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Abstract

Quantum computation and quantum information has been one of the most
extensive �elds of research since the past three decades. Many groundbreak-
ing quantum algorithms have been designed, which can perform the assigned
tasks much faster than their classical counterparts. Shor's algorithm, one
of the most well known quantum algorithms, can be used to prime factorise
large integers in polynomial time, while even the best classical integer factor-
ization algorithms are exponential in time. As the security of most classical
cryptosystems rely on the di�culty to prime-factorize large numbers, the
Shor's algorithm, if implemented on a scalable quantum computer, can com-
promise almost all of the classical cryptosystems that are widely used today.
Hence, the requirement of quantum cryptography is greatly essential. In this
thesis, I attempt to look into the possibility of exploiting quantum walks
for the purposes of quantum cryptography. Quantum walks are the quan-
tum analogues of the classical random walks. Unlike classical random walks,
Quantum walks have unique properties such as superposition and entangle-
ment of the position and the coin spaces, which can be exploited to design
unconditionally secure quantum cryptographic protocols. I propose two new
protocols, namely a Quantum Secure Direct Communication (QSDC) proto-
col and a Controlled Quantum Dialogue (CQD) protocol using discrete time
quantum walks on a cycle. The proposed protocols have been shown to be
unconditionally secure against various attacks such as the intercept-resend
attack, the denial of service attack and the man-in-the-middle attack. Ad-
ditionaly, the proposed CQD protocol is shown to be unconditionally secure
against an untrusted service provider. Also, it is shown that the proposed
protocols are more secure against the intercept resend attack as compared to
the qubit based LM05 protocol.
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1 Introduction

Cryptography i.e. the study of reversibly morphing messages into an unread-
able form, in order to securely share con�dential information and maintain
secrecy, has been in use since a few thousand years. Ancient Indians and
Greeks used the substitution and the chift ciphers i.e. substituting one let-
ter with another, or shifting the letters by a �xed number positions in the
alphabet [11]. Medeival Persians had seperate scripts exclusively used for
secret communication [12]. From early 8th century to the early 15th cen-
tury, many Arab mathematicians and scholars developed various innovative
cryptosystems mostly based on exploiting the properties of Arabic linguistics
[13, 14].

Though cryptography was studied and was in use since a long time, its
progress was slow. The progress in research in cryptography increased rapidly
in the 20th century, starting during the �rst and the second world war with
the introduction of the enigma cypher in Germany, which was cracked with
the turing machine, which is opined by many to be one of the �rst ever
digital computers, and paved way to the birth of a totally new branch of
study: Computer Science [15]. Then, with the advent of more powerful
computers, more mathematical ciphers and cryptosystems such as the AES,
DES, RSA, elleptic curve cryptosystems, El-Gamal, etc. were introduced
[16, 17, 18, 19]. The security of these cryptosystems is dependent upon
certain invertible functions that are easy to compute, but whose inverse is
hard to compute, even by the best and the most powerful computers. This
kind of security is called conditional security, as the di�culty to crack the
encryption is conditional to the computing power of the machine used for
cracking.

The early 20th century also witnessed the birth of Quantum Mechanics.
Quantum mechanics could explain various physical phenomena that were
impossible to explain via classical mechanics. Although quantum mechanics
turned out to be one of the most fundamental and most important branches
of physics, the idea of using quantum mechanics for computational purposes
wasn't thought about until in the 1980s, when Paul Benio� developed the
idea of a Quantum Turing Machine [20]. Later, Richard Feynman and Yuri
Manin suggested that quantum computers could perform various tasks which
a classical computer could not [21, 22]. This gave birth to two new �elds of
research, namely Quantum Computation and Quantum Information.

Inspired by the quantum turing model, many attempts were then made
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to design algorithms that would work on a quantum computer, called Quan-
tum Algorithms [23]. Quantum Algorithms, in many cases, provided a much
higher computational speedup as compared to their classical counterparts.
One of the most famous quantum algorithms, the Shor's Prime Factorization
algorithm, introduced in 1994 , could prime factorize integers in polynomial
time [24], whereas even the best classical algorithms were exponential in time.
Since the security of most of the widedly used classical public-key cryptosys-
tems, such as the RSA, depended upon the di�culty in prime factorizing
integers, the Shor's algorithms meant the compromise and the collapse of
almost all of today's most widely used cryptosystems. Hence, this boosted
the need for unconditionally secure cryptosystems.

The idea of exploiting the properties of quantum mechanics for crypto-
graphic purposes started o� with the paper by Stephen Wiesner on conjugate
coding and quantum money, which although was written in 1969, didn't get
published until 1983 [25]. The �rst ever quantum cryptographic protocol
was proposed in 1984 by Charles Bennett and Gilles Brassard [9]. This was
a quantum key distribution protocol i.e. a protocol used to securely gener-
ate a secret key between two parties. This key can be later used to encrypt
messages via a one time pad. The introduction of BB84 protocol sparked o�
the research in quantum cryptography in full swing. BB84 was then followed
by the E91 protocol [26], B92 [10], Lo-Chau protocol [27], etc. Unlike clas-
sical cryptographic schemes, the QKD protocols are unconditionally secure
i.e. their security is intrinsic to the protocol and is governed by the laws of
quantum mechanics and does not depend upon any conditions such as com-
putational di�culty in solving a problem. Hence, these protocols could be
a very feasible replacement to the classical cryptographic schemes, which in
general are vulnerable to attacks by a quantum computer.

The research in quantum cryptography was largely limited to QKD, until
during 2003-2005, when three novel protocols, namely the Bostrom-Felbinger
protocol [28], the LM05 protocol (see appendix), and the quantum dialogue
protocol [30]. These protocols belong to the category of Quantum Direct
Communication (QDC) protocols. Unlike QKD which are key-generating
protocols, the QDC protocols are used to transfer the message directly and
securely without the requirement of a key. These QDC protocols have shown
that an unconditionally secure quantum communication can be achieved even
without a key.

On the other hand, in 1993, the concept of quantum walks was introduced
[31]. Quantum walks are the quantum analogues of classical random walks.
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Unlike classical random walks where the walker is at just one deterministic
position at a given time, in quantum walks, the walker can be at multiple
positions, (i.e. a superposition of positions), at the same time. Also, the
tossed coin that decides the movement of the walker, can also be at a super-
position of head and tails. Adding to that, the coin and the position of the
walker can also get entangled. These unique features of quantum walks can
help traverse multiple positions faster, a feature which has been exploited
in the design of various quantum search algorithms [32]. Quantum walks
have also been used for studying and describing various physical phenomena
[33, 34] and also in the study and design of quantum networks [35]. But the
usage of quantum walks for the purposes of cryptography and secure com-
munication has largely been unexplored, except for a few designs of QKD
protocols [36] and public key cryptosystems [37]. In this thesis, we delve
into an unexplored cryptographic potential of quantum walks: the quantum
direct communication.

The paper is organized as follows: In section 2, we introduce the pre-
liminary concepts of quantum walks required to understand the protocols
proposed in section 3. In section 4, we discuss the security of the proposed
protocols against various attacks. Finally, in section 5, we provide the con-
cluding remarks. Also, in the Appendix, we provide relevant background
details and codes that can be referred to if required.

2 Discrete-time quantum walk on a cycle - pre-

liminaries

Quantum walks are a quantum analogue of the classical random walks. In
discrete time quantum walks on an N -cycle, the walker moves along N dis-
crete points on a cycle, which are realised by N dimensional quantum states
|x〉 which are orthogonal to each other belong to the Hilbert space Hp where

Hp = span{|x〉, x ∈ {0, 1, 2, ..., N − 1}}.

.

At every step of the quantum walk, the walker moves one position either
to his left or to his right based on the result (|0〉 or |1〉) of the quantum
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coin, which is given by a two dimensional quantum state |c〉 belonging to the
Hilbert space Hc where

Hc = span{|0〉, |1〉}.

The initial state of the walker starting at position xin and with an initial
coin state |cin〉 which can be in superposition of the two allowed basis states
is given by

|Ψin〉 = |xin〉 ⊗ |cin〉 = |xin〉|cin〉 ; |xin〉 ∈ Hp ; |cin〉 ∈ Hc. (1)

The dynamics of the walker (i.e., how the walker moves during each step
of the quantum walk) is governed by the action of the unitary operator, a
composition of a quantum coin operation on the coin space followed by a
conditioned shift operation on the complete Hilbert space,

U = U(θ, ξ, ζ) = S(Ip ⊗Rc). (2)

Here Ip is the identity operator on position space and

Rc = Rc(θ, ξ, ζ) =

[
eiξ cos θ eiζ sin θ
e−iζ sin θ e−iξ cos θ

]
(3)

In simpler cases, when ζ and ξ are �xed, Rc(θ, ξ, ζ) = Rc(θ)
is the coin operator on the coin space. The shift operator on H = Hp ⊗Hc,
which shifts the position of the walker in the direction which is determined
by the coin state is given by

S =
N−1
Σ
x=0

(|x− 1( mod N)〉〈x| ⊗ |0〉〈0|+ |x+ 1( mod N)〉〈x| ⊗ |1〉〈1|). (4)

The state after t steps of the walk on an N−cycle in general will be in the
form,

|Ψt〉 = U t|Ψin〉 =
N∑
x=1

(
αx,t|0〉+ βx,t|1〉

)
⊗ |x〉 (5)
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and the probability of �nding the walker at any position x after t steps of
walk will be P (x, t) = |αx,t|2 + |βx,t|2. In addition to the quantum walk evo-
lution operator we will also de�ne the translation operator and measurement
operator which will be needed for QSCD and CQD protocols. Translation
operator is de�ned on the space Hp in the form given by

T (y) =
N−1
Σ
x=0
|x+ y( mod N)〉〈x| (6)

and the measurement operator M in de�ned on the entire space H in the
form given by

M = Mp ⊗Mc

where

Mp =
N−1
Σ
x=0
|x〉〈x| and Mc =

1

Σ
c=0
|c〉〈c|. (7)

Note that [T (y), U ] = 0 i.e., T (y) and U commute with each other [37].

3 The Protocols

Here we �rst present the encoding scheme, and then present the Quantum
Secure Direct Communication protocol (Fig. 1) and the Controlled Quantum
Dialogue protocol (Fig. 2). In both Fig. 1 and 2, the �random path switcher�
is a device that switches the path of the quantum channel so as to move a
particular state into encoding the message or into checking eavesdropping,
similar to using the lever to change railway tracks.

3.1 Encoding of the message

The message m (or a part m of the total message) is encoded on a quantum
walk state |φ〉 =

∑
i

|xi〉|ci〉 by applying the translation operator T (m) on |φ〉,

resulting in the state T (m)⊗ Ic|φ〉 =
∑
i

|xi +m〉|ci〉
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3.2 QuantumWalk based Quantum Secure Direct Com-
munication (QSDC) Protocol

Figure 1: Quantum Walk based QSDC protocol

1. Alice randomly chooses 3n integers {t1, t2, ..., tn}, {x1, x2, ..., xn} and
{c1, c2, ..., cn} such that xi ∈ {0, 1, 2, ..., N − 1} and ci ∈ {0, 1} ∀i ∈
{1, 2, ..., n} and 3n random real numbers {θ1, θ2, ..., θn}, {ξ1, ξ2, ..., ξn}
and {ζ1, ζ2, ..., ζn} and prepares n walk states [U(θi, ξi, ζi)]

ti |xi〉|ci〉 =
U ti |xi〉|ci〉 ∀i ∈ {1, 2, ..., n} and sends them to Bob. (In the rest of this
and the next protocol, we will refer to [U(θi, ξi, ζi)] as U)

2. On receiving the walk states, Bob randomly chooses n/2 of them for
checking eavesdropping and classically sends their corresponding co-
ordinates i to Alice. Alice classically sends to Bob the corresponding
values of ti, xi, ci, θi, ξi and ζi. Bob applies the corresponding operation
U−ti on those states and measures them and checks the measurement
result with the value of xi and ci. If the error is within a tolerable limit,
he continues to step 3. Else, the protocol is aborted and they start all
over again.

3. Out of the remaining n/2 walk states, Bob chooses n/4 of them for
encoding the message. On each of those n/4 states, Bob codes a part
of his message mi by applying the translation operator T (mi)⊗ Ic. He
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does nothing to the other n/4 states (let us call them decoy states). He
then sends all the n/2 states back to Alice.

4. Once Alice con�rms the receiving of the states, Bob classically sends the
coordinates of the decoy states to Alice. Alice applies the corresponding
operator U−ti on the decoy states and checks for eavesdropping just like
how Bob does it in step 2.

5. Once no eavesdropping is con�rmed, Alice then applies U−ti on the
remaining n/4 message states and measures them to obtain the message
sent by Bob.

3.3 QuantumWalk based Controlled Quantum Dialogue
(CQD) Protocol

Figure 2: Quantum Walk based QDC protocol

1. Charlie randomly chooses 3n integers {t1, t2, ..., tn}, {x1, x2, ..., xn} and
{c1, c2, ..., cn} such that xi ∈ {0, 1, 2, ..., N − 1} and ci ∈ {0, 1} ∀i ∈
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{1, 2, ..., n} and 3n random real numbers {θ1, θ2, ..., θn}, {ξ1, ξ2, ..., ξn}
and {ζ1, ζ2, ..., ζn} and prepares n walk states [U(θi, ξi, ζi)]

ti |xi〉|ci〉 =
U ti |xi〉|ci〉 ∀i ∈ {1, 2, ..., n} and sends them to Alice.

2. On receiving the walk states, Alice randomly chooses n/2 of them for
checking eavesdropping and classically sends their corresponding coor-
dinates i to Charlie. Charlie classically sends to Alice the corresponding
values of ti, xi, ci, θi, ξi and ζi. Alice applies the operation U

−ti on those
states and measures them and checks the measurement result with the
value of xi and ci. If the error is within a tolerable limit, she continues
to step 3. Else, the protocol is aborted and they start all over again.

3. Out of the remaining n/2 walk states, Alice chooses n/4 of them for
encoding the message. On each of those n/4 states, Alice encodes a
part of her message ai by applying the translation operator T (ai). She
does nothing to the other n/4 states (let us call them decoy states).
She then chooses a random integer k and 3 random real numbers a, b, c
and applies [U(a, b, c)]k on all the n/2 states and sends them to Bob.

4. Once Bob con�rms the receiving of the states, Alice publicly announces
the values of a, b, c and k and the coordinates of the decoy states. Char-
lie, upon receiving the announcement, sends the ti, xi and ci values of
the decoy states to Bob. Bob then applies the corresponding operator
U−ti [U(a, b, c)]−k on the decoy states and checks for eavesdropping just
like how Alice does it in step 2.

5. Meanwhile, Bob encodes his message bi on the remaining message states
by applying the translation operator T (bi). Once he con�rms that there
is no eavesdropping, Charlie sends the ti, xi and ci values of the message
states to Bob. Bob applies the operator U−ti on the message states,
measures them and publicly announces the measurement results ai+bi.
Alice and Bob subtract ai and bi respectively from the results to obtain
each others' messages.

4 Security

In this section, we analyse the security of our protocol against various attacks,
namely the intercept-resend attack, the denial of service attack, man-in-the-
middle attack, and the attack by an untrusted Charlie.

10



4.1 Intercept-and-Resend Attack

In this attack, Eve intercepts the quantum channel and tries to extract in-
formation from the incoming state by measuring it. Then, she re-prepares
the appropriate state (based on the information she receives) and sends it
to the reciver. Our protocols are robust against this attack. This is due
to the fact that quantum walk states are usually superposition states and
that the position and the coin Hilbert spaces are usually entangled. Hence,
Eve can't determine the incoming state by measurement alone. Instead of
directly measuring the state, Eve can apply U−ti and then measure the state.
But this attack also cannot be performed by Eve because the value of ti will
be only known to Alice at the time of attack. If Eve attempts to perform
this attack, she will raise the error during the eavesdropping checking of the
control mode states, and hence will be caught.

4.1.1 Mutual Information between Alice and Eve

In practical scenarios, Alice can choose her parameters ti, xi, ci, θi, ξi and ζi
only from a �nite set or a �nite range of values. Hence, the amount of mutual
information IAE gained between Alice and Eve during the intercept-resend
attack is dependent upon the size of these sets and ranges. The higher the
mutual information, the more will be known by Eve about the state sent
by Alice, thus making the protocol less secure. Let us consider a practical
scenario where Alice can choose:

• ti from the set T containing n(T ) integers (from 0 to n(T )− 1)

• xi from the set X ={0, 1, 2, ..., N − 1} (set of N values), N being the
dimension of the position space

• ci from the set C ={0, 1} (set of 2 values)

• θi from the range Rθ = [θmin, θmax]

• ξi from the range Rξ = [ξmin, ξmax]

• ζi from the range Rζ = [ζmin, ζmax]

Let us say, that for a particular round of transmission, Alice chooses the
values tA ∈ T , xA ∈ X, cA ∈ C, θA ∈ Rθ, ξA ∈ Rξ and ζA ∈ Rζ and
prepares the state |ψA〉 = [U(θA, ξA, ζA)]tA|xA〉|cA〉. Now Eve can perform
the intercept-resend attack in two ways i.e. Eve can either:
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1. directly measure the incoming state to obtain the position and coin
values xE and cE respectively (Let us call this strategy IR1) , or

2. randomly choose the values tE ∈ T , xE ∈ X, cE ∈ C, θE ∈ Rθ, ξE ∈ Rξ

and ζE ∈ Rζ and perform the operation [U(θE, ξE, ζE)]−tE |ψA〉 and then
measure the position and coin values of the resulting state in order to
obtain the values xE and cE respectively (let us call this strategy IR2)

Let us now examine IR2. We can consider tA, xA, cA, tE, xE, cE, θA, ξA, ζA, θE, ξE,
and ζE as uniformly distributed random variables, where tA, xA, cA, tE, xE, cE
are discrete and θA, ξA, ζA, θE, ξE, and ζE are continuous. Now, for IR2, the
mutual information IAE2 between Alice and Eve is given by:

IAE2 =
∑
tE∈T

∑
xE∈X

∑
cE∈C

∑
tA∈T

∑
xA∈X

∑
cA∈C

θmax∫
θA=θmin

θmax∫
θE=θmin

ξmax∫
ξA=ξmin

ξmax∫
ξE=ξmin

ζmax∫
ζA=ζmin

ζmax∫
ζE=ζmin

p(tA, xA, cA, tE, xE, cE, θA, ξA, ζA, θE, ξE, ζE)

log2
p(tA, xA, cA, tE, xE, cE, θA, ξA, ζA, θE, ξE, ζE)

p(tA)p(xA)p(cA)p(tE)p(xE)p(cE)p(θA)p(ξA)p(ζA)p(θE)p(ξE)p(ζE)

dθAdξAdζAdθEdξEdζE (8)

where p(a1, a2, ..., an) is the joint probability distribution-mass function of the
random variables a1, a2, ..., an where ai ∈ {tA, xA, cA, tE, xE, cE, θA, ξA, ζA, θE, ξE, ζE}.
For IR1, the mutual information IAE1 between Alice and Eve is given by:

IAE1 =
∑
xE∈X

∑
cE∈C

∑
tA∈T

∑
xA∈X

∑
cA∈C

θmax∫
θA=θmin

ξmax∫
ξA=ξmin

ζmax∫
ζA=ζmin

p(tA, xA, cA, xE, cE, θA, ξA, ζA)log2
p(tA, xA, cA, xE, cE, θA, ξA, ζA)

p(tA)p(xA)p(cA)p(xE)p(cE)p(θA)p(ξA)p(ζA)

dθAdξAdζA (9)

The above formulas of IAE1 and IAE2 contain 3 and 6 integrals respectively.
Due to lack of access to good computing power to calculate IAE1 and IAE2 ,
we modify the protocol for the purpose of analysis of this attack, by keeping
the coin parameters θ, ξ and ζ constant and publicly known throughout the
protocol, thus reducing the number of secret parameters and avoiding the
integrals. Now, the revised formulas for IAE1 and IAE2 will be:
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IAE2 =
∑
tE∈T

∑
xE∈X

∑
cE∈C

∑
tA∈T

∑
xA∈X

∑
cA∈C

p(tA, xA, cA, tE, xE, cE)

log2
p(tA, xA, cA, tE, xE, cE)

p(tA)p(xA)p(cA)p(tE)p(xE)p(cE)
(10)

and

IAE1 =
∑
xE∈X

∑
cE∈C

∑
tA∈T

∑
xA∈X

∑
cA∈C

p(tA, xA, cA, xE, cE)

log2
p(tA, xA, cA, xE, cE)

p(tA)p(xA)p(cA)p(xE)p(cE)
(11)

where:

p(tA, xA, cA, tE, xE, cE) =
‘1

2N [n(T )]2
(〈xE|〈cE|U−tEU tA|xA〉|cA〉)2 (12)

and

p(tA, xA, cA, xE, cE) =
‘1

2N [n(T )]
(〈xE|〈cE|U tA|xA〉|cA〉)2 (13)

and
p(ai) =

∑
a1,,a2,...,ai−1,ai+1,...,an

p(a1, a2, ..., an) (14)

where aj ∈ {tA, xA, cA, tE, xE, cE} and U = U(θ, ξ, ζ) where θ, ξ, and ζ are
the publicly known coin parameters constant throughout the protocol.
We can see that IAE1 and IAE2 are a function of n(T ) and N , and also depend
on the �xed coin parameters θ, ξ and ζ.
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Figure 3: (a) IAE vs ζ for N = 3, n(T ) = 7, θ = π
4
, ξ = π

4
and (b) IAE vs ξ

for N = 3, n(T ) = 7, θ = π
4
, ζ = π

4

Figure 4: (a) IAE vs θ for N = 3, n(T ) = 7, ζ = π
4
, ξ = π

4
and (b) IAE vs N

for n(T ) = 7, θ = π
4
, ζ = π

4
, ξ = π

4
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Figure 5: (a) IAE vs n(T ) for N = 4, θ = π
4
, ζ = π

4
, ξ = π

4
and (b) n(T ) for

N = 3, θ = π
4
, ζ = π

4
, ξ = π

4
. Green line represents the IAE for one channel of

the LM05 protocol, which is the same as the IAE for the BB84 protocol.

We can see that in Figure 3, IAE (by IAE, we are referring to both IAE1

and IAE2 at the same time) is low for some values of ζ and ξ and high for
some values of ζ and ξ. Hence, we must choose and �x the appropriate value
of ζ and ξ depending upon the values of n(T ), N and θ, such that the mutual
information is at its lowest. In Figure 4(a), we can see that IAE is at its
lowest when θ is an odd multiple of π

4
and is at its highest (IAE = 1) when

θ is an even multiple of π
4
, hence, for θ equal to even multiples of π

4
, the

security of the protocol will be compromised. In Figure 4(b), we can see
that for odd N , IAE increases with increase in N , whereas for even N , IAE
initially decreases with N , but then increases. From Figure 5(b) and Figure
4, we can see that IAE2 > IAE1 , implying that that IR2 is a better strategy
for Eve than IR1 for odd N . In Figure 5, we see that IAE decreases with
n(T ) and its value is greater for even N than for odd N . In fact, for odd N ,
the IAE drops much below 0.5 (which is the IAE for the LM05 protocol (see
appendix)) for large n(T ), and in fact is less than 0.25 for n(T ) > 25. This
shows that, for an odd, low value of N , and a high value of n(T ), and θ being
an odd multiple of π

4
and for appropriate values of ξ and ζ, our quantum

walk protocols are more secure against the intercept-resend attack than the
LM05 protocol (whose IAE = 0.5), even with the modi�cation that the coin
parameters remain constant and publicly known throughout the protocol.
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4.2 Denial of Service attack

Instead of trying to extract information from the incoming state, Eve can
rather perform a denial-of-service attack i.e. she can just stop the incoming
state from going forward and can instead prepare and send a random quan-
tum walk state. This attack also cannot be performed by Eve because if she
does so, she introduces an added error and noise in the channel and hence
the eavesdropping checking performed by the sender and the reciver at each
quantum channel will detect Eve.

4.3 Man-in-the-middle attack

Let's consider the QSDC protocol. In this attack, Eve initially puts the
incoming state from Alice into her quantum memory. Then, she sends her
own walk state to Bob. Bob, assuming that Alice may have sent this state,
encodes his message on this state and sends it back to Alice. Eve intercepts
that channel also and reads the message. She then encodes the message onto
the Alice's state which she had earlier stored in her quantum memory and
sends it back to Alice, thus being able to read the message. Eve can perform
a similar kind of attack in the CQD protocol to obtain the message of one
of the two communicating parties. In both cases of this attack, Eve will
be detected by the communicating parties during eavesdropping checking.
Hence both our protocols are unconditionally secure against this attack.

4.4 Attack by an untrusted Charlie

Let us consider the QDC protocol. In this attack, Charlie intercepts the
channel, applies U−ti and obtains Alice's message by measuring the state.
Then, he re-prepares the state and sends it to Bob. Then when Bob encodes
his message bi and announces the value ai + bi, Charlie can then get Bob's
message as well. But our QDC protocol is robust against this attack because
as Alice applies an additional Uk to the states, Charlie will not know the
value of a, b, c or k and hence he cannot apply [U(a, b, c)]−k to retreive the
state.
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5 Conclusion

Motivated by the unique properties of quantum walks (such as superposition
of positions and entanglement between the position and the coin states [38])
and their potential for providing cryptographic security, a one-way two-party
Quantum Secure Direct Communication (QSDC) protocol and a two-way
three-party Controlled Quantum Dialogue Protocol (CQD) have been de-
signed using quantum walks. It has been shown that the proposed protocols
are unconditionally secure against various attacks, such as the intercept-
resend attack, the denial of service attack and the man-in-the-middle attack.
The CQD protocol, in particular, is shown to be secure against an attack by
an untrusted Charlie. Also, for the intercept-resend attack, the mutual infor-
mation gained between Alice and Eve is shown to be much lower for the pro-
posed protocols as compared to the qubit based protocols such as the LM05
protocol [29], thus making the proposed protocols more secure than LM05
against this attack. Also, unlike the qubit based protocols which transfer just
one bit per state, the proposed protocols can transfer multiple bits per state,
which can possibly lead to advantages such as faster transmission of messages
and a lower requirement of resources (both subject to practical/experimen-
tal conditions). These direct communication schemes could potentially lead
to secure feasible solutions for many social and economic problems such as
the socialist millionaire problem [39], quantum E-commerce [40], quantum
voting [41], etc. and the work towards �nding these potential solutions will
be attempted in the future.
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Appendix

LM05 Protocol

This qubit based protocol was introduced in 2005 [29]. In this protocol, the
encoding rules for the message sender is as follows:

To encode the bit 0, do nothing to the incoming qubit.
To encode the bit 1, apply the operator iY = ZX on the incoming qubit.

The transformations are as follows:

iY |0〉 = −|1〉

iY |1〉 = |0〉

iY |±〉 = ±|∓〉

The protocol is as follows:

1. Alice choses n random qubits from the set {|0〉, |1〉, |+〉, |−〉} and sends
them to Bob.

2. Out of these n qubits recieved from Alice, Bob randomly chooses n/2
of them and classically sends their coordinates to Alice.

3. Alice publicly announces the states of the n/2 qubits which Bob chose
in step 2. Bob measures each of the n/2 qubits in their corresponding
bases and checks for eavesdropping. If the error is within a tolera-
ble limit, then the protocol continues to step 4. Else, the protocol is
discarded and they start all over again.

4. Among the remaining n/2 qubits, Bob randomly chooses n/4 of them
and encodes the message in them according to the encoding rules above
and does nothing to the remaining n/4 qubits. He sends all these n/2
qubits back to Alice.

5. After Alice con�rms receiving of the n/2 qubits, Bob sends the coordi-
nates of the qubits on which he didn't encode the message. Alice uses
these qubits to check for eavesdropping just like how Bob does it in
step 3.

6. After con�rming no eavesdropping, Alice measures the remaining qubits
in their respective bases to obtain the message sent by Bob.
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Mutual Information

Let us take two random variables, say x and y. The mutual information IXY
between two random variables x and y is the decrease in uncertainty of one
random variable when the value of the other random variable is observed,
measured or determined. If x and y are discrete, the formula for IXY is given
by [42]:

IXY =
∑
x

∑
y

p(x, y)log2
p(x, y)

p(x)p(y)
(15)

Where p(x, y) is the joint probability mass function and p(x) and p(y) are
the individual probability mass functions.
If x and y are continuous, then the formula for IXY is given by:

IXY =

∫
x

∫
y

p(x, y)log2
p(x, y)

p(x)p(y)
dxdy (16)

Where p(x, y) is the joint porbability density function and p(x) and p(y) are
the individual probability density functions.
There can also be a case where one of the random variables is discrete and
the other is continuous. For example, if x is discrete and y is continuous,
then the formula for IXY becomes:

IXY =
∑
x

∫
y

p(x, y)log2
p(x, y)

p(x)p(y)
dy (17)

where p(x) is the probability mass function of x, p(y) is the probability
density function of y and p(x, y) is a function that is a probability density-
mass function that is discrete in x and continuous in y.
This concept of mutual information can also be generalized to r = mn > 2
random variables {x1, x2, ..., xm} and {y1, y2, ..., yn} where xi are discrete and
yi are continuous. The generalised mutual information Imutual is given by [42]:

Imutual =
∑

x1,x2,...,xn

∫
y1,...,yn

p(x1, x2, ..., xm, y1, y2, ..., yn)

log2
p(x1, x2, ..., xm, y1, y2, ..., yn)

p(x1)p(x2)...p(xm)p(y1)p(y2)...p(yn)
dy1dy2...dyn (18)
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Mutual Information for the intercept-resend attack for the LM05

protocol:

Let us consider the �rst transmission from Alice to Bob. In this transmis-
sion, Alice �rst selects either of the four states and prepares them and sends
them to Bob. Eve intercepts this channel before the state reaches Bob and
randomly chooses a basis for each incoming state and measures the state in
that basis. Let a, e ∈ {0, 1,+,−}. Let the probability of Alice sending the
qubit a and Eve receiving the qubit e be p(a, e). For example, the probability
p(0, 0) is:

p(0, 0) =

probability of Alice choosing 0

1

4
×

probability of Eve choosing the computational Z basis

1

2
×

probability of Eve getting 0

1 =
1

8
(19)

Similarly,

p(0, 1) =
1

4
× 1

2
× 0 = 0 (20)

p(0,+) =
1

4
× 1

2
× 1

2
=

1

16
(21)

p(0,−) =
1

4
× 1

2
× 1

2
=

1

16
(22)

And similar probabilities for p(1, e), p(+, e), and p(−, e), where e ∈ {0, 1,+,−}
Hence, the mutual information IAE for the LM05 protocol is given by:

IAE =
∑
a

∑
e

p(a, e)log2
p(a, e)

p(a)p(e)
(23)

= 4(1
8
log2

1
8
1
16

+ 1
16
log2

1
16
1
16

+ 1
16
log2

1
16
1
16

) = 0.5

(We can see that for all a and e, p(a) = p(e) = 1
4
. Hence, p(a)p(e) = 1

16
)
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Codes used to plot the graphs

Calculation of IAE1

Listing 1: stu�6.py

import numpy as np
import s c ipy as sp
import matp lo t l i b as mpl
import matp lo t l i b . pyplot as p l t
import math as m
import copy as cp
from sc ipy import i n t e g r a t e
import mu l t i p ro c e s s i ng as mp

p i e=np . p i
thet=p ie /4
Ee=pie /4
Cc=pie /4

de f wa lks tate (N, pos , co in ) :
i f co in==0:

c = [ [ 1 ] , [ 0 ] ]
i f co in==1:

c = [ [ 0 ] , [ 1 ] ]
wsi=np . matrix (np . kron (np . matrix (np . eye (N) ) [ : , pos ] , np . matrix ( c ) ) )
r e turn wsi

de f Qwalk (N, wsi , theta ,E,C, t ) :
wsi=np . matrix ( wsi )
p=np . matrix (np . eye (N) )
c0=np . matrix ( [ [ 1 ] , [ 0 ] ] )
c1=np . matrix ( [ [ 0 ] , [ 1 ] ] )
S=np . kron (np . matrix (np . z e r o s ( (N,N) ) ) , np . matrix (np . z e r o s ( ( 2 , 2 ) ) ) )
f o r k in range (N) :

forward=k+1
backward=k−1
i f k==0:
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backward=N−1
i f k==N−1:

forward=0
S=S+np . kron (np . matmul (p [ : , forward ] , p [ : , k ] . getH ( ) ) , np . matmul ( c1 , c1 . getH ( ) ) )

+np . kron (np . matmul (p [ : , backward ] , p [ : , k ] . getH ( ) ) , np . matmul ( c0 , c0 . getH ( ) ) )
Ip=np . matrix (np . eye (N) )
Uc=np . matrix ( [ [ np . exp ( 1 . j ∗E)∗np . cos ( theta ) , np . exp ( 1 . j ∗C)∗np . s i n ( theta ) ] ,

[−np . exp (−1. j ∗C)∗np . s i n ( theta ) , np . exp (−1. j ∗E)∗np . cos ( theta ) ] ] )
U=np . matmul (S , np . kron ( Ip ,Uc ) )
Ut=np . l i n a l g . matrix_power (U, t )
ws=np . matmul (Ut , wsi )
r e turn ws

de f Pa l l ( xa , ca , ta , xe , ce , nt ,N) :
wsi=walks tate (N, xa , ca )
ws1=Qwalk (N, wsi , thet , Ee , Cc , ta )
prob=(abs (np . matmul ( wa lks tate (N, xe , ce ) . getH ( ) , ws1 ) )∗∗2)/(2∗N∗nt )
re turn prob . t o l i s t ( ) [ 0 ] [ 0 ]

de f Iae ( nt ,N) :
summ=0
#summ2=0
f o r ta in range ( nt ) :

f o r xa in range (N) :
f o r xe in range (N) :

f o r ca in range ( 2 ) :
f o r ce in range ( 2 ) :

p a l l=Pa l l ( xa , ca , ta , xe , ce , nt ,N)
i f p a l l ==0:

i n f=0
e l s e :

i n f=pa l l ∗np . log2 ( p a l l ∗4∗N∗N∗nt )
summ+=i n f
#summ2+=pa l l

r e turn summ/(np . log2 (N)+1)#,summ2
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Calculation of IAE2

Listing 2: stu�4.py

import numpy as np
import s c ipy as sp
import matp lo t l i b as mpl
import matp lo t l i b . pyplot as p l t
import math as m
import copy as cp
from sc ipy import i n t e g r a t e
import mu l t i p ro c e s s i ng as mp

p i e=np . p i
thet=p ie /4
Ee=pie /4
Cc=pie /4

de f wa lks tate (N, pos , co in ) :
i f co in==0:

c = [ [ 1 ] , [ 0 ] ]
i f co in==1:

c = [ [ 0 ] , [ 1 ] ]
wsi=np . matrix (np . kron (np . matrix (np . eye (N) ) [ : , pos ] , np . matrix ( c ) ) )
r e turn wsi

de f Qwalk (N, wsi , theta ,E,C, t ) :
wsi=np . matrix ( wsi )
p=np . matrix (np . eye (N) )
c0=np . matrix ( [ [ 1 ] , [ 0 ] ] )
c1=np . matrix ( [ [ 0 ] , [ 1 ] ] )
S=np . kron (np . matrix (np . z e r o s ( (N,N) ) ) , np . matrix (np . z e r o s ( ( 2 , 2 ) ) ) )
f o r k in range (N) :

forward=k+1
backward=k−1
i f k==0:

backward=N−1
i f k==N−1:

23



forward=0
S=S+np . kron (np . matmul (p [ : , forward ] , p [ : , k ] . getH ( ) ) , np . matmul ( c1 , c1 . getH ( ) ) )

+np . kron (np . matmul (p [ : , backward ] , p [ : , k ] . getH ( ) ) , np . matmul ( c0 , c0 . getH ( ) ) )
Ip=np . matrix (np . eye (N) )
Uc=np . matrix ( [ [ np . exp ( 1 . j ∗E)∗np . cos ( theta ) , np . exp ( 1 . j ∗C)∗np . s i n ( theta ) ] ,

[−np . exp (−1. j ∗C)∗np . s i n ( theta ) , np . exp (−1. j ∗E)∗np . cos ( theta ) ] ] )
U=np . matmul (S , np . kron ( Ip ,Uc ) )
Ut=np . l i n a l g . matrix_power (U, t )
ws=np . matmul (Ut , wsi )
r e turn ws

de f Pa l l ( ta , xa , ca , te , xe , ce , nt ,N) :
wsi=walks tate (N, xa , ca )
ws1=Qwalk (N, wsi , thet , Ee , Cc , ta )
ws2=Qwalk (N, ws1 , thet , Ee , Cc,− te )
prob=(abs (np . matmul ( wa lks tate (N, xe , ce ) . getH ( ) , ws2 ) )∗∗2 )/ ( (2∗N)∗ ( ( nt )∗∗2) )
re turn prob . t o l i s t ( ) [ 0 ] [ 0 ]

de f Iae ( nt ,N) :
summ=0
#summ2=0
f o r ta in range ( nt ) :

f o r te in range ( nt ) :
f o r xa in range (N) :

f o r xe in range (N) :
f o r ca in range ( 2 ) :

f o r ce in range ( 2 ) :
p a l l=Pa l l ( ta , xa , ca , te , xe , ce , nt ,N)
i f p a l l ==0:

i n f=0
e l s e :

i n f=pa l l ∗np . log2 ( p a l l ∗4∗N∗N∗nt∗nt )
summ+=i n f
#summ2+=pa l l

r e turn summ/(np . log2 (N)+1)#,summ2
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Generating the plots

Listing 3: plots.py

import s t u f f 4 as s4
import s t u f f 6 as s6
import matp lo t l i b as mpl
from matp lo t l i b import pyplot as p l t
import mu l t i p ro c e s s i ng as mp
import numpy as np
from time import time

t1=time ( )

p i e=np . p i
nTset=np . l i n s p a c e ( 1 , 3 0 , 3 0 ) . astype ( i n t ) . t o l i s t ( )
Nset=np . l i n s p a c e ( 1 , 4 0 , 4 0 ) . astype ( i n t ) . t o l i s t ( )
t h e t a s e t=np . l i n s p a c e (0 ,2∗np . pi , 2 0 0 ) . t o l i s t ( )
Eset=np . l i n s p a c e (0 ,2∗np . pi , 2 0 0 ) . t o l i s t ( )
Cset=np . l i n s p a c e (0 ,2∗np . pi , 2 0 0 ) . t o l i s t ( )

nTf=7
Nodd=3
Neven=4
th e t a f=p ie /4
Ef=p ie /4
Cf=p ie /4

de f s4 iaevsntnodd ( nt ) :
r e turn s4 . Iae ( nt , Nodd)

de f s6 iaevsntnodd ( nt ) :
r e turn s6 . Iae ( nt , Nodd)

de f s4 iaevsntneven ( nt ) :
r e turn s4 . Iae ( nt , Neven )

de f s6 iaevsntneven ( nt ) :
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r e turn s6 . Iae ( nt , Neven )

de f s4 i a ev sn (N) :
r e turn s4 . Iae ( nTf ,N)

de f s6 i a ev sn (N) :
r e turn s6 . Iae ( nTf ,N)

de f s 4 i a ev s th e t a ( theta ) :
s4 . thet=theta
re turn s4 . Iae ( nTf , Nodd)

de f s 6 i a ev s th e t a ( theta ) :
s6 . thet=theta
re turn s6 . Iae ( nTf , Nodd)

de f s4 iaevsE (E) :
s4 . Ee=E
return s4 . Iae ( nTf , Nodd)

de f s6 iaevsE (E) :
s6 . Ee=E
return s6 . Iae ( nTf , Nodd)

de f s4 iaevsC (C) :
s4 . Cc=C
return s4 . Iae ( nTf , Nodd)

de f s6 iaevsC (C) :
s6 . Cc=C
return s6 . Iae ( nTf , Nodd)

pool=mp. Pool (mp. cpu_count ( ) )

s4 iaevsntnodd_arr=pool . starmap ( s4iaevsntnodd , z ip ( nTset ) )
s6 iaevsntnodd_arr=pool . starmap ( s6iaevsntnodd , z ip ( nTset ) )
s4 iaevsntneven_arr=pool . starmap ( s4 iaevsntneven , z ip ( nTset ) )
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s6 iaevsntneven_arr=pool . starmap ( s6 iaevsntneven , z ip ( nTset ) )
s4 iaevsn_arr=pool . starmap ( s4 iaevsn , z ip ( Nset ) )
s6 iaevsn_arr=pool . starmap ( s6 iaevsn , z ip ( Nset ) )
s4 i aevs the ta_ar r=pool . starmap ( s4 i a ev s the ta , z ip ( t h e t a s e t ) )
s6 i aevs the ta_ar r=pool . starmap ( s6 i a ev s the ta , z ip ( t h e t a s e t ) )
s4 iaevsE_arr=pool . starmap ( s4iaevsE , z ip ( Eset ) )
s6 iaevsE_arr=pool . starmap ( s6iaevsE , z ip ( Eset ) )
s4iaevsC_arr=pool . starmap ( s4iaevsC , z ip ( Cset ) )
s6iaevsC_arr=pool . starmap ( s6iaevsC , z ip ( Cset ) )

pool . c l o s e ( )

de f f i l e w r i t e (n , l ) :
with open (n , 'w' ) as f i l e h a n d l e :

f o r l i s t i t em in l :
f i l e h a n d l e . wr i t e ( '% s \n ' % l i s t i t em )

de f f i l e r e a d (n , dtype ) :
p l a c e s = [ ]
with open (n , ' r ' ) as f i l e h a n d l e :

f o r l i n e in f i l e h a n d l e :
cur r entP lace = l i n e [ : −1 ]
i f dtype == ' int ' :

cu r r entP lace=in t ( cur r entP lace )
e l i f dtype==' f l o a t ' :

cu r r entP lace=f l o a t ( cur r entP lace )
p l a c e s . append ( cur rentP lace )

re turn p l a c e s

f i l e w r i t e ( ' s4 iaevsntnodd_arr . txt ' , s4 iaevsntnodd_arr )
f i l e w r i t e ( ' s6 iaevsntnodd_arr . txt ' , s6 iaevsntnodd_arr )
f i l e w r i t e ( ' s4 iaevsntneven_arr . txt ' , s4 iaevsntneven_arr )
f i l e w r i t e ( ' s6 iaevsntneven_arr . txt ' , s6 iaevsntneven_arr )
f i l e w r i t e ( ' s4 iaevsn_arr . txt ' , s4 iaevsn_arr )
f i l e w r i t e ( ' s6 iaevsn_arr . txt ' , s6 iaevsn_arr )
f i l e w r i t e ( ' s 4 i aevs the ta_ar r . txt ' , s 4 i a evs the ta_ar r )
f i l e w r i t e ( ' s 6 i aevs the ta_ar r . txt ' , s 6 i a evs the ta_ar r )
f i l e w r i t e ( ' s4 iaevsE_arr . txt ' , s4 iaevsE_arr )
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f i l e w r i t e ( ' s6 iaevsE_arr . txt ' , s6 iaevsE_arr )
f i l e w r i t e ( ' s4iaevsC_arr . txt ' , s4 iaevsC_arr )
f i l e w r i t e ( ' s6iaevsC_arr . txt ' , s6 iaevsC_arr )

p l t . p l o t ( nTset , s6 iaevsntnodd_arr )
p l t . p l o t ( nTset , s4 iaevsntnodd_arr )
p l t . p l o t ( nTset , [ 0 . 5 ] ∗ l en ( nTset ) )
p l t . x l ab e l ( r ' n (T) ' )
p l t . y l ab e l ( r ' $I_{AE}$ f o r odd N(='+ s t r (Nodd)+ ') ' )
p l t . l egend ( [ r ' $I_{AE_1}$ ' , r ' $I_{AE_2}$ ' ] )
p l t . s a v e f i g ( ' iaevsntnodd . jpg ' )
p l t . show ( )
p l t . f i g u r e ( )

p l t . p l o t ( nTset , s6 iaevsntneven_arr )
p l t . p l o t ( nTset , s4 iaevsntneven_arr )
p l t . p l o t ( nTset , [ 0 . 5 ] ∗ l en ( nTset ) )
p l t . x l ab e l ( r ' n (T) ' )
p l t . y l ab e l ( r ' $I_{AE}$ f o r even N(='+ s t r (Neven )+ ') ' )
p l t . l egend ( [ r ' $I_{AE_1}$ ' , r ' $I_{AE_2}$ ' ] )
p l t . s a v e f i g ( ' i aevsntneven . jpg ' )
p l t . show ( )
p l t . f i g u r e ( )

p l t . p l o t ( Nset , s6 iaevsn_arr )
p l t . p l o t ( Nset , s4 iaevsn_arr )
p l t . x l ab e l ( r 'N' )
p l t . y l ab e l ( r ' $I_{AE}$ ' )
p l t . l egend ( [ r ' $I_{AE_1}$ ' , r ' $I_{AE_2}$ ' ] )
p l t . s a v e f i g ( ' i a evsn . jpg ' )
p l t . show ( )
p l t . f i g u r e ( )

p l t . p l o t ( the ta se t , s 6 i aev s the ta_ar r )
p l t . p l o t ( the ta se t , s 4 i aev s the ta_ar r )
p l t . x l ab e l ( r ' $\ theta$ ' )
p l t . y l ab e l ( r ' $I_{AE}$ ' )
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p l t . l egend ( [ r ' $I_{AE_1}$ ' , r ' $I_{AE_2}$ ' ] )
p l t . s a v e f i g ( ' i a e v s th e t a . jpg ' )
p l t . show ( )
p l t . f i g u r e ( )

p l t . p l o t ( Eset , s6 iaevsE_arr )
p l t . p l o t ( Eset , s4 iaevsE_arr )
p l t . x l ab e l ( r ' $\ xi$ ' )
p l t . y l ab e l ( r ' $I_{AE}$ ' )
p l t . l egend ( [ r ' $I_{AE_1}$ ' , r ' $I_{AE_2}$ ' ] )
p l t . s a v e f i g ( ' iaevsE . jpg ' )
p l t . show ( )
p l t . f i g u r e ( )

p l t . p l o t ( Cset , s6iaevsC_arr )
p l t . p l o t ( Cset , s4iaevsC_arr )
p l t . x l ab e l ( r ' $\ zeta$ ' )
p l t . y l ab e l ( r ' $I_{AE}$ ' )
p l t . l egend ( [ r ' $I_{AE_1}$ ' , r ' $I_{AE_2}$ ' ] )
p l t . s a v e f i g ( ' iaevsC . jpg ' )
p l t . show ( )

t2=time ( )

p r i n t ( 'Done . Time taken : ' , t2−t1 )
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