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Abstract 

The graphene nanoribbons are one-dimensional strips of graphene, which are 

intensively studied because of their remarkable electronic and magnetic properties. In 

this work, we have studied the zig-zag type ribbons, because it has already been 

proposed that magnetic edges-states, present in the ground state at the Fermi, could 

be relevant for spintronic applications. In this report, we have tried to give a reliable 

description of the ground state of the zig-zag ribbons.  At the density functional theory 

(DFT) level, it is believed that the antiferromagnetic phase is the ground state for both 

molecular and extended systems. However, the DFT results quantitatively depend on 

the chosen functional. Moreover, quantum Monte Carlo (QMC), a more accurate high-

level theory, predicts the paramagnetic phase to be the ground state for the acene 

series, the molecular analogue of the narrowest zig-zag graphene nanoribbons. Since 

these systems are strongly correlated, DFT needs to be validated against a 

benchmark theory, such as QMC. In this report, we carry out extensive variational and 

diffusion QMC calculations, and we show that in the ribbon the antiferromagnetic 

phase is energetically more stable than the simple paramagnetic wavefunction. The 

QMC energy gains and the magnetic moments are comparable to those obtained by 

the DFT-GauPBE exchange-correlation (XC) functional. It turns out that the energetics 

of static magnetic configurations at the GauPBE level is more accurate than the one 

from the PBE XC-functional for such a strongly correlated system. 
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Chapter 1: Introduction 

 

In the 21st century, arguably graphene is the most studied material in the field of 

materials science because of its remarkable physical and chemical properties, e.g., 

graphene is one of the strongest materials ever tested1. Apart from these basic 

properties, researchers are also interested in the optical and electronic properties of 

graphene. Like graphene, its derivatives also exhibit interesting properties. In this 

work, we will focus on one of the graphene derivatives, zig-zag graphene nanoribbons. 

The graphene nanoribbons are one-dimensional strips of graphene. The graphene 

nanoribbons are classified into two categories based on their edge structures - 

armchair or zig-zag - as shown in Figure 1. 

 

Figure 1: Armchair and Zig-zag graphene nanoribbons. Illustration by Ruffieux et al. 
Nature 531, 489-492 (2016). 

 
The convention of classification of graphene nanoribbons as “zig-zag” and “armchair” 

is shown in Figure 2. The ribbon direction is y. The ribbon width is given by T. 

 

https://www.ncbi.nlm.nih.gov/pubmed/27008967
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Figure 2: Naming convention for zig-zag and armchair ribbons, Illustration: Mildred 
Dresselhaus, MIT, Cambridge, MA 

 

We are interested in zig-zag graphene nanoribbons because of the presence of edge 

states at the Fermi level. Such states are only present in the zig-zag configuration2. 

Spin-polarized calculations using the density functional theory (DFT) showed a gap 

opening, and the zig-zag edges become spin-polarized and antiferromagnetically 

ordered3. Also, previous studies proposed that application of an in-plane electric field 

perpendicular to the graphene nanoribbon could lead to a half-metal4, where only one 

spin carries electric current. One can make use of such properties in several 

technological applications such as ribbon-based spintronics, sensors, and storage 

devices. 

 

1.1  Theoretical perspective 

The zig-zag graphene nanoribbons are one-dimensional strongly correlated 

systems5,17. The strong correlations in low-dimensional systems are due to the 

confinement of the particles in small phase space. This quantum confinement leads 

to strong inter-particle interaction, which results in quantum effects. To give an 

accurate physical description and interpretation of their properties in such systems, 

we need to consider correlation in the wavefunction. In order to do so, we need a 

high level of theory. The Density functional theory (DFT) and quantum Monte Carlo 



12 
 

(QMC) are two such methods that are capable of incorporating correlation effects 

to give an accurate description of a system. There are two categories of systems 

under consideration in case of zig-zag graphene nanoribbons, 

1) Molecules with finite length, e.g., acenes. 

2) Extended systems which are infinite, e.g., graphene nanoribbons. The periodic 

boundary conditions must be applied to such systems. 

Several reports6-8 on the molecular and extended zig-zag graphene nanoribbons 

have already been published claiming/verifying the proposal of Son3 et al. that at 

the DFT-LDA level of theory the anti-ferromagnetic solution is the ground state. 

 

Various attempts to include strong correlations in the system has been made by 

using Hubbard Hamiltonians59,60. However, our approach is to include correlations 

starting from the first principles in the QMC framework, which is a high-level theory 

more accurate than DFT. 

 

A previous QMC report9 suggests that in case of the narrowest width (single-ring 

width) molecular zig-zag graphene nanoribbons (acenes), the paramagnetic 

solution is the ground state. 

 

1.2  Experimental Realization 

Zig-zag graphene nanoribbon is a hot topic of interest due to its variety of 

technological applications, in particular for their potential use as in spintronic 

devices. Unfortunately, zig-zag graphene nanoribbons are very difficult to 

synthesize because of the instability due to its extremely reactive edges. 
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              Figure 3: Atomic resolution image, taken from Campos-Delgado et al., Nano 
Letters (2008) 

To date, there is only one example of the synthesis of zig-zag graphene 

nanoribbons. Group of Yang10 et al. synthesized the zig-zag graphene 

nanoribbon through controlled chemical cascades11 and properly chosen 

molecular precursors10. 

Our goal is to shed light on the correct description of the ground state of the 

zig-zag nanoribbons. To do so, we will use QMC as high-level method providing 

benchmark results, and compare its outcome with the most widely used DFT. 

At the end of this project, we would we able to explain/comment on the role of 

electron correlation in stabilizing the ground state of zig-zag graphene 

nanoribbons. 
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Chapter 2: Methods 

For the calculation purpose, we had used two methods: Density functional theory 

(DFT) and quantum Monte Carlo (QMC). We will talk about each of these methods in 

detail, starting with the DFT. 

2.1. Density functional theory 

2.1.1. Introduction 

 

The Density functional theory (DFT) is an ab initio technique used to calculate the 

electronic structure of many-body systems. It replaces the conventional ab initio 

wavefunction, which depends on 3N variables, by the electron density, which 

depends only on the three variables and hence reduces the complexity of the 

Schrӧdinger equation. The DFT method is mainly based on the two theorems given 

by Hohenberg and Kohn12. These theorems state that 

1) The external potential is a unique functional of electron density. 

2) The ground state can be obtained by minimizing the energy, which is a 

functional of electron density, with respect to electron density, and the electron 

density corresponding to the ground state energy is the ground-state electron 

density. 

Solving the Schrӧdinger equation for interacting electrons is a mighty task or, we 

could say, a nearly impossible task as the equation becomes very complicated with 

high dimensionality: 

𝐻̂Ψ𝑖(𝑟) = 𝐸Ψ𝑖(𝑟).                                                (2.1) 

Hence, with the use of above two theorems combined with the Born-Oppenheimer 

approximation,55 the difficult problem of interacting electrons in a static external 

potential has been solved by mapping it to a relatively easy and solvable problem 

of non-interacting electrons in an effective potential while keeping the electron 

density same throughout the mapping. In simple words, it is a mapping of a many-

particle Schrӧdinger equation to one-particle Schrӧdinger equation while keeping 

the electron density same: 
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[−
1

2
∇2 + 𝑉𝐸𝑓𝑓(𝑟)] Ψ𝑖(𝑟) = ϵ𝑖Ψ𝑖(𝑟),                   (2.2) 

Here, 𝑉𝐸𝑓𝑓 is the effective potential: 

𝑉𝐸𝑓𝑓(𝑟) = 𝑉𝑒𝑥𝑡(𝑟) + 𝑉𝐻(𝑟) + 𝑉𝑋𝐶(𝑟).                (2.3) 

The Schrӧdinger equation is solved in a self-consistent manner13. The effective 

potential includes the external potential 𝑉𝑒𝑥𝑡(𝑟), Hartree potential terms 𝑉𝐻(𝑟), 

and also takes care of the exchange and correlation interactions of electrons by 

different kinds of approximations/functionals. The exchange-correlation14 part 

𝑉𝑋𝐶(𝑟) contains the difference between the kinetic energies of the interacting and 

non-interacting systems and also the electronic-correlation. Since the energy 

contribution from the exchange-correlation part is small compared to the total 

energy, so this term can be approximated. Please note that in case of strongly 

correlated systems, the exchange-correlation term is important and hence cannot 

be approximated, so we need high-level theories like QMC15, DMRG16, etc. 

The simplest of these approximations or exchange-correlation functional is local-

density approximation, also known as LDA18,19. The LDA is a class of functionals 

which are dependent only on the electron density at a point where the function is 

being evaluated. It assumes that exchange energy per particle at each point in 

space is the same as the exchange energy per particle in the uniform electron gas 

with the density equivalent to the density at this same point in space. 

To cope with the problem of non-homogeneity of electron density, more advanced 

and accurate functionals are developed, which falls in the category of Generalized 

Gradient Approximation20,21 (GGA). In GGA, the functionals depend on the electron 

density at a point and first derivative/gradient of electron density at that point as 

well. 

Among the GGA functionals, I had used PBE22 exchange-correlation functional. 

The PBE is an exchange-correlation functional which is applicable/suitable for a 

wide range of systems.  

There is another set of exchange-correlation functionals known as hybrid 

functionals. In such functionals, a part exchange energy is replaced by exact 

exchange energy calculated from the Hartree-Fock Theory. The Hartree-Fock 
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method23 is used to determine the wavefunction and energy of a many-body 

system. It uses the slater determinant approach for the approximation of many-

body wavefunction. The Hartree-Fock method is also known as the self-consistent 

field (SCF) method as it assumes as if each particle is interacting with the mean-

field created by all other particles, and the Schrӧdinger equation is solved in a self-

consistent manner. The obtained Hartree-Fock energy is the exact exchange 

energy. I have had used a functional of this kind, which is known as GauPBE24, the 

abbreviation of GaussianPBE. In GauPBE, short-range Hartree-Fock exchange is 

included in the functional using a Gaussian attenuation scheme. In this scheme, a 

gaussian term is incorporated in the Hartree-Fock exchange term, which gives 

more accurate results in solid-state bandgap calculations due to self-interaction 

error correction and is significantly faster than other functionals due to more rapid 

decay of the gaussian term. 

 

2.1.2. Pseudo-potentials 

 

We have used pseudo-potentials to optimize the wavefunction such that we can get 

significantly accurate results with the least computational cost. 

We know that core electrons do not take part in the chemical bonding are strongly 

bound, which results in the screening of the nucleus and making the nucleus partially 

inert. Thus, the properties of metals and semiconductors are solely due to the loose 

valence electrons. 

So, we can exploit this fact, and core electrons can be replaced by an ionic core, which 

is a good approximation of the potential felt by valence electrons from the core 

electrons. To fulfil the Pauli exclusion principle, orthogonality condition, the valence 

shell orbitals are oscillating near the core region. To represent these kinds of 

oscillating functions, we need a large number of plane waves, which is computationally 

expensive. To smoothen out the oscillations, we use a pseudo wavefunction that 

mimics the core region within a cut-off radius rc and mimics the valence region outside. 
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Figure 4: Comparison of a wavefunction in the Coulomb potential of the nucleus (blue) to the one in the 
pseudopotential (red). The real and the pseudo wavefunction and potentials match above a particular cut-off 

radius rc. Illustration by Wolfram Quester. 

 

2.1.3. Computational Details 

 

All the DFT calculations were performed using the plane-wave25 based 

QuantumESPRESSO26,27 software. The PBE based GGA exchange and correlation 

functional have been used for the DFT calculations, and Ultra-soft Pseudopotential is 

considered for electron-ion interaction. The kinetic energy cut-off28 and charge density 

cut-off used are 50 Ry and 200 Ry, respectively. The Brillouin zone is sampled with 

24 k-points (24 X 1 X 1 Monkhorst-Pack grid29) in the ribbon direction and Marzari-

Vanderbilt smearing30 of 0.009 Ry is used for all the calculations. The vacuum 

separation between two periodic images, to avoid interaction, in Y and Z directions is 

7.2 Å and 7 Å, respectively. In the second part, we used the GauPBE hybrid exchange-

correlation functional. 6 q-points were used in the Brillouin zone. The Wannier31 

interpolation method was used in plotting the band structure to check the character of 

different orbitals in bands. 

2.1.4. Limitations of DFT 

 

DFT method is principle is exact but does not match experimental results as the 

fundamental quantity, the electron density, is obtained from the approximations done 

on the exchange-correlation part. Also, it is a well-established fact that the DFT does 

not give convincing results in case strongly correlated systems where strong 

correlations become significant. 



18 
 

2.2. Quantum Monte Carlo 

2.2.1. Introduction  

 

Quantum Monte Carlo (QMC)15 is an ab initio method used to study complex and 

strongly correlated systems. Also, the QMC term refers to many different methods like 

Variational Monte Carlo, Diffusion Monte Carlo, Path Integral Molecular Dynamics, 

etc. In this project, we will use Variational Monte Carlo and Diffusion Monte Carlo. 

Since DFT is unable to cope with strongly correlated systems, we used the QMC 

method. The advantage of QMC over DFT is that the former can explicitly consider the 

electron-electron correlation. At the variational Monte Carlo level, this is implemented 

by using a Jastrow term in the many-body QMC wavefunction. At the diffusion Monte 

Carlo level, correlation is included through a stochastic projection of the wave function 

towards the ground state. 

Also, the precision of the calculation is directly related to the sample size. Therefore, 

we would easily tune32 the precision of the results, according to the size of the MC 

sampling. The accuracy of the calculation also depends on the choice of the initial trial 

wavefunction. So, our efforts will be focused on improving this wavefunction, by 

optimizing its variational energy to be as close as possible to one of the ground states. 

The first QMC step is the construction of the QMC correlated wavefunction,52 Ψ(𝑟), 

which consists of the product of a determinant term and a Jastrow factor. The 

determinant part, Δ(r), encodes the fermionic anti-symmetry, while the Jastrow 

part, 𝐽(𝑟), is symmetric and spin-independent: 

Ψ(𝑟) = 𝑒−𝐽(𝑟). Δ(r).                                      (2.4) 

The determinant part could take care of static correlations at different levels, while the 

Jastrow part takes care of the dynamic correlations (fraction of the correlation energy 

from spatial charge motion in the system). 

In our study, the determinant part is represented by the anti-symmetrized geminal 

power (AGP)33-36 which is determinant of a pairwise “geminal” function expanded in 

the Gaussian basis set: 

Δ(𝑟) = det [𝜙(𝑟, 𝑟′)] = ∑ 𝜆𝑖𝑖 𝜑𝑖̅(𝑟)𝜑𝑖̅(𝑟′).      (2.5) 
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The level of static correlation provided by the determinant part can be chosen based 

on the number of terms (virtual pair excitations) in the geminal expansion (above 

equation). 

If the molecular orbitals expansion in the geminal is restricted up to N/2, then the 

wavefunction is a Jastrow single determinant (JSD): 

𝜙𝑆𝐷(𝑟, 𝑟′) = ∑ 𝜆𝑖  𝜑𝑖̅(𝑟)𝜑𝑖̅(𝑟′)
𝑁/2
𝑖=1 .                   (2.6) 

Here, φ are the molecular orbitals (MOs), N is the total number of electrons and λ𝑖 are 

the coefficients in the geminal expansion. 

If the geminal is expanded over a larger expansion (up to the full basis set), then it is 

called fully resonant Jastrow antisymmetric geminal power (JAGP): 

𝜙𝐴𝐺𝑃(𝑟, 𝑟′) = ∑ 𝜆𝑖,𝑗𝑖𝑗 𝜒𝑖(𝑟)𝜒𝑗(𝑟′).                     (2.7) 

Here, 𝜒 are the atomic orbitals (AOs) and λ𝑖𝑗 are the parameters need to be optimized.  

As mentioned before, the Jastrow part includes dynamic correlation. It consists of two 

parts, a homogenous (2-body Jastrow, J2) and an inhomogeneous part. 

The inhomogeneous Jastrow is represented by a Gaussian basis set, which can 

contain on-site as well as inter-ion contributions: 

𝐽1 = ∑ 𝛼𝑙𝑚𝑙𝑚 𝐺𝑙(𝑟)𝐺𝑚(𝑟′).                                  (2.8) 

Here, G’s are the Gaussians centred at ions specified by l and m, while r and r’ are 

electron coordinates. In our case, l and m refer to the same centre at the time, building 

up a three-body (electron-electron-ion) correlator. Here, α𝑙𝑚 are the parameters 

optimized during the QMC optimization. 

On the other hand, the 2-body Jastrow is made of a radial form (depending only on 

the electron-electron distance): 

𝐽2(𝑟1, … . , 𝑟𝑛) = ∑ 𝑢(|𝑟𝑖 − 𝑟𝑗|)1≤𝑖≤𝑗≤𝑛 ,                    (2.9) 

where u is the radial function: 

𝑢(𝑟) =
1

2𝛾
(1 − 𝑒−𝛾𝑟).                                         (2.10) 



20 
 

which fulfils cusp37,38 conditions for particles with different spins. It removes the short-

range divergence of the Coulomb interaction in the energy evaluation, by 

compensating this contribution by an equal and opposite divergence coming from the 

kinetic term due to the fulfilment of the above cusp conditions. Hence, it also results in 

a better convergence rate of the wavefunction energy optimization and in a stable 

diffusion Monte Carlo algorithm. 

Since the QMC calculations are computationally very expensive, we optimize the QMC 

correlated wavefunction starting from an initial guess provided by performing a DFT 

calculation over the full primitive basis. 

At variance with DFT, in QMC, we are using Gaussian basis sets39 instead of plane 

waves, to reduce at most the size of the basis itself. Indeed, Gaussians converge 

usually faster than the plane waves, so they turn out to be computationally cheap. 

To further reduce the basis set size, we contract it by finding the best set of hybrid-

orbitals40 required to achieve the desired accuracy at a low computational cost. To find 

the best hybrid orbitals, we maximize the overlap between the full basis wavefunction 

obtained by DFT and the one written in terms of contracted orbitals. 

Once we find the best contraction, we could perform a DFT calculation on the 

converged k-mesh using a contracted basis. Then we look for the Baldereschi point,41 

a special point in the Brillouin zone, where the DFT energy is equal (or numerically 

very close) to the DFT energy on the converged k-mesh. The use of the Baldereschi 

point is meant to reduce the finite-size errors, coming from the finite simulation cell, 

mimicking the infinite system. 

Upon fixing the contracted basis set and generating the DFT orbitals at the Baldereschi 

point, we add the Jastrow factor to the DFT determinant, and we optimize the wave 

function at the QMC level. In the first optimization step, we optimize the Jastrow linear 

coefficients and freeze the determinant part. Then, we also optimize the exponents of 

the Gaussian basis of the Jastrow part. 

After these steps, we optimize the parameters in the determinant and the Jastrow part 

simultaneously. At the end of all these optimizations, the trial wavefunction is ready 

for the Variational Monte Carlo (VMC) step.42 
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The variational principle guarantees that energy optimization gives us the best upper 

bound to the true ground state energy (𝐸0): 

𝐸𝑣 ≈
∫ Ψ𝑇

∗ (𝑅)𝐻̂Ψ𝑇(𝑅) 𝑑𝑅

∫ Ψ𝑇
∗ (𝑅)Ψ𝑇(𝑅) 𝑑𝑅

 ≥ 𝐸0.                          (2.11) 

The Metropolis algorithm43 is used to sample a set, 𝑅𝑚, of electronic configurations 

drawn from the configuration-space probability density given by Ψ2(𝑅) normalized. A 

single trajectory made of these points is called “walker.” The local energy is then 

evaluated at each of these points by the Metropolis and averaged over the whole set 

to give the variational energy: 

𝐸𝑣 ≈
1

𝑀
∑ 𝐸𝐿(𝑅𝑚)𝑀

𝑚=1 ,                                   (2.12) 

Here, 𝐸𝐿(𝑅𝑚) is the local energy, defined as: 

𝐸𝐿(𝑟) =
𝐻̂Ψ𝑇(𝑟)

Ψ𝑇(𝑟)
.                                            (2.13) 

The last step of the QMC method is the Lattice Regularized Diffusion Monte Carlo 

(LRDMC).44 The LRDMC is a lattice regularized version of the standard diffusion 

Monte Carlo (DMC) algorithm. Like DMC, the LRDMC is a stochastic projection 

method to solve the imaginary-time Schrӧdinger equation: 

−𝜕𝑡Φ(𝑅, 𝑡) = (𝐻̂ − 𝐸𝑇)Φ(𝑅, 𝑡).                    (2.14) 

In case of Fermions, we get a sign problem in the projection scheme, since 

translational probabilities will not be positive definite, due to the Fermionic anti-

symmetry of the wave function. To tackle the sign problem, we use the fixed-node 

approximation (FNA),45-47 which implies that sign-flipping moves will be disregarded in 

such a way that a walker will evolve only within a given nodal pocket.  The wave 

function nodes are determined by the optimization performed at the QMC level. The 

LRDMC method projects the VMC energy towards the true ground state energy within 

the FNA. 

The above calculations are performed for supercells of increasing size, in order to 

approach the thermodynamic limit, which is estimated through a finite-size (FS) 

extrapolation. Simulation of extended systems using periodic boundary conditions 

introduces many-body finite-size (FS) error.54 



22 
 

In QMC calculations, there are three ways of reducing the FS error. 

1) By performing unit cell and supercell calculations at a special point (Baldereschi 

point) in the Brillouin zone. 

2) By applying two-body corrections using the KZK53 energy functional.  

3) By explicitly extrapolating the results, obtained for different supercell sizes, to 

the thermodynamic limit. 

2.2.2. Computational details 

 

All the calculations, both DFT and QMC, are performed using the TurboRVB 

package,48 which is based on the Jastrow correlated geminal power wave function. 

The QMC wave functions are represented in the Gaussian basis sets. The triple zeta 

basis set, (cc-pVTZ),49,50 is used in the calculations, optimized for the carbon atom 

pseudopotential (Filippi).51 The hydrogen is taken without pseudization, and its basis 

set is of triple zeta correlation consistent type (cc-pVTZ). This basis has been 

contracted to reduce the computational cost, and speed up the calculations with 

sufficient accuracy. The contracted basis for our calculations consists of 9 C and 2 H 

atomic orbitals. For the DFT calculations, the LDA exchange-correlation functional is 

used. The KZK corrections were obtained by performing DFT calculations using the 

KZK energy functional. 
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Chapter 3: Results and Discussion 

In this chapter, we are going to provide the data we obtained by performing 

calculations, and parallelly we will analyze and discuss the results obtained. 

3.1. DFT 

 

We had performed the DFT calculations with the PBE and GauPBE exchange-

correlation (XC) functionals. The systems under consideration were ribbons with width 

2 (the smallest one) up to 6 (the largest one we considered in DFT). We performed 

calculations for paramagnetic (NM), ferromagnetic (FM), and anti-ferromagnetic 

(AFM) configurations. Both functionals give the AFM configuration as the ground state 

for all the ribbons. Also, localized edge states were found at the Fermi level. 

We also calculated the band structure in all cases, as shown in Figs. 5 and 6 for PBE 

and GauPBE, respectively. In both cases, it could be seen that the bandgap closes as 

a function of the ribbon width. One more important thing we observed is that the band 

gaps are always indirect, although it is difficult to observe it from Fig. 5 because the k-

shifts of the gaps are about 10-2 in crystal units, thus too small for the scale of the plot. 

The most remarkable difference between GauPBE and PBE is the fact that the 

bandgaps are larger in GauPBE as compared to PBE, as reported in Tab. 2. 

Table 1: Energies per C atom for zig-zag ribbons as a function of ribbon width. The calculations are done at the 

PBE and the GauPBE level of theories. 

Width of the 
Ribbon 

AFM (Ha) FM (Ha) NM (Ha) 

PBE GauPBE PBE GauPBE PBE GauPBE 

2 -5.98650 -5.99880 -5.98630 -5.99796 -5.98630 -5.99769 

3 -5.88982 -5.90044 -5.88967 -5.89986 -5.88954 -5.89919 

4 -5.84167 -5.85205 -5.84160 -5.85175 -5.84138 -5.85123 

5 -5.81283 -5.82278 -5.81279 NA -5.81259 -5.82215 

6 -5.79362 -5.80329 -5.79358 NA -5.79341 -5.80270 
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Figure 5: Band structure for zig-zag ribbons with different widths at the PBE level. 

 

 

              

Figure 6: Band structure for zig-zag ribbons with different widths at the Gau-PBE level. 
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Table 2: Bandgaps as a function of ribbon width. All the bandgaps reported here are indirect. 

Configuration and width/XC-
Functional 

AFM-
ZGNR2 

AFM-
ZGNR3 

AFM-
ZGNR4 

AFM-
ZGNR5 

AFM-
ZGNR6 

PBE 0.66 0.74 0.713 0.66 0.613 

GauPBE 2.06 2.12 1.84 1.66 1.52 

 

The energy gains of AFM and FM phases are computed in Tab. 3 with respect to the 

paramagnetic case, taken as reference. We plot these values in Fig. 7. One can 

observe that at both PBE and GauPBE levels, the energy difference between AFM 

and FM configuration vanishes as a function of the zig-zag ribbon width because the 

spin coupling between the edges gets smaller and smaller as the ribbon width 

increases. At the GauPBE level, the AFM configuration is a lot more stable than the 

one at the PBE level. We will use these gains while comparing these results with the 

ones obtained by QMC. 

Table 3: Gain in energies per carbon atom as a function of zig-zag ribbon width. The ferromagnetic configuration 
melts down to the paramagnetic one in PBE for the narrowest ribbon. 

Width of the 
Ribbon 

AFM-NM (meV) FM-NM (meV) 

PBE GauPBE PBE GauPBE 

2 -5.5 -30.2 0
* -7.3 

3 -7.4 -34.1 -3.6 -18.3 

4 -7.8 -22.3 -6.0 -14.2 

5 -6.6 -17.1 -5.4 NA 

6 -5.9 -16.0 -4.8 NA 

 

By looking at the lattice parameters evolution for the systems analyzed here, there are 

no significant changes across different widths. As far as the magnetic properties are 

concerned in the magnetic phases, the local magnetic moment of the edge atom is 

nearly constant as a function of the ribbon width. Instead, the total absolute 

magnetization per unit cell increases, as reported in Tab. 4, because of the additional 

contribution from the inner carbon atoms. 

Table 4: Total absolute magnetization in antiferromagnetic conf as a function of ribbon width. 

System → AFM (width 2) AFM (width 3) AFM (width 4) AFM (width 5) AFM (width 6) 

Total absolute 
magnetization 

(
𝜇𝐵

𝑎0
2) 

0.55 0.79 0.89 0.98 1.04 
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The results obtained by us are somewhat similar to what Son and co-workers had 

found. The most relevant difference is the bandgaps values, much smaller than the 

ones we obtained. We believe that the reason for this is the use of a different 

exchange-correlation functional. Son and co-workers had done their calculations at 

the local spin density approximation (LSDA) level of theory, while our calculations are 

based on the GGA approximation.  

 

 

Figure 7: Energy gain per C atom as a function of ribbon width (width in Angstrom). 



27 
 

 

 

Figure 8: (a) Bandgap as a function of ribbon width with PBE (violet) and GauPBE(green) XC-functionals (b) 
Band structure of zig-zag graphene nanoribbon calculated by Son et al. at LSDA level of theory. (c) Bandgap as 

a function of ribbon width calculated at LSDA level of theory, reported by Son et al. 

 

From the Wannierization of the ab initio Hamiltonian, we then studied the orbital 

character of the bands. By looking at the band structure projected onto three different 

sets of orbitals, i.e., C(𝑝𝑧), C(𝑠𝑝2), and H(𝑠), plotted in Figs. 9, 10, and 11, respectively, 

it appears that the orbitals close to the Fermi level have a strong 𝑝𝑧 character, while 

the H(𝑠) are mainly located in the conduction bands. 

(a) 
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Figure 9: C( 𝑝𝑧) orbital contribution to the band structure 

 

Figure 10: C( 𝑠𝑝2) orbital contribution. 

 

Figure 11: H (𝑠) orbital contribution  
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After finishing calculations for the unit cell, we also carried out supercell PBE 

calculations to check whether the spin order breaks the underlying lattice translational 

symmetry, as we go to longer ribbons. We used two rings long ribbon and varied the 

width up to 3 rings. We observed that local spins along the carbon edges are 

ferromagnetically coupled, while the coupling across the edges is anti-ferromagnetic. 

These couplings do not change as a function of length or width of the ribbon. So, we 

could say that as we change the size of ribbon in both directions, the nature of the 

ground state does not change, always staying in an AFM configuration. 

We could see that the results obtained using the DFT method varies widely, and 

depend strongly on the type of exchange-correlation functional used. The bandgaps 

and the energetics of various phases predicted with three functionals (LSDA, PBE, 

and GauPBE) are very different, and we are not in a position to comment on which 

functional is giving the most accurate results. Since zig-zag graphene nanoribbons are 

strongly correlated systems, and the XC-functionals bear approximations which fail for 

strong electronic correlation, we need a higher level of theory to treat electron 

correlation more precisely. In this respect, QMC is the method of choice. Indeed, it is 

well established that QMC gives a more reliable description of strongly correlated 

systems, as it can explicitly consider the electron-electron correlation by using a 

Jastrow term in the many-body QMC wavefunction, or by projecting the many-body 

wave function towards the true ground state of the system within FNA. 
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3.2. QMC 

Given the technical difficulty of performing many-body QMC calculations from first 

principles, and their high computational cost, we could study the narrowest ribbon 

(ZGNR2) only, during the period of this internship. The ZGNR2 system has been 

studied, using four types of variational wave functions in the QMC framework: 

1. Jastrow correlated single determinant wave function (corresponding to the 

paramagnetic case); 

2. Jastrow correlated AGP wave function (corresponding to a correlated 

paramagnet, eventually superconducting in the infinite size limit); 

3. Spin-polarized wave function (corresponding to the ferromagnetic phase); 

4. Spin-broken wave function with antiferromagnetic order.  

For all these wave functions, we followed the same procedure, which we illustrate as 

follows. We started by taking the ribbon geometry optimized at the PBE level in the 

NM state. We obtained the determinant part of the QMC wavefunction by performing 

a DFT calculation using the Gaussian primitive cc-pVTZ basis set. Then we performed 

basis set contractions, reported in Tab. 5, to get the desired accuracy at a less 

computational expense. 

Table 5: Optimization of the basis set using hybrid orbitals 

Basis set Energy per C atom (𝐻𝑎) 
Overlap with primitive 

cc-pVTZ 

Primitive cc-pVTZ -5.95858 1.00000 

4C&2H -5.75062 0.89992 

7C&2H -5.95597 0.99927 

9C&2H -5.95802 0.99983 

12C&2H -5.95802 0.99984 

 

We started by choosing four contracted (or hybrid) orbitals for the carbon atom (4C) 

and 2 contracted (hybrid) orbitals for hydrogen (2H) and determined the optimal 

contraction coefficients by maximizing the overlap of the contracted basis set wave 

function with the one expanded in the primitive cc-pVTZ basis set. By looking at the 

weights of the contracted orbitals and at the DFT energies in the contracted basis set, 

a minimum of 2H hybrid orbitals is enough to be within 0.5 mH from the cc-pVTZ 

energy. Still, the dependence of the DFT energy on the atomic orbital contractions for 
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the carbon atom is significantly stronger, as shown in Tab. 5. So, we tuned the number 

of contracted carbon orbitals till convergence within the 0.5 mH threshold. From Tab. 

5, we concluded that 9C and 2H Gaussian hybrid orbitals are the optimal basis set to 

fulfil the required accuracy. 

We used the contracted basis set to find the Baldereschi point and then performed a 

DFT calculation on this point. The wavefunction obtained by doing a DFT on the 

Baldereschi point is used as the starting point for the subsequent QMC calculations. 

To correlate the Slater determinant generated by DFT, we applied a Jastrow factor 

leading to the QMC wave function in Eq. 2.4. In order to find the best trial wave function 

in the variational sense (i.e. as close as possible to the ground state), we optimize the 

variational parameters by minimizing the QMC energy of the variational wave function. 

The linear and exponential coefficients of the Jastrow part (Eq. 2.8-10) are optimized 

in the first QMC step. In the second step, the linear and exponentials coefficients of 

the Determinant and Jastrow parts are optimized simultaneously. In Figs.12 and 13, 

we can see the parameters evolution and the energy convergence during the latest 

QMC optimization step. 

In Fig. 12, we can follow the evolution of the α𝑖𝑗 parameters, in the three-body Jastrow 

term (Eq. 2.8), over the number of iterations in the QMC energy minimization. 

Similarly, we could follow the evolution of other parameters like γ in the two-body 

Jastrow and λ𝑖𝑗 in the determinant part of the QMC wavefunction.  

Also, in Figure 13, we can track the trajectory of the total energy of a system during 

the QMC energy minimization. We plotted the energies of Jastrow correlated AGP 

wave functions obtained with different orbital expansions, during their optimization 

history. 
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Figure 12: Convergence of three-body Jastrow parameters during the QMC optimization. 

 



33 
 

 

Figure 13: Convergence of energy during the QMC optimization for different orbital expansions in the AGP. 

AGP(N), N: number of MOs above HOMO in the AGP expansion. 

 
Once the wavefunction is fully optimized, we performed the VMC calculation using the 

optimized trial wavefunction. After obtaining the VMC energy, we projected the 

wavefunction towards the ground state using LRDMC within FNA. 

 

We performed the QMC calculations for four supercell sizes, one-, three-, six-, and 

nine-ring supercells, for finite-size extrapolation. 

 

We repeated the same procedure for all wave functions taken into account in our 

study.  

 

1) JSD paramagnetic wave function 

 

In Tab. 6 and Fig.14, we show the energetics of the paramagnetic phase as a function 

of the supercell size. 
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Table 6: Energies for the paramagnetic case at the VMC and LRDMC level 

 
Number of Carbon 

atoms (N) 

𝐸𝑉𝑀𝐶/𝑁 

(𝐻𝑎) 

σ𝑉𝑀𝐶/𝑁 

(𝐻𝑎) 

𝐸𝐿𝑅𝐷𝑀𝐶/𝑁 

(𝐻𝑎) 

σ𝐿𝑅𝐷𝑀𝐶/𝑁 

(𝐻𝑎) 

4 -5.99587 0.00004 -6.00617 0.00029 

12 -5.97900 0.00003 -5.99077 0.00005 

36 -5.97312 0.00001 -5.98568 0.00004 

 

 

Figure 14: FS Extrapolation of the LRDMC results for the paramagnetic case. 

 

2) JAGP wave function 

 

We also studied the variational energy of the JAGP wave function, which included 

correlations beyond JSD. In particular, the JAGP will introduce correlations in the 

antisymmetric part of the wave function of singlet type, typical of a superconductor in 

the resonating valence bond theory. We expand the AGP in terms of molecular orbitals 

above HOMO (Eq. 2.7), which correspond to virtual electron pair excitations, and we 

study the effect of this expansion in the VMC and LRDMC energies. We learned that 

the excitations increase the variational freedom and hence stabilizes the system. After 
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three MOs beyond HOMO, which is 1/3rd of the MOs in the SD, the energy was 

converged. We kept this ratio the same for a larger number of rings as well, to perform 

the finite size extrapolation. 

 

Similarly, we computed the energy gain (Tab. 7) in AGP, with respect to the SD, as a 

function of the number of virtual excitations in the AGP. 

Table 7: The VMC, LRDMC energies, and gain in energies obtained for SD and AGP with the different number of 
virtual pair excitations in the AGP expansion. 

Number of 
excitations in 
the AGP (𝑁) 

𝐸𝑉𝑀𝐶/𝑁 

(𝐻𝑎) 

σ𝑉𝑀𝐶/𝑁 

(𝐻𝑎) 

𝐸𝐿𝑅𝐷𝑀𝐶/𝑁 

(𝐻𝑎) 

σ𝐿𝑅𝐷𝑀𝐶/𝑁 

(𝐻𝑎) 

𝐸(AGP−SD)/𝑁 

(𝑚𝑒𝑉) 

σ(𝐴𝐺𝑃−𝑆𝐷)/𝑁 

(𝑚𝑒𝑉) 

0/SD -5.99602 0.00003 -6.00621 0.00017 0.0 6.7 

1 -5.99842 0.00003 -6.00775 0.00018 -41.9 6.8 

2 -5.99911 0.00003 -6.00839 0.00015 -59.3 6.2 

3 -5.99910 0.00003 -6.00835 0.00016 -58.2 6.4 

4 -5.99910 0.00003 -6.00858 0.00016 -64.4 6.4 

5 -5.99920 0.00003 -6.00834 0.00013 -57.9 6.0 

6 -5.99923 0.00004 -6.00848 0.00016 -61.8 6.4 

 

 

Figure 15: LRDMC energy gain as a function of the number (N) of MOs above HOMO (virtual pair excitations) in 
the AGP expansion. 



36 
 

 

Figure 16: FS Extrapolation of the LRDMC results for the AGP. 

 

3) Spin-polarized ferromagnetic wave function  

We generated the ferromagnetic configuration by fixing the magnetic moment of 2 BM 

per unit cell (two unpaired electrons). We used the contracted basis set and the 

Baldereschi point which we had used for the paramagnetic case so that the results 

between the two states will be in a one-to-one correspondence. After going throughout 

the optimization procedure, we obtained the energies per carbon shown in Tab. 8. 

Table 8: Energies per carbon atom for the ferromagnetic case at the VMC and LRDMC level. 

Number of carbon 
atoms (N) 

𝐸𝑉𝑀𝐶/𝑁 

(𝐻𝑎) 

σ𝑉𝑀𝐶/𝑁 

(𝐻𝑎) 

𝐸𝐿𝑅𝐷𝑀𝐶/𝑁 

(𝐻𝑎) 

σ𝐿𝑅𝐷𝑀𝐶/𝑁 

(𝐻𝑎) 

4 -5.95761 0.00009 -5.97585 0.00017 

12 -5.94121 0.00006 -5.95701 0.00013 

24 -5.93702 0.00005 -5.95457 0.00018 

36 -5.93557 0.00005 -5.95214 0.00021 
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Figure 17: FS Extrapolation of the LRDMC results for the ferromagnetic wave function. 

 

In Fig. 18, the surface magnetization is plotted for the ferromagnetic wavefunction for 

3-ring supercell. It can be seen that the nature and quantity of local magnetic moment 

on the opposite edges are the same, which is characteristic of the FM phase. 

 
Figure 18: Contour plot of surface magnetization (

𝜇𝐵

𝑎0
2)  for the ferromagnetic case. 

 



38 
 

4) Spin-broken antiferromagnetic wave function 

Similarly, we generated the antiferromagnetic configurations by fixing the magnetic 

moment to zero BM per unit cell. We used the same contracted basis set and 

Baldereschi points which we used in the paramagnetic case. We optimized the 

wavefunction and performed VMC and LRDMC calculations and extrapolated the 

results to the thermodynamic limit. 

In case of a single unit cell, the AFM phase melts upon optimizing the determinant part 

in the QMC optimization. The reason for this meeting could be the loose local 

interactions in the unit cell which becomes stronger in supercells. 

Table 9: Energies per carbon atom for the antiferromagnetic case at the VMC and LRDMC level. 

Number of carbon 
atoms (N) 

𝐸𝑉𝑀𝐶/𝑁 

(𝐻𝑎) 

σ𝑉𝑀𝐶/𝑁 

(𝐻𝑎) 

𝐸𝐿𝑅𝐷𝑀𝐶/𝑁 

(𝐻𝑎) 

σ𝐿𝑅𝐷𝑀𝐶/𝑁 

(𝐻𝑎) 

12 -5.98251 0.00001 -5.99196 0.00005 

24 -5.97904 0.00001 -5.98852 0.00003 

36 -5.97752 0.00001 -5.98717 0.00005 

 

 

Figure 19: FS Extrapolation of the LRDMC results for the antiferromagnetic wave function. 

 



39 
 

In Fig. 20, the surface magnetization is plotted for the antiferromagnetic wave function 

for 3-ring supercell. It can be seen that the nature and quantity of local magnetic 

moment on the opposite edges is opposite and equal, which is characteristic of the 

AFM phase. Also, the ferromagnetic coupling is happening along the edges. 

 
Figure 20: Contour plot of the surface magnetization (

𝜇𝐵

𝑎0
2)  for the antiferromagnetic wave function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



40 
 

Chapter 4: Conclusions 

 

All the conclusions we made in this thesis are valid for the narrowest width zig-zag 

graphene nanoribbon only. 

Table 10: Energy differences per C atom at a different level of theories. 

Level of theory used 
(only for the narrowest width) 

FM-NM 
(meV) 

AFM-NM 
(meV) 

JAGP-JSD 
(meV) 

DFT PBE 0.0 -5.5 - 

DFT GauPBE -7.3 -30.2 - 

LRDMC (3-ring supercell) 918.5 ± 3.8 -9.4 ± 1.9 -22.3 ± 6.0 

LRDMC (9-ring supercell) 911.5 ± 5.8 -37.4 ± 1.7 NA 

LRDMC (Thermodynamic limit) 930.4 ± 15.6 -49.5 ± 3.2 3.3 ± 5.0 

 

1) From Tab. 10, the QMC calculations validate the Gau-PBE results, by 

predicting the static AFM state as lower in energy than the paramagnetic phase 

for the narrowest zig-zag graphene nanoribbon in the extrapolated 

thermodynamic (infinite length) limit. 

2) In the thermodynamic limit, the gain in energy from the singlet pairing in the 

AGP expansion goes to zero. However, the error bar in these calculations is 

still too large to discard the possibility that more correlated paramagnetic wave 

functions (i.e. beyond the JSD ansatz) would be the actual ground state of the 

system. Other calculations are necessary to clarify this point. 

3) For the energetics of such strongly correlated systems, the GauPBE XC-

functional performs much better than the PBE XC-functional, as it gives results 

closer to the QMC method for the energy gain between AFM and PM phase. 

Accordingly, the magnetic moments (see Tab.11) predicted by the Gau-PBE 

XC functional are also in better agreement with QMC than the ones obtained 

by the PBE XC functional. So, if we take QMC as a reference, PBE seems to 

underestimate the magnetization, while GauPBE slightly overestimates it.  

4) Table 11: Total absolute magnetization, for the narrowest AFM ribbon as a function of supercell. 

System → AFM (unit cell) AFM (3 units) AFM (6 units) AFM (9 units) 

Absolute magnetization (
𝜇𝐵

𝑎0
2) - 0.469±0.0008 0.800±0.0005 0.919±0.0007 
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5) For the narrowest width, FM phase melts at the PBE level, and it is certainly not 

the GS at the GauPBE level, being always bound from below by the AFM 

phase. From Tab. 10, the QMC energies of the FM phase are much larger than 

the ones obtained by DFT, because we studied only the QMC wave function at 

fixed spin polarization with Sz=2 (i.e. the smallest polarization accessible by 

QMC in the unit cell). Calculations at fractional spin polarization are ongoing for 

the largest supercell (9 rings), to check whether there is a stability window for 

this phase. 

Perspectives 

 

These results open interesting perspectives. The most immediate step forward will be 

the completion of the analysis of more correlated wave functions (beyond JSD), which 

could challenge the AFM phase as the ground state. JAGP is one of them (we need 

to reduce the error bars for the calculations with this wave function). Also, Jastrow 

correlated Pfaffian wave functions could be studied by allowing the AF magnetic 

moments to fluctuate. Indeed, in quasi-one-dimensional systems magnetic 

fluctuations are believed to be dominant. In strictly one-dimensional systems the Lieb’s 

theorem58 states that these magnetic fluctuations are so strong that they destroy any 

magnetic order. From this viewpoint, this theorem cannot be applied directly to our 

system because even for the narrowest ribbon the transverse direction is not 

negligible. Therefore, further calculations are necessary to include magnetic 

fluctuations beyond the static magnetic patterns. 

 

An important point to be addressed is the coupling between the electronic states and 

the geometry of the ribbon. The relevant point here is to study the structural 

instabilities56,57 due to cis and trans conformations in the ribbon. 

 

Finally, an interesting follow-up would be the study of the evolution of the phase 

diagram as a function of ribbon width, as we have done at the DFT level, for both PBE 

and Gau-PBE. 
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