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Abstract

The aim of the thesis is to construct a (1+1)D analogue model of

gravity for a BEC. Analogue gravity is observed in such models based

on a background profile and that is where it is needed to know what all

it takes to experimentally get a particular velocity profile. In this work

we have tried to develop a model with hyperbolic tangent velocity

profile and indicate the particular confining potential which will result

in such profile. Here we derive what PDE the fluctuation of velocity

potential follows at independent order of length scale in a stationary,

non-homogeneous Bose-Einstein condensation. A global solution of

this model will help continuous velocity tracking backward from flat

infinity to the analogue event horizon in such system . Solutions of

these PDEs i.e fluctuation fields, are significant to calculate Hawking

radiation in analogue model.
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Chapter 1

Introduction

1.1 Brief history of Analogue gravity

Analogue model of General Relativity in condensed matter systems have con-

siderable indication where curved space-time emerges from background quantum

many-body systems. Key point to understand that some collective properties of

these condensed matter systems satisfy equation of motion equivalent to relativis-

tic fields in curved spacetime (please refer to [1]).

In this thesis we have discussed about how acoustic fluctuation behaves around

a sonic horizon (analogous to black-hole horizon). It had been already known

that this kind of analogy can be drawn for propagation of sonic waves in inviscid

fluid however the possibility of blackhole configuration in this kind of fluid sys-

tems was first explained by Unruh in a seminal paper, 1981(refer to [2]). This

publication was taken up by T. Jacobson, 10 years later ([3]). After 7 years in

1998 a significant work has been done by Visser (please refer to [4]) to establish a

rigorous theorem on gravitational analogy with fluid model and discussed analogy

in quantities like horizon, ergosphere and surface-gravity.
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1.1 Brief history of Analogue gravity

1.1.1 Emergent curved spacetime

In static homogeneous inviscid fluid sound waves follows

∂2
t ψ = c2∇2ψ

For sound wave in fluid medium this ψ represents acoustic pressure (local devi-

ation from ambient pressure) and c is the velocity of sound. But how acoustic

perturbation propagates through ”non-homogeneous flowing fluid” (check [4]) is

more subtle than expected, this is addressed by Visser’s 1998 paper which is dis-

cussed as follows:

” Theorem1 : If a fluid is barotropic and inviscid, and the flow is irrotational

(though possibly time dependent) then the equation of motion for the velocity po-

tential describing an acoustic disturbance is identical to the d’Alembertian equa-

tion of motion for a minimally coupled massless scalar field propagating in a (3

+ 1)–dimensional Lorentzian geometry

∆ψ ≡ 1√
−g

∂µ(
√
−ggµν∂ν)ψ = 0.”

So basically propagation of acoustic fluctuation depends on underlying metric-

gµν(t, r) (where g = det[gµν ]), as acoustic perturbation travel along the null

geodesics of the metric (also known as acoustic metric). Speed of this fluctuation

in the field (speed of sound) plays the fundamental role as of light speed in

spacetime (see [5]). Here the stucture of the metric is

gµν(t, r) = Λ

−(c2 − v2) −v

−v I3×3

 (1.1)

1refer to [4]
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1.1 Brief history of Analogue gravity

which explicitly depends on velocity of fluid v and velocity of sound in the fluid

c. Λ is a conformal factor (will be discussed) and I3×3 is the 3 by 3 identical

matrix. If the fluid is moving and non-homogeneous (velocity and density profile

changes from point to point) then Riemannian tensor associated with metric will

be non-zero which imply that background is effectively curved ([4]).

1.1.2 Emergence of curvature from fluctuation in fluid dy-

namics

We will show proof of the following theorem and equation of motion for the

acoustic fluctuation by Visser’s ([4]) formulation. In a classical non-relativistic

fluid of local density ρ(t, r), velocity v(t, r) and pressure p(t, r) the fundamental

equations are (as follows in [6])

∂tρ+∇.(ρv) = 0 (1.2)

−∂tψ +
1

2
(∇ψ)2 + h(p) + V = 0 (1.3)

respectively known as Continuity equation and Euler equation. Here

v = −∇ψ (1.4)

ψ is velocity potential, h(p) is specific enthalpy and V is external potential. Now

we can linearize (refer to [4]) above two equations (1.2 and 1.3) around a classical

3



1.1 Brief history of Analogue gravity

background solution (ρ0, p0, ψ0) i.e by

ρ = ρ0 + ερ1 +O(ε2) (1.5)

p = p0 + εp1 +O(ε2) (1.6)

ψ = ψo + εψ1 +O(ε2) (1.7)

By linearizing (1.2) we get at O(1) and O(ε)

∂tρ0 +∇.(ρ0v0) = 0 (1.8)

∂tρ1 +∇.(ρ0v1 + ρ1v0) = 0 (1.9)

Now as ∇h = 1
ρ
∇p and using it in Euler equation we get at O(1) and O(ε)

−∂tψ0 +
1

2
(∇ψ0)2 + h(p0) + V = 0 (1.10)

−∂tψ1 +
p1

ρ0

− v0.∇ψ1 = 0 (1.11)

As the fluid is barotropic we can find linearized density fluctuation as

ρ1 =
∂ρ

∂p
p1 =

∂ρ

∂p
ρ0

(
∂tψ1 + v0.∇ψ1

)
(1.12)

Using (1.11) in (1.9) we will get the wave equation for linearised velocity potential

as

∂t

(
∂ρ

∂p
ρ0

(
∂tψ1 + v0.∇ψ1

))
+∇.

(
ρ0∇ψ1 −

(
∂ρ

∂p
ρ0

(
∂tψ1 + v0.∇ψ1

))
v0

)
= 0

(1.13)

We can algebraically simplify equation (1.13) by identifying local speed of sound

c−2 ≡ ∂ρ

∂p
(1.14)

4



1.1 Brief history of Analogue gravity

Now we can construct a symmetric 4× 4 matrix as

fµν(t, r) =
ρ0

c2

−1 −vj0
−vj0 (c2δij − vi0v

j
0)

 (1.15)

Where δ is kronecker delta. Using (3+1) dimensional space time coordinate we

can write (1.12) as

∂µ(fµν∂νψ1) = 0 (1.16)

where greek indices run for 0-3 and Roman indices run for 1-3. Now it is easy to

show that

f = det[fµν ] = −ρ
4
0

c2
(1.17)

If gµν be the effective metric then we identify the analogy with gravity by noticing

that fµν =
√
−ggµν where g = det[gµν ] This imples that

det[fµν ] = det[
√
−ggµν ] =

(√
−g
)4

det[gµν ] =
(√
−g
)4

g−1 = g (1.18)

And g = −ρ40
c2

. Explicit form of metric can be written as

gµν(t, r) =
ρ0

c

−(c2 − v2
0) −vj0

−vi0 δij

 (1.19)

If we generalise this determinant to (d+1) dimensional model we will get

g = f
2

d−1 =

[
(−1)d

ρd+1
0

c2

] 2
d−1

(1.20)

It is clear from (1.19) that this formalism breaks down for (1+1)D model ([7]).

However if we consider some symmetry in (3+1) dimensional model for example

a three dimensional system with planer symmetry that transforms this (3+1)D

5



1.2 Ideal fluid for analogue gravity models: BEC

system into a effective (1+1)D model (we will discuss this in context of velocity

profile).

So (3+1) dimensional d’Alembertian equation of motion is nothing but the wave

equation for ψ1 in (1.15) which can be written as

∆ψ1 ≡
1√
−g

∂µ(
√
−ggµν∂ν)ψ1 = 0 (1.21)

And Acoustic interval can be written as

ds2 = gµνdx
µdxν =

ρ0

c

[
− c2dt2 + (dxi − vi0dt)δij(dxj − v

j
0dt)

]
(1.22)

So the theorem is proved. It is to be noted that signature of the metric is indeed

(−,+,+,+) i.e it is a Lorentzian. It should also be noted that here we are dealing

with a bi-metric system where background fluid couples to flat-Minkowski metric

(ηµν = diag[−c2
light, 1, 1, 1]) and acoustic fluctuation couples to effective acoustic

metric gµν . This acoustic metric gµν suggest that there will be 3 independent

scaler ψ0(t,x), ρ0(t,x) and c(t,x), however continuity equation reduce it to two,

ψ0(t,x) and c(t,x) ([4]).

1.2 Ideal fluid for analogue gravity models: BEC

After 2000 when Garay et.al proposed to simulate black-hole in Bose-Einstein

Condensate ( please refer to [8]) it was first Barcelo, Liberati and Visser (see [9])

who described how black-holes created in BEC can be used to simulate Hawking

radiation1. Among other condensed matter system, BEC is preferred as back-

ground fluid because of the following reasons

• Temperature for forming BEC [11] is in nK range so it is easier to detect

1for Hawkinng radiation see [10]

6



1.2 Ideal fluid for analogue gravity models: BEC

Hawking temperature and Hawking Radiation.

• Local speed of sound is much smaller than velocity of light and experimen-

tally achievable.

• High degree of quantum coherence.

7



Chapter 2

Theoretical overview of

Bose-Einstein condensates (BEC)

For the past two or three decades the rapid experimental advancements in the

study of Bose-Einstein condensates (BEC) compelled the scientific community

to rethink about it’s applicability in various aspects of statistical physics as well

as other branches. However the theoretical development started back in the

year of 1924-25 with the help of Albert Einstein and Prof S.N.Bose. Einstein

predicted with the help of a scientific article written by Prof S.N.Bose that a

phase-transition occurs in a gas of non-interacting particles (now called Bosons)

with integral spin[12]. First experimental evidence for the long predicted theory

came in 1995, where BEC had been actually seen in dilute atomic gases[13].

2.1 The elementary statistics of Bosons

Bosons follow an elegently unique probability distribution which results in nu-

merous natural phenomena in quantum regime so quantum statistics of Bosons

is an intriguing as well as useful subject to learn and nurture.

8



2.1 The elementary statistics of Bosons

2.1.1 Ideal Bose gas

In this section we will discuss about the statistics of ideal Bose-gas using grand

canonical partition function. For most of this part we’ll use the formalism followed

by Pitaevskii and Stringari in their text-book on BEC [14].

Suppose in a system, attached to a reservoir of temperature T and chemical

potential µ, there are N ′ number of particles in a state k with energy Ek. In

grand canonical ensemble, probability of occurrence of this configuration is

PN ′(Ek) =
e(µN ′−Ek)

Z(β, µ)
, (2.1)

Where Z(β, µ) is the the well known grand canonical partition function and

β is the inverse temperature defined as β = 1
kBT

. The grand partition function

can be calculated as

Z(β, µ) =
∞∑

N ′=0

eβµN
′∑

k

e−βEk . (2.2)

Summation over k includes complete set of eigenstate of the Hamiltonian with

energy Ek. Now let us consider that the above mention system is characterised

by independent particle Hamiltonian

Ĥ =
∑
i

Ĥi (2.3)

and now the eigenstates k are specified by the microscopic occupation number

{ni} of the single particle state. These single particle state are described by

solving single particle Schrodinger equations

Ĥiψi = εiψi (2.4)

9



2.1 The elementary statistics of Bosons

where εi is the energy eigenvalue of ith single particle state. Now from our above

arrangement we can wright

N ′ =
∑
i

ni (2.5)

Ek =
∑
i

εini (2.6)

Calculating the grand partition function itself is very tricky and tough job, how-

ever from the previous setup we can calculate it after some thermodynamical

consideration as elaborately discussed in [14]. Partition function comes out to be

Z(β, µ) =
∏
i

1

1− eβ(µ−εi)
(2.7)

Now it is quite straightforward to calculate the total number of particles N in

the system

N(β, µ) = − ∂

∂µ

(
− kBT lnZ(β, µ)

)
T

(2.8)

If n̄i is the average occupation number in ith single particle state then we can

wright from (2.7) and (2.8) as

∑
i

n̄i = N =
∑
i

1

eβ(εi−µ) − 1

which implies

n̄i =
1

eβ(εi−µ) − 1
. (2.9)

This is the renowned Bose-Einstein distribution function. Inspecting (2.9) it

is quite evident that chemical potential µ can never be less than that of single-

particle ground state energy. If ε0 be the ground state energy then µ < ε0 implies

a negative occupation number, which is not physical. However if µ → ε0 then

10



2.1 The elementary statistics of Bosons

occupation number

N0 = n̄0 =
1

eβ(ε0−µ) − 1
(2.10)

of the lowest energy state increases exponentially. This is the starting point

of Bose- Einstein Condensation. Note that if µ become identical with ε0 then

occupation number diverges.

2.1.2 Theory of condensation

Above treatment suggest that N0 and N − N0(let’s call it NT ) behave very dif-

ferently(see eqn 3.23 of [14]) and we can always separate them out and wright

N = N0 +NT (2.11)

where

NT (β, µ) =
∑
i 6=0

n̄i(β, µ)

is the part of bosonic gase, out of the condensate. This NT is a smooth function of

µ, for a fixed temperature T and reaches maximum Nc at µ = ε0 (see fig below).

11



2.2 Many-body formalism for weakly-interacting Bose gases

Now if at temperature Tc (maximum temperature the system permit to satisfy

(2.11)) Nc(T = Tc, µ = ε0) = N and then effect of N0 is negligible. However at

T < Tc effect of N0 is significant in order to satisfy the normalization condition

(2.11). So in thermodynamic limit (N0

N
6= 0) as Nc < N then µ is almost equal

to ε0 and the system exhibits BEC. This temperature Tc is the critical tempera-

ture below which Bose-Einstein condensation takes place. One can find detailed

theoretical discussions on how the occupancy fraction for an ideal Bose gases in

BEC changes with temperature in [14]. For a elaborate discussion on how a BEC

is experimentally formed in an-isotropic harmonic trap please refer to [15].

2.2 Many-body formalism for weakly-interacting

Bose gases

Bosonic gases trapped in an external potential below a critical temperature

T < Tc macroscopic number of atoms occupy the ground state and condensa-

tion takes place(N0 ∼ N) as we discussed in the previous section.

2.2.1 Dilute Bose gas

This macroscopic occupency in BEC can be represented as quantum field operator

Ψ(r) and Ψ†(r). They respectively annihilate and create particle at a point r. In

Bosonic system field operator satisfy well-known equal-time commutation relation

[Ψ(r),Ψ†(r′)] = δ(r− r′)

[Ψ(r),Ψ(r′)] = 0 = [Ψ†(r),Ψ†(r′)] (2.12)

12



2.2 Many-body formalism for weakly-interacting Bose gases

Hamiltonian of the system can be written as

Ĥ =

∫ (
~2

2m
∇Ψ†∇Ψ

)
dr +

∫ (
∇Ψ†Vext∇Ψ

)
dr +

1

2

∫
Ψ†Ψ†′V (r′ − r)ΨΨ′drdr′

(2.13)

Where Vext is the external trapping potential, m atomic mass and V (r′ − r) is

the two body interaction potential. These field operator can be written as (in

momentum space)

Ψ(t, r) =
∑
p

âp
1√
V
eip.r/~ (2.14)

where âp annihilate a particle in single particle state with momentum p and the

gas takes a volume V uniformly. From (2.14) and (2.13) we get

Ĥ =
∑
p

p2

2m
â†pâp +

1

2V

∑
p1,p2,q

Vqâp1+qâp2−qâp1 âp2 (2.15)

where q = r′ − r and Vq =
∫
V (r) exp (−iq.r/~)dr. For BEC we consider low

momentum (low energy) so major interaction is due to s wave scattering. Hence

instead of V (r′−r) which shows a spike when interaction distance is short (where

quantum correlation are strong) (see fig in the next page), we can use an effective

potential Veff (r) which retains the s wave scattering length a. This Veff (r) is a

soft potential (slowly varying) in which perturbation theory can be applied. So

using this potential well balance the many-body problem.

13



2.2 Many-body formalism for weakly-interacting Bose gases

Hamiltonian can be written as

Ĥ =
∑
p

p2

2m
â†pâp +

V0

2V

∑
p1,p2,q

Vqâp1+qâp2−qâp1 âp2 (2.16)

Where V0 =
∫
Veff (r)dr. Now according to Bogoliubov formulation we substitute

â0 =
√
N0 (N0 ∼ N) which supports the effective potential consideration.

In a weakly interacting gas, at T = 0, occupancy in states with p 6= 0 is negligible.

Neglecting all p 6= 0 terms and putting â =
√
N (as N0 ∼ N ) in equation (2.16)

we get ground state energy as

E0 =
N2V0

2V
(2.17)

14



2.2 Many-body formalism for weakly-interacting Bose gases

Now V0 can be written as a V0 = 4π~2a
m

(see [14]). So now

E0 =
Nng

2
(2.18)

where g = 4π~2a
m

is the interaction strength (as a function of a) and n = N
V

. (2.18)

shows that for dilute gases pressure for ground state doesn’t reach zero at zero

temperature.

P = −∂E0

∂V
=
gn2

2
.

If c is the velocity of sound then from hydrodynamic relation we get

1

mc2
=
∂n

∂P
=

1

gn

So c =
√

gn
m
. This c infact coincides with the form one can get from the dispersion

relation of the elementary fluctuation in low energy limit[14] .

2.2.2 Quantum fluctuation and local speed of sound

In the previous section we ignore p 6= 0 in (2.16). As a one step ahead if we

consider higher order fluctuation then we have to retain upto quadratic terms for

particle operator1. Taking this approximation we can find the corrected ground

state energy as

E0 =
Nng

2
+

1

2

∑
p 6=0

[
ε(p)− gn− p2

2m
+
mg2n2

p2

]
(2.19)

where

ε(p) =

(
gn

m
p2 +

( p2

2m

)2

)1/2

(2.20)

1for a detailed analysis refer to section 4.2 in [14]
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2.3 Local Gross-Pitaevskii equation

is the well known Bogoliubov dispersion relation. This is the dispersion re-

lation of non-interacting quasi particle (phonons) which describe the fluctuation

in the interacting Bose gas. For small momentum regime dispersion relation for

these quasi particles takes the form

ε(p) = cp (2.21)

where c =
√

gn
m

is velocity of sound and it is same as what we get in the previous

section.

2.2.3 Healing length

For high momentum regime dispersion relation takes the form

ε(p) ≈ p2

2m
+ gn (2.22)

The transition occurs between this two regime is when p ∼ mc i.e when p2

2m
= gn.

For p = ~
ξ0

, we can find

ξ0 =

√
~2

2mgn
(2.23)

where this ξ0 is known as Healing length. This is also known as characteristics

interaction length. We will discuss it’s application in analogue gravity perspective

in next chapter.

2.3 Local Gross-Pitaevskii equation

If the temperature of systems bring down below the critcal temperature (Tc), then

it condenses and according to Bogoliubov prescription [16] Ψ can be seperated as

16



2.3 Local Gross-Pitaevskii equation

a macroscopic wavefunction ψ plus a fluctuation.

Ψ(t, r) = ψ(t, r) + ∆ψ(t, r) (2.24)

In dilute atomic cases at very low temperature the non-condesate part ∆ψ(t, r)→

0. This mean-field approximation is an excellent approach to investigate the

evolution of ψ in weakly interacting gases (s wave scattering length is much

smaller than average inter-atomic distance) in thermodynamic limit. For those

gases dynamics of ψ can be found by following prescription.

Effective potential consideration in the 2.2 section will be again helpful here, as

we will substitute V (r′ − r) by gδ(r′ − r) where g = 4π~2a
m

V (r′ − r) = gδ(r′ − r) (2.25)

Using (2.13) and (2.25) we get

Ĥ =

∫ (
~2

2m
∇Ψ†∇Ψ

)
dr +

∫ (
∇Ψ†Vext∇Ψ

)
dr +

g

2

∫ (
Ψ†Ψ†ΨΨ

)
dr (2.26)

Using (2.24) and by Heisenberg’s evolution of Ĥ we get

i~∂tψ =

(
~2

2m
∇2 + Vext + g|ψ|2

)
ψ (2.27)

This is a non-linear Schrodinger equation known as Gross-Pitaevskii equa-

tion. This equation shows the complex dynamics of order paremeter ψ for a

in-homogeneous condensate [17],[18].

17



Chapter 3

Analogue gravity model in BEC

system

As we discussed in previous chapters that a BEC consists of high degree of quan-

tum coherence, very cold temperature, low velocity of sound and as is convenient

to work with in experimental setup, it provide the best test field for semi-classical

gravity phenomenon such as hawking radiation. As a matter of fact BEC is ex-

tensively used in analogue models of gravity [7].

3.1 Dynamics of condensate

We can express Gross-Pitaevskii equation in terms of independent quantities (as

we discussed in first chapter), velocity of sound c and velocity of fluid flow v for

a hydrodynamic system. Using Madelung ansatz for the order parameters

ψ(t, r) =
√
n(t, r)eiθ(t,r)/~ (3.1)

18



3.2 Dumb-hole configuration in BEC

where |ψ(t, r)|2 = n(t, r) and v ≡ ∇θ
m

, GP equation can be written as two coupled

equations

∂tn = − 1

m
∇.(∇θ) (3.2)

∂tθ = − 1

2m
(∇θ)2 − gn− Vext − Vquantum (3.3)

where

Vquantum = − ~2

2m

∇2
√
n√
n

. (3.4)

This Vquantum is known as ’quantum potential’. Generally this term is neglected

in standard literature, instead we will use it to investigate dynamics at different

order of length scale which we will discuss in next chapter elaborately. (3.2) and

(3.3) are Continuity equation and Euler equation respectively, which describe the

condensate in a hydrodynamic context.

3.2 Dumb-hole configuration in BEC

To construct an analogue gravity model first we will carefully construct a back-

ground velocity field and will use the formalism described in previous section to

analyze the dynamics of the condensate.

3.2.1 (1 + 1) dimensional model

In this section we will construct a effective (1+1) dimensional1 BEC configuration

which consists of varying velocity and density profile which will be stationary i.e

time independent. We will choose the velocity background field in such a way

that

1Please refer to section (1.1.2)
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3.2 Dumb-hole configuration in BEC

• Parameters are so chosen that there is a single accoustic black-hole at x = x0

where x0 is adjustable. This is analogues to general relativistic black-hole

horizon.

• Left side of the horizon behaves as general relativistic singularity, from

which nothing can escape.

• Right side of the horizon mimics the asymptotic behaviour (as x→ +∞) of

the general relativistic black-hole i.e velocity and density will be uniform.

• We will also include smooth transition between this two region to avoid any

discontinuity at horizon x0 .

• We will also like to include parameters which help us to control the analytic

structure of the background fluid.

• As per the convention we will choose the fluid motion from right to left. So

velocity will always be negative.

Major work has been done on this by Corley and Jacobson (refer to [19]) in 1996

and by Parentani (see [20]) in 2009. Unlike these, in this work we will discuss

about possibility of a global solution (where x ∈ (−∞,+∞) ) at different order

of length scale.

So let’s write a guessed velocity profile and check whether they follow the rules

previously mentioned. This velocity can be written as

v(x) = −α + β tanh γx (3.5)

where α ensure that overall velocity remain negative (α > β). |v| is the magnitude

of the velocity. β defines asymptotic value of velocity and γ defines how fast the

velocity changes in transition region or in other word what will be the width of
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3.2 Dumb-hole configuration in BEC

the transition region. It is evident that γ has a dimension of inverse of length

and α, β have dimension of velocity i.e LT−1 .

Here if γ →∞ i.e a step-like discontinuity which is discussed in many papers (for

example see [19]). Considering this velocity profile, the velocity of sound (refer

to section 2.2.1 ) comes out to be of the form c ∝ 1√
α−β tanh γx

(we will discuss

this in next chapter). If we consider |v| = c then we will get a sonic horizon at

x = x0 (explicit form will be calculated in next chapter). Left hand asymptotic

region of this x0 point is the singularity (subsonic region ) as nothing can escape

towards horizon. However there is no intrinsic singularity in this region unlike

general relativity. tanh is a smooth function for x ∈ (−∞,+∞) so there is no

discontinuity in velocity field. And most of all fluid velocity and density is uniform

for x→∞.

3.2.2 Nondimensionalization

It is always useful to non-dimensionalize an equation so that number of parame-

ters remain minimum. We will use γ and α to make Euler and continuity equation
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3.2 Dumb-hole configuration in BEC

dimensionless in our model.

∂t′n̄ = −∇′.(∇′θ̄) (3.6)

∂t′ θ̄ = −1

2
(∇′θ̄)2 − ḡn̄− V̄ext +

~2

2l2
∇′2
√
n̄√

n̄
(3.7)

where x′i = γxi and t′ = αγt are scaled time and space coordinate where xi ≡

(x, y, z). And

n̄ =
n

γ3
(3.8)

θ̄ =
θγ

mα
(3.9)

ḡ =
γ3g

mα2
(3.10)

¯Vext =
Vext
mα2

(3.11)

l =
mα

γ
(3.12)

are new dependent parameters. In new coordinate velocity can be written as(
from (3.9) and (3.5)

)
v̄(x′) =

v

α
= −1 + ν tanhx′ (3.13)

where ν = β
α
< 1. These bared quantities are new dimensionless parameters of

our model. We can easily revert back to traditional parameters by using (3.8)

to (3.12). n̄ is dimensionless density, θ̄ is dimensionless phase parameter which

gives rise to velocity in scaled coordinate (3.13), ḡ and ¯Vext are dimensionless po-

tential strength and external potential respectively. l has a dimension of angular

momentum which makes ~2
2l2

in (3.7) dimensionless.

Generally the last term in (3.7) is neglected as ~2
2l2

is of the order of ξ2
0 (Thomas-
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3.2 Dumb-hole configuration in BEC

Fermi limit) where ξ0 is the Healing length of condensate. However we will keep

it and use it as an expansion parameter to perturbatively expand fluctuation field

θ̄ in order to follow it’s dynamics at different order of length scale.
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Chapter 4

Analysis of (1+1) dimensional

model on multiple independent

length scale

We discussed in previous chapter that as ξ0 is a small quantity so we will use

ε = γξ0 as a expansion parameter to expand θ̄ and n̄. Dynamics at different

order of ε are independent of each other. Here ξ0 = ~√
2mgN

, where N is the far

away (x → ∞) density of the condensate. Explicit form of N will be calculated

in next section. Now we can perturbatibely expand n̄ and θ̄ around a classical

background solution n̄0 and θ̄0 as

n̄ = n̄0 + εn̄1 + ε2n̄2 (4.1)

θ̄ = θ̄0 + εθ̄1 + ε2θ̄2 (4.2)

Many significant work has been done on linearized Gross-Pitavskii equation[7] i.e

keeping term upto 1st order of ε. We will keep expansion upto order ε2 as the

quantum potential term in (3.7) is itself upto ε2 as ~2
2l2

= ḡN̄ε2, and we want to
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4.1 Background velocity and density: ε0 order

see dynamics upto ε2 order. N̄ in previous line is dimensionless far away density

which will be dicussed in next section. Now we will substitute (4.1) and (4.2) in

(3.7) and (3.6) and will get 3 set of coupled equation in different order of ε. We

will discuss them one by one.

4.1 Background velocity and density: ε0 order

At 0th order, coupled equation comes of as

∂n̄0

∂t′
+∇′.(n̄0∇′θ̄0) = 0 (4.3)

∂θ̄0

∂t′
+

1

2
(∇′θ̄0)2 + ¯Vext + ḡn̄0 = 0 (4.4)

We assume that background velocity and density are time-independent. As we

have taken an effective (1+1) dimensional model we will consider velocity to be

varying in only one direction i.e along x-axis (as we have already discussed this

in previous chapters). We can take v(y) = 0 and v(z) = 0 and hence ∂θ̄0
∂y′

= 0 and

∂θ̄0
∂z′

= 0 and v(x) = ∂θ̄0
∂x′

= −1 +ν tanhx′. So from equation (4.3) we can calculate

the background density.
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4.2 Acoustic metric: ε1 order

n̄0 =
η

1− ν tanhx′
(4.5)

Here η is a positive real number. Magnitude of η can be found from normalisation

of n̄0 (please refer to [14]). Quite evident from (4.5) that far away (where x→∞

i.e x′ = γx→∞) dimensionless density is (see figure in previous page)

N̄ =
η

1− ν
(4.6)

and N = γ3N̄ . If we have to maintain this background formation we have to

keep pushing it by a external potential, which can be formulated from (4.4) as

¯Vext = − ḡη

1− ν tanhx′
− 1

2
(1− ν tanhx′)2 (4.7)

Above description of background condensate from a hydrodynamic context shows

what it takes to fix a stationary velocity profile in it.

4.2 Acoustic metric: ε1 order

4.2.1 Effective metric from underlying BEC

At 1st order of ε

∂n̄1

∂t′
+5′.(n̄05′ θ̄1 + n̄15′ θ̄0) = 0 (4.8)

∂θ̄1

∂t′
+ (5′θ̄0.5′ θ̄1) + ḡn̄1 = 0 (4.9)
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4.2 Acoustic metric: ε1 order

If we substitute n̄1 from (4.9) to (4.8) we will get a 2nd order PDE of θ̄1. Explicitly

we can write the PDE as,

∂

∂t′
(−1

ḡ

∂θ̄1

∂t′
) +

∂

∂t′
(−1

ḡ

∂θ̄0

∂x′
∂θ̄1

∂x′
) +

∂

∂x′
(−1

ḡ

∂θ̄0

∂x′
∂θ̄1

∂t′
)+

∂

∂x′
[(n̄0 −

1

ḡ
(
∂θ̄0

∂x′
)2)
∂θ̄1

∂x′
] + n̄0(

∂2θ̄1

∂y′2
+
∂2θ̄1

∂z′2
) = 0

Introducing (3+1) dimensional space-time coordinate (Greek indices run from 0-3

and Roman indices run from 1-3),

x′µ ≡ (t′, x′i) (4.10)

the wave equation for θ̄1 can be easily written as,

∂′µ(fµν∂′ν θ̄1) = 0 (4.11)

where fµν is a symmetric 4× 4 matrix and can be written as

fµν =


−1
ḡ

−1
ḡ
∂θ̄0
∂x′

0 0

−1
ḡ
∂θ̄0
∂x′

n̄0 − 1
ḡ
(∂θ̄0
∂x′

)2 0 0

0 0 n̄0 0

0 0 0 n̄0

 (4.12)

If we identify fµν =
√
−ggµν , where gµν is the effective metric generated from the

background dynamics of BEC and g = det[gµν ], equation (4.11) can be written
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4.2 Acoustic metric: ε1 order

in covarient form which is

∆θ̄1 ≡
1√
−g

∂′µ(
√
−ggµν∂′ν)θ̄1 = 0 (4.13)

where

gµν =

√
n̄0

ḡ


v̄2 − n̄0ḡ −v̄ 0 0

−v̄ 1 0 0

0 0 1 0

0 0 0 1

 (4.14)

From equation (4.13) we can see that acoustic perturbation propagate according

to a d’Alembertian equation of motion which is similar to the wave equation of a

mass-less scalar field propagating in a curved space-time (as we discussed in first

chapter). Determinant of metric can be found from equation (4.14) as

g = det[gµν ] = − c̄
6

ḡ4
(4.15)

As we have already identified that fµν =
√
−ggµν hence,

det[fµν ] = det[
√
−ggµν ] =

(√
−g
)4

det[gµν ] =
(√
−g
)4

g−1 = g (4.16)

4.2.2 Velocity of sound and sonic horizon

If we compare equation (4.14) and equation (1.18), it is quite simple to identify

that

c̄2 = n̄0ḡ =
ḡη

1− ν tanhx′
(4.17)

Here c̄ = c
α

is the dimensionless velocity of sound in BEC(please refer to the image

in previous chapter). We can revert back to our traditional parameter by using
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4.2 Acoustic metric: ε1 order

(3.8) and (3.10) and then structure of c comes out to be same as we discussed in

section (2.2.1). It is quite straightforward that at the horizon

v̄2 = c̄2 (4.18)

⇒ |v̄| = +c̄ (4.19)

So if horizon is at x′ = x′0 then at x′0

ḡη

1− ν tanhx′0
= (1− ν tanhx′0)2

Then we have

x′0 = tanh−1

(
1− (ḡη)1/3

ν

)
(4.20)

So now the exact location of horizon is identified in terms of already fixed quan-

tities. At x′0 there is a transition between subsonic region to supersonic region.

We can change the position of sonic horizon by changing parameters in system.

If we choose ḡη = 1 then horizon will be at x = 0. Analytically this choosing may

seem easy but to experimentally achieving this is a different scenario. there will

be a constraint on η which will be imposed on by the normalization condition of

atomic density (see [14]).

4.2.3 Dynamics of phase fluctuation

In equation (4.11) the θ̄1 term is the ”Quantum acoustic representation” of per-

turbation (see [7]) which means they are complex quantum field. Here we will

treat θ̄1 as a classical wave which can be quantized later. These algebric classical

solutions indeed help us to understand the nature of in going and outgoing modes.
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4.2 Acoustic metric: ε1 order

If we write (4.11) in more explicit form

∂

∂t′

(
∂θ̄1

∂t′

)
+

∂

∂t′

(
(−1 + ν tanhx′)

∂θ̄1

∂x′

)
+

∂

∂x′

(
(−1 + ν tanhx′)

∂θ̄1

∂t′

)
(4.21)

+
∂

∂x′

[(
(1− ν tanhx′)2 − ηḡ

(1− ν tanhx′)

)
∂θ̄1

∂x′

]
= 0

We can see that algebraically the equation is a polynomial of infinite order.

Mathematically this is a problem however we can get rid of the tanh function by

a substitution tanh x′ = z, then the equation becomes finite order polynomial.

So θ̄1 become a function of z and t′. The first term in (4.21) remain as it is

∂

∂t′

(
∂θ̄1(x′, t′)

∂t′

)
=
∂2θ̄1(z, t′)

∂t′2
.

2nd term

∂

∂t′

(
(−1 + ν tanhx′)

∂θ̄1

∂x′

)
= (−1 + νz)(1− z2)

∂2θ̄1

∂z∂t′

3rd term

∂

∂x′

(
(−1 + ν tanhx′)

∂θ̄1

∂t′

)
= ν(1− z2)

∂θ̄1

∂t′
+ (−1 + νz)(1− z2)

∂2θ̄1

∂z∂t′

4th term

∂

∂x′

[(
(1−ν tanhx′)2− ηḡ

(1− ν tanhx′)

)
∂θ̄1

∂x′

]
=
(
1− z2

)2
(
− ηνḡ

(1− νz)2
− 2ν(1− νz)

)
∂θ̄1

∂z

+(1− z2)

(
(1− νz)2 − ηḡ

1− νz

)(
(1− z2)

∂2θ̄1

∂z2
− 2z

∂θ̄1

∂z

)
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4.2 Acoustic metric: ε1 order

Now dynamics of θ̄1 becomes

(1−2zν+z2ν2)
∂2θ̄1

∂t′2
+

(
−2ν3z5+6ν2z4+

(
2ν3 − 6ν

)
z3+

(
2− 6ν2

)
z2+6νz−2

)
∂2θ̄1

∂z∂t′
+

(
ν4z8−4ν3z7 +

(
6ν2 − 2ν4

)
z6 + z5

(
ηνḡ + 8ν3 − 4ν

)
+ z4

(
−ηḡ + ν4 − 12ν2 + 1

)
+z3

(
−2ηνḡ − 4ν3 + 8ν

)
+ z2

(
2ηḡ + 6ν2 − 2

)
+ z (ηνḡ − 4ν) + 1− ηḡ

)
∂2θ̄1

∂z2
+

(
4ν4z7−14ν3z6+

(
18ν2 − 6ν4

)
z5+z4

(
ηνḡ + 20ν3 − 10ν

)
+z3

(
−2ηḡ + 2ν4 − 24ν2 + 2

)
+

(
12ν − 6ν3

)
z2 + z

(
2ηḡ + 6ν2 − 2

)
− 2ν − ηνḡ

)
∂θ̄1

∂z
.

+

(
2zν2 + ν(ν2 − 1)z2 + 2z3ν2 − z4ν3 + ν

)
∂θ̄1

∂t′
= 0 (4.22)

Here we have used
∂z

∂x′
= sech2(x′) = 1− z2

If we want to set horizon at x′0 = 0 above equation becomes

(1−2zν+z2ν2)
∂2θ̄1

∂t′2
+

(
−2ν3z5+6ν2z4+

(
2ν3 − 6ν

)
z3+

(
2− 6ν2

)
z2+6νz−2

)
∂2θ̄1

∂z∂t′
+

(
ν4z8 − 4ν3z7 +

(
6ν2 − 2ν4

)
z6 + z5

(
8ν3 − 3ν

)
+ z4

(
+ν4 − 12ν2

)
+z3

(
+6ν − 4ν3

)
+6ν2z2−3νz

)
∂2θ̄1

∂z2
+

(
−3ν+4ν4z7−14ν3z6+

(
18ν2 − 6ν4

)
z5+z4

(
20ν3 − 9ν

)

+z3
(
2ν4 − 24ν2

)
+
(
12ν − 6ν3

)
z2+6ν2z

)
∂θ̄1

∂z
+

(
ν−2zν2+ν(ν2−1)z2+2z3ν2−z4ν3

)
∂θ̄1

∂t′
= 0.

(4.23)
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4.3 Correction to the fluctuation: ε2 order

This above choosing can help investigate the dynamics very near to the horizon

as one can possibly pertubatively expand z very near to x′ = 0 and retain lower

orders of z. Solutions of this θ̄1 are actually relevent to hawking effect (as dis-

cussed first chapter) as after imposing some intelligent boundary condition we

can get hawking mode solution and at the horizon, outgoing mode solutions gives

rise to Hawking effect (see [10]).

4.3 Correction to the fluctuation: ε2 order

At this order

∂n̄2

∂t′
+∇′.(n̄0∇′θ̄2 + n̄2∇′θ̄0 + n̄1∇′θ̄1) = 0 (4.24)

∂θ̄2

∂t′
+ (∇′θ̄0.∇′θ̄2) +

1

2
(∇′θ̄1)2 + ḡn̄2 − ḡN̄

∇′2
√
n̄0√

n̄0︸ ︷︷ ︸ = 0 (4.25)

So we will actually get to know about the effect of quantum potential on fluc-

tuation in local Gross-Pitaevskii model. However this will be a small correction

(of the order of ξ2
0) to the condensate wavefunction. In equation (4.25) the term

underlined by curly bracket is the effect of quantum potential in the dynamics

of Hawking fluctuation. As this term is consists of zeroth order density function,

can be analytically calculated.

4.4 Discussion and outlook

Hawking radiation is essentially the thermal spectrum of outgoing particles (in

a given outgoing packet) created from initial vaccum state, calculated in free-fall

frame of black-hole[10]. So at horizon there is a ”mode-conversion” between in-

32



4.4 Discussion and outlook

going wave-packet and outgoing wave-packet. To accurately calculate the number

of particles in wave-packet (solution of θ̄1) one have to propagate the packet back

in time and calculate the norm of negative energy part of the solution ([19]).

These formulation are discussed in [3] and [20] rigorously however, there is a

discontinuity in space (to be precise in x direction) considered in these two papers

(and this is a general consideration in standard literature of analogue gravity1 )

which makes the dynamics obviously incomplete and doubtful (at horizon). In

our model, however transition around horizon is smooth which makes the model

more complete. From equation (4.24) and (4.25) it is evident that at ε2 order

we can get a space dependent dispersion relation which may indicate interesting

property about the dumb-hole configuration. So the Analogue model described in

this thesis not only eases the challanges in calculation of Hawking radiation but

also looks deeper (to the ξ2
0 order) in the dynamics around a smooth horizon. It is

important to mention that whole formulation is from a hydrodynamic context and

background is generated from the dynamics of the fluid unlike general relativity

where Einstein’s equation represents the dynamics. However the Analogue model

which establishes Einstein’s equation is yet to find and still an open question (see

[7]).

1see for reference [7]
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