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Abstract
This thesis is a mathematical exposition of the theory behind Topological Data Analy-

sis (TDA) complemented by two applications in medicine and financial realm. We start

by establishing the foundation of homology theory, then study the reconstruction of the

underlying manifold from point cloud data. Followed by the theory of persistent homology

which provides a topological summary of the significant geometrical features of the data. We

study its diagram representations, robustness and characterisation via persistence modules.

Subsequently, we study persistence landscapes and extend statistical concepts of confidence

intervals, convergence and hypothesis testing for topological summaries of the data. Fur-

thermore, we discuss the mapper algorithm, which provides network representations for high

dimensional data. Finally we end the thesis with a brief discussion on the interdisciplinary

application of TDA implemented in this project.
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Introduction

Topological Data Analysis (TDA) aims to extract underlying geometrical features of the in-

herent space from which the data has been sampled from. It marries theoretical frameworks

of algebraic topology and statistical analysis to draw geometrical inference from the sampled

data. [11]

The most popular concepts in TDA are Persistent Homology and Mapper Algorithm. [12]

Persistent Homology provides a topological summary of the data, highlighting the significant

homological features of the underlying space, from which the data has been sampled.

The topological summaries obtained from Persistent Homology are robust i.e less susceptible

to noise and can be given function representations (Landscapes). This kind of representation

enables us to perform statistics on these topological summaries to define confidence intervals

and statistical tests. In turn providing us the ability to address questions like whether two

samples are sampled from the same space, based on the underlying geometry?

While Mapper Algorithm gives a network visualisation of data represented in arbitrary di-

mension. The Mapper Algorithm is superior to other visualisation techniques such as PCA

(Principal Component Analysis), MDS (Multi Dimensional Scaling) etc. as Mapper retains

high dimensional geometrical structures. These high dimensional structures are lost in the

previously mentioned techniques as they rely on embedding/projecting the data to a lower

dimensional space.

Data has shape, and TDA acknowledges this fact to extract additional information disre-

garded by standard statistical techniques. TDA methods can be used as exploratory data

analysis tools or to generate additional input features for statistical/machine learning mod-

els. Due to the previously mentioned merits, TDA serves as a topic of great interest.

In this thesis we establish the mathematics behind TDA. We focus on Persistence Homol-

ogy and Mapper Algorithm. We also apply these concepts to medical and financial data to

develop novel insights.
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Chapter 1

Homology Theory

Homology is a mathematical concept of characterising n dimensional holes in a topological

space. The 0, 1, 2 dimensional holes represent the number of connected components, loops

and voids respectively. These homological properties are invariant under continuous defor-

mation (homotopy) of a topological space and give us a characterisation which is useful to

capture the geometric properties of the underlying space from which the point cloud data

has been sampled.

We begin the chapter by establishing the theory for combinatorial spaces called simplicial

complexes and towards the end will generalise it for any topological space. The contents of

this chapter are based on [1].

1.1 Simplicial Homology

Definition 1.1.1 (Affine Independence). Let v0, . . . , vp ∈ Rp such that
∑p

i=0 tivi = 0 ⇐⇒
ti = 0 ∀ i then v0, . . . , vp are said to be affinely independent.

Definition 1.1.2 (p - simplex, ∆p). A p- simplex σ is the convex hull of p + 1 affinely

independent points v0, . . . , vp ∈ Rp. It is denoted by σ = [v0, . . . , vp]. Any k- simplex induced

by a proper subset of {v0, . . . , vp} with cardinality |k| is a face of σ.

According to the above definition a 0-simplex is a single point with no faces; a 1-simplex is

an edge with the endpoints as its faces; a 2-simplex is a filled triangle with its edges and

3



vertices as faces and so on.

Definition 1.1.3 (Geometrical simplicial complex). A geometrical simplicial complex K in

Rd is a collection of simplices such that:

1. Any face of a simplex in K is also a simplex in K. [Hereditary property]

2. Intersection of any two simplices in K is either empty or a common face of both.

Simplices should be intuitively viewed as generalisation of triangles of arbitrary dimensions

and simplicial complexes should be viewed as spaces built by gluing these generalised trian-

gles together only at their faces.

Remark 1.1.1. The notion of geometric simplices and simplicial complexes can be gener-

alised to abstract simplices and simplicial complexes where each affinely independent point

can be replaced by an abstract mathematical object (set representation).

Once we have a simplicial complex we can look at the algebraic space spanned by the

constituent simplices as basis, we will these spaces chains.

Definition 1.1.4 (p-chain). Let K be a simplicial complex and p be its dimension. A p-chain

(Cp) is the formal sum of p-simplices in K.

Cp = {c : c =
∑

aiσi}

ai ∈ R where R is any ring, σi ∈ (set of p-simplices in K)

Suppose we have a 1- simplex [ab] (line segment āb), we would like to have a notion of

boundary which would output the 0-simplices [a], [b] (vertices a, b). An operator which takes

elements in Cp and outputs its boundary elements which would be one dimension less i.e in

Cp−1.

Definition 1.1.5 (Boundary maps ∂). ∂p : Cp → Cp−1 is a linear map such that for all

σ = [v0, . . . , vp]

∂p(σ) = (−1)j
p∑
j=0

[v0, . . . , v̂j, . . . vp]

where [v0, . . . , v̂j, . . . vp] = [v0, . . . , vj−1, vj, . . . vp]

4



Lemma 1.1.1. ∂p ◦ ∂p+1(d) = 0 for all d ∈ Cp+1

The lemma implies that the image of p + 1 boundary map sits inside the kernel of the pth

boundary map. This sort of structure is called a chain complex represented as the following

quiver diagram:

0 . . . Cp+1 Cp Cp−1 . . . 0
∂p+2 ∂p+1 ∂p ∂p−1 ∂0

Definition 1.1.6 (p -Cycles). Collection Zp ⊂ Cp such that Zp = Ker(∂p).

These are objects which have zero boundary (no boundary).

Definition 1.1.7 (p -Boundaries). Collection Bp ⊂ Cp such that Bp = Img(∂p+1).

These are objects which are part of boundary of some one higher dimension object.

In the introduction of this chapter, we said homology characterises holes in arbitrary dimen-

sion, intuitively holes are objects which have no boundary with empty interior. In other

words, holes are objects which have no boundary and also aren’t boundary of some one

higher dimension object. This motivates us to define the pth homology as follows:

Definition 1.1.8 (pth-Homology group). The pth-Homology group Hp is the pth cycle group

modulo pth boundary group.

Hp = Zp/Bp

pth betti number βp = rank(Hp)

Continuing with our intuition, which now has been formalised; β0 represents number of

connected components, β1 represents number of loops, β2 represents number of voids and so

on.

5



Figure 1.1: The left simplicial complex has a loop generated by the individual edges, repre-
sented as a generator in H1 but it disappears when the simplex [ABC] is introduced in the
simplicial complex in the right, as it is a boundary of [ABC].

1.2 Singular Homology

Now that we have established homology theory for simplicial complexes we would like to

generalize the computation to any topological space.

Definition 1.2.1 (singular p -simplex). A singular p -simplex σ in a topological space X is

a continuous function from the standard p -simplex to the topological space X.

σ : ∆p → X

The singular p simplex σ also induces singular p − 1 simplices by restriction of the domain

of σ to the p− 1 -faces of the standard p simplex.

Let ∆p ∼ [v0, . . . , vp], define restriction maps ijp−1 : ∆p−1 → ∆p such that ijp−1([v0, . . . , v̂j, . . . vp]) =

[v0, . . . , v̂j, . . . vp]. The singular p−1 simplex corresponding to the face [v0, . . . , v̂j, . . . vp] will

be σ ◦ ijp−1. Inductively we can define all the singular faces of σ.

Now that we have singular simplices we can use them as building blocks to build our singular

complexes, motivated by the definition of simplicial complexes we similarly define singular

complexes.

Definition 1.2.2 (Singular complex). A singular complex K(X) on a topological space X

is a collection of singular simplices such that:

1. Any singular face of a simplex in K(X) is also a singular simplex in K. [Hereditary

property]

2. Any two singular simplices having a common face in domain should agree as maps

when restricted to those faces.

6



Figure 1.2: Left: Singular homology for S1; Right: Singular Homology for S2. Singular
homology enables us to compute homology of any general topological space X by calculating
the simplicial homology on the inverse image of the singular complex built on that space
while constrained by the singular maps.

In the same way we can generalize the concept of chains, cycles, boundaries and finally

homology. The only tweak here is the boundary map.

Definition 1.2.3 (singular Boundary maps ∂). ∂p : Cp(X)→ Cp−1(X) is a linear map such

that for all singular p -simplices σ

∂p(σ) = (−1)j
p∑
j=0

σ ◦ ıjp−1

Using this as the boundary map the rest of theory is consistent with simplicial homology

and thus we have established the theory of homology for any topological space X.

1.3 Homotopy Invariance

At the beginning of the chapter we said that these homological properties are invariant

under continuous deformation and hence allow us to give some kind of characterisation,

this invariance is the basis of all topological data analysis. In this section we will formalise

it.

Definition 1.3.1 (Homotopic Maps). Two functions f, g : X → Y are said to be homotopic

if ∃ a continuous function H : X × [0, 1]→ Y 3 H(X, 0) = f and H(X, 1) = g. We denote

f and g are homotopic as f ∼ g.

Definition 1.3.2 (Homotopy Equivalence). Two topological spaces X and Y are said to be

homotopicaly equivalent if ∃f : X → Y and g : Y → X such that f ◦ g ∼ IX and g ◦ f ∼ IY .

We represent homotopicaly equivalent as X
h∼ Y .
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The above is the mathematical definition for two space being equivalent in terms of con-

tinuous deformation. Suppose we have a continuous map f : X → Y this induces a map

between the singular simplices of X to singular simplices of Y (f#(σ) = f ◦ σ : ∆p → Y

where σ is a singular p simplex on X). As this is true for any singular simplex, in turn we

have an induced homomorphism f# : Cp(X)→ Cp(Y ) for all p. This can be represented as

the following quiver representation:

0 . . . Cp+1(X) . . . Cp(X) . . . Cp−1(X) . . . . . . . . . 0

0 . . . Cp+1(Y ) Cp(Y ) Cp−1(Y ) . . . 0

f#

∂p+2

f#

∂p+1

f#

∂p

f#

∂p−1

f#

∂0

∂p+2 ∂p+1 ∂p ∂p−1 ∂0

It is easy to see that ∂ ◦ f# = f# ◦ ∂ hence the diagram commutes. Hence f# takes

cycles to cycles and boundaries to boundaries. Hence there is a natural homomorphism

f∗ : Hp(X)→ Hp(Y ). This argument can be extended for compositions and hence if we have

f : X → Y and g : Y → Z then g∗ ◦ f∗ = (g ◦ f)∗.

Theorem 1.3.1. If f, f̃ : X → Y are homotopic then f∗ = f̃∗

So homotopic maps induce the same homomorphisms between homology groups. The im-

mediate corollary by using the above theorem and the composition property is the follow-

ing.

Corollary 1.3.2. If X
h∼ Y then Hp(X) ∼= Hp(Y ) for all p.

The betti numbers βp for all p, give a topological description of a given space. In order to

draw topological inference for a space X from the betti numbers, it suffices to compute the

homology of a homotopically equivalent space to X. In the next chapter using the data point

cloud we estimate the underlying manifold upto homotopy. Hence computing the homology

of this reconstruction helps us draw topological inference about the original manifold.
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Chapter 2

Topological Inference

Let Xn be a point cloud consisting of n points in Rd. The underlying assumption of the TDA

pipeline is that there is a manifold M from which the point cloud Xn has been sampled.

Our aim in this chapter will be to estimate the manifold M upto homotopy and extract its

homological information via the estimated topological space as homology is an homotopic

invariant. The main results of this chapter are based on the paper [6].

2.1 Reconstruction and Nerve Theorem

Suppose we have a compact subset K ⊂ Rd, we can define a distance function dK : Rd → R
such that dK(x) = infy∈K‖x− y‖.

Definition 2.1.1 (r-offset). The r-offset Kr of a compact subset K ⊂ Rd is defined as the

r-sublevel set of the distance function dK. Kr = d−1K [0, r].

The r-offset of K is basically the union of r - radius balls around each point in K.

In order to estimate the underlying manifold M from the point cloud Xn, we would require

a notion of distance between these two spaces, motivating the following definition.

Definition 2.1.2 (Hausdorff Distance DH). Given two compact subsets K,K ′ ⊂ Rd the

hausdorff distance DH(K,K ′) = supx∈Rd |dk(x)− dk′(x)|

9



Figure 2.1: r-offsets Xr
n of a point cloud Xn sampled from a torus for offset radii r1 < r2 < r3.

Note that for a certain range of radii the r-offsets will be homotopically equivalent to the
underlying torus. Credits: [6]

Intuitively when we vary r and look at the r-offsets Xr
n around the point cloud we hit a sweet

spot of radii r such that Xr
n is homotopicaly equivalent to the underlying manifold M (fig.

2.1). Turns out the differential properties of the distance function dM and the hausdorff

distance between Xn and M are enough to specify this sweet spot.

Definition 2.1.3 (α -critical and α -reach). Given a distance function dK for a compact

subset K ∈ Rd a point x ∈ Rd is called α -critical if ‖∇dK(x)‖ ≤ α.

The α reach for dK: reachα(dK) is the maximum r for which there is no α - critical point

in d−1k (0, r].

Theorem 2.1.1 (Reconstruction Theorem). Let M ⊂ Rd be a compact set such that

reachα(dM) ≥ R > 0, α ∈ (0, 1) and Xn be the point cloud such that DH(M,Xn) = ε <
R

5+4/α2 . Then for r ∈ [4ε/α2, R− 3ε] and η ∈ (0, R), Mη h∼ Xr
n

The reconstruction theorem gives us the sweet spot for r for which the r-offsets of the point

cloud are homotopicaly equivalent to the underlying manifold. So the homology of the r-

offset will capture the homology of the manifold the point cloud has been sampled from. The

next theorem will help us relate r offsets to simplicial complexes. This gives us a pragmatic

gateway to compute homology of the underlying space. As simplicial complexes are combi-

natorial spaces they are desired space to work with when dealing with computations.
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Definition 2.1.4 (Nerve of a cover). Given an open cover U = (Ui)i∈I of a topological space

X . The nerve of U is the abstract simplicial complex N (U) whose vertices are the Ui’s such

that σ = [Ui0, . . . , Uik] ∈ N (U) iff ∩kj=0Uij 6= φ.

Theorem 2.1.2 (Nerve Theorem). Let U = (Ui)i∈I be an open cover of a topological space X

by open sets such that intersection of any sub-collection of Ui’s is either empty or contractible.

Then X and the nerve N (U) are homotopicaly equivalent.

The nerve theorem along with the reconstruction theorem implies that the nerve of certain

r -offsets of the point cloud N (Xr
n) are homotopicaly equivalent to the underlying manifold

M. So calculating the simplicial homology of this nerve is sufficient to extract the homology

of the underlying manifold. The caveat here though is getting the optimal r and satisfying

the regularity assumptions of reconstruction theorem. So, instead of choosing a particular

r we can vary the offset radius r and look at the variation of homology of the r- offsets by

computing the homologies of the nerves (simplicial complexes) of these offsets. The intuition

is homological features which are significant should appear persistently when analysing the

variation of homology. This is the motivation behind the theory of persistence homology

which we will establish in the next chapter. It suffices to work with these simplicial complexes

henceforth we shall only deal with simplicial complexes to study the underlying homological

properties.

2.2 Building simplicial complexes from the point cloud

In this section we will restrict our focus two types of simplicial complexes built from the point

cloud. The first one is the Čech complex, which is the direct consequence of the idea we

were establishing at the end of previous section. The second one is the Rips complex which

is superior to Čech complex in terms of computational efficiency while still being closely

related to the Čech complex.

11



Figure 2.2: The Rips and Čech complexes for a point cloud Xn.

2.2.1 Čech Complex

Definition 2.2.1 (Čech Complex (r)). The Čech Complex of radius r on the point cloud

Xn ⊂M is the simplicial complex defined as:

Čechr(Xn) = {σ = [x0, . . . , xk] : ∩ki=0B(xi, r) 6= φ;xi ∈ Xn}

where M is a metric space.

Remark 2.2.1. It is clear that Čechr(Xn) is nothing but N (Xr
n), the nerve of r-offset of

the point cloud Xn.

So by previous results it follows that Čechr(Xn) is homotopicaly equivalent to the r-offset

and hence if we want to observe the change in homology with varying r-offsets it suffices to

observe the homology of Čechr(Xn) with varying r.

2.2.2 Rips Complex

Definition 2.2.2 (Vietoris-Rips complex(α)). Given a point cloud Xn ⊂ M and a metric

space (M,ρ) the Rips complex of radius r is defined as:

Ripsr(Xn) = {σ = [x0, . . . , xk] : ρM(xi, xj) ≤ r; ∀(i, j);xi ∈ Xn}

It can be easily shown that the Rips and Čech Complex have the following relationship.

12



Lemma 2.2.1.

Ripsr(Xn) ⊆ Čechr(Xn) ⊆ Rips2r(Xn)

The r-Čech complex is sandwiched between the Rips complex r → 2r [fig. 2.2], hence

for practical purposes when looking at variation of homology we tend to work with rips

complexes as they are much easier to compute and still capture the homological variation

of the r-offsets due to the sandwich property. In the next chapter we extend this idea to

establish the theory of persistent homology.
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Chapter 3

Persistent Homology

As discussed at the end of previous chapter, we would like to build various simplicial com-

plexes and see the variation of homology. Intuitively the significant homological features

persistently show up. That is the idea of persistent homology, it measures the strength of

a particular topological feature by computing how long a topological feature lasts. We will

formalise all these heuristics in this chapter.

Definition 3.0.1 (Filtrations). A filtration of a simplicial complex K is a nested family

of sub-complexes (Kr)r∈I where I ⊆ R such that if r, r′inI and r ≤ r′ then Kr ⊆ Kr′ and

K = ∪r∈IKr

More generally a filtration of a topological space M is a nested family of subspaces (Mr)r∈I .

For example, f : M → R is a function then Mr = f−1(−∞, r] for all r ∈ I defines a sub-level

filtration. Similarly Mr = f−1[r,∞) defines a super level filtration. This can be extended to

simplices too. Let K be a simplicial complex with vertex set V and f : V → R then f can

be extended to K as for any [v0, . . . , vk] ∈ K, f [v0, . . . , vk] = max
i∈{0,...,k}

(f(vi)).

Then Kr = {σ ∈ K : f(σ) ≤ r} forms a sub-level filtration. Similar construction can be

done for super-level filtration.

Remark 3.0.1. It is evident from the definition that the Čech Complex(r) with increasing

r, forms a filtration of simplicial complexes. Similarly the Vietoris-Rips complex(r) with

varying r also forms a filtration. Due to the sandwich property of Rips and Čech complexes,

it suffices to work with the Rips filtration to capture the homology variation of the offsets.

15



Remark 3.0.2. The concept of sub-level/super-level filtration from a function f is quite

general. The r- offsets for a compact space X ⊂ Rd can be thought of a sub-level filtration

of the function dX : Rd → R . By the nerve theorem we know that the r-offsets and the

Čech complex are homotopicaly equivalent. In turn the Čech filtration or the Rips filtration

(sandwich property) is actually a special case of the sub-level filtrations for any function f .

Once we have a filtration for every Kr in the filtration there exists Hr
p homology groups of

Kr for all p. If Ki ⊆ Kj then there is a natural induced homomorphism F i,j
p : H i

p → Hj
p

by the inclusion between the homology groups. The image of these homomorphism tell us

which pth homological features that existed at ith state also exist at jth state. Hence these

images are called the pth persistent homology groups from i to j.

0 = H0
p Hp(K1) . . . H i+1

p . . . Hn
p = Hp(K)

F 0,1
p F i,i+1

p F i+1,i+2
p Fn−1,n

p

Alternatively we can define the pth persistent homology group from i to j as:

Definition 3.0.2.

H i,j
p = Zp(Ki)/Bp(Kj) ∩ Zp(Ki))

The rank of the above group is known as the pth persistent betti number βi,jp = rank(H i,j
p ).

This is similar to the usual definition of homology except the quotienting, in the usual ho-

mological definition we wanted to consider cycles which were not part of any boundary, now

that we have a concept of filtration and want to retain cycles that persisted from the ith

state to the jth state we would want the cycles in the ith state which are not part of the

boundary in the jth state.

Computing these persistent homology groups gives us information of when a feature is born

and is dead. We would like to find out the features which were born early but died at a later

stage. These will be the features we will call significant. We incorporate all this information

into a single diagram called the persistence diagram which is a topological summary of the

underlying space.

16



3.1 Persistence diagram and Barcodes

Let µi,jp be the number of independent p-dimensional classes that are born at Ki and die at

Kj. We then have

µi,jp = (βi,j−1p − βi,jp )− (βi−1,j−1p − βi−1,jp )

The (βi,j−1p −βi,jp ) represents the number of features that died at the jth state and were present

at the ith state. The second term (βi−1,j−1p − βi−1,jp ) represents the number of features that

died at the jth state and were present at the i − 1th state; Hence the difference represents

the number of features born at the ith state and died at the jth state. Drawing each point

(ai, aj) with multiplicity µi,jp we get the pth persistence diagram Dgmp(F) where F is the

filtration.

So each point in the persistence diagram represents a topological feature and it’s coordinate

are representative of when that feature was born and died respectively.

Lemma 3.1.1 (Fundamental lemma of persistence homology).

βk,lp =
∑
i≤k

∑
j≥l

µi,jp

Hence the persistence diagram encodes all the information about the homology. An alterna-

tive representation of persistence diagrams is persistence barcodes where we draw a graph

with the horizontal axis representing the index of the filtration and the vertical axis repre-

senting the persistent homological features. For each homological feature a horizontal bar

of length j − i starting from i and ending at j. Both of these representations are equivalent

one can obtain one from other and vice versa.

3.2 Elucidating via examples

Remark 3.2.1. The persistence diagram for the Rips or Čech filtration would capture the

variation of homology of the sub-level sets of the distance function, hence it encapsulates

information about the geometry of the underlying manifold. This addresses the original

question of estimating the topological features of the underlying manifold, but persistence

homology can be used to see variation of homology of any filtration in particular any sub-

level/super set filtration of any function f . Henceforth we will consider a general class of

17



Figure 3.1: Persistent Homology on the Ripsr(Xn) where Xn is a point cloud sampled from
a circle with an isolated cluster besides it.

filtrations for our upcoming results.

Rips Persistent Homology on Point cloud data

Let us consider a point cloud Xn sampled from a circle with an isolated cluster besides it

(fig. 3.1). Rips0 is the simplicial complex containing only the vertices corresponding to the

n points in the point cloud; As we go further in the filtration higher dimension simplices

are added to the complex resulting in death and birth of certain homological features. In

the above example we start out with 11 points and corresponding to them 11 connected

component or H0 features after a certain r in the filtration only 2 connected components or

H0 features remain corresponding to the circle and the isolated cluster respectively. Also 1

H1 feature corresponding to the loop of the circle is born at a later stage and persists till the

end. Hence when we take Rips persistent homology of a point cloud data the longer barcodes

corresponding to the persisting homological features represent the underlying topology of the

data.

Persistent homology on sub-level filtration of a function

Let f : R→ R be a function as described in fig. 3.2, considering the sub-level filtrations Mr =

f−1(−∞, r] for r ∈ I. For r < a1 the homology space is trivial, at r = a1 though anH0 feature
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Figure 3.2: Persistent Homology on the sub-level filtration of a function on the left and its
corresponding barcode and persistence diagram on the right. Credits: [6]

is born the homology feature remains unchanged until r = a2 where a second connected

component is born, similarly another connected component H0 feature is introduced at a3.

At a4 though there is death of the connected component born at a3 as it collapses into the

connected component born at a1, likewise the second connected component born at a2 dies of

at a5. All this information is encoded and represented in the form of barcodes and persistent

diagram in fig. 3.2. Each point in the persistence diagram represents the birth -death of a

topological feature.

Relation with Morse Theory

Notice that from the previous example it is evident that the birth or death of homological

features of the sub-level filtration only occur at the maximas and minimas. This is actual

a general property of Morse functions. Morse functions are functions with non degenerate

critical points and all its critical points being isolated (no two critical points are in each

other’s neighbourhood). We would briefly touch upon the main results of morse theory as

it is an extensive topic on its own and the whole thesis can be dedicated to it. So, we will

not delve deep.

Suppose one has a morse function f :M→ R defined on the manifold M, there is a result

in morse theory stating that the homology of the sub-level filtration of f varies only at

the critical values (value of f at the critical points)[4]. Hence it is enough to compute the

homologies of the sub-level filtration Mr for r ∈ A where A := {Set of all critical values},
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thereby reducing computation.

Another such result relates the homology of the underlying manifoldM to the critical points

of f . The result states that the homology groups of M are isomorphic to the homology of

a chain complex build upon the critical points of f (Morse complex ) [4].

So basically morse theory gives us a correspondence between the critical points of a morse

function and the homology of the underlying manifold. So to draw any topological inference

about the underlying manifold it is enough to study chain complexes build on these critical

values giving us a reduction. The main results of morse theory on manifolds can be translated

to discrete spaces like simplicial complexes as discussed in [3]. Once we have established the

notion of morse functions, critical points and morse complex for simplicial complexes we can

reduce homology computations on filtrations of simplicial complexes. Suppose we have a

filtration K we could look at the reduced complex for each simplicial complex Kr ∈ K and

these gives a reduced filtration cutting computation costs heavily. This sort of optimisation

by using morse theory on filtrations has been discussed in great detail in [9].

3.3 Stability

When working with real life data, the point cloud is susceptible to lots of noise. We would

like the persistence diagrams acquired to be robust to such kind of noise, i.e given small

perturbations to the point cloud, the persistence diagram should not vary much.

If we want to quantify the notion of change, we need to define distances on the space of per-

sistence diagrams. The space of persistence diagrams is a metric space and several distances

can be defined on it. The main results of this section are sourced from [10].

Metrics:

1. Haudorff Distance as defines earlier.

2. Bottleneck distance (Wassertein distance with p→∞)

3. Wassertein distance

Definition 3.3.1 (Bottleneck and Wassertein distance). The bottleneck and pth wassertein
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distance between two persistence diagram Dgm(F1) and Dgm(F2) are:

dB(Dgm(F1), Dgm(F2)) = inf
γ

sup
x∈Dgm(F1)

‖x− γ(x)‖∞

dWp(Dgm(F1), Dgm(F2)) = inf
γ

∑
x∈Dgm(F1)

‖x− γ(x)‖p

where γ is a bijective mapping between the first and second diagram.

It might be the case that the cardinality of Dgm(F1) and Dgm(F2) don’t match, hence the

notion of finding a bijection γ falls apart.In order to circumvent this issue we introduce the

diagonal set ∆ into the persistence diagrams before computing the distances. ∆ intuitively

represents the space where a topological feature borns and dies instantaneously. The diagonal

set is infinite hence the problem of finding a bijection is now resolved. What we have basically

done is match the unmatched off diagonal points to a point in the diagonal.

Definition 3.3.2 (homological critical values). Let X be a topological space and f a real

function on X. A homological critical value of f is a real number a for which there exists an

integer k such that, for all ε the map Hk(f
−1(−∞, a − ε)) → Hk(f

−1(−∞, a + ε)) induced

by natural inclusion is not isomorphic.

Basically homological critical values are points where the homology of the sub-level sets

changes, for morse functions these are the general critical values of that function. As we

know that the homology of the sub-level sets changes only at critical values of the morse

function.

Definition 3.3.3 (Tame functions). A function f : X → R is tame if it has a finite number

of homological critical values and the homology groups Hk(f
−1(−∞, a]) are finite for all

dimensions k and all a ∈ R

Tame functions are a more general class of functions. Morse functions on compact manifolds

and Piece wise linear functions on simplicial complexes are tame.

Let Dgm(f) be the persistent diagram obtained from the sub-level filtration of f : X → R.

If X is a triangulable space then there exists a simplicial complex K such that K
h∼ X,

hence the function f can be extended to the simplicial complex K as mentioned at the

beginning section 3. The theoretical results remain the same, but from a practical perspective

computations are always done on the triangulation of the space X.
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Theorem 3.3.1 (Stability theorem). Let X be a triangulable space and f, g : X → R be

tame functions then:

dB(Dgm(f), Dgm(g)) ≤ ‖f − g‖∞

The above theorem implies that if there is a small perturbation to the function f then the

persistant diagram of the sublevel sets of f would only perturb by a little bit, and that

perturbation is bounded by the L∞ distance between f and its perturbation.

As mentioned earlier the Čech filtration is a special case of the sub-level filtrations, and the

Rips filtration has the sandwiching property. Hence the above stability theorem can be used

to prove the following theorem.

Theorem 3.3.2. Let X, Y be compact metric spaces and Dgm(Filt(X)), Dgm(Filt(Y )) be

the persistent diagrams of the Rips filtration of X and Y respectively, then:

dB(Dgm(Filt(X)), Dgm(Filt(Y ))) ≤ 2DH(X, Y )

The two theorems above imply that persistent diagrams are not susceptible to high variances

when dealing with noise .

3.4 Persistence modules

We have already established the concept of persistent homology in the previous sections

which involves computing the persistence homology groups H i,j
p for a filtration K = ∪r∈IKr

for all i, j ∈ I which can be a bit tedious when working with large filtrations; Persistence

Module is a compact encoding of the persistence homology vector spaces into a single alge-

braic object (graded module over a polynomial ring ), in turn reducing computations. The

results mentioned in this section have been discussed in great detail in [8].

We can calculate homology with coefficients from any base ring R, but we will restrict our

attention to homologies computed over coefficients from a field F for reasons explained later

in this section.

Definition 3.4.1 (Persistence module). The persistence module M is a collection of vector

spaces M i, i ∈ I (Some indexing set) together with linear maps φi : M i →M i+1. The linear

maps can be composed to define maps φi,j : M i →M j.
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Suppose we have a filtration K = ∪r∈IKr, the collection of the pth homologies Hr
p for each

simplicial complex Kr, along with the induced homomorphisms F i,j : H i
p → Hj

p forms a

persistence module H∗p .

Definition 3.4.2 (Graded Ring). A graded ring R is a ring which can be decomposed as

the direct sum of abelian groups Ri i.e R ∼=
⊕

iRi, such that for any i, j there is a bilinear

product Ri ⊗Rj → Ri+j.

The polynomial ring R[t] over R is a graded ring with Ri = ati where a ∈ R.

Definition 3.4.3 (Graded Module). A graded module over a graded ring R is a module

M =
⊕

iMi with a direct decomposition such that there is a action of R on M such that

Ri ⊗Mj →Mi+j.

Once we have a persistence module H∗p generated by the homology spaces of a filtration K,

we can associate with a graded module α(H∗p ) over the graded polynomial ring over F as

follows:

α(H∗p ) =
⊕
i

H i
p (3.1)

The action of F [t] on α(H∗p ) is defined as follows:

Let (m0,m1, . . . ) be an element in α(H∗p ) then t⊗ (m0,m1, . . . ) = (0, F 1(m1), F 2(m2), . . . ).

So action of t can be thought of pushing the homology groups to the next stage via the

induced homomorphisms in a filtration. We are trying to capture the information of time

(index of the filtration) through the action of polynomial ring F [t] on the graded module.

Now that we have a graded module over F [t] which is a P.I.D we can apply the structure

theorem for P.I.Ds.

Remark 3.4.1. When we want to apply the structure theorem we would want a simple

classification, hence we work with F [t] as its only graded ideals are ideals of the form (tn)

unlike R[t] making its classification quite complex.

Applying the structure theorem over the graded module α(H∗p ) we get a decomposition as

follows:

α(H∗p ) ∼= (
n⊕
i=1

βi∑
F [t])⊕ (

⊕
)mj=1

αj∑
F [t]/(tkj ) (3.2)

Definition 3.4.4 (l-life intervals). The l life intervals is an ordered pair (i, j) such that

i < j and belong to Z ∪∞
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In real life we work with only finite filtration K, so all the birth-death pairs of homological

features are also l-life intervals. Corresponding to each l life interval (i, j) we can associate the

module M(i, j) =
∑j−1

k=i
F [t]/(tj−k). So for a set of l life intervals {(i1, j1), (i2, j2) . . . , (in, jn)}

we can associate the module M =
⊕n

m=1M(im, jm) which is a direct sum of all the modules

associated with each l life interval.

Notice that the module M is actually has the same structure as the decomposition of α(H∗p )

it can be shown that there is one to one correspondence with the birth-death times and the

graded module α(H∗p ). Notice that that if my birth-death time is (i,∞) then it appears as

the free part
∑∞

m=i F [t] in the graded module, while (i, j) is represented as a torsion element,

including elements which are present at ith stage but die at the jth stage or in other terms

get annihilated when tj−1 acts upon them. Now that we know that the persistent homology

can be encoded in a single algebraic structure, we would like to actually compute it.

Everything remains the same except we change our boundary map and chain complex clev-

erly.

Definition 3.4.5 (pth persistence chain). Let PCp the pth persistence chain for a filtration

K be a free module spanned by all the p-simplices in K over the polynomial ring F [t]

Let B() be the birth function which tracks when a particular simplex is introduced in the

filtration. Suppose σ ∈ Kr and σ 6∈ Ki∀i < r then B(σ) = r.

Definition 3.4.6 (persistence boundary map P∂p()). The persistence boundary map P∂p :

PCp → PCp−1 is defined as follows:

P∂p(σ) = (−1)i
p∑
i=0

σîtB(σ)−B(σî)

where σ is a p- simplex [v0, . . . , vp] and σî = [v0, . . . , v̂i, . . . , vp]

Calculating the homology of the pth persistence chain using the pth persistence boundary

map we get the graded homology module α(H∗p ).
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3.5 Persistence Landscape

In section 3.3 we saw that a metric can be defined on the space of persistence diagrams,

but the space of persistence diagrams is not a complete metric space, which is a desired

property when we want to do any statistical analysis. In this section we would establish a

one to one continuous function representation of the persistence diagrams. These continuous

functions known as persistence landscapes actually belong to the Lp norm space which we

know is complete. After acquiring these function representations, we can borrow the standard

statistical framework for Banach Spaces and solidify the notion of probability and confidence

intervals on the space of persistence landscapes. This section is inspired by the work of

Bubenik in [7].

3.5.1 Landscape representation

As discussed in section 3.1 the pthpersistence diagram is characterised by µi,jp the number

of features born at ith stage and died at jth stage, but all this information is encoded in

the betti numbers βi,jp (number of features present at the ith stage which persist atleast till

the jth stage). Thus we will work with the persistent betti numbers to define our landscape

representation.

Lemma 3.5.1. let ĩ ≤ i and j̃ ≥ j, then βi,jp ≤ β ĩ,j̃p .

The above is a natural outcome of composition of maps, the rank decreases or remains the

same after composition.

We already know that the betti numbers βi,jp are valid only when i ≤ j or basically above

the diagonal. Hence we would perform a change in coordinate axis by rotating by 45o and

making the diagonal as the horizontal axis.

x =
i+ j

2
and y =

j − i
2

(3.3)

So, βi,jp = βx−y,x+yp . If we keep x fixed and use the previous lemma we observe that βx−y,x+yp

is a decreasing function in y.

Definition 3.5.1 (Persistence landscape). The persistence landscape Λ : N×R→ (R∪∞)
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Figure 3.3: Top-Left: Persistence Diagram along with values of βi,j; Top-Right: Persistence
Diagram rotated by 45o; Bottom-Left: Persistence Landscape function corresponding to
the above persistence diagram; Bottom-Right: 3-D graph of persistence landscape function.
Credits:[7]

corresponding to a pth persistence diagram is defined as follows:

Λ(k, x) = sup(y ≥ 0 | βx−y,x+yp ≥ k) (3.4)

For notational convenience we will denote Λ(k, x) = λk(x) for a fixed k. From lemma 3.5.1 it

can be seen that λk ≥ λk′ for all k′ ≥ k. The correspondence between persistence landscape

and the persistence diagrams is clear from fig. 3.3. Notice that for k = 1, Λ traces out

triangles corresponding to the dominant homological features. Given a persistence diagram

we can obtain a persistence landscape and the reverse direction also holds, given a persistence

landscape one can obtain a persistence diagram.

3.5.2 Statistics on Landscapes

Normed space

The persistence landscape Λ is a continuous function from N×R with the measure induced

by the product of counting and the standard lebesgue measure. The Lthp norm on Λ is as

follows:

‖Λ‖p = (
∞∑
i=1

‖λk‖pp)
p−1

(3.5)
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With the correspondence between the persistence diagram it isn’t hard to see the rela-

tionship between the norm of landscape and the metrics on persistence diagram. Let

db(D,φ), dW2(D,φ) be the length of the longest barcode (supm|jm − im|) and the sum of

squared length of the barcodes (
∑n

m=1|jm−im|
2) respectively; Where {(i1, j1), (i2, j2) . . . , (in, jn)}

are birth-death pairs of the diagram D.

Remark 3.5.1. As λk ≥ λk′ for all k′ ≥ k, ‖Λ‖∞ = ‖λ1‖∞.

Lemma 3.5.2. Let Λ be the persistence landscape of a persistence diagram D then the

following holds:

(1) ‖Λ‖1 =
dW2(D,φ)

4

(2) ‖Λ‖∞ = ‖λ1‖∞ =
db(D,φ)

2

(3.6)

The above lemma can be easily proved by referring to the figure and corresponding the length

of the barcodes with the persistence landscapes. (1) is basically the area of the triangle

corresponding to each birth-death point and (2) is the peak of λ1 which will correspond to

the height of the triangle corresponding to the longest barcode length.

A consequence of lemma 3.5.2 is that when ever we have a finite persistence diagram i.e

the number of birth-death points their corresponding lengths are both finite. Then both

‖Λ‖1 and ‖Λ‖∞ are finite, in turn every ‖Λ‖p for all 1 ≤ p <∞ is finite (via the decreasing

property of Lp norms). Hence for any real life case where the persistence diagram is finite

Λ ∈ Lp(S) where S = N× R for all 1 ≤ p <∞.

Probability in the space of Landscapes

Once we know that Λ ∈ Lp(S) we can borrow the framework of probability and statistics for

Banach spaces. We would like to establish a notion of sample mean, expectation, confidence

intervals, etc. for persistence landscapes.

Suppose we have n point clouds X1, . . . ,Xn corresponding to them we would get persistence

landscapes Λ1, . . . ,Λn, we define the sample mean landscape Λ̄ as the point-wise mean:

Λ̄(k, x) = n−1
n∑
i=1

Λi(k, x) (3.7)
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Now we would like to define a probability space on the space of landscapes and would want

to extend the results like law of large numbers and central limit theorem for Λ̄. Λ̄ isn’t a

real random variable though it is a random variable in the space of Lp(S).

Let X : (Ω,F , P ) → Lp(S) be a Lp(S) r.v. (random variable) then for any functional

f ∈ L∗p ∼= Lq(Dual), the composition Xf = f(X) : (Ω,F , P ) → Lp(S)
f→ R defines a real

r.v.

Definition 3.5.2 (Expectation for a Lp random variable ). For a Lp r.v. X the expectation

E(X) ∈ Lp(S) is a function such that for any f ∈ L∗p:

f(E(X)) = E(Xf ) (3.8)

Note that in general the expectation E(X) might not exist but if E(X‖‖) < ∞ then E(X)

always exists.

Theorem 3.5.3 (Law of large numbers). Let X1, . . . , Xn be i.i.d Lp(S) r.v.s then

X̄
a.s−→ E(Xi) (3.9)

where X̄ = n−1(
∑n

i Xi).

So applying the above theorem to persistence landscapes we get Λ̄
a.s−→ E(Λi) where Λi, . . . ,Λn

are i.i.d Lp(S) r.v. corresponding to the n random sampled point clouds X1, . . . ,Xn from

the same manifold M.

Definition 3.5.3 (Gaussian Lp r.v). Let G be a Lp r.v., G is said to be gaussian if for all

f ∈ L∗p
Gf ∼ N(0, V ar(Gf ))

.

A gaussian G variable is completely determined by its covariance structure. The covariance

structure of G is collection of expectations E[(Gf−E(Gf )(Gg−E(Gg)] for all f, g ∈ L∗p.

Theorem 3.5.4 (Central limit theorem #1 ). Let X1, . . . , Xn be i.i.d Lp(S) r.v.s then

√
n[X̄ − E(Xi)]

weak−→ G (3.10)

where G has the same covariance structure as Xi for any i.
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Replacing Xi with Λi we get central limit theorem for persistence landscapes. As discussed

earlier though composing a Lp(S) r.v. with f ∈ L∗p we get a real valued r.v. We know Λ̄ is

a Lp(S) r.v composing it with f we get a real valued r.v. we can then use the central limit

theorem for real r.v.s.

Theorem 3.5.5 (Central limit theorem #2 ). Let X1, . . . , Xn be i.i.d Lp(S) r.v.s and f ∈ L∗p
then √

n[Xf − f(E(Xi))] ∼ N(0, V ar(Xf
i )) (3.11)

where Xf = n−1(
∑n

i X
f
i ).

Using thm 3.5.5 we can form confidence intervals and hypothesis tests for persistence land-

scapes. Replace Xi by Λi and f = ‖‖ then we get real valued random variables Λ
‖‖
1 , . . . ,Λ

‖‖
n

and the above theorem statement becomes:

√
n[Λ‖‖ − ‖(E(Λi)‖] ∼ N(0, V ar(‖Λi‖))) (3.12)

Using the above the (1− α) confidence interval for E(Λi) becomes:

Λ‖‖ ± zα/2
Sn√
n

(3.13)

Here Sn = (n − 1)−1
∑n

i=1 Λ
‖‖
i is the sample variance of {Λ‖‖1 , . . . ,Λ

‖‖
n } and zα/2 is the α/2

critical value of the standard normal distribution.

Similarly if we have two different sample of persistence landscapes Y = {Λ‖‖1 , . . . ,Λ
‖‖
n } and

Ỹ = {Λ̃1
‖‖
, . . . , Λ̃′n

‖‖} want to test whether they belong to the same population or not? i.e

they are from the same underlying manifold or not? Then we can define the following Z

-statistic which will follow N(0, 1) for hypothesis testing.

Z =
Λ‖‖ − Λ̃‖‖

Sn√
n

+
Sn′√
n′

(3.14)

With this we conclude this chapter. To summarize we started out by formalising the concept

of persistent homology. Subsequently, we looked at persistent diagrams and barcode repre-

sentations capturing the birth-death time of all homology features. The homology features

with high birth-death difference are the significant features of the data. Furthermore, we

looked at the robustness of these diagrams when introduced to noise. We also looked at a

compact representation of the information obtained from persistent homology in terms of a
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single algebraic object known as the persistent module. Finally we explored the correspon-

dence between persistent diagrams and persistence landscapes which enabled us to perform

standard statistical analysis. We addressed the randomness induced by sampling from the

underlying manifold in terms of probability distributions on the space of landscapes.
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Chapter 4

Mapper Algorithm

We already looked at how persistent homology helps us draw inference about the significant

geometrical features of the data. In this chapter we look at another celebrated tool in the

realm of topological data analysis called the mapper algorithm. The mapper algorithm

provides us network visualisations of data of arbitrary dimensions, while retaining the major

structures in the data.

Recall that the nerve theorem 2.1.2 tells us that if we have a nice enough cover (contractible

intersections) of a space X then the nerve of the cover is homotopicaly equivalent to X, but

what happens when we relax the condition of contractible intersections? The corresponding

nerve should capture some summary information of the space to some degree even if not

homotopicaly equivalent, this is the motivation behind the mapper algorithm.

Definition 4.0.1 (Refined pull back). Let f : X → Rd be a continuous real valued function

and let U = (Ui)i∈I be a cover of Rd. The pull back cover of X induced by (f,U) is the

collection of the open sets (f−1(Ui)i∈I). The refined pull back is the collection of connected

components of the open sets f−1(Ui)i∈I .

Notice that if f : X → Rd is a continuous function then the refined pull back gives an open

cover of X. Once we have an open cover for X we can look at the nerve of the refined pull

back. The following summarises the mapper algorithm pipeline:

Input:

1. A data set X with a metric or dissimilarity measure between data points.
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2. A lens function f : X → R(orRd)

3. Cover U of f(X)

For each U ∈ U decompose f−1(U) into clusters cls = {CU1 , . . . , CUk} using any stan-

dard clustering algorithm like DBSCAN. Compute the nerve of this cover of X defined by

cls.(computing nerve of the refined bull back of f)

Output:

1. A simplicial complex (nerve).

2. 1-skeleton (restriction of the simplicial complex to its 1 and 0 simplices only) of the

nerve to get a graph representation.

The graph is a representation of how the underlying space looks with respect to the function

f hence the name lens function. For the mapper algorithm we require two inputs the lens

function f and the cover of the image space.

4.1 Example

The above fig. 4.1 elucidates mapper algorithm applied to a set of points sampled from

the surface of a ”pair of pants”. It is evident that the output of the mapper algorithm

is dependent on the choice of the filter function; When we use width function w as the

filter function the ”eight shape” structure of the space is captured on the other hand when

height function h is used the ”flare shape or inverted-y” structure is captured. The mapper

algorithm gives representation of the space w.r.t the filter/lens function. One can use varying

filter functions to get an idea of an overall geometry of the underlying space.

4.2 Choice of lens and cover

Choice of cover U : The general approach is to segment the image space f(X) into n regular

intervals with some overlap o between them. As n increases the number of nodes in the graph

increase and more detailed the graph gets, as o increases more edges between the nodes form

due to excessive overlapping. Generally the value of o is chosen to be ∼ 0.25 corresponding

to 25 percent overlap between the intervals. If the image space is d -dimensional then the
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Figure 4.1: (a) Point cloud X sampled from the surface of ”pair of pants”; (b) Mapper
algorithm on X with w : X → R width as the filter function; (c) Mapper algorithm on X
with h : X → R height as the filter function.

inputs to n and o are d -dimensional vectors specifying the number of regular intervals and

overlap for each coordinate space.

Choice of lens : There are a lot of standard go-to statistical lens functions used to look at

the data; kNN distance, projection on one of the coordinates, Lp norms, T-SNE, ISOMAP,

PCA components to name a few. The standard rule of thumb is to try various lens functions

to get an understanding of the layout of the underlying space.

Mapper is generally used as an exploratory analysis tool and is superior to other dimen-

sionality reduction techniques as the clustering is done in the original metric space from

where the point cloud resides rather than on some projection or embedding, in turn reduc-

ing loss of information.
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4.3 Reeb Graph

In this section we view the output of mapper algorithm as a discretization of an object called

the Reeb Graph. Given a continuous function f : X → R, its structure can be visualised by

the variation of its level sets. Let x, y ∈ X, we can define an equivalence relation ∼ on X as

follows:

x ∼ y if and only if f(x) = f(y) = a and x, y belong to the same connected component of

f−1(a).

The quotient space R(f) = X/∼ is known as the Reeb Graph of X w.r.t f . As the R(f)

is just the quotient space of X it preserves connectedness of X, also it can be shown that

any loops in R(f) correspond to loops in the original space X. This leads to the following

properties of the Reeb Graph:

1. β0(R(f)) = β0(X)

2. β1(R(f)) ≤ β1(X)

The above properties suggest that Reeb graph R(f) is a reduction of the original space X

based on the contours of f . Even though R(f) doesn’t fully capture the topology of the

original space X it preserves certain geometrical structures. (fig. 4.2)

Reeb Graph and Mapper Algorithm

It can be seen that the 1-skeleton of the nerve obtained from the mapper algorithm is nothing

but just the discretization of the Reeb graph. The mapper algorithm performs clustering on

the original point cloud Xn to obtain components of the inverse image of a filter function f

and draws edges between them based on overlapping. The output of Mapper can be thought

of an estimation of R(f) where the domain of f is extended to the underlying manifold M
from which point cloud Xn is sampled from.

As discussed in section 3.2, for a Morse function f the homology of the sub-level sets only

change at critical values of f . Consequently, if we look at the Reeb Graph R(f), its structure

changes at contours of critical values of f . So, when estimating the Reeb Graph via the

mapper algorithm it is enough to form a cover U for f(Xn), such that critical values of
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Figure 4.2: Reeb Graph R(f) of X, where f is the height function and X is a two-holed
torus. Credits: [2]

f(M) are isolated i.e no two critical values belong to the same Ui for any i.

In real life we don’t know the distribution of the critical values of f on the underlying

manifold M, hence the general thumb rule is to keep the parameter n large enough to

segregate the critical values of f when constructing the cover U of the image set of f .
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Chapter 5

Applications

This chapter will focus on the interdisciplinary applications of TDA addressed in this project.

The first section will discuss the application of persistence homology on oncology data to

quantify interaction between malignant cells and T-cells; The second section will be dedicated

to application of TDA on US S&P500 and JPN N-225 stock prices data to represent state of

market using barcodes. These representations can then be used to summarise the evolution

of the market. All the coding has been done in R using the TDA package [13].

5.1 Oncology Data

The aim of this collaborative work was to quantify and identify regions of tissue where the

cancer cells and T-cells interact; This is cardinal to measure the effectiveness of a drug trial

as more interaction is indicative of the potency of a given drug. Identification of regions

with high interactions enables us to perform targeted treatment.

Methodology:

• Input data is a matrix with coordinates of cells in the x-y plane along with their

respective cell type (M-Malignant cell , T-Immune cell)

• The data is a subset of R2 so we built a triangulation K of R2 over the data as shown

in fig. 5.1 (b).
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Figure 5.1: Persistence Homology on the super-level filtration of the entropy function. Cred-
its: [21]

• The triangulation K is a simplicial complex with vertex set V . We define entropy func-

tion Sr : V → R which measures interaction between T and M cells in a neighbourhood

of v for all v ∈ V .

•
Sr(v) = min(nt(v), nm(v))(− log2 pm(v)− log2 pt(v))

Where nt(v), nm(v) are number of T-cells and M-cells within the distance r from v.

pt(v) = nt(v)/nt(v) + nm(v) is the frequency of T- cells within distance r and similarly pm(v)

is the frequency of M-cells. The entropy function is zero if either of the frequencies are

zero and takes high values when the frequencies are uniform and number of cells are

high.

• Sr is the measure of interaction between different types of cells in a neighbourhood
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[fig. 5.1 (c)]. The persistent homology of the super-level filtration of Sr will provide us

persistent H0 (connected components) and H1 (loops) features where the value of Sr

is high; In other words regions or loops where interaction between the T and M cells

is significant.

• In order to calculate the super-level filtration of Sr we first extend the function to the

triangulation K as mentioned in chapter 3. For any [v0, . . . , vk] ∈ K, Sr[v0, . . . , vk] =

min
i∈{0,...,k}

(Sr(vi)).

• Then Kr = {σ ∈ K : f(σ) ≥ r} forms a super-level filtration. After computing

the persistent homology in this filtration, the persistent H0 features along with their

birth values (max Sr value of that component) are obtained [fig. 5.1 (e)] denoting the

significant regions of M-T cells interaction.

The initial problem of quantifying and identifying regions interaction between malignant cells

and T-cells was addressed but the method is quite general and can be thought of a density

based clustering technique where the density is representative of the interaction between

different labelled data points.

5.2 Financial Data

It is well known that the state of market can be studied from the correlation matrix between

the constituent stocks, as stocks tend to be highly correlated during a crash and act quite

independently in a calm period. Computing the rips persistent homology on the distance

matrix induced by the correlation matrix we obtain a more comprehensive barcode represen-

tation of the market which capture the internal fluctuations within the market. We can use

these barcode representations to generate a summary of the evolution of market and also as

an input to mapper giving us a network representation of the same.

Methodology:

• The data in hand is the US S&P500 and JPN N225 stock prices. For a particular

market we have N time series corresponding to the prices of the N stocks. We take

the log-returns of these time series to obtain N log-return time series.
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Figure 5.2: The historical values of SP 500 index and Volatility index (VIX) are plotted
against time from 1990-02-27 to 2016-12-29 in panels (1) and (2). (3) Time periods corre-
sponding to (a) calm (1990-01-22 to 1990-03-19), (b) bubble(2000-09-06 to 2000-10-31) and
(c) crash(2008-08-21 to 2008-10-16) are chosen, with their corresponding barcode diagrams.
Where the barcode diagrams are calculated by performing rips persistent homology on the
distance matrix D corresponding to the respective time frames.Credits: [20]

• We segment the log-return times series into T time frames τk where k = {1, . . . , T}.

• For each time frame τk calculate the correlation matrix C(τk) between the N stocks.

Now a distance matrix D(τk) between the N stocks is induced from C(τk) as follows

D(τk)(i, j) =
√

1− C(τk)(i, j).

• Once we acquire the distance matrix D(τk) we can perform persistent homology on the

rips filtration built over the point cloud of these N stocks.

• We only focus on the H0 homology features; The 0th barcode representation B(τk)

will comprise of N components with their death times. The birth time will be 0 as
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Figure 5.3: The time series entire time period from 1985-01-03 to 2016-12-30 was divided
into 402 windows of length 40 which shifted by 20 on each step and correlation matrix and
distance matrix was calculated from the 194 stock return time series corresponding to each
of those windows. The barcode lengths from the persistence homology of each frame is
then stored in the column corresponding to the frame number creating 194x402 matrix M ,
where Mij = Length of barcode of ith stock on jth time step. The entire 194x402 matrix is
coloured according to the value of each element using a colormap which created the visual
representation that is being presented in this figure. The stocks are ordered in such a way
that the ones which are in the same sector come together which is creating the block behavior
in the diagram. Credits: [20]

the Rips0 complex is just the simplicial complex only N vertices corresponding to the

N stocks. As we go further in the filtration stocks closer to each other in terms of

the distance matrix D start collapsing into single components resulting in death of H0

features.

• Hence during a crash when market is highly correlated the barcodes will be short lived

and when there is a calm period the barcodes are long; While in the bubble period

sectoral correlation is captured in form of a groove in the barcode diagram [fig. 5.2].

• For a particular time frame τk the barcode representation B(τk) (N dimensional vector)
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is representative of the state of the market.

• We concatenate all the B(τk) vectors for each time frame τk, k = {1, . . . , T}. To get a

N × T summary matrix. We generate a heat plot as shown by colouring the summary

matrix based on its index values.

• The various crashes are captured in the heat plot in the form of vertical blue stripes

due to the short barcode lengths during crashes. While the sectorial behaviours are

captured via horizontal blue stripes. Hence the formation of bubbles and distinction

between exogenous and endogenous crashes can be made looking at the heat plot. The

heat plot provedes a comprehensive summary of the evolution of market. [fig. 5.3]

• We also build a network representation of how certain time frames are related to each

other in terms of market behaviour. We consider each time frame τk to be a point in

RN−1 dimensional space where its coordinates are the N−1 components of B(τk) after

dropping the first component. Then we use various filter functions such as l2 norm,

mean correlation, entropy, etc. and appropriate mapper parameters to get a network

summary of the evolution of the market.

Remark 5.2.1. Note that we only take N − 1 components of the barcode vector B(τk)

as the first component will be the length corresponding to the component when every

stock collapses into a single H0 feature. Hence the length of this component will always

be the same for any time frame τk so we don’t consider this component as an input to

mapper.
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Conclusions and Further Readings

In this thesis, we explored the mathematics behind the two most celebrated techniques

in TDA, Persistent Homology and the Mapper Algorithm. We learned the theory behind

persistent homology and saw how it can be used to extract homological information from

the given data. We looked at how to encode this information in terms of persistent diagrams

and barcodes; Followed by performing statistics using the concept of persistence landscapes.

During the end, we addressed the mapper algorithm as a superior visualisation technique

compared to its statistical alternatives. Finally, we finished the thesis with some applications

of persistent homology on medical and financial data implemented during this project.

TDA is a vast topic marrying concepts of algebraic topology and statistics. Hence, it is

unfeasible to present a detailed study of all the aspects the field has to offer. Although, one

can refer to the following sources for further reading.

• A detailed description of building various types of complexes from data and manifold

reconstruction can be found in, [14].

• One can refer to Bubenik’s paper on the properties of persistence landscape to get a

comprehensive understanding of the same, [19].

• Recently, the homological study of statistical functions like the distance to measure and

other kernel density estimators is a topic of interest in mode detection, [15].

• The mapper algorithm has hyper-parameters such as the proximity value for clustering,

the number of intervals, etc. A statistical analysis of parameter selection has been done

in, [16].

• The classic hierarchical clustering using HDBSCAN can be justified mathematically by

homologies of Rips Filtration, as shown in, [17, 18].

Besides exploratory data analysis, recently TDA has been integrated with numerous super-

vised learning techniques for prediction and simulation, based on the underlying geometry

of the data. TDA’s use in machine learning is still inchoate though having immense poten-

tial.
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