Modelling CGM time series using
Neural Ordinary Differential Equation

A Thesis
submitted to
Indian Institute of Science Education and Research Pune

in partial fulfillment of the requirements for the

BS-MS Dual Degree Programme

by

Alekh Ranjan Mahankudo

IISER PUNE

Indian Institute of Science Education and Research Pune
Dr. Homi Bhabha Road,
Pashan, Pune 411008, INDIA.

April, 2020

Supervisor: Dr.Pranay Goel

(© Alekh Ranjan Mahankudo 2020

All rights reserved

Certificate

This is to certify that this dissertation entitled Modelling CGM time series using Neural
Ordinary Differential Equationtowards the partial fulfilment of the BS-MS dual degree

programme at the Indian Institute of Science Education and Research, Pune represents

study /work carried out by Alekh Ranjan Mahankudoat Indian Institute of Science

Education and Research under the supervision of Dr.Pranay Goel, Associate Professor,

Department of Biology , during the academic year 2019-2020.

Y.y,
p TN
i l‘ \’—.‘ 3= =
,“l\ AN
Committee:

Dr.Pranay Goel

Dr.M.S.Santhanam

//7

~

/
Di‘.Pranay Goel

This thesis is dedicated to my parents and my sister.

Declaration

I hereby declare that the matter embodied in the report entitled Modelling CGM time
series using Neural Ordinary Differential Equation are the results of the work carried out
by me at the Department of Biology, Indian Institute of Science Education and Research,
Pune, under the supervision of Dr.Pranay Goel and the same has not been submitted

elsewhere for any other degree.

6\’\‘; ﬂ’(l’\ H sz,l(\ e \&4 (_’) D

Alekh Ranjan Mahankudo

Acknowledgments

This project gave me an excellent opportunity to learn the subject. I enjoyed working on the
problem and learned many things from different fields. Dr. Pranay Goel was my supervisor.
He taught me how to approach a scientific problem and whenever I got stuck in any problem,
he helped me out. I want to thank Dr. M.S.Santhanam for his suggestions during the mid-
term evaluation. I want to thank Arjun and Sandra for always being there to help me in the
project, mock presentations, and reviewing the thesis. Being new in the department, they
made sure that I was comfortable in the lab.

I would also like to thank my friends Vaibhav, Sujeet, Rugwed, Rahul, Shivam, and Snehal,
for supporting me throughout the project. I cannot thank my parents and my sister enough

in mere words for their never-dying support and their trust in me.

Abstract

According to a government survey(2019), 11.8% of people in India have diabetes. Un-
derstanding the glucose-insulin dynamics could help in designing clinical trials and help in
designing therapies for prevention. There have been attempts to model the glucose-insulin
dynamics as a step in that direction. Recently deep neural networks have been used to
model a dynamic system. In our work, we take an existing dynamical system (Glucose-
insulin) model and incorporate a simple neural network (twice composed ReLu, with just
two parameters). We show that this simple neural network (a piecewise linear term) can be
used to approximate a non-linear term in the dynamical system. We introduce an algorithm
to find the parameters of the neural network to fit the new dynamical system (with the neu-
ral network) to the Continous Glucose Monitoring (CGM) data. The final results show that
even after replacing the non-linear term with a piecewise linear function, the glucose-insulin

time series obtained are close to the one obtained from the original glucose-insulin dynamics.

X1

Xi1

Contents

(1 Preliminaries|

[I.1 Neural Network]

(1.2 Neural Ordinary Differential Equations|

|2 Sensitivity|

[2.1 Forward Sensitivity Method (Continous case)|

[2.2 Forward Sensitivity (Discontinous case)|.

[2.3 Adjoint method /Backward Sensitivity| L.

[2.4 Adjoint method /Backward Sensitivity (Discontinous Case)|.

[2.5 Comparing the two methods| . . .

[3 Neural ODE’s|

[3.1 Using Single ReLu/ Strang-1 in a differential equation|.

[3.2 Composition of two ReLu/Strang?2)|

(3.3 Parameter Space|

|4 Glucose-Insulin dynamics

xiil

xi

17

20

23

23

31

49

[4.1 Sensitivity Equations|o oo 50

[4.2 Simulations|, 52
[5 Conclusion| 59

X1v

Introduction

Continuous Glucose Monitoring (CGM) is a technique that records blood glucose at regular
intervals. A sensor is fixed to the arm that reports blood glucose every 15 minutes for two
weeks. There is an existing Glucose-Insulin model for analyzing the CGM data[l]. This
existing model gives the dynamics of Glucose-insulin levels in the blood.

For modeling a continuous-time system using a neural network, there are two possible meth-
ods:

1. We approximate the system itself, that is, every hidden layer of the neural network would
correspond to the value of the state at some time 't’.

2. We approximate the dynamics of the system using a neural network. Here the output of
the network would be the velocity vector of the state at any time 't’.

The second approach is better for a continuous-time system, as a continuous-time system
typically has a large number of time points close to infinity, which would require, in principle,
an infinite layer if we go by approach 1.

While using approach 2, we can have a finite layered neural network as it needs to give just
the velocity vector at any given time.

The differential equation in the second approach is what we refer to as a neural differential
equation. In using a neural network for learning the dynamics of a system, we would require
to train the network. Training involves using an optimization algorithm to find a set of
parameters to best map inputs to outputs. In the case of differential equations, sensitivity
equations have been used for finding the best set of parameters. So in the case of neural
differential equations, these sensitivity equations can be used in order to train the network.
We show that a simple neural network (twice composed ReLu) can be used to replace a
non-linear term in the Glucose-insulin dynamics. This opens up the possibility to use simple
piecewise linear functions in place of highly non-linear functions while modeling dynamical

systems.

Chapter 1

Preliminaries

1.1 Neural Network

A typical Neural Network is made up of some basic units. These units are called as Arti-
ficial Neuron/ Perceptron. A Perceptron takes an input vector (z) multiplies a weight to it
element-wise, adds bias to it, and finally applies a function (called as activation function)

on this. The value thus obtained is called the output of the Perceptron.

b

Figure 1.1: Image of a perceptron that takes an input multiplies weight
to it, adds Dbias, and then applies a function to give the output.
Source:https: //www.sciencedirect.com/science/article/pii/S0149763416305176

When we stack these perceptrons one above the other, they form a hidden layer. When we

take multiple hidden layers and connect each consecutive layer, then we get a neural network.

input layer hidden layer output layer

Figure 1.2: Image of a feedforward neural network with
one input layer, one hidden layer, and one output
layer.Source:https: //www.sciencedirect.com/science/article /pii/S01497634 16305176

A simple and most commonly used activation function is Rectified Linear Unit (ReLu).

ReLu is defined as
z x>0

0 z<0

ReLu(z) = {

In this work we define ReLu(a * = 4+ b) as Strang(z; a,b). Here a,b are the parameters.
Thus a n composition of ReLu would be called as Strang function of order n, represented as

Strang-n(z;a,b).

1.2 Neural Ordinary Differential Equations

A general Ordinary Differential Equation is of the form

d"z(t)
dt

= f(t, x, M 23 parameters)

When we introduce a neural network on the right hand side of the above equation, it gives

a Neural Ordinary Differential Equation.

d"z(t)
dt

= NeuralNetwork

A simple degree one Neural ODE with Neural network as composition of ReLu (with pa-

rameters a,b)can be written as

dz(t)
dt

= Relu(a * Relu(a Relu(a x x +b) +b)... + D)

ot

Chapter 2

Sensitivity

The change in solution with respect to changes in the parameter is called as sensitivity. In

the case of ODE’s, we have various approaches for finding the sensitivity two of them are :

e Forward sensitivity method

e Backward/ Adjoint method.

2.1 Forward Sensitivity Method (Continous case)

Let x(t) denote the state at time ¢, z(0) is the initial state and ¢ denotes the parameter.

We have

d:]:(t)_ |
eI CIORND

In this case let’s take f(z(%),t,60) to be continous with respect to time.

We need to compute the sensitivity that is d.-;g)

Let’s define

Then,

Now,

a(t + ¢)

da(t) — lim a(t + €) —a(t)

Using the above result in equation 2.1, we get

o lim p (2.1)
dz(t + €)
do
(:r(t) + €d— + O(€%))
d t),t,0) + O(é
@) +ef(2(?),,0) + O(e))
lim x(t) +ef(z(t),t, 0+ @) — z(t,0) — ef(x(t),t,0)
p—0 @
o ZE0) = w(t0) | lf(@(t). 1,0+) — f (1), 1.0)
c,o—)O @ p—0 @
deft) - e(f(@(t). 1,0+ 0) ~ f(2(t).1.0)
df =0 %)
a(t) + lim €(f(l'(t),t, 0 + 9’9) — f(T(t)* t 9)
p—0 @
da(t) _ . elf(@(t),t,0+¢) = f((t).1,0) 22)
dt €0 ¢—0 e
- lm fla(t),t.0 + »2 — f(=(t),t,0) (2.3)

If f is differentiable with respect to the parameter 6 then the above equation can be written

as

daf(t) df (x(t), 1, 0)

i a0 (2.4)
_ 0fdx Of -
= 9200 o0 (2:5)

Even if f is not differentiable with respect to #, still the equation 2.3 is well defined as

long as the the function is continous with respect to the parameter #. Hence for using equa-

. . Ce . . . dx(t
tion 2.3, for computing sensitivity we require that the function f (where d(t) = f(x(t),t,0)

be continous with respect to 6.

2.1.1 Implementation of the method

Lotka-Voltera model:
Let z(t) and y(t) denote the population of speciesl and species2 respectively at time ¢.The
parameters are a, b, c,d

The differential equations are

d:fi(tt) = ax(t) = bx(t)y(t) = fi(z(t),y(t),a,b)
mé—it) = cx(t)y(t) — dy(t) = folz(t),y(t),c,d)

Let, the sensitivity with respect to the parameter 'a’ be defined as follows:

de(t)
el wi (1)
dy(t)
= wo(t)

Then we have

dw (t) dfi(x(t),y(t),a,b)

_ (2.6)
dt da
_ Ofi Oz(t) | 0fi oy(t) Ofi
= 02(t) 0a " oy(t) 9a | oa (2.7)
R, Oh o Of
= 52(0) wy (t) + () o(t) + % (2.8)

Similarly we also have,

dws(t) dfs(x(t),y(t), c,d)

— = - (2.9)
- s g
= ai{i)u;l(t)+ ai’é)u;Q(t) (2.11)
Now,
aij(t;) = a—byl®)
= o
% = (1)
ai{i) = o)
of
dy(t)

So using the above expressions in equations 2.8 and 2.11.We get the following differential

equations with initial conditions.

dwdlt(t) = (a —=by(t))wl(t) — bx(t)w2(t)
dwjt(t) = cy(wl(t) + (ca(t) — d)w2(t)
wl(0) = 0
w2(0) = 0

Solving this Initial value problem gives the sensitivity wl(t) i.edz((f) and w2(t) i.e delt).

The required sensitivities.

10

Computational details :

Initial time t0 = 0

Final time t1 = 50

Initial state :

x(0),y(0) = 5,5

wl1(0),w2(0) = 0,0

Parameter :

b,c,d = 0.4,0.1,0.4

Change in parameter (for direct computation) = 0.000001

Time step =0.05

Computations :

The below table shows the result of the computations wl(t) i.e d";'ff)) and w2(t) i.e di’i—g)) at

t = 50, for different values of parameter a. In the table below, we compare the sensitivity

obtained by using forward method with that obtained by direct computation.

Parameter Value(a) Direct computation (wl,w2) Forward Sensitivity Method(w1,w2)

1.1 123.714015, 2.310671 123.712232, 2.310508
2 -7.702622, 14.212229 -7.702562 , 14.212237
-0.906223, 11.754277 -0.906243 , 11.754232

2.2 Forward Sensitivity (Discontinous case)

Consider the differential equation d’fi(!’) = g(x,t;01,05)

filzt;0,) 0<t<t
f?(xat;HQ) t> to

g(:Bat;91392) - {

Here g is discontinous with respect to time.The point of discontinuity is .

11

Now take the sensitivity as a(t) = dig(:), then we have

dx(t + €
alt +¢) = T(Tld (2.12)
_ g S G0 F00) malt 66) (2.13)
3610 06,
_a(0)+ fy g 0y + 001, 0a)dt’ — x(0) — i g(a, 101, 02)dt!
= lim . {2.14)
861—0 06,
t+e¢ I, N / t+e /. /
_ linl fO g(l’,t?91 +(>91,92)fit —Jo g(x,t,ﬁl,ﬁg)dt (215)
501—0 00,

Similarly we have,

Jo gz, 501 + 664, 0)dt' — [g(x,t'; 61, 05)dt’

a(t) = 5‘;11130 56, (2.16)
Now,
da(t t+¢e)—alt
alt) = lim alt +¢) —a(?) (2.17)
dt e—0 €
Using (2.15) and (2.16) in (2.17), we get
daf(t 1 g, 0y + 004, 05) — g(a, 1501, 05)dt!
OB U UL LU b ICUALTL) (2.18)
dt c—0 € 66,0 06,

12

Case I: t,t + ¢ < t

da(t) _ o1 TR0+ 801, 60) — fula, 10, Ba)dt
— = lim- lim i
dt e—0 € 66, —0 (591
= lim1 lim [fi(w, ;01 + 001, 05) — fi(x,t;01,0,)] (t+ € — 1)

e—0 € 66;—0 (591

_ liml lim [fi(z, t; 60, + 09139?) — fi(z,t;6,,62)] €
e—0 € 661 —0 (591
1 1 dfl(l'*t*el)(
=m0
_ dfy(x,t;604,02)
do,

Case II: t.t + ¢ > t,

Similar to case I, we get the following expression

da(t) I fa(z, ;01 + 001,05) — folx,t:6,,0,)
= lim -
dt 0601—0 (591
_ dfy(z,t:0,,06)
dbs

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

Using case I we can get the value of a(t—¢), Now to get a(t+¢), we use the following equations

13

dx(ty + €)

a(ty +¢) = 0
1
. .T(to—f—(91—}-(59)—1’@0—}-6,91)
= lim
56,0 06,
_ x(ty — €60y + 06;) + f,i;):(g(f t':60) + 001, 02)dt’ — x(to + € 6,)
= o 36,
oy (to — €,60) + L0=L50, + [, g(a,t';01 + 661, 02)dt’ — x(to + €,61)
T im0 56,
oy (to — €,61) + alty — €)661 + [,*" g(x, ;01 + 661, 02)dt’ — x(to + €, 61)
a 5911130 56,
oy (to — €,61) + alto — €)061 + [, g(x, t':01+ 661, 0)dt’
T im0 56,
. —x(ty— €,61) — [, g(x, 101, 6)dt’
56,0 06,
y a(to— €)0th + [i5 gz, 101+ 661, 02)dt' — [g(x,t'; 61, 60)dt’
= o 50,
= ato—e¢)+ li w9l 50y + 061, 05)dt’ — g(, 1’501, 0)dt!
= allo—¢ 59?30 56,
= alty—¢)+ lim e J1 (0,00 + 861, 62) — fu(a, 161, 0y)
o 5610 66,
y T fo@ b0y + 061, 02) — fo(x, '3 01, 0)dt’
+5911130 06,
— alty—€) + hm fi(z,to: 00 +601,05) — fi(z,t9:601,62)(tg —to +€)
0 5610 56,
4 lim fax, t9: 01 + 661,05) — fo(x, to;01,02)(to + € — o)
6601—0 (591
dfy(z,to;01) dfa(z,to; 02)
= th — € 3
alto =€) + (a, s,)¢

So while computing a(to + ¢) where #(is the point of discontinuity we can use the equation

df1(x,t9: 0. dfy(x,ty; 0
a(to +¢€) =a(ty —€) + (fl(ﬂ("wo.) + fQ(ZHO' 2)) €
1 1

14

2.3 Adjoint method /Backward Sensitivity

Let x(t) denote the state at time ¢, z(0) is the initial state and x(7T') is the final state, ¢
denotes the parameter.
We have

da‘(t)

= f(z(t),t;0)

Here f(z(t),t;6) is continous with respect to time.

We need to compute the sensitivity
Lets, define

dx(T)
0

dx(t)

F(z,t,0) :x(T)+'/O /\(t)[— f(=,)}

Then we have

aF dx(T)+/7/\(t)[ddT(t) of 0x E)f} "

9 — do C0x 08 00

de dt dx 08 00 (226)

Now taking fo A(t) dde dld(ll) dt and using integration by parts we get

[0t - [t

AT D) 5 g 20) / dA(t) dz

do df dt db
B dx(T) d/\(t) dz
= M) do /o Cdt d

Using the above expression in equation 2.26 we get,

df dz(T) dz(T) T d\(t) dz ! ofdx Of
w ~ a0 Mg ‘/0 7@‘/0 A“)[a—%*%}dt

= [+ D) T((;g) /0 - [dfi(tt) Y f} dt—/o /\(t)af

15

So if we choose A(t) such that

ANT) = -1
1) of
. - 0%

Then we get,

dF dx(T) T Of(x,t;6)
do — db ‘_/OA(” a6t

This equation gives sensitivity at any time 7.

2.3.1 Implementation of the method

Consider the following differential equation with a intital condition.

dz(tt) 1 — pa(t) (2.27)
2(0) = 0 (2.28)

So the adjoint differential equation that we get is

dA(t) of (x,t;0)
—~5 = —/\(t)T(t) = \(t)0
ANT) = -1

Now

e __ [A 20 g, - [AO-a (o)

16

This equation can be used to get sensitivity at any time .

Computations :

Computational details:

Initial time t0 = 0

Final time T = 2

Initial state :

z(0) =0

MNT) =-1

Change in parameter (for direct computation) = 0.000001
Time step =0.001

ODE solver = Euler

The table below shows the result of the computation of sensitivity i.e d:figf) , for different

values of the parameter (p) at t = 2. We compare the value of sensitivity obtained by adjoint

method and direct computation.

Parameter Value (p) Direct computation Adjoint Method

2 -0.2276 -0.2276
4 -0.0623 -0.0623
5 -0.0142 -0.0142

2.4 Adjoint method /Backward Sensitivity (Disconti-

nous Case)

Let x(t) denote the state at time ¢, z(0) is the initial state and x(7T') is the final state, ¢
denotes the parameter.
We have

fz,t:0) 0<t<t,
fg(l’,t;e) t > to

flz, t;0) = {
Here f is discontinous at .

We want to compute the sensitivity, d‘fi(gy)

17

Let’s, define
dx(t)

F(:z:,t,G)::zz(T)—f-'/O' /\(t)[— f(=,)]

Then we have

dF dz(T) N /'f /\(t)[d dr(t) Of Oz E)f] "

o do do dt 0z 00 00

dF da;(T)+'/, /\()[d dz(t) Of, Ox Bfl]dt+/ /\(t)[d dz(t) Of, 0

do do do dt 0r 90 00 4o dt ox 0f

Now taking [, O \(t) jédld(zt) dt and using integration by parts we get

/ AL d d:r(t)dt _ / N d d:r(t)dt

o dt At df
B dz(tg) dz(0) /“’ d\(t) dz
= M) = M0= Jo ot a0
B dz(ty) 0 d\(t) dx
= Alto) =4 _/0 it a0

Similarly, taking fl /\(t d‘fg dfl(t‘) dt and using integration by parts we get

18

Using the above expression in equation 2.31 we get,

D) [P0 [85 2
+A(T)dz(9T) —A(to)dxd(;“) - /l %(tt)d:;(;) - /t A(t) [%ﬁ g’; + %] dt
D D[S [T o
SR L I
= 1+ XD d:’;g) —'/Om ‘;‘; [Aé? /\(t)afl] dt — /O /\(t)afldt
_./t(, Z‘; [’\é? /\(t)f)ﬁ] dt — / /\(t)(%
So if we choose A(t) such that
NT) = -1
() { AU o<t <t
dt —\(t)%2 t >t

Then we get,

dF dx(T) Ofi(x,t;60) Ofa(x,t:0)
o - do :_,/0 A =gt _/, AD="gg @

This equation gives the sensitivity at any time 7'

19

2.5 Comparing the two methods

Let x € R™ and 6 € R"2. Given below is the comparison between the Forward method

and Backward/Adjoint method.

Forward Backward
d
da(t) _ 0f ox | Of av(y) /\(t)z.{.
dt ~ dx 00 0 dt - /\(t)j_f

Requires one forward pass | Requires one forward pass

and one backward pass

2xny(ny*ng+ny) operations | 3 * ny(ny + ng) operations

in one Euler step

Preferable when we need | Preferable for larger no, i.e
sensitivity at different time | large number of parameters.

steps simulatneosly

Simulation 1
Let,

dl’(t) . pl.'IJ(t) +p2 0 S t S to
dt —pax(t) +p1 t >ty

Computational Details :
Initial time t0 = 0
Final time t1 = 1.1

Initial state :
z(0) =1
ds

Point of discontinuity of th) at to =1

Parameters:

p1,p2=1,3

Change in parameter (for direct computation) = 0.000001
Time step =0.01

ODE solver = Euler

Graph:

20

=== forward_method
backward_method \
=== drect

Figure 2.1: Green,Red and Yellow dotted-lines represents the sensitivity (%) obtained
by direct computation, Forward sensitivity method and Backward sensitivity method
respectively. The graph shows that sensitivity obtained by all the methods are close to each
other.

The table below compares the sensitivity obtained for different parameter values(p;) at
time ¢ = 1.1.

H Parameter Value (p;) Direct computation Forward Method Adjoint Method H

1 2.2405 2.2405 2.2441
9.3687 9.3687 9.3935
4 12.3212 12.3212 9.3271

Simulation 2

Consider the following differential equation with a intital condition.

dz(:) 1 — px(t)
z(0) = 0

Computational Details :
Initial time t0 = 0
Final time t1 = 1.1

Initial state :
z(0)=0
dx(t

Point of discontinuity of dg) at to =1

21

Change in parameter (for direct computation) = 0.000001
Time step =0.01
ODE solver = Euler

Graph :
000{ = ===wa., === forward_method
SEall backward_method
\\‘\ === drect
.
Sy
\\
\\
-0.02 S
N
3

S -0.04
-]
2z
2
@
2
b

o \\

-0.08 \

\\~\
~——_
00 02 04 06 08 10

ume (t)

Figure 2.2: Green,Red and Yellow dotted-lines represents the sensitivity (%) obtained
by direct computation, Forward sensitivity method and Backward sensitivity method
respectively. The graph shows that all the methods concur with each other.

The below table compares the sensitivity obtained for different values of the parameter
(p1) at time t = 1.1.

Parameter Value (p) Direct computation Forward Method Adjoint Method

1 -0.3011 -0.3011 -0.3016
3 -0.0939 -0.0939 -0.0940
5 -0.00621 -0.00621 -0.00623

22

Chapter 3

Neural ODE’s

3.1 Using Single ReLu/ Strang-1 in a differential equa-

tion

ReLu is defined as

Let, the parameters be a and b.

dz(t)
dt

= ReLu(axz(t) +b) (3.1)
= Strangl(z;a,b) (3.2)
B { ax(t)+b ar+b>0

(3.3)
0 ar+b <0

For a given initial condition z¢ we can divide the parameters space (ab plane) into re-

gions, where ‘(11—; will be zero and non-zero, these regions are Region I : b < —azy and Region

IT : b > —axq respectively.

So for a given x, if we pick a, b from Region II, then the solution of the differential eqution
3.3, i.e z(t) will change with respect to time, and if we pick a, b from Region I, then z(?)

will remain constant w.r.t time.

23

So sensitvity (dfig) or dfi(b‘)) will be non-zero in Region IT and zero in Region I.

3.1.1 Parameter Space

The parameter space is divided into two regions. The boundary of the region depends on
the initial value of z,. The solution of an equation 3.3 i.e., z(%) is sensitive to the parameters
selected from one region, and it is not sensitive to the parameter selected from the other
region. We define the regions in the parameter space, where any change in the parameter
does not bring any change in the solution as non-admissible region. And the region where

a change in parameter brings in a change to the solution will be called as admissible region.

Figure 3.1: Figure (a) and (b) corresponds to xzy = 1 and x5 = —1 respectively.The orange
region represents the region where any change in the parameters is reflected in the solution of
the equation 3.3 i.e z(¢) (admissible region); The blue region represents the region where
changes in the parameters are not reflected in the solution (non-admissible region). The
blue line represents the boundary givn by the equation axg + b = 0.

3.1.2 Sensitivity : Forward Method

Let z(t) be the solution of the differential equation 3.3, and the sensitivity be denoted as

s(t) = dfi—ff) Solving the following IVP gives the sensitivty at any time .

ds(t) _ 0fdx of

dt ~ 0rda Oa (3.1)
_ {as(t)—f—a:(t) az+b>0 (32)

0 ar+b<0
s(0) = 0 (3.3)

24

3.1.3 Sensitivity : Backward Method

For the backward sensitivity method, following is the IVP.

NT) = —1 (3.1)
d\(t) _ —At)a ax+b > 0 (3.2)
dt 0 otherwise

Solving the IVP, helps in computing the sensitivity, at time "7".

de(T) T of
= _./z(, /\(t)%dt (3.3)

3.2 Composition of two ReLu/Strang?2

Let the differential equation be

d:zgt) = Relu(aReLu(ax(t) +b) + b)
| = Strang2(z;a,b)
a*x(t)+ab+b ar+b>0;a*cr+ab+b>0
= b ar+b<0:b>0
0 otherwise

So the Initial Value Problem is given as

z(0) = x (34)
d(t) a*r(t)+ab+b axr+b>0;a°x+ab+b>0
o b ar+b<0;b>0 (3.5)
0 otherwise

3.2.1 Parameter Space

The figures below show how the ab space is divided according to the output of Strang-2

when the sign of z is positive and negative.

(a) (b)

Figure 3.2: Figure (a) and (b) corresponds to z > 0 and x < 0 respectively. The ab space
is divided into different regions based on the output of Strang2 for a given x. The black
boundary is given by the equation a?z + ab+ b = 0 and the blue boundary is given by the
equation ax +b = 0.

The different colors corresponds to different outputs of Strang2. Let z = Strang2(zx;a,b),
then Red region: z = a’x + ab + b; Blue region: z = 0; Green region: z = b; Violet region:
z=0.

The figures below show how the ab space is divided based on the sensitivity of the solution
of equation 3.4 and 3.5, with respect to both the parameters a and b, when the initial value

xo is greater than zero.

26

sensitivity — s

dx/da not 0 if x0>0 dx(t)/da not 0

x/da=0 o/w

sensitivity
dx(t)/db not 0

dx(t)/db not 0 if x0>=0
dx(t)/db = 0 if x0<0

dx/da not 0 if x0>0
dx/da=0 o/w

dx(t)/db not 0 if
x0>=0
dx(t)/db =0 if x0<0

(a) (b)

Figure 3.3: Figure (a) and (b) corresponds to sensitivity % and % respectively.
The red region corresponds to the region where irrespective of sign of z,if parameters are
chosen from this region the sensitivity is zero. The blue region corresponds to the region
where irrespective of sign of xg,if the parameters are chosen from this region the sensitivity
is non-zero. The White color region corresponds to the region where, if the parameters
are chosen the sensitivity may be zero or non zero depending upon the sign of .
The red boundary corresponds to the equation —alzo|* + (1 + a)b = 0; blue boundary
corresponds to the equation a|zg|* + (1 + a)b = 0; Black boundary corresponds to the
equation alzg| + b= 0.

3.2.2 Sensitivity

Consider the Ordinary Differential Equation

dzx(t)
dt

= Relu(aReLu(ax(t) + b) + b)
= f(z;a,b)

3.2.3 Computing the senstivity w.r.t parameter « i.e g—j

Take

then the sensitivity equation for the forward sensitivity method is as follows:

ds(t) df

== = o (3.6)
_Oof ox(t) Of
~ 0z(t) Oa * a (37)
) a?s(t) + b+ 2ax(t) ax+b>0;a*c +ab+b>0 (38)
- 0 otherwise '

with the inital condition s(ty) = 0.

Solving equation 3.8 with the intial condition gives us the sensitivity at any desired time 't

Similarly for the backward sensitivity method, following are the equations.

MT) = —1 (3.9)
d(t) of
X _ —/\(t)ax(t) (3.10)
_ [A0e® x>0t ab+b>0 (3.11)
0 otherwise
_dx(T)
oT) = (] (3.12)
T of
- i 1
Here
of 2ax(t)+b a*r+ab+b>0
% - 0 otherwise

Solving equations 3.9 to 3.11 gives A(¢). Using this in solving equation 3.13 gives sensi-
da(t)
da

tivity s(t) i.e at any time 7"

28

3.2.4 Simulations

In these simulations we pick parameters from the different regions (Blue, Red and White)
as shown in Figure 3.5 and use the sensitivity equations derived earlier to plot the sensitivity
vs time graphs. We compare the sensitivity obtained by forward method, backward method
and direct computation.

Case I :Parameter taken from Blue Region:

Let,a=14,b=1 and zy = —1, then we have

dz
d_j = ReLu(l.4ReLu(l.4x 4+ 1) + 1)

7| === forward_method
backward_method
=== drect

Figure 3.4: Green,Red and Yellow dotted-lines represents the sensitivity (%) obtained

by direct computation, Forward sensitivity method and Backward sensitivity method
respectively. As the parameters were taken from the admissible region hence the
sensitivity is non-zero.

Case II :Parameter taken from Red Region:

Let,a=—1.1, b= —0.4 and zy = 1, then we have

dx
d_j; = ReLu(—1.1ReLu(—1.1x — 0.4) — 0.4)
Here (a,b) is in non-admissible region. Here the intial at ¢t = 0, dfi(ll) = 0, so the z(t)

doesnot change with respect to t.

29

forward_method
teckward_method
- &

Figure 3.5: Green,Red and Yellow dotted-lines represents the sensitivity (%) obtained

by direct computation, Forward sensitivity method and Backward sensitivity method
respectively. The graph shows that sensitivity is zero as the parameters were chosen
from non-admissible region.

Case III :Parameter taken from White Region with positive zg:
Let,a = —0.8, b = 1.2 and x5 = 1., then we have

% = ReLu(—0.8ReLu(~0.8z +1.2) +1.2)

Figure 3.6: Green,Red and Yellow dotted-lines represents the sensitivity (%) obtained
by direct computation, Forward sensitivity method and Backward sensitivity method
respectively. The graph shows that sensitivity is non-zero as zy, > 0.

Case IV :Parameter taken from White Region with negative z,:

30

Let,a = —0.8, b = 1.2 and z7 = —1., then we have

% = ReLu(—0.8ReLu(—0.8z +1.2) + 1.2)

Figure 3.7: Green,Red and Yellow dotted-lines represents the sensitivity (%) obtained

by direct computation, Forward sensitivity method and Backward sensitivity method
respectively. The graph shows that sensitivity is zero as xy < 0.

3.3 Parameter Space

In this chapter we analytically define the boundaries that divide ab space into different
regions where the velocity vector (Strang-n; from the ODE % =Strang-n) takes different
values. In particular define boundaries analytically that divide the ab space into regions

where there is motion (velocity non-zero) and no-motion (velocity zero).

Proofs of some statements to be used later

Lemma I: For a even natural number n and a € R |

l1+a+. +ad" >0aeR

Proof:
If a > 0, then its obvious that 1 +a+ .. +a" > Wa e R

If a < 0, then we have two cases.

31

Case: a < —1

Here we can pair up the terms, 1+ (a+ a?) + (a* + a*) + ... + (a2 + a" ') + a”, here each
pair is greater than 0, hence the overall sum is greater than 0.

CaseIl: -1 <a<0

Here we can write the summation as, (1 + a) + (a® + a®) + ... + (a™! + a"), here each pair

is greater than zero, hence the overall sum is also greater than 0.

Lemma II: For a odd natural number n and a € R,
l+a+. +ad" >0a> -1

and
l+a+. +ad" <0Va< -1

Proof:
Take y(a) =1+ a+ ... + a”, then we have,

d .
d—y:1+a+..+a"_l>0‘v’aeR
a

Hence y i a monotonic function.
We also have y(—1) = 0,y(—2) < 0,y(0) > 0, Hence we can conclude that fora < —1,y(a) <
0 and for a > —1,y(a) > 0.

Lemma III:For (a,b) € {(a,b) : zoa® + (1 +a)b > 0,a > —1,b > 0}, we have

i=n—1

zoa" + (Z a')b >0
i=0

for n-even natural number.
Proof:

zoa® + (14 a)b > 0 = a" *(zea® + (L + a)b) > 0 = zoa" + (¢" > +a")b >0 (3.1)

32

Since a > —1, hence as we have proved earlier, we get,
l4a+.+a"?>0=(14+a+..+a"*b>0 (3.2)

So adding equation 1 and 2, we get xga™ + (Zizg_l a’)b > 0.

3.3.1 Distribution of Region for Strang-n

Case I: 7, > 0 and n a even number

P(n): Let 2 = R"(axg + b). For zy > 0, and n a even number. a-b space is divided into

four regions, they are:

Region I: {(a,b) : b < ET_I,?“I -t U{(a,b) : b<0,a <0}, here z =10
Region II: {(a,b): b < E-—a < —1,b> 0}, here z = b
i=n—2 4

Region III: {(a,b) : b < —xpa,—1 <a < 0,b>0}here z =3 " "a
Region IV: a-b space - (TUITUIII), here z = a"zo + (L +a+ .. +a" " ')b

20

— ax+b
= a”(n)x+(a”(n-1)+.+a+1)b
= a”(n-1)x+(a~(n-2)+..+a+1l)b

Region IV

~ Region |

4 4 4
-4 -3 -2 -1 0 1 2 3 4

Figure 3.8: Let z = R"(axg + b); Region I: z = 0; Region II: z = b; Region III: z =
l4+a+. +a 2% RegionIV: z =a"zg+ (L +a+..+a")b

The red boundary correspond to the equation a" 'z + (a" %+ a" 3+ .. + a+ 1)b = 0;
The blue boundary corresponds to the equation a™z + (a" '+ ...+a+ 1)b = 0; The black
boundary corresponds to the equation ax +b =0

33

So, the regions of no-motion is given by AU B U C. Where A, B&C' are given by:
A= {(a,b) : moa™ + (X120 a')b < 0,b < 0}
B ={(a,b) : b<0,a <0}
C = {(a,b) : woa™ + (X124 " a’)b < 0,b > 0}

20

o— 0% T D

Reg ion C — a*(n)x+(a”(n-1)+.+a+1)b

— a~(n-1)x+(a”(n-2)+..+a+1)b

15

‘°\

|
05 \
ey

-4 =3 -2 =1 0 1 2 3

Figure 3.9: Let z = R"(axo + b); Region A, B,C represents the region where z = 0.

The red boundary correspond to the equation a" 'z + (a2 +a" 3+ ... +a+ 1)b = 0;
The blue boundary corresponds to the equation a"x + (a" '+ ...+ a+ 1)b = 0; The black
boundary corresponds to the equation ax + b = 0.

Proof:
For P(k=2), we have already verified that the a-b space is divided into four regions,where
the regions with no motion is given by AU BU C. Where A, B&C' are given by:
A:b<i—,@%,bo,B:b<i—,@%,b<0andc:b<o,a<o.
i=0 4 i=0 @

Lets assume P(k=n) is true.
To prove P(k=n+2) is true.
For Strang-n, the a-b space is divided into four regions as given in figure 3.11.

Region I: {(a,b) : b < <=2~} U {(a,b) : b < 0,a < 0}

S

Here 2z =10
So
R(aR(az +b) +b) = R(aR(b) +b) = R(b) =0

34

Region II: {(a,b): b < if—a <—1,b> 0}
Here z = b
So
R(aR(az +b) +b) = R(aR(ab+b) +b) = R(b) = b

Region III: {(a,b) : b < —zpa,—1 < a < 0,b > 0}
Here z = (1 +a+a*+... +a"Y)b
So R(aR(az+b) +b) = R(aR((L + a+ a*+ .. + a™ ')b) + b)
Here 1+ a + a® + .. + a™ > 0¥n for a > —1, (From Lemma I), hence

R(aR(az +b)+ b =R(14+a+a®*+..+a"™Mb)=1+a+a®+ .. +a")b

Region IV: all region except I, I and III
Here z = a"vo + (1 +a+ ... +a")b
So

a2y + (20 e weat? + (20T a)b > 0,200 + (3120 a)b > 0
R(aR(az+Db)+b) = b zoa™ + (X Sra')b < 0,b > 0
0 zoa™? + (X al)b < 0

So the region where there is no-motion is given by
Region I U (Region IV N{(a,b) : zoa"*? + (320" a?)b < 0}), that is
AU BUC where A, B, &C' are given by:
A= {(a,b) : —moa™? + (=0 a')b < 0,b < 0}
B ={(a,b):b<0,a <0}
C = {(a,b) : —woa"*? + (X' =0 a?)b < 0,0 > 0}.

Verifying the boundaries through simulations:

The boundary is given by b = E_,f"‘l‘ - for a > 0 and b= E_,f"‘l‘ l&b =0 for a < 0 in case
=0 =0
of n — even.
The blue line represents the boundary. Parameters were taken from all over the parameter

space and corresponding to each parameter, it was checked whether the velocity vector given

by Strang — n(z;a,b) is zero or not. If it is zero we call there is no-motion and if it is

non-zero we say there is motion.

(a) Strang-4 (b) Strang-6

0 =1, Strang®

(c) Strang-8

Figure 3.10: Parameters taken from all over the ab space. Corresponding to each parameter
if the velocity vector given by Strang — n(z;a,b) is noted. Red points represents those
parameters where velocity vector is zero. And black points represents those parameters
wherer velocity vector is non-zero.

Here it can be seen that the boundary given analytically in the above section coincides with
the boundary that we get through simulation.

36

Case II: z; > 0 and n a odd number

four regions which are:

Region I: {(a,b) : b < Z%’fﬁ’i‘;’ai b <0}U{(a,b):b<0,a<0}U{(a,b):b< z%";‘,’i";ai
0,a < —1}, here z = 0. - -

Region II: {(a,b): b < i};),?i‘;; ,a< —1,b> 0}, here z = b

Region IIT: {(a,b) : b < —zpa,—1 <a < 0,b>0}here z=1+a+..+a"?
Region IV: a-b space - TUIIUIII, here z = a"xg + (1 +a+ .. +a")b

P(n): Let z = R"(axo + b). For zy > 0, and n a odd number. a-b space is divided into

b >

— A% 4+ b
= a”(n-1)x+(a”(n-2)+..+a+l)b

i N — a*nx+(a”(n-1)+.+a+1)b
15 Region Il Region IV

Region |

-4 =3 -2 =1 0 1 2 3 3

Figure 3.11: Let z = R"(axo + b); Region I: z = 0; Region II: z = b; Region III: z =
l+a+. +a 2 RegionIV: 2z =a"zo+ (1 +a+..+a")b

The red boundary correspond to the equation a"z + (a" ' +a" %+ ...+ a+ 1)b = 0; The
blue boundary corresponds to the equation a" 'z + (a2 + ... + a + 1)b = 0; The black
boundary corresponds to the equation ax +b =0

So, the regions where there is no-motion is given by AUBUC. Where A, B&C' are given
by:

A= {(a,b) : zoa" + (=0 a')b < 0,b < 0}
B ={(a,b):b<0,a <0}
C ={(a,b) : zoa™ + (=0 " a')b < 0,b> 0,a < —1}.

37

20

‘ — ax+b

= a”(n-1)x+(a”(n-2)+.+a+l)b
10 \
Region C

= a”“nx+(@a™(n-1)+. +a+l)b
05 ! \

-4 -3 -2 -1 0 1 2 3 4

Figure 3.12: Let z = R"(axo + b); Region A, B, C represents the region where z = 0

Proof:

For P(n=3), we verified that the a-b space is divided into four regions, where the regions
with no motion is given by AU B U C. Where A, B&C' are given by:

A: {(a,b) : moa® + (XN2al)b < 0,b < 0}, B: {(a,b) : b < 0,a < 0} and C: {(a,b) :
zoa® + (X120 a')h < 0,b > 0,a < —1}.

Lets assume P(k=n), is true.
To prove P(k=n+2), is true.

For Strang-n, the a-b space is divided into four regions as given in figure 3.14.

Region I: {(a,b) : b < =224 — b < 0}U{(a,b) : b < 0,a < 0}U{(a,b) : b < =22L— b >

Sisp tat? >ish tat?
0,a < —1}
Here 2z =0
So

R(aR(az +b) + b) = R(aR(b) + b) = R(b) = 0

38

Region II: {(a,b): b < Z_f—a <—1,b> 0}
Here z = b
So
R(aR(az +b) +b) = R(aR(ab+b) +b) = R(b) = b

Region III: {(a,b) : b < —zpa,—1 < a < 0,b > 0}
Here z = (1 +a+a*+... +a"Y)b
So R(aR(az+b) +b) = R(aR((L + a+ a*+ .. + a™ ')b) + b)
Here 1+ a+a*+ ..+ a™ > 0 Vn for a > —1 (From Lemma I7), hence

R(aR(az+b)+b) =R(1+a+a’+ .. +a"™)= (1+a+a*+ ...+ a")b

Region IV: all region except I, IT and III
Here z = a"zo+ (1+a+ ... +a" " ')b

So
"+2T0 + (Zz n+1 L) —Tﬂa’n—{—Q + (Zl n+1)b > 0 _l.oan-{—l + (Zi ga)b > 0
R(aR(az+Db)+b) = —zoa™ ! + (X ra')b < 0,b > 0
0 —zoa™? + (0 al)b < 0

So the region where there is no-motion is given by
Region I U (Region IV N(a,b) : b < Z;fo(,?:%)), that is
AU BUC where A, B, &C' are given by:

A= {(a,b) : Toa""? + (=0 a)b < 0,b < 0}
B ={(a,b):b<0,a <0}

C = {(a,b) : woa™? + (X150 a')b < 0,b> 0,a < —1}.

Verifying the boundaries through simulations:

The boundary is given by b = Z,f"l - fora < —1&a >0 and b =0 for —1 < a <0 in
=0

case of n-odd.

The blue line represents the boundary; the red dots represent no-motion and the black dots

represents motion.

39

x 0«1, Strang3 x D 1. Strang5

(a) Strang-3 (b) Strang-5

0 =1, Strang?

(c) Strang-7

Figure 3.13: Parameters taken from all over the ab space. Corresponding to each parameter
if the velocity vector given by Strang — n(x;a,b) is noted. Red points represents those
parameters where velocity vector is zero. And black points represents those parameters
wherer velocity vector is non-zero.

Here it can be seen that the boundary given analytically in the above section coincides with
the boundary that we get through simulation.

40

Case III: 5 < 0 and n a odd number

P(n):Let z = R"(axq + b). For zy < 0, and n a odd number. a-b space is divided into

five regions which are given by:
Region I: {(a,b) : b < 0}, here z=10
Region II: {(a,b) : b < —zga,b > 0}, here z =1+ a+ .. +a"?

Region IIL: {(a,b) : b > =22 b > —xga}, here z = a"zo + (1 + a+ .. +a")b

Region IV: {(a,b) : b < =2 a > —1,b> O} here z = (L +a+ .. +a"3)b

Region V: {(a,b) : b > 0,a < —1}, here z =

20

— ax+b
- a™(2)x+(a+1)b

15 Region V

05

00

-10 Region

-4 -3 -2 -1 0 1 2 3 4

Figure 3.14: Let z = R™(axo + b); Region I: 2 = 0; Region II: z = 1 +a + .. + a"%; Region
II: z = a"rg+ (1 + a+ .. + a* 1)b; Region IV: z = (1+ a+ .. + a*3)b; Region V: 2 =10
Blue boundary corresponds to the equation a®z + (14 a)b; Black boundary corresponds to
the equation ax + b = 0; Red boundary corresponds to a = —1

That is the regions where there is no-motion is given by A = {(a,b) : b < 0}.

41

20

— ax+b
= a"(2)x+(a+1)b

05

00

-10

=20

-4 -3 -2 -1 0 1 2 3 4

Figure 3.15: Let z = R"(axy + b); Region A represents the region where z = ()
Blue boundary corresponds to the equation a’x + (1 + a)b; Black boundary corresponds to
the equation ax + b = 0; Red boundary corresponds to a = —1

Proof:

For P(n=3), we verified that the a-b space is divided into five regions, where the region
with no motion is given by {(a,b) : b < 0}.

Lets assume P(k=n) is true.

To prove P(k=n+2) is true.

For Strang-n, the a-b space is divided into five regions as given in figure 3.17.

Region I: {(a,b) : b < 0}
Here z =0
So
R(aR(az +b) +b) = R(aR(b) + b) = R(b) =0

Region II: {(a,b) : b < —zpa,b > 0}
Here z = (1 +a+a*+... +a")b
So R(aR(az+b) +b) = R(aR((L + a+ a*+ .. + a™ ')b) + b)
Here 1 +a+a®+..+a"2 > 0Vn for a > —1, hence

42

R(aR(az+b)+b) = R(1+a+a*+..+a" b)) =(1+a+a*+ ... +a")b

Region III: {(a,b) : b > %’Zz,b > —xpa}
Here z = a"vg+ (1+ a+ ... +a")b
So
R(aR(az +b) +b) = R(aR(a"zo + (1 4+ a+ ... +a"')b) + b)

In Region III, we have zga" + (Zizg_l a')b > 0 for n > 2 (From Lemma IIT)

Hence we get,

R(aR(az+b) +b) = R(aR(a"zo+ (1 +a+..+a")b)+b) =a"Pzg+ (1 +a+..+a"")b

Region IV: {(a,b): b < %’;‘Z,a > —1,b > 0}
Here z=(1+a+...+a")b
Here 1 +a+a*+..+a"2?>0Vn fora> —1.
So
R(aR(az+b) +b) = R(aR(1+a+ .. +a" 2)b)+b) =(1+a+ ... +a" ?)b

Region V: {(a,b) : b > 0,a < —1}
Here z = b
So
R(aR(az +b) +b) = R(aR(ab+b) +b) = R(b) = b

So the region where there is no-motion is given by A = {(a,b) : b < 0}.

Verifying the boundaries through simulations:

The boundary is given by b = 0 in case of n-odd.
The blue line represents the boundary; the red dots represent no-motion and the black dots

represents motion.

43

(a) Strang-3 (b) Strang-5

x 0 -1, Strang7

(c) Strang-7

Figure 3.16: Parameters taken from all over the ab space. Corresponding to each parameter
if the velocity vector given by Strang — n(z;a,b) is noted. Red points represents those
parameters where velocity vector is zero. And black points represents those parameters
wherer velocity vector is non-zero.

Here it can be seen that the boundary given analytically in the above section coincides with
the boundary that we get through simulation.

Case IV: 7o < 0 and n a even number

P(n):Let z = R"(axo + b). For 5 < 0, and n a even number. a-b space is divided into

five regions which are given by:

Region I {(a,b) : b < 0}, here z=10

Region II: {(a,b) : b < —zga,b > 0}, here z =1+ a+ .. +a"?

Region III: {(a,b): b > %’;‘2, b > —xpa},here z = a"zg + (1 +a+ .. +a")b
Region IV: {(a,b): b < %’Zg,a > —1,b> 0}, here 2= (1 +a+ .. +a"3)b
Region V: {(a,b) : b > 0,a < —1}, here z =

44

20

- a™(2)x+(a+1)b
15 Region V
10
05
00
-0.5
-10 Region
-15
=20

-4 -3 -2 -1 0 1 2 3 4

Figure 3.17: Let z = R™(axo + b); Region I: 2 = 0; Region II: z = 1 +a + .. + a" %; Region
II: z = a"rg+ (1 + a+ ..+ a* 1)b; Region IV: z = (1 + a+ .. +a" 3)b; Region V: 2 =10
Blue boundary corresponds to the equation a’x + (1 + a)b; Black boundary corresponds to
the equation ax + b = 0; Red boundary corresponds to a = —1

So, the regions where there is no-motion is given by A = {(a,b) : b < 0} U B = {(a,b) :
a < —1,b> 0} (Figure 58).

45

20

— ax+b
- a”(2)x+(a+1)b

Region B

05

00

w3 Region A

-10

=20

-4 -3 -2 -1 0 1 2 3 4

Figure 3.18: Let z = R"(axg + b); Region A represents the region where z = 0
Blue boundary corresponds to the equation a’x + (1 + a)b; Black boundary corresponds to
the equation ax + b = 0; Red boundary corresponds to a = —1

Proof:

For P(n=4), we verified that the a-b space is divided into five regions, where the region
with no motion is given by {(a,b) : b <0} U{(a,b) : a < —1,b > 0}.

Lets assume P(k=n) is true.

To prove P(k=n+2) is true.

For Strang-n, the a-b space is divided into five regions as given in figure 57.

Region IL: {(a,b) : b < 0}
Here z =0
So
R(aR(az +b) +b) = R(aR(b) +b) = R(b) =0

Region II: {(a,b) : b < —zpa,b > 0}
Here z = (1 +a+a*+... +a")b
So R(aR(az+b) +b) = R(aR((L + a+ a*+ .. + a™ ')b) + b)
Here 1 +a+a®*+..+a"2 >0 for a > —1, hence

46

R(aR(az+b)+b) = R(1+a+a*+..+a" b)) =(1+a+a*+ ... +a")b

Here z = b
So
R(aR(az +b) +b) = R(aR(ab+b) +b) = R(b) = b

Region III: {(a,b) : b > %’;‘Z,b > —xpal
Here z = a"vg+ (1+ a+ ... +a")b
So
R(aR(az +b) +b) = R(aR(a"zo + (1 4+ a+ ... +a"')b) + b)

In Region III, we have zga" + (Zizg_l a')b > 0 for n > 2 (From Lemma IIT)

Hence we get,

R(aR(az+b) +b) = R(aR(a"zo+ (1 +a+..+a")b)+b) =a"Pzo+(1+a+..+a"")b
Region IV: {(a,b) : b < =22 a > —1,b > 0}

Here z=(1+a+...+a")b

Here 1 +a+a*+..+a"2?>0Vn fora> —1.

So
R(aR(az +b) +b) = R@R((1+a+ .. +a")b)+b) = (1+a+ .. +a""?)b

Region V: {(a,b) : b > 0,a < —1}
Here z =0
So
R(aR(az+b)+b) = R(ab+b) =0

So the region where there is no-motion is given by {(a,b) : b < 0}U{(a,b) : a < —1,b > 0}.
Verifying the boundaries through simulations:

The boundary is given by b = 0 for a > —1 and a = —1, in case of n-even.

47

The blue line represents the boundary; the red dots represent no-motion and the black dots

represents motion.

.0 = 1. Strang4

(a) Strang-4 (b) Strang-6

%0 - 1. Strangs

+ matien strangB
- nemotion strasgt

(c) Strang-8

Figure 3.19: Parameters taken from all over the ab space. Corresponding to each parameter
if the velocity vector given by Strang — n(z;a,b) is noted. Red points represents those
parameters where velocity vector is zero. And black points represents those parameters
wherer velocity vector is non-zero.

Here it can be seen that the boundary given analytically in the above section coincides with
the boundary that we get through simulation.

48

Chapter 4

Glucose-Insulin dynamics

Till now, we discussed how to use sensitivity equations in the case when we have Strang
function in the ODE. In other words, we have discussed the use of sensitivity equations
in the context of neural ODEs. We also analytically defined the regions of the parameter
(of Strang function) space, which are useful while optimization (where we need non-zero
sensitivity). We shall use this knowledge in, incorporating Strang function in the Glucose-
Insulin dynamics.

The Glucose-Insulin (G-I) model for the dynamics of glucose and insulin is given by:

dG
E = RO - (E(;O + S]I)G + kgulqgul (41)
dl G? ‘
E = I,narm - k]I (42)
The food dynamics is given by:
d sto
tht - _ksloqslo (43)
dqgul k k 4 4
dt 'stoQsto — v'g‘ulqg‘ul (:)

Values of the parameters of the differential equations

49

H Parameter Non-diabetic Diabetic Units H

Ry 2.1 2.5 mgdl™ R
Eqo 103 2.5% 1073 min !
St 3.06 % 103 1.14 %1073 mlp= U min=!
« 10 10* mg2dl—?
Inax 0.28 0.93 pUml ™ Ymin =t
K 0.01 0.06 min~1
Ko 0.036 0.026 min 1
Ky 0.098 0.026 min !
We observe that the term Lnu% in equation 4.2 can be approximated by using

Strang2(G; a,b) function that is ReLu(aReLu(aG + b) + b) (here a,b are the parameters),
such that it fits the slope of the original term well.

So that we get the following differntial equation.

Dynamics of glucose and insulin is given by

dG

E = RO - (EGO + SII)G + kg‘thg‘ut (45)
dI
il Strang2(G:a,b) — kI (4.6)
The food dynamics is given by:
d sto
3; = _kstoqsto (47)
d u
% kstoqsto - k‘g‘ulqg‘ut (48)

4.1 Sensitivity Equations

Let RHS of equation 4.5 and 4.6 be denoted by f; and f; respectively.

Let sg1(t) = dii(lt), Sea(t) = d(jl(f), sn(t) = dfiff), sa(t) = %&){) Using Forward sensitivity

method we get the following equations.

dsc(t) 010G 0HOI Of

i dG0a ' dl 9a ' da (4.9)
= —Ecosc1 + SiGspi+ 0 (4.10)
sc1(0) = 0 (4.11)
ds;lt(t) _ cz_gg_f +%% +% (4.12)
_ { a’sgr + —Kispp +2aG+b aG+b>0:a>G+ab+b>0 (4.13)
—K;sp otherwise
sn(0) = 0 (4.14)

Solving the initial value problem given by equations 4.10 —4.11 and equations 4.13 —4.14,
di(:) at any time ’t’. This will be used during the optimization.

we can get sg (t) =

dSGQ(t) 0fL0G 0fiol 0f

_ 0h0G 0HOL Of 415
it iG oy " ar o T o (4.15)
= —E(;OS(;Q -+ S]GS]Q -+ 0 (416)
s62(0) = 0 (4.17)
dspa(t) 0f20G 0f,01 0fy
i dGob " aran o (4.18)
a’sqo — Kispp+1+a ar+b>0;a%x +ab+b>0
— —Kysps +1 ar +b<0:b6>0 (4.19)
—Kspo otherwise
s12(0) = 0 (4.20)

Similarly, Solving the initial value problem given by equations 4.16 — 4.17 and equations

4.19 - 4.20, we can get sga(t) = “G-

at any time ’t’. This will be used during the optimiza-

tion.

4.2 Simulations

Verification of the regions in the parameter space

In this simulation we take parameters from different regions of the parameter space
(admissible region and non-admissible regions) and show that only when we start with pa-
rameters from the admissible regions, we can reach the optimal parameters for the system.
We show this by picking parameters from admissible regions and showing that the sensitvity
is non-zero with respect to time for all time. And for parameters picked from non-admissible

regions the sensitivity is zero with respect to time for some/all time.

The different regions are as shown in the below figure.

(a) Regionl : {(a,b) : b < —xzpa,a < 0} (b) RegionII :{(a,b):b<0,a <0}

.

(c) RegionIII : {(a,b): b < —roa® (d) RegionIV : (Regionl U Regionll U
' 2iz0 @ RegionlII)©

Region I,11,I1] are the non-admissible regions and Region IV is the admissible region

for the parameter.

52

Case I : Parameter from Region /

For parameter from ron-admissible region - (2,61 - 1-0 1.11

1250 500 1750 200

(a) figure shows the sensitivity of Glucose with respect to parameter 'a’ vs. time graph.
Since the sensitivity is zero for all time ’t,” that shows that any change in the parameter a
does not bring change in the Glucose at any time ’t.” Hence the starting from parameters
from this region does not help in the optimization.

Case II : Parameter from Region /]

00e

Figure 4.3: figure shows the sensitivity of Glucose with respect to parameter 'a’ vs. time
graph. Since the sensitivity is zero for all time ’¢,” that shows that any change in the
parameter a does not bring change in the Glucose at any time 't.” Hence the starting from
parameters from this region does not help in the optimization.

Case III : Parameter from Region /1]

In this region, we encounter two cases, as shown below.

10220 {
S s {
20000

25950 1
30000 \’
0 00 ™o 1250 150

e (munutes;

Figure 4.4: Figure shows the sensitivity of Glucose with respect to parameter ’a’ vs time
graph. In this case sensitivity is zero upto time 't = 1250". This shows that if we start our
parameters from this region we cannot fit the original glucose curve as the data upto time
t = 1250 is not sensitive to the paramter a. So the glucose data upto time t = 1250 cannot

be fit.

For paramater from nan-admissible region ; [a,b] - [0 1,-30)

Figure 4.5: figure shows the sensitivity of Glucose with respect to parameter 'a’ vs. time
graph. Since the sensitivity is zero for all time ’¢,” that shows that any change in the
parameter 'a’ does not bring change in the Glucose at any time 't.’

Case IV : Parameter from Region IV

Far the parameter [a,b] - [-0.1,30] For the parameter [a,b] = [0.1,1]

time {minutes) time (minutes;

For the parameter [a,b! = [0.2,-5] For the parameter [a,b] = [0 2,30]

sensitivity (dG/da)
ensitivity (¢Gfca)

time {minutes| time (minutes)

Figure 4.6: This figure shows the sensitivity of Glucose with respect to parameter 'a’ vs.
time graph. In this region, the sensitivity is non-zero; hence changes in the parameters reflect
in the Glucose data. So taking parameters from these region works well in optimization.

Fitting the model to the data

Methodology:

e We first solve this differential equation given by equations 4.1 —4.4 to obtain G(t). We

then sample Glucose at a time interval of 15 minutes. This is our training data.

e In the next step, we solve the differential equation given by equations 4.5—4.8, starting
with some random parameters picked from the admissible region (as described in the
previous chapter). We call the solution obtained here as G'(t). Again we sample out
Glucose at a time interval of 15 minutes. This is the predicted value of Glucose given

by the model (obtained by incorporating Strang?2 in the differential equation).

e Finally we try to minimize the mean squared difference between the actual value of

Glucose(G(t)) and the predicted value of Glucose(G'(t)), i.e We try to minimize the

95

objective function given by:

L(e(1)) = 2= = FO) (4.21)

n

e The sensitivity equations will be used while computing the derivatives (‘”“‘fl) and

dL(G")
db

). The equations are as follows:

dL(@) _ T 2G0) - G'0) (-5

@) _ . (4.22)
, . A — G (i)Y (— 46
dL;f) _ > 2(G(7) nG ())(==F) (4.23)

In all the simulations below, we used a gradient-based optimization.

Fitting the model on a noisy data set:

In these simulations we added noise (from continous uniform distribution Unif[12,5]) to the
glucose data (G(t)) obtained by solving the differential equation (equations 4.1 —4.4) ands

sampling out at an interval of 15 minutes. So our new training data becomes

GZt) = G(t) + noise

Now the objective function becomes:

L(G(t) = 2 (G() — G'(4))* (4.24)

n

Case I: Non-diabetic

—— anginal
rang2

140 4
120 4

3
® 100 1

0 50 00 50 1000 1250 1500 1750 2000
bme

(a) Blue curve represents the simulated glucose data (G(t)) obtained by adding noise to
the solution of the equations 4.1,4.2,4.3,4.4. Initial parameter a = 0.1,b = 0.1 was taken

~

from the admissible region. Equations 4.5,4.6,4.7,4.8 was solved to get Glucose (G(t)).
The mean squared error of the two curves that is Z?:‘(G(i)_(;’(i))z was optimized.The
orange curve represents the Glucose value obtained by solving equations 4.5,4.6,4.7,4.8,
by using the final parameters obtained that is a = 0.0381,b = —0.0088.

130
— anginal
erang2

0 %0 500 50 1000 1250 1500 1750 00
tme

(b) Blue curve corresponds to the simulated insulin data obtained by solving equations
4.1,4.2,4.3,4.4; Orange curve corresponds to the insulin value obtained after solving equa-
tions 4.5,4.6,4.7,4.8 with parameter a = 0.0381,b = —0.0088 obtained after the optimza-

tion.

57

Case II: Diabetic

—— anginal
Krang2

0 50 00 750 1000 1250 1500 1750 2000
bme

(a) Blue curve represents the simulated glucose data (G(t)) obtained by adding noise to the
solution of the equations 4.1,4.2,4.3,4.4. Initial parameter a = 0.1, b = 0.4 was taken from

the admissible region and equations 4.5,4.6,4.7, 4.8 was solved to get Glucose (G(t)). The
mean squared error of the two curves that is Z?:‘(G(i)_(;’(i))z was optimized.The orange
curve represents the Glucose value obtained by solving equations 4.5,4.6,4.7, 4.8, by using

the final parameters obtained that is @ = 0.0419,b = 0.3734.

~ —— ongnal
13.00 strang2

0 0 500 0 1000 1250 1500 1750 2000
time

(b) Blue curve corresponds to the simulated insulin data obtained by solving equations
4.1,4.2,4.3,4.4; Orange curve corresponds to the insulin value obtained after solving equa-
tions 4.5,4.6,4.7,4.8 with parameter a = 0.0419,b = 0.3734 obtained after the optimza-
tion.

The Python code for these simulations can be found at https://github.com/alekhranjan/Glucose-

insulin-with-Strang2-

58

Chapter 5

Conclusion

In this project, we have shown how to use a simple neural network in the modeling of Glucose-
insulin dynamics that corresponds to the Continous Glucose Monitoring (CGM) time series.
We have also analyzed the parameter space for the Strang-n function. We found that only
certain regions are appropriate to pick the parameters from while training the model. Al-
though in this work, we have not used any real data set, since we have tested this method
on a noisy data set (noise added manually), the same method can be used for a real-world

data set.

60

Bibliography

[1]

Goel P, Parkhi D, Barua A, Shah M, Ghaskadbi S. A Minimal Model Approach for An-
alyzing Continuous Glucose Monitoring in Type 2 Diabetes. Front Physiol. 2018;9:673.
Published 2018 Jun 4. doi:10.3389/fphys.2018.00673

Ibrahim Ayed and Emmanuel de Bézenac and Arthur Pajot and Julien Brajard and
Patrick Gallinari. Learning Dynamical Systems from Partial Observations. CoRR.

abs/1902.11136. 2019

Tian Qi Chen and Yulia Rubanova and Jesse Bettencourt and David Duvenaud, Neural

Ordinary Differential Equations, CoRR, abs/1806.07366, 2018,

61

