefacts. Since, our potentials could successfully distinguish crystal artefacts from

true interactions, these 7 structures were considered as correct predictions. Hence,

our potentials could correctly identify 291 out of 295 structures, which translates to a

prediction accuracy of 98.6 %.

In the discussions section, on page 29

Benchmarking by rank ordering is one of the most robust ways to test the perfor-

mance of a potential as it imposes the stringent constraint that the native conforma-

tion must have the lowest score when compared with 1000 non-native confirmation

scores. The results from this benchmark echo the ones observed using the ROC

analysis. When this test was applied to compare the performance of a union of best

performing potentials versus the performance of any one of these potentials, it was

observed that the union of potentials performed better than the best performing poten-

tial. This seems to suggest that different potentials are more efficient at discriminating

certain types of protein complexes than the other potentials. As an example, a protein

from Enterococcus faecalis (PDB Code: 3NAT) was ranked 462 out of 1000 when a

side chain-side chain potential was used. However, when a main chain-main chain

potential was used on the same protein, it was ranked 1. This suggests that, in this

protein, main chain-main chain interactions are more important at the interface than

side chain-side chain interactions and hence, a main chain-main chain potential gave

us better predictions.
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