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Abstract

General Relativity has provided us a successful framework to describe gravity, and has passed
numerous experimental as well as theoretical consistency conditions. However, general relativity
can possibly be modified by a large class of high energy corrections. In this project, we try to
constrain the space of all kinematically allowed classical gravitational theories based on certain
consistency conditions. We explicitly construct the basis tree level S-matrices for four graviton
and four photon scattering in all spacetime dimensions. From the space of possible S-matrices, the
consistency condition used to rule out possible S-matrices is a conjecture, called as the Classical
Regge Growth Conjecture (CRG conjecture). This conjecture puts a restriction on the growth of
any classical (tree-level) S-matrix in the Regge limit. Assuming the CRG conjecture [1] to be
true, we find that Einstein gravity is the unique classical theory of gravity in spacetime dimensions
D ≤ 6. In the latter part of the project, we classify all possible 3 point S-matrices quadratic in
photons or gravitons [2].
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Chapter 1

Introduction

General Relativity has been an extremely successful theory in describing gravity. However, it is
well known that general relativity might only be a good enough approximation at low enough ener-
gies. In order to describe gravity at high energies, one possible modification to general relativity is
to include higher derivative terms which are suppressed by some high energy scale. Such theories
are known as higher derivative theories of gravity. In this project, we study classical four photon
as well as four graviton S-matrices. One scenario in which such higher derivative terms are natural
is the framework of string theory where the corrections are proportional to factors of α ′, which is
the square of the string length scale. This project was partly motivated by a recent analysis ([6]),
where they study the three point graviton S-matrix and use causality to exclude the Gauss-Bonnet
and (Riemann)3 corrections to Einstein gravity.

1.1 Three graviton scattering

The case of three graviton scattering is particularly simple. It follows from kinematical considera-
tions that the most general 3 graviton S-matrix is a linear combination of the two derivative struc-
ture ((4.1.17)), the four derivative structure ((4.1.18)) and the six derivative structure ((4.1.19)). In
other words the most general 3 graviton S-matrix in any theory of gravity - classical or quantum -
is specified by three real numbers.

In a classic paper: Camanho, Edelstein, Maldacena and Zhibeodov (CEMZ) [6] demonstrated
that a classical theory with 3 gravitational S-matrices that include a non-zero admixture of the
four derivative and six derivative three graviton structures necessarily violates causality unless its
four graviton scattering amplitude include contributions from the exchange of poles of arbitrarily
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high spin. The constraints follow from a particular sign of the Shapiro-time delay which in turn
corresponds to the sign of the phase shift in flat space. In AdS similar argument has been made in
[7].

It thus follows from the results of [6] that the three graviton scattering amplitude is necessarily
two derivative - i.e. that of the Einstein theory - in any causal classical theory of gravity whose
four graviton S-matrices have exchange contributions that are bounded in spin. The uniqueness of
graviton three point function has also been demonstrated using causality in conformal field theory
[8, 9].

The importance of the above result should not be overstated since the three graviton S-matrix
is specified by a finite number of parameters and hence is kinematically special. On the other
hand four and higher point scattering amplitudes are specified by a finite number of functions of
kinematical invariants (s and t in the case of four graviton scattering) and so an infinite number
of real parameters. In this project we will focus on the study of four graviton scattering. We
will attempt to cut down the space of allowed S-matrices by proposing a physical criterion that
acceptable S-matrices must obey.

1.2 A conjectured bound on Regge scattering

In the classic analysis [6] were able to use the physical criteria (the requirement of causality)
to constrain the parameters that appeared in the most general three point function. We will now
attempt to do the same for the the four point function. More specifically, we will constrain classical
theories using a conjectured bound of the Regge growth of classical scattering amplitudes that we
now state

• Classical Regge Growth Conjecture: The S-matrix of a consistent classical theory never
grows faster than s2 at fixed t - at all physical values of momenta and for every possible
choice of the normalized polarization vector εi.

The first piece of evidence in favor of the CRG conjecture is that it is always obeyed by two
derivative theories involving particles of spin no greater than two - theories that we independently
expect to be consistent. The two derivative nature of interactions ensures that both contact con-
tributions as well as s and u channel exchange contributions grow no faster than s in the Regge
limit. t channel exchange graphs on the other hand grow no faster than sJ where J is the spin of
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the exchanged particle. Since we have assumed J ≤ 2, all contributions obey the CRG conjecture.

The next piece of evidence in support of the conjecture described in this subsection is that it
is obeyed by all classical string scattering amplitudes. Recall that, for instance the Type II string
scattering amplitudes grow in the Regge limit like

s2+ 1
2 α ′t (1.2.1)

As t is negative at physical values of momenta it follows that this behavior obeys our conjecture.
Note also that (1.2.1) reduces to s2 in the limit α ′→ 0, matching with the fact that gravitational
amplitudes, which grow like s2

t in the Regge limit, saturate the CRG bound.

The strongest evidence for the CRG conjecture follows from the observation that the CRG
conjecture is tightly related to the chaos bound[10]. We pause to review how this works. Working
in a large N unitary CFT in D≥ 2 consider a four point 〈OOOO〉 where O is a real scalar operator
and the insertion points are taken to be(

±sinh
(

τ

2

)
,±cosh

(
τ

2

))
.

All insertions are denoted by the doublet (t,x); insertions all lie completely in the (t,x) plane.
The authors of [10] used the unitarity of the CFT to demonstrate that the growth of the connected
correlator 〈OOOO〉 with boost times τ cannot be faster than eτ . This result holds in the large N

limit for boost times τ large compared to unity but small compared to lnN.

Let us now study a situation in which the CFT under study has a bulk dual. Let the bulk
field dual to the operator O be denoted by φ . Let us suppose that the fields φ in the bulk has a
standard quadratic term and also has a have a local four point self interaction of the schematic
form φ∂ ...∂φ∂ ...∂φ∂ ...∂φ . One can use the usual rules of AdS/CFT to directly compute the
correlator 〈OOOO〉 of the previous paragraph, and so evaluate its growth with τ . The authors of
[11, 12] were able to carry through this computation for the most general bulk contact term using
the classical bulk theory. They discovered the following interesting fact. Any bulk vertex which,
in flat space, would give rise to an S-matrix that grows like sm+1 in the Regge limit, turns out to
give a contribution to 〈OOOO〉 that grows with boost time like emτ . It follows that at least in AdS
space, any bulk interaction associated with a flat-space S-matrix that grows faster than s2 at fixed
t leads to a boundary correlator that violates a field theory theorem, and so must be classically
inconsistent.
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Although the results described above have been carefully verified only for scalar operator in-
sertions, we feel it is likely that they will continue to hold for insertions of all spins. The tight
connection between the CRG and the Chaos bound, is, in our opinion, striking evidence in favor
of the CRG conjecture. Note that the CRG conjecture immediately implies the non existence of a
consistent interacting theory of higher spin particles (of bounded spin) propagating in flat space.
Let the highest spin in the theory be J > 2. As the spin J particle is assumed to be interacting, there
exists an S-matrix that receives contributions from spin J exchange. In the t-channel this exchange
contribution scales like sJ , violating the CRG conjecture. This argument has been used in [6] to
rule out the possibility of spectrum of particles of spin > 2 that is bounded in spin.

1.3 Consequences of the CRG conjecture

1.3.1 The scattering of four identical scalars

For D≥ 3 the most general local contact scalar interaction term that obeys the CRG bound is given
by

S =
∫

dDx
(
a1
(
φ

4)+a2
(
φ

2
∂µ∂νφ ∂µ∂νφ

)
+a3

(
φ

2
∂µ∂ν∂ρφ ∂µ∂ν∂ρφ

))
. (1.3.1)

This implication of the CRG has been used effectively to compute the four point function of certain
scalar operators in a theory with slightly broken higher spin symmetry [13].

1.3.2 The scattering of four identical gravitons

In D ≤ 6 there are no contact four graviton Lagrangians consistent with the CRG conjecture.
However, for D≥ 7 the unique such Lagrangian is the second Lovelock Lagrangian:

χ6 =
∫ √
−g
(

1
8

δ
g
[aδ

h
b δ

i
cδ

j
d δ

k
e δ

l
f ] R gh

ab R i j
cd R kl

e f

)
. (1.3.2)

The S-matrix that follows from this Lagrangian is proportional to

(ε1∧ ε2∧ ε3∧ ε4∧ p1∧ p2∧ p3)
2 . (1.3.3)

6



1.4 Exchange contributions

Exchange diagrams in the t channel generically scale like sJ where J is the largest number of
symmetrized indices in the representation that labels the exchanged particle. This sJ scaling holds
independent of the nature of the external particles, and so applies equally to scalar, photon and
graviton scattering. It follows that the exchange of particles with J ≥ 3 generically violates the
CRG conjecture. Exchange of particles with J ≤ 2 never violates the CRG bound in the t channel
but may violate this conjecture in the s and u channels. As the contribution in the s channel and u

channel is analytic in t, the violations in these channels mean violations at zero impact parameter.
This is in contrast with the t-channel where the CRG bound for J ≥ 2 is violated at finite impact
parameter.

The behavior of scattering in the s and u channels is sensitive to the nature of the external
scattering particles. In the case of four external scalars or four external photons it is easy to find
examples of exchange contributions that do not violate the CRG bound. We have, for example,
explicitly computed the contribution to four photon scattering from the exchange of a massive
particle of arbitrary mass and demonstrated that its Regge growth is slower than s2. In the case of
external gravitons, on the other hand, we have shown by explicit computation that the exchange
of massive scalars or massive spin two particles always leads to an S matrix that violates the CRG
bound - and moreover violates it in a manner that cannot be cancelled by a compensating local
contribution. The same is also true of exchange of a massless spin two gravition whenever the
three gravition scattering amplitude deviates from the Einstein form. More generally we have
demonstrated - under some hopefully reasonable assumptions - that every exchange contribution
to four graviton scattering in D ≤ 6 - other than graviton exchange with the Einstein three point
scattering - violates the CRG bound in a way that cannot be compensated for by local counterterm
contributions. This fact leads us to claim that atleast for spacetime dimensions D ≤ 6, the only
consistent classical gravitational S-matrix whose exchange poles are bounded in spin is the Einstein
S-matrix.
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Chapter 2

Generalities of four point S-matrices

In this section we review and discuss the general structural features of 2→ 2 S-matrices of four
identical bosonic scalars, photons or gravitons in an arbitrary number of spacetime dimensions.
Also, towards the end of the section, we study the Regge limit of local (polynomial) S-matrices on
purely kinematical grounds.

2.1 Scattering data

2.1.1 Momenta

Consider the scattering of four massless particles in D-dimensional Minkowski space. Let pµ

i

be momentum of the ith particle. The masslessness of the scattering particles and momentum
conservation means

p2
i = 0,

4

∑
i=1

pµ

i = 0. (2.1.1)

We use the mostly positive convention and define Mandelstam variables,

s :=−(p1 + p2)
2 =−(p3 + p4)

2 =−2p1.p2 =−2p3.p4

t :=−(p1 + p3)
2 =−(p2 + p4)

2 =−2p1.p3 =−2p2.p4

u :=−(p1 + p4)
2 =−(p2 + p3)

2 =−2p1.p4 =−2p2.p3.

(2.1.2)

(2.1.2) follows from (2.1.1). Note that momentum conservation gives us s+ t +u = 0.We need to
make a specific choice of independent Mandelstam variables: take it to be s and t.
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2.1.2 Polarizations

The 2→ 2 S-matrix is a Lorentz invariant complex valued function of the momenta pi, together
with the data that specifies the internal or spin degree of freedom of each scattering particle.

Scalars

Scalar particles have no internal degrees of freedom, so 2→ 2 scalar S-matrices are functions only
of momenta. For D≥ 4 Lorentz invariance ensures that S-matrices are, in fact, functions only of s

and t. For the case of D = 3, four scalar S-matrices can be either parity even or parity odd. Parity
even S-matrices are simply a function of s and t as in higher dimensions. Parity odd S-matrices are
given by εµνρ pµ

1 pν
2 pρ

3 times a second function of s and t.

Photons

The internal degree of freedom of a photon may be taken to be its polarization vector ε
µ

i . In
the Lorentz gauge (which we use throughout this paper in order to preserve manifest Lorentz
invariance),

εi · pi = 0 (2.1.3)

The S-matrix must also be invariant under residual gauge transformations i.e. under the transfor-
mations,

ε
µ

i → ε
µ

i +ζ (pi)pµ

i (2.1.4)

We will sometimes use the notation
ζ (pi) = ζi.

As ζ (pi) is a completely arbitrary function of pi the four numbers ζi can be varied independently
of each other. It follows that the requirement of gauge invariance is simply the condition that the
S-matrix is separately invariant under each of the transformations

ε
µ

i → ε
µ

i +ζi p
µ

i (2.1.5)

separately for each i.

To summarize, a 4-photon S-matrix is a Lorentz invariant complex valued function S (pi,εi),
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subject to the condition (2.1.3). It depends linearly on each of the four polarizations ε
µ

i and is
separately invariant under each of the four shifts (2.1.5).

Gravitons

The internal degrees of freedom of a graviton can be parameterized by its traceless symmetric
polarization tensor hµν

i . In Lorentz gauge,

hµν

i pν
i = 0 (2.1.6)

As before, the S-matrix enjoys invariance under residual gauge transformations,

hµν

i → hµν

i +ζ
µ

i pν
i +ζ

ν
i pµ

i , where ζi · pi = 0. (2.1.7)

Through most of this paper we will find it convenient to specialize to the special choice of polar-
ization

hi
µν = ε

i
µε

i
ν where ki · εi = 0, εi · εi = 0 (2.1.8)

The gauge transformation parameter ζ
µ

i = ζiε
i
µ , preserves the choice of the polarization (2.1.8)

and induces the gauge transformations

ε
µ

i → ε
µ

i +ζi p
µ

i . (2.1.9)

These transformations are same as the ones in (2.1.4) 1.

In conclusion, with the choice (2.1.8), a 4-graviton S-matrix S (pi,εi), like the photon, is a
Lorentz invariant complex valued function S (pi,εi) but this time one that is a bilinear function of
each of the εi’s, subjected to the tracelessness condition εi · εi = 0.

1The special choice (2.1.8) does not result in loss of generality. Let S(ε) denote the S-matrix with a single special
choice of polarization, hµν

1 = εµ εν . Then the linear combination

S(u+ v)−S(u)−S(v),

where u and v are orthogonal polarization vectors, yields the S-matrix for the choice of polarization hµν

1 = uµ vν +vµ uν

and this sort of polarizations form a basis for general symmetric traceless tensors hµν

1 . As the S-matrix is linear in hµν

1 ,
the S-matrix with the choice (2.1.8) carries the same information as the most general 4-graviton S-matrix.
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2.1.3 Unconstrained polarizations
In the previous subsubsection we have expressed the S-matrix as shift invariant functions of the
polarization vectors εi. It is possible to simultaneously ‘solve’ for the constraints on εi (traceless-
ness) and the constraints on the S-matrix (shift or gauge invariance) and re express the S-matrix as
a function of independent unconstrained variables as follows.

The momenta pi span a three dimensional subspace of D-dimensional Minkowski space. We
refer to this subspace as the scattering 3-plane. The polarization vectors εi can be decomposed into
part transverse to the scattering plane ε⊥i and part parallel to the scattering plane ε

‖
i

εi = ε
⊥
i + ε

‖
i (2.1.10)

The condition εi.pi = ε
‖
i .pi = 0 forces ε

‖
i to lie in a two dimensional subspace of the scattering

plane. Moreover the constraint that S-matrices are invariant under the shifts ε
‖
i → ε

‖
i + pi tells us

that the S-matrix is a function only of one of the two free components of ε
‖
i . It follows that for the

purpose of evaluating gauge invariant S-matrices - the set of inequivalent vectors ε
‖
i may be pa-

rameterized by a single complex number αi. We choose the following (arbitrary) parameterization
that obeys ε

‖
i .pi = 0.

ε
‖
1 = α1

√
st
u

( p2

s
− p3

t

)
+a1 p1

ε
‖
2 = α2

√
st
u

( p1

s
− p4

t

)
+a2 p2

ε
‖
3 = α3

√
st
u

( p4

s
− p1

t

)
+a3 p3

ε
‖
4 = α4

√
st
u

( p3

s
− p2

t

)
+a4 p4.

(2.1.11)

The numbers ai represent the freedom to shift εi by gauge transformations; ai are redundancies
of description and will not show up in any gauge invariant physical result. On the other hand the
parameters αi are physical. In particular

ε
‖
i .(ε

‖
i )
∗ = |αi|2 (2.1.12)

With these definitions in place we can write

εi = ε
⊥
i + ε

‖
i . (2.1.13)
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Equations (2.1.13) and (2.1.11) express the D component vector εi in terms of the D−3 component
vector ε⊥i and the single parameter αi and the redundant variables ai.

Unlike εi, the pair (ε⊥i ,αi) are unconstrained data in the case of photons. In the case of gravi-
tons the data still has to obey the single constraint2 - which is a consequence of the tracelessness
of εi

ε
⊥
i .ε⊥i +α

2
i = 0 (2.1.15)

This constraint can be used to solve for ε⊥i .ε⊥i in terms of α2
i . In enumerating contraction structures

we simply omit all terms containing factors of ε⊥i .ε⊥i . For counting purposes, therefore, ε⊥i can
effectively be treated as null.

The expressions (2.1.11) and (2.1.13) allow us to convert any Lorentz and gauge invariant
expression parity even expression for a photon/graviton S-matrix, initially presented as a function
of εi and pi, into an function of (ε⊥i ,αi) and (s, t). This function is separately linear/bilinear in
(ε⊥i ,αi). Note that the individual momenta pi enter into this reduced form of the S-matrix only
through3 (s, t). We now move to discuss the structure of parity odd S-matrices.

There is a slight subtlety in the discussion of parity odd S-matrices, i.e. S-matrices constructed
out of a single factor of the D-dimensional Levi-Civita tensor ε . The reason these structures are
subtle is simply that ε tensors in different numbers of dimensions have different numbers of indices
and so do not simply map to one another. In order to resolve this subtlety it will prove convenient to
formally regard the ε tensor as one of the arguments of parity odd S-matrices. From this viewpoint,
a parity odd S-matrix is a Lorentz and gauge invariant function of pi, εi and ε that has the property
that is linear in ε (it also has the usual homogeneities in εi). We now define a D− 3 dimensional
ε̃D−3 tensor by the equation,

ε̃
D−3 = εµ1...µD−3µD−2µD−1µD pµD−2

1 pµD−1
2 pµD

3 . (2.1.16)

Note that ε̃D−3 is totally anti-symmetric under the S4 permutation of particles. It has momentum

2It is sometimes also useful to view the polarizations εi as normalized according to the condition

εi · ε∗i = 1 ⇒ |ε⊥i |2 + |αi|2 = 1. (2.1.14)

Notice that εi and εi + pi have the same norm, so this condition is gauge invariant. We will not need to impose this
normalization condition in this paper.

3This follows from the fact ε⊥i .p j = 0. While ε
‖
i .p j 6= 0 the result of this dot product is given by αi times an easily

computed function of (s, t).
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degree three. Note that ε̃D−3 is proportional to (stu)
1
2 εD−3, where εD−3 is a D− 3 dimensional

Levi-Civita tensor. For this reason it is sometimes useful to work with the ‘normalized’ tensor

N
(
ε̃

D−3)= ε̃µ1...µD−3√
stu

(2.1.17)

N(ε̃D−3) is proportional to the Levi-Civita tensor in D−3 dimensions up to a sign4. The action of
the permutation group on ε̃D−3 and N(ε̃D−3) is given by

P(ε̃D−3) = (−1)sgn(P)
ε̃

D−3, P
(
N(ε̃D−3)

)
= (−1)sgn(P)N(ε̃D−3) (2.1.18)

where P is an arbitrary permutation in S4 of the momenta p1 . . . p4. In other words both ε̃D−3 and
N(ε̃D−3) pick up a sign under every odd permutation (e.g. under single exchange permutations).

When D is odd, we will choose to regard every parity odd S-matrix a function of ε̃D−3, ε⊥i ,αi

and (s, t); the function in question is linear in ε̃D−3 (it also has the usual homogeneities in (ε⊥i ,αi)).
When D is even, on the other hand, we will choose to regard every parity odd S-matrix a function
of N(ε̃D−3), ε⊥i ,αi and (s, t); once again the function is linear in N(ε̃D−3) and has the usual
homogeneities in (ε⊥i ,αi). 5 Besides being gauge invariant and Lorentz invariant, the S-matrices
for four graviton or four photon scattering should be S4 invariant. This constraint is imposed in
two distinct steps and the reason for it is discussed in the subsection below.

2.2 Permutations: Z2×Z2 and S3

The permutation group S4 has a special abelian subgroup Z2×Z2 generated by (2143), (3412) i.e.
the subgroup of double transpositions6. The importance of this subgroup is that it leaves all the
Mandelstam variables s, t and u invariant.

4Note that the LHS of (2.1.17) is precisely defined (unlike the D−3 Levi-Civita tensor which is precisely defined
only once we specify an orientation in the D−3 plane orthogonal to the scattering plane).

5The reason we make this distinction between odd and even D will become clearer later in this paper. Roughly
speaking the reason goes as follows. We will see below that S-matrices can be expanded in a sort of Taylor Series in
momenta. In every dimension the basis functions of this expansion for parity even S-matrices all have even powers
of momenta. As far as parity odd S-matrices go, however, the basis functions are even in momenta when D is even;
the fact that N(ε̃D−3) is also even in powers of momenta makes (2.1.17) a natural building block of such S-matrices.
On the other hand the building blocks for parity odd S-matrices in odd D are odd in momenta; the fact that (2.1.16) is
cubic in momenta makes it a natural building block for S-matrices in this case.

6We label an element of S4 by the image of (1234) under that element. The group Z2×Z2 consists of the two
listed generators together with the identity permutation (1234) and a fourth element (4321).
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Another feature of this subgroup is that it is normal7. As a result, the coset8 S4/(Z2×Z2)

inherits the group structure of S4. The coset group is easily identified. Every S4 group element
is Z2×Z2 equivalent to a unique element of the form (abc4). It follows that the Z2×Z2 ‘gauge
invariance’ can be fixed by adopting the ‘gauge fixing condition’ that particle 4 is not permuted.
This choice of gauge fixing clearly reveals the coset to be simply the S3 that permutes particles 1,
2 and 3. Thus we conclude that

S4

(Z2×Z2)
= S3. (2.2.1)

It follows that the condition of S4 invariance on the S-matrices can be imposed in two steps. In the
first step, we impose only Z2×Z2 symmetry on the gauge invariant functions of ε

µ

i and pµ

i (with
the necessary homogeneity properties in ε

µ

i ). We call the S-matrices thus obtained, quasi-invariant

S-matrices. The coset group S3 acts linearly on the space of quasi-invariant S-matrices. In order to
obtain fully S4 invariant S-matrices we must further project the space of quasi-invariant S-matrices
down to its S3 invariant subspace. The importance of the notion of quasi-invariant S-matrices
lies in the fact that the multiplication of a quasi-invariant S-matrix by a function of s, t leaves
it quasi-invariant because (s, t) are themselves individually invariant under Z2×Z2. It follows
that the space of not-necessarily-polynomial quasi-invariant S-matrices forms a vector space over
functions of (s, t). This vector space is finite dimensional.

2.3 Local S-matrices and a module structure

Here, we define local S-matrices i.e S-matrices that are polynomial functions of εi and pi. In this
section we turn our attention to such S-matrices. We focus, first on quasi-invariant S-matrices,
postponing the task of enforcing S3 invariance to later.

2.3.1 The local module

It is clear that the set of local S-matrices is closed under multiplication by any polynomial p(s, t)

and addition. This structure is reminiscent of the vector space except for one important difference.
Polynomials of (s, t) do not form a field but rather only a ring i.e. they do not have multiplicative
inverse9. Consequently, the set of local quasi-invariant S-matrices forms a module, over the ring

7Recall that a subgroup H ⊂ G is normal if it obeys the property that for any h ∈ H, ghg−1 ∈ H for all g ∈ G. In
other words, the normal subgroup is fixed by the adjoint action of the group.

8Here the coset is either by left action or by right action, both cosets are equivalent because subgroup is normal.
9This is a very important difference. In a genuine vector space if a vector a is a multiple of a vector b then it is also

true that the vector b is a multiple of the vector a. In a module, on the other hand, if a equals a ring element times b
then it is usually not true that b equals a ring element times a. In other words the notion of proportionality is inherently
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of polynomials of (s, t) and not a vector space. Viewed as a vector space over the field of complex
numbers, the space of local quasi-invariant S-matrices is, of course, infinite dimensional. Viewed
as a module, however, this space is ‘finitely generated’ as we now explain. We pause to introduce
some (standard) mathematical terminology.

The elements of the form r ·m, where m is a given element of the module and r is any element
of the ring, are said to form the span of m. We call the elements in the span of m, the descendants
of m10. Sometimes we denote the descendant of m in a more physical notation r|m〉. A subset
G = {gi} of the module M is said to generate M if the smallest submodule which contains G is M

itself. In other words, the union of spans of all descendants of gi is M itself. A module M is said to
be finitely generated if it has a finite generator (i.e. a generator with a finite number of elements).
A generator set G is said to generate M freely if the following condition holds,

∑
i

ri ·gi = 0 iff all ri = 0. (2.3.1)

In other words, every element of m is a unique linear combination of gi over the ring. A module
M is a free module if there exists a G that generates it freely. In this case the generator set G is
called the basis of M. A free module is the next best thing after a vector space. Understanding its
structure is equivalent to understanding its basis elements. When the module is not free, one has
to characterize the module by giving its generators and their relations11.

We can find the generators of the module of local quasi-invariant S-matrices in following way.
These S-matrices are obtained from local Lagrangians. We first look for a basis over complex
numbers of local quasi-invariant S-matrices of the lowest degree. Next we again look for a basis
over complex numbers of local quasi-invariant S-matrices of lowest degree that are not in the span
of the previously chosen elements, and so on. This process terminates at a finite degree - intuitively
because the gauge invariant field strengths built out of εi have a finite number of indices12 - more
on this later. It follows that the module of local quasi-invariant S-matrices is finitely generated. We

hierarchical in a ring. We elaborate on this below
10This is non-standard mathematical terminology but being physicists we connect well to the word “descendant”.

Note that the set of basis vectors of a conformal multiplet can be thought of as a module generated by the primary
operator over the ring of polynomials in Pµ . From this point of view, conformal descendants are descendants in our
sense. Similarly, the Verma module can be thought of as the module generated by the primary operator over the ring
of Virasoro creation operators.

11If the relations do not form a free module, then one has to characterize the relation module in the same way and
so on. This is called the free resolution of a module.

12Once all these indices are contracted with momenta, the remaining momentum indices have to contract with each
other yielding powers of s, t and hence belonging to the span of lower degree structures.
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will call this module, the local module for short and will label its generators as EJ(pi,εi) and the
generator set as L.

As the local S-matrices are constrained by transversality and shift invariance of polarizations
εi, and as these constraints involve the momenta pi that in turn define s, t and u, it is much less
clear that this module is freely generated, and, indeed we will find below that this is not always the
case.

2.3.2 The bare module

As we have already explained in subsubsection 2.1.3, the equations (2.1.11) and (2.1.13) allow
us to re-express any photon/graviton quasi-invariant S-matrix as a polynomial of (ε⊥i ,αi) that
is simultaneously of degree one/two in each of these pairs of variables; the coefficients of this
polynomial expressions are functions of (s, t).

We now turn to a crucial point. If we start with a local quasi-invariant S-matrix, it is possible to
show that the resulting expression, written as a polynomial of (ε⊥i ,αi), using (2.1.11) and (2.1.13),
has coefficients that are polynomials (rather than generic functions) of (s, t).

This motivates us to define a new module. We define the parity even part of the module of bare

quasi-invariant photon/graviton S-matrices, or bare module for short, over the ring of polynomials
of (s, t), to be the set of parity even (i.e. ε̃D−3 independent) rotationally invariant and Z2×Z2

invariant polynomials of (ε⊥i ,αi) and (s, t) that are simultaneously of degree one/two in each of the
pair of variables (ε⊥i ,αi)

13. Any basis of the vector space - over the field of complex numbers - of
rotationally invariant polynomials of (ε⊥i ,αi) (subjected to the requirement of Z2×Z2 invariance
and appropriate homogeneity requirements) forms a generating set for this module14. Let us denote
this generator set as B and its elements as eI(αi,ε

⊥
i ). We sometimes call eI “index structures”.

Notice that our generators are all independent of s, t and so, in particular, are of zero homogeneity
in derivatives. As the variables ε⊥i and αi are completely unconstrained (in the case of photons) or
obey only the momentum independent constraint 2.1.15 (in the case of gravitons), it is clear that
this choice generates our module finitely and freely. This makes B the basis of the bare module.
The key point - made at the beginning of this subsection - is that the local module is a submodule

13In the case of the gravitational S-matrix, the variables (ε⊥i ,αi) are also constrained to obey (2.1.15).
14At the end of subsection (2.2) we had explained that the set of not necessarily local quasi-invariant S-matrices

constitute a vector space over the field of functions of s, t,u. The generators of the bare module clearly also define a
basis for this vector space.
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of the free bare module.

The parity odd part of the bare module is defined in odd/even D in a similar manner, to be
set of rotationally invariant and Z2×Z2 invariant polynomials of (ε⊥i ,αi) , (s, t) and ε̃D−3 (resp.
N(ε̃D−3)) that are linear in ε̃D−3 (resp. N(ε̃D−3)) and are also simultaneously of degree one or two
(corresponding to photons and gravitons) in each of the pair of variables (ε⊥i ,αi). Basis elements
are functions of ε̃D−3, (resp. N(ε̃D−3)) αi,ε

⊥
i only; there is no further dependence on s and t. Note

that these basis elements are of dimension zero in even D but of dimension 3 in odd D.
As explained above, the local module generators are embedded in the bare module generators as
follows:

EJ(pi,εi) = ∑
eI∈B

pIJ(s, t)eI(αi,ε
⊥
i ). (2.3.2)

where pIJ(s, t) are polynomials15 In our study of photon/graviton S-matrices later in this paper
we encounter two cases. In the first case, (this holds for both photon and graviton scattering
when D ≥ 5), |L| = |B|. In the second case, which turns out to apply to both photon and graviton
scattering in D = 4 and also photon scattering in D = 3, |L| > |B|. In this subsection we briefly
discuss these two cases in turn.

Let us first consider the case |L|= |B|. In this case the local module is freely generated if and
only if the equation

∑
EJ∈L

rJ(s, t)EJ(pi,εi) = 0, (2.3.3)

has no non-trivial solutions for polynomials rJ(s, t). Plugging the expansion (2.3.2) into (2.3.3)
and equating coefficients of eI we find that (2.3.3) turns into

∑
J

pIJ(s, t)rJ(s, t) = 0. (2.3.4)

For each value of s and t, (2.3.4) is a set of |B| linear equations for |B| variables. This set of
equations has non-trivial solutions if and only if

Det [pIJ(s, t)] = 0. (2.3.5)

Equation (2.3.4) has no solutions unless (2.3.5) holds for every value of s and t. Equation (2.3.5)
is, of course, an extremely onerous condition, and we find that it is not met for the pIJ matrix that
arises in the study of S matrices with D≥ 5. It follows, as a consequence, that the local module is

15The remarkable fact is that pIJ(s, t) is simply a polynomial without any negative or fractional powers.
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also freely generated for D≥ 5.

In the case that |L| > |B| (which we encounter for D = 4 and also D = 3 for photons), on the
other hand, it is very easy to see that |L| cannot be freely generated16. Given that the local module
is not freely generated in D = 4, it is important to discover the relations in this module.

2.4 Irreducible representations of S3 and fusion rules

As we have explained above, the space of physical (hence S4 invariant) S-matrices is the projection
of the local module of S-matrices onto S3 singlets. In this subsection we discuss the nature of this
projection. As preparation for our discussion we first review elementary facts about S3 represen-
tation theory. The permutation group of three elements is denoted by S3, and has three irreducible
representations: the one dimensional totally symmetric representation which we call 1S, the one
dimensional totally anti-symmetric representation which we call 1A and a two dimensional repre-
sentation with mixed symmetry which we call 2M. The subscript for 2M emphasizes the mixed
symmetry. It is easy to decompose an representation of S3, into the subspaces that transform, re-
spectively, in the 1S, the 1A and 2M representations. Complete symmetrization project onto the 1S

subspace, complete anti symmetrization projects onto the 1A subspace and whatever is left over,
i.e. the part that is annihilated by both complete symmetrization and complete anti symmetrization,
transforms in the 2M representation.

In order to get some familiarity with these representations, let us first consider a 3 dimensional
column vector whose elements are q1,q2,q3 respectively. The permutation group has a natural
action on this column vector; any given element σ of S3 maps this vector to the column with
entries qσ(1),qσ(2),qσ(3)

17. This linear map is generated by a (unique) 3× 3 matrix M(σ) acting
on acting on the column (q1,q2,q3). The collection of matrices M(σ) yields a representation of
S3. We use the symbol 3 to denote this ‘defining’ representation of S3. This representation is not

16The argument for this is the following. If L were freely generated then the number of local quasi-invariant S-
matrices of degree d would grow like |L|d at large d. This is larger than the number of bare quasi-invariant S-matrices,
which grows like |B|d at large d, contradicting the fact that the local module is a submodule of the bare module.

17For instance the Z2 element that flips one and two gives (q2,q1,q3).
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irreducible but can be decomposed as18

3 = 2M +1S. (2.4.1)

As a second exercise let us study the 6 dimensional representation, 6left generated by the left action
of S3 onto itself. It is not difficult to demonstrate that

6left = 1S +2 ·2M +1A. (2.4.2)

Of course the same decomposition also applies for the 6right representation generated by the right
action of S3 on itself.

As our next example consider the adjoint action of S3 on itself σ → g−1σg, which also yields
a 6 dimensional representation 6adj. The adjoint representation can be decomposed into the 1S

(which acts on the identity element which is invariant under adjoint action) a 3 (which acts on the 3
exchange permutations (213),(321),(132)), and a 2M (which acts on the two cyclical permutations
(231) and (312)). In equations

6adj = 1S +2M +3. (2.4.3)

Of course the 3 can itself be further decomposed using (2.4.1). As explained before, we obtain the
physical S-matrices by projecting the quasi-invariant S-matrices onto S3 singlets. This is explained
in the next subsection.

2.5 Projecting onto S3 singlets

We now return to a discussion of the local module and its S3 projection. It follows from definitions
that every bare and local quasi-invariant S-matrix, denoted as m(pi,εi) and M(pi,εi) respectively,
can be expressed as

m(pi,εi) = ∑
eI∈B

pI(s, t)eI(αi,ε
⊥
i ).

M(pi,εi) = ∑
EJ∈L

PJ(s, t)EJ(pi,εi).
(2.5.1)

18To see why this is the case, note that the complete symmetrization the column x1,x2,x3 yields a column whose
elements are all equate to 2(x1 + x2 + x3). This column is permutation invariant and so transforms in the one dimen-
sional completely symmetric representation of S3. Removing this column one is left with the action of S3 on a column
(y1,y2,y3) whose elements are subject to the constraint y1 + y2 + y3 = 0, which generates the 2M representation.
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where pI(s, t) and PJ(s, t) are polynomials of (s, t). The S4 invariant local S-matrices are obtained
by simply projecting the elements of the local module onto the trivial representation of S3.

S (pi,εi) = ∑
σ∈S3

Mσ (pi,εi) = ∑
EJ∈L

∑
σ∈S3

Pσ
J (s, t)Eσ

J (pi,εi). (2.5.2)

The superscript σ denotes the action of σ permutation. As the local module admits the action of S3,
its generators EJ’s can be decomposed into irreducible representations of S3. Moreover the space
of functions of (s, t) can also be decomposed into irreducible representations of S3. It follows from
(2.5.2) that if a subset of EJ’s transforms in any given irreducible representation R of S3 then the
functions PJ(s, t) must also transform in the same representation R19.

In order to understand the detailed structure of the projection of the local module onto S3

invariants we need to understand the decomposition of the space of polynomials of (s, t) into rep-
resentations of S3. This is done in detail in subsection (2.7) and (2.8) of [1].

2.6 Regge growth

Recall that the generators of the bare module are zero order in derivatives in the parity even sector,
and also in the parity odd sector for even D. In these cases the generators are functions of αi,ε

⊥
i

but are not separately functions of s, t and u. On the other hand when D is odd, the parity odd
generators are proportional to

√
stu times functions of αi,ε

⊥
i . In order to deal uniformly with all

cases below, we introduce the variable a; a = 0 for parity even S-matrices in every D and parity
odd S-matrices in even D. a = 3 for parity odd S-matrices in odd D.

We will now derive a lower bound for the Regge growth for local S-matrices at 2n+ a order
in derivatives. In order to do this we note that every such S-matrix is an nth order descendant
of some bare generator. The generator in question might transform in the 1S, the 1A or the 2M

representation, or a linear combination of these. We take these cases up in turn.

Consider any bare generator, say |eS〉, that transforms in the 1S. The most general nth level
descendant of this generator that itself transforms in the 1S representation is given, for n≥ 2, by(

∑
k,m

ak,m(stu)k(s2 + t2 +u2)m

)
|eS〉 (2.6.1)

19This conclusion follows from the fusion rules of S3 listed in the previous subsection.
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where the sum runs over all terms with 3k + 2m = n. It is easy to convince oneself that all the
S-matrices in (2.6.1) grow at least as fast as

s(2[ n+2
3 ]+ a

3) (2.6.2)

in the Regge limit20. where [m] represents the largest integer no smaller than m.

Now consider a bare generator |eA〉 that transforms in the antisymmetric representation. The
most general descendant at 2n+a order in derivatives is given by

(
s2u−u2s+ t2s− t2u− s2t +u2t

)(
∑
k,m

ak,m(stu)k(s2 + t2 +u2)m

)
|eA〉 (2.6.3)

where 3k+2m = n−3. For n = 3 and n≥ 5 all terms in (2.6.3) grow at least as fast in the Regge
limit as21,

s(2[ n−1
3 ]+3+ a

3). (2.6.4)

Finally consider a bare generator multiplet that transforms in the 2M representation. Let the
triplet of basis vectors

(|e(1)M 〉, |e
(2)
M 〉, |e

(3)
M 〉)

transform in the 2M representation in the symmetric basis. The most general 2n+ a derivative
descendant of these basis vectors is given either by(

∑
k,m

ak,m(stu)k(s2 + t2 +u2)m

)(
s|e(1)M 〉+ t|e(2)M 〉+u|e(3)M 〉

)
(2.6.5)

with 3k+2m = n−1 or by(
∑
k,m

ak,m(stu)k(s2 + t2 +u2)m

)((
t2 +u2−2s2) |e(1)M 〉+

(
u2 + s2−2t2) |e(2)M 〉+

(
s2 + t2−2u2) |e(3)M 〉

)
(2.6.6)

with 3k+ 2m = n− 2. All the S-matrices in (2.6.5) and (2.6.6) grow at least as fast in the Regge

20When n = 3p, we obtain the slowest growth when ak,m is non-zero only for k = p and m = 0. When n = 3p+1
(and p≥ 1) the slowest growth is achieved when ak,m is non-zero only when k = p−1 and m = 2. When n = 3p+2
we get the slowest growth for the monomial with k = p and m = 1.

21When n = 3p, we obtain the slowest growth when ak,m is non-zero only for k = p−1 and m = 0. When n = 3p+1
(and p≥ 2) the slowest growth is achieved when ak,m is non-zero only when k = p−2 and m = 2. When n = 3p+2
we get the slowest growth for the monomial with k = p−1 and m = 1.
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limit as22

sα+ a
3

α = 2p+1 when n = 3p

α = 2p+1 when n = 3p+1

α = 2p+2 when n = 3p+2

(2.6.7)

Combining all the results above we conclude that every local S-matrix at 2n+a derivative order
grows at least as fast in the Regge limit as

sα(n)+ a
3

α(n) = 2p when n = 3p

α(n) = 2p+1 when n = 3p+1

α(n) = 2p+2 when n = 3p+2

(2.6.8)

The bound in the first line in the first line in (2.6.8) is saturated by the state (stu)p|eS〉, the bound
in the second line is saturated by the state

(stu)p
(

s|e(1)M 〉+ t|e(2)M 〉+u|e(3)M

)
and the bound in the third line in (2.6.8) is saturated both by (stu)p(s2 + t2 +u2)|eS〉 and by

(stu)p
((

t2 +u2−2s2) |e(1)M 〉+
(
u2 + s2−2t2) |e(2)M 〉+

(
s2 + t2−2u2) |e(3)M 〉

)
.

As we have mentioned in the introduction, we are particularly interested in local S-matrices
that grow no faster than s2 in the Regge limit. We end this section with a complete listing of all
module elements that have this feature. For parity even S-matrices - or parity odd S-matrices in
even D these possibilities are

• At zero order in derivatives generators of the bare module in the 1S representation yield
S-matrices that grow like s0 in the Regge limit.

22When n = 3p, we obtain the slowest growth from the term in (2.6.5) with k = p−1 and m = 1. When n = 3p+1
the slowest growth comes from the term in (2.6.5) with k = p and m = 0. When n = 3p+2 we get the slowest growth
for the monomial in (2.6.6) with k = p and m = 0.
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• At the two derivative level we have S-matrices of the form (2.6.5) with ak,m non-zero only
when k = m = 0. These S-matrices grow like s in the Regge limit.

• At fourth order in derivatives we have S-matrices of the form (2.6.1) with ak,m = 0 unless
k = 0,m = 1. We also have S-matrices of the form (2.6.6) with ak,m = 0 unless k = m = 0.
These S-matrices grow like s2 in the Regge limit.

• At six derivative order the unique such S-matrix is of the form (2.6.1) with ak,m = 0 unless
k = 1 and m = 0.

All other local S-matrices - in particular all S-matrices that are of 8 or higher order in derivatives -
necessarily grow faster than s2 in the Regge limit. The parity odd S-matrices in odd D, in particular
all S-matrices of 7 or higher order in derivatives - grow faster than s2 in the Regge limit. Hence,
for the case of parity odd S-matrices in odd D, the only Module elements that grow no faster than
s2 in the Regge limit are

• At 3 derivative order we have generators of the bare module in the 1S representation. The
corresponding S-matrices grow like s in the Regge limit.

• At the five derivative level we have S-matrices of the form (2.6.5) with ak,m non-zero only
when k = m = 0. These S-matrices grow like s2 in the Regge limit.
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Chapter 3

Generators of the bare module

In this chapter we will enumerate and explicitly construct eI(αi,ε
⊥
i ), the basis of the bare module

defined in subsection (2.3.2), for four photon scattering in every spacetime dimension. We also
keep track of the S3 transformation properties of eI .

3.1 Bare module structures for four photon scattering

In this subsection we explicitly construct the basis elements eI(αi,ε
⊥
i ) and thereby obtain their S3

transformation properties for photons in D ≥ 5. The complete detailed analysis for both photons
and gravitons has been done in [1].

3.1.1 Enumeration

In this subsection we count the rank of the bare module, i.e. the number of linearly independent
basis elements eI . As explained in subsection 2.3.2, these are simply the set of SO(D− 3) and
Z2×Z2 invariant polynomials of αi and ε⊥i with the appropriate homogeneity properties. We
separately enumerate parity odd and parity even generators of the bare module. Under SO(D−3),
the effective polarization for photon takes values in the space ρ = (s⊕v) (for gravitons, ρ = (s⊕
v⊕t))1. Here s,v,t are scalar, vector and symmetric traceless tensor of SO(D−3) respectively.

1The photon S matrices are separately linear in each of (ε⊥i ,αi). Here ε⊥i is the v while αi is the s. On the other
hand gravitational S-matrices are quadratic separately in each of (ε⊥i ,αi); and are evaluated subject to the constraint
ε⊥i · ε⊥i +α2

i = 0. The terms ε⊥i ε⊥i is the t above (this term is effectively traceless as the constraint (2.1.15) allows us
to trade its trace for α2

i ), the terms αiε
⊥
i is the v and the terms α2

i are the s.
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photons even odd

D≥ 8 7 0

D = 7 7 1

D = 6 7 1

D = 5 7 0

D = 4 5 2

D = 3 1 1

gravitons even odd

D≥ 8 29 0

D = 7 29 7

D = 6 28 9

D = 5 22 3

D = 4 5 2

D = 3 - -

Table 3.1: Number of parity even and parity odd index structures for 4-photon and 4-graviton
S-matrix as various dimensions.

The number of index structures is the number of singlets in

ρ
⊗4|Z2×Z2 : i.e. (s⊕v)⊗4|Z2×Z2 for photons, (s⊕v⊕t)⊗4|Z2×Z2 for gravitons (3.1.1)

where the notation |G stands for projection onto G invariants.

In order to perform the necessary enumeration we use the formula

ρ
⊗4|Z2×Z2 = ρ

4	3(S2
ρ⊗∧2

ρ). (3.1.2)

where S2ρ and ∧2ρ stand for the symmetric and antisymmetric square of ρ respectively. (3.1.2)
was derived and employed in [3] to study a closely related problem, namely the enumeration of
inequivalent tensor structures in CFT four point functions. The enumeration is listed in Table 3.1

3.1.2 Explicit listing of bare modules

In this subsection we explicitly construct the basis elements eI(αi,ε
⊥
i ) and thereby obtain their

S3 transformation properties. Our construction is motivated by construction of index structure for
CFT four point functions in [4].

The parity even and odd generators for photons will be denoted by the letters e and o respec-
tively. We will label the structures with the S3 representation they transform under. For example,
a parity even photon generator transforming in 3 will be denoted as e3. If there are multiple of
them then we also include an arbitrarily assigned serial number in the subscript. We will only need
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to concern ourselves with 1S, 1A, 3 and 6left = 3⊕ 3A representation. We will also include the
space-time dimension in the superscript when it needs to be emphasized. This helps especially in
the case of parity odd structures which crucially depend on space-time dimensions.

Let us first consider the case of parity even structures for photons. The structures will be
labelled by the S3 representation they transform under.

In this case ρ⊗4|Z2×Z2 has 7 distinct basis elements (see table 3.1). Keeping in mind that
ρ = s+ v, it follows that these 7 structures each have their origin in one (and only one) of the
tensor products2

s⊗4|Z2×Z2, s⊗2v⊗2|Z2×Z2, v⊗4|Z2×Z2. (3.1.3)

A slight generalization of the enumeration method described in the previous subsection allows
us to separately enumerate the basis elements in each of these sectors. We find that there is one
element in s⊗4|Z2×Z2 and three each in s⊗2v⊗2|Z2×Z2 and v⊗4|Z2×Z2 .

It is easy to explicitly construct these basis elements. Consider, for example, the sector v⊗4|Z2×Z2 .
The 3 basis elements in this sector are

e(1)3,1 = (ε⊥1 · ε⊥2 )(ε⊥3 · ε⊥4 ), e(2)3,1 = (ε⊥3 · ε⊥1 )(ε⊥2 · ε⊥4 ) e(3)3,1 = (ε⊥2 · ε⊥3 )(ε⊥1 · ε⊥4 ) (3.1.4)

It is easy to check that these structures are Z2×Z2 invariant as desired. Also, each of the three
elements listed in (3.1.4) happens to be invariant under a single Z2 exchange transformation3;
moreover the three elements are mapped to each other by the action of the cyclic elements of S3
4. It follows from the discussion in the second last paragraph of subsection 2.4 that these elements
transform in the 3 representation of S3 defined in and around (2.4.1). The three structures that lie
in the s⊗2v⊗2|Z2×Z2 sector are algebraically given by:

e(1)3,2 =
(

ε
⊥
1 .ε⊥2 α3α4 + ε

⊥
3 .ε⊥4 α1α2

)
e(2)3,2 =

(
ε
⊥
1 .ε⊥3 α2α4 + ε

⊥
2 .ε⊥4 α1α3

)
e(3)3,2 =

(
ε
⊥
2 .ε⊥3 α1α4 + ε

⊥
1 .ε⊥4 α2α3

) (3.1.5)

As in the case of (3.1.4), the expressions in (3.1.5) are each invariant under a single Z2 exchange

2The tensor products s⊗3v and v⊗3s do not contribute as they contain no SO(D−3) singlets.
3Viewed as elements of S3 = S4/(Z2×Z2) and working in the ‘gauge’ in which the fourth particle is fixed, the

exchange elements that leave the three structures in (3.1.4) fixed respectively are (213), (321) and (132).
4See the discussion under (2.4.3) for a definition and listing of these cyclic elements.
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element and are also mapped to each other by the action of Z3. It thus follows that the expressions
in (3.1.5) - like those in (3.1.4) - transform in the 3 representation of S3. Finally the corresponding
expression for the single structure in s⊗4|Z2×Z2 is simply α1α2α3α4, and clearly transforms in the
1S representation of S3. We denote it as eS. Using (2.4.1) it follows that the seven parity even
photon structures for D≥ 7 transform under S3 as

7 = 3 ·1S +2 ·2M (3.1.6)

We now turn to a discussion of parity odd S-matrices in D≥ 8. Such S-matrices are linear in ε̃D−3

(see (2.1.16) for a definition). For D ≥ 8 the number of free indices of ε̃D−3 (or N(ε̃)D−3) tensor
is D−3 which is ≥ 5. As the only vectors available to contract with this tensor are the 4 ε⊥i , there
are no parity odd S-matrices in D ≥ 8. Let us now construct the parity odd structures for photon
S-matrix in D = 7. The tensor ε̃4 has 4 free indices so it can be contracted with the 4 ε⊥i in a
unique way.

oD=7
S = ε̃

4
µνρσ ε

⊥
1

µ
ε
⊥
2

ν
ε
⊥
3

ρ
ε
⊥
4

σ = εαβγµνρσ pα
1 pβ

2 pγ

3 ε
⊥
1

µ
ε
⊥
2

ν
ε
⊥
3

ρ
ε
⊥
4

σ . (3.1.7)

Consequently there is a single parity odd structure in ρ⊗4|Z2×Z2 for the case of photons in seven
dimensions. This S-matrix transforms in the 1S representation of S3

5. In equations

1 = 1 ·1S (3.1.8)

A complete construction of the bare module structures (both for parity odd as well as parity even
sector) in every other dimension is given in [1]. It also has an explicit construction of the bare
module structures for gravitons in all spacetime dimensions.

5In order to obtain the correct symmetry transformation property of this term it is important to permute the momenta
that go into the definition of ε̃4 along with the factors of ε⊥i . In order to avoid errors it is best to express ε̃4 in term of
ε using (2.1.16) - as has been done on the RHS of (3.1.7) - before performing permutations.
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Chapter 4

Local Lagrangian’s and the local module

In this section we explore the space of inequivalent Lagrangians - and their connection with in-
equivalent four particle scattering for the case of scalars and gravitons. The case for photons has
been discussed in [1]. In section (4.2) of this chapter, we also explain how to relate local La-
grangian’s to the local module generators EJ(pi,εi), as defined in section (2.3.1).

4.1 Local Lagrangian’s and S-matrices

The set of local four particle S-matrices is, of course, closely related to the set of all local quartic
Lagrangians1. There is an obvious map from the set of local gauge invariant quartic vertices to the
set of local 4 particle S-matrices. This map, however, is many to one. Two Lagrangians generate
the same S-matrix if they differ only by total derivatives when evaluated on-shell (we will make
this statement completely precise below). The map from equivalence classes of Lagrangians to
S-matrices can also be inverted. Given polynomial S-matrix one can construct a local quartic
Lagrangian vertex that is invariant under linearized gauge transformations that gives rise to that
S-matrix2. There exists, in other words, a one to one map from the space of local equivalence
classes of Lagrangians and local S-matrices; the classification of local S-matrices is the same as
the classification of equivalence classes of local Lagrangians.

1L(x) is a local Lagrangian if is is a function only of fields and their derivatives evaluated at x, subject to the
restriction that the number of derivatives acting on any field is bounded from above (i.e. is finite).

2The map from S-matrices to Lagrangians played an important role in [12] for scalars.
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4.1.1 Scalars

In this subsection we closely follow the analysis of [12]. Consider a theory of real massless scalars
φ invariant under the Z2 transformations φ →−φ . We wish to study the most general local action
for this theory, retaining only those terms that affect four scalar scattering. The quadratic term in
the Lagrangian is fixed to be:

S2 =−
1
2

∫
dDx∂µφ∂

µ
φ . (4.1.1)

The most general local quartic interaction Lagrangian takes the form

S4 =
∫

dDxL4, L4 = ∑am1,m2,m3,m4∂
m1φ ∂

m2φ ∂
m3φ ∂

m4φ (4.1.2)

where the schematic summation in the last line of (4.1.2) runs over both the number of derivatives
mi on the fields φ as well as the distinct ways of contracting the various derivative indices. A tree
diagram computation using the action (4.1.2) yields a 4 scalar S-matrix. Two Lagrangians L4 yield
the same S-matrix if

• They differ by a total derivative.

• They can be related to each other by a field redefinition.

Consider a field redefinition of the schematic form

φ → φ +δφ

δφ =
(
∑bm1,m2,m3∂

m1φ ∂
m2φ ∂

m3φ
) (4.1.3)

Up to terms of sextic and higher order that we ignore, the field redefinition (4.1.3) shifts L4 by

δL4 = ∂
2
φ
(
∑bm1,m2,m3∂

m1φ ∂
m2φ ∂

m3φ
)

(4.1.4)

It follows that the space of quartic terms L4 may be divided up into equivalence classes. Two local
quartic terms lie in the same equivalence class if they agree up to a total derivative when we set
∂ 2φ = 03.

3In the introduction to this subsection we mentioned that Lagrangians that are ‘on-shell equivalent’ generate the
same S-matrices. In the context of the scalar theory we study in this subsubsection, the precise meaning of ‘on-shell
equivalent’ is ‘obeys the equation ∂ 2φ = 0. In the case of the photon/graviton studied in subsequent sub subsections,
‘on-shell equivalent’ means obeys the (free Maxwell) / (vacuum Einstein) equations respectively.
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The map between equivalence classes of L4 and four scalar S-matrices is one to one. To see
this it is useful to move to momentum space. Let

φ(x) =
∫ ddk

(2π)d eik.x
φ̃(k)

L4 =
∫

∏
i

ddk
(2π)d ei(∑ j k jx j) L̃4(k1,k2,k3,k4) φ̃(k1)φ̃(k2)φ̃(k3)φ̃(k4)

(4.1.5)

It follows from the discussion above that L̃1
4(k1,k2,k3,k4) and L̃2

4(k1,k2,k3,k4) lie in the same
equivalence class if and only if

L̃1
4(k1,k2,k3,k4) = L̃2

4(k1,k2,k3,k4) when (4.1.6)

4

∑
i=1

ki = 0, and k2
i = 0, i = 1 . . .4 (4.1.7)

But L̃4(k1,k2,k3,k4), evaluated subject to (4.1.7), is precisely the tree level S-matrix evaluated
using the Lagrangian L4. It follows that the equivalence classes of quartic Lagrangian terms are
in fact labelled by their tree level S-matrix. Moreover any polynomial S-matrix S(k1,k2,k3,k4)

(defined on the space of momenta (4.1.7)) can be extended to a polynomial function of uncon-
strained variables k1, k2, k3 and k4 in many inequivalent ways. Choose any such extension, name it
L̃4(k1,k2,k3,k4). The equation (4.1.5) then may be viewed as a map from polynomial S-matrices to
(any particular representative of) the equivalence classes of local Lagrangians. It follows that local
4 scalar S-matrices are in one to one correspondence with the equivalence classes L4 described in
this subsection.

4.1.2 Gravitons

In order to ensure diffeomorphism invariance, in this section we study gravitational Lagrangians
constructed out of the Riemann tensor5 and work order by order in powers of the Riemann ten-
sor6. Before commencing our discussion we pause to define some terminology. Throughout this

4Up to a universal normalization factor.
5This covers almost all diffeomorphism invariant gravity Lagrangians. The exceptions to this rule are gravitational

Chern Simons terms which we ignore in this subsubsection, but whose effects we account for later in this paper.
6We define an action to be of mth order in Riemann tensors if there is no manipulation that allows us to express

the same action as an expression of higher orders in Riemann tensors in a local manner. For instance, we count an
expression containing [∇µ ,∇ν ] acting on m explicit copies of the Riemann tensor as being of degree m+ 1 as the
antisymmetric combination of derivatives can be replaced by a Riemann tensor. An expression that is of mth order
in Riemann tensors does not contribute to n point scattering amplitudes of gravitons for n < m. Terms of mth order
typically do contribute to S-matrices for m and higher point S-matrices. There are exceptions to this last rule; it is
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subsubsection the symbol H(n)
µν [Rαβγδ ] will denote the most general local functional that is rank

2 symmetric tensor and that is nth order in the Riemann tensor, but with arbitrary powers of the
metric and arbitrary numbers of symmetrized derivatives7.

The unique diffeomorphism invariant action that is linear in Riemann tensors is, of course, the
Einstein action

SE =
∫ √
−gR. (4.1.8)

We can show that field redefinition

δgµν = H(1)
µν [Rαβγδ ] (4.1.9)

may be used to cast the most general Lagrangian, quadratic in Riemann tensors, into the form

S = SE +SGB +
∫

O(Rαβγδ )
3, (4.1.10)

where,

SGB =
∫ √
−g δ

g
[aδ

h
b δ

i
cδ

j
d] R gh

ab R i j
cd

∝

∫ √
−g
(
R2−4RµνRµν +Rµνρσ Rµνρσ

)
.

(4.1.11)

and O(Rαβγδ )
3 denotes all terms that are of cubic or higher order in the Riemann tensor8. In other

words Einstein-Gauss-Bonnet is the most general action quadratic in the Riemann tensor up to
total derivatives or terms that involve explicit factors of Rµν and the Ricci scalar R9.

When evaluated in a spacetime of the form

gµν = ηµν +hµν (4.1.12)

sometimes possible for an object to be of mth order in Riemann tensors but to contribute to S-matrices only at order
m+1 or higher.

7One example of an allowed functional is

H(1)
µν = aRgµν +∇

2Rgµν + cRµν +d∇
α

∇βRαµβν . . .

8In four dimensions the Gauss-Bonnet term vanishes identically.
9In particular the Einstein equations Rµν = 0 tell us that we need only work with Riemann tensor - terms containing

Ricci tensor or Ricci scalar are effectively trivial.

32



it turns out that the Gauss-Bonnet term in (4.1.10) starts out at order h3 (up to total derivatives).
It follows, in other words, that - despite the appearance - the Gauss-Bonnet term does not modify
the Einstein propagator but does contribute to three point scattering of gravitons. This term is, of
course, topological in D = 4. We can show that field redefinitions of the form

δgµν = H(2)
µν [Rαβγδ ] (4.1.13)

can be used to cast the most general cubic correction to the Einstein-Gauss-Bonnet action into the
form

S = SE +SGB +aS(1)R3 +bχ6 +
∫ √
−g
(
O(Rαβγδ )

4) (4.1.14)

S(1)R3 =
∫ √
−g
(
RpqrsR tu

pq Rrstu +2RpqrsR t u
p r Rqtsu

)
χ6 =

∫ √
−g
(

1
8

δ
g
[aδ

h
b δ

i
cδ

j
d δ

k
e δ

l
f ] R gh

ab R i j
cd R kl

e f

)
=
∫ √
−g
(

4R cd
ab R e f

cd R ab
e f −8R c d

a b R e f
c d R a b

e f −24RabcdRabc
eRde +3RabcdRabcdR

+24RabcdRacRbd +16R b
a R c

b R a
c −12R b

a R a
b R+R3

)
(4.1.15)

In other words, Einstein-Gauss-Bonnet corrected by two specific cubic terms is the most general
action cubic in Riemann tensors - up to total derivatives and terms that vanish by the Einstein
equations. When evaluated on the metric (4.1.12), the term χ6 starts out at order h4

µν (up to total
derivatives). It follows in particular that this term does not contribute to three graviton scattering.
χ6 is field redefinition equivalent to the simpler looking expression

S(2)R3 =
∫ √
−g
(
RpqrsR tu

pq Rrstu−2RpqrsR t u
p r Rqtsu

)
(4.1.16)

(obtained by setting all terms involving Rµν in χ6 to zero). The reason that we prefer to use χ6

rather than (4.1.16) in our action is the following; when evaluated on the configuration (4.1.12),
the expression S(2)R3 is of order h4

µν only on-shell; when evaluated off-shell this expression is of

order h3
µν . As a consequence, while the actions χ6 and S(2)R3 lead to the same polynomial graviton

4 point function, this scattering amplitude has its source purely in contact terms in the case of
χ6, but in the more complicated sum of contact and exchange diagrams (which are polynomial
as on-shell 3 point functions vanish) in the case of S(2)R3 . Consequently χ6 is clearly dynamically

simpler than S(2)R3 , even though it superficially looks more complicated. χ6 also has other interesting

33



properties; it vanishes identically in less than six dimensions, and is topological in d = 6. In fact
χ6 is sometimes called the ‘6 dimensional Euler density’. It is also the second in the sequence of
Lovelock terms (the first is the Gauss-Bonnet term written above).

In contrast to χ6, S(1)R3 does contribute to the three point functions. In fact the Einstein term,

the Gauss-Bonnet term and S(1)R3 each contribute to three graviton scattering. It follows that the
most general 3 graviton S-matrix is a linear sum of 3 independent structures. The Einstein action
is quadratic in derivatives and leads to a 3 graviton S-matrix proportional to

A R = (ε1.ε2ε3.p1 + ε1.ε3ε2.p3 + ε2.ε3ε1.p2)
2 (4.1.17)

The Gauss-Bonnet action is quartic in derivatives and leads to a 3 graviton S-matrix proportional
to10

A R2
= (ε1∧ ε2∧ ε3∧ p1∧ p2)

2 (4.1.18)

The Riemann cube term is sextic in derivatives and leads to a 3 graviton S-matrix proportional to

A R3
= (TrF1F2F3)

2 . (4.1.19)

As the 3-graviton S-matrix is non vanishing, 4-graviton S-matrices that follow from the Lagrangian
(4.1.14) have contributions from Feynman diagrams with a single graviton exchange. Such ex-
change diagrams lead to S-matrices that are not polynomial in s, t and u but instead have poles.
We have explicitly evaluated the 4 graviton S-matrix that follows from the action (4.1.14). We dis-
cuss the S-matrices obtained from exchange diagrams in a future chapter. As we have mentioned
above, χ6 does not contribute to 3 graviton scattering, but does contribute (polynomiallally) to four
graviton scattering. The four graviton S-matrix that follows from this term is proportional to

T1 = (ε1∧ ε2∧ ε3∧ ε4∧ k1∧ k2∧ k3)
2

∝ δ
i
[aδ

j
s δ

k
d δ

l
f δ

m
g δ

n
h δ

p
j] ε

1
i ε

2
j ε

3
k ε

4
l p1

m p2
n p3

pε
1a

ε
2s

ε
3d

ε
4 f p1g p2h p3 j.

(4.1.20)

Finally we turn to local Lagrangians of quartic or higher order in Riemann tensors. These terms,
of course, do not contribute to 3 graviton scattering, but all give rise four graviton S-matrices that
are polynomial in εi and ki. As above field redefinitions of the form

δgµν = H(3)
µν [Rαβγδ ] (4.1.21)

10As remarked in the earlier footnote, this structure vanishes in D = 4 but a parity odd structure appears in its place.
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can be used to simplify the most general quartic correction to the Einstein-Gauss-Bonnet-Riemann-
cube action. Even up to the simplification afforded by the field redefinitions (4.1.21), however, the
most general action that is quartic in Riemann tensors, turns out to be characterized by an infinite
(rather than a finite, as was the case at quadratic and cubic order) number of parameters.

In this subsection, we thus demonstrate that the map from Lagrangians to S-matrices continues
to be the obvious one. When evaluated on-shell, Lagrangians that differ only by total derivatives
or terms of order h5 or higher yield the same S-matrix11. There is also a complication in the
reverse map: it is possible for local S-matrices to correspond to Lagrangians that are of lower
than quadratic order in the Riemann tensor, as we have already seen in the example of the second
Riemann cube term above.

4.2 Module generators and Lagrangians

Earlier in this section we presented a detailed discussion of the correspondence between S-matrices
and Lagrangians (up to equivalences). Note that the correspondence described so far relates two
structures, both of which are S4 invariant. Lagrangians built out of identical bosonic fields are
automatically S4 invariant, while S matrices are S4 invariant by construction (see Section 2.2 for a
detailed discussion).

In our general discussion about the structure of S-matrices we found it useful to regard S4

invariant S matrices as special members of a larger family of Z2×Z2 invariant ‘quasi-invariant
S-matrices (see subsection 2.3). Recall, in particular, that it is the space of quasi-invariant poly-
nomial S-matrices (rather than the space of fully S4 invariant polynomial S matrices) that form a
module. The space of physical (i.e. completely S4 invariant) polynomial S matrices is obtained by
first enumerating the modules of quasi-invariant S-matrices and then projecting onto the subspace
of S3 singlets. As the module structure of local S-matrices plays a key role in their enumeration, it
is somewhat unsatisfying to have Lagrangian structures ‘dual’ only to fully S4 invariant S-matrices.
In particular, recall that S-matrix modules are labelled by their generators which, in general, trans-
form in non-trivial representations of S3. In this brief subsection we describe a procedure that
allows us to associate Lagrangians with generators of the local module even when the generators
in question are not S3 invariant. Any set of generators Ma of the local module (that transform in
some representation of S3) is naturally associated with an infinite class of genuine (S3 invariant)

11The stipulation about terms of higher order is necessary because the non-linearity of gravity makes it possible for
two terms built out of four Riemann tensors, that are distinct even on-shell at the non-linear level, to agree at O(h4).
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S-matrices S(Ma)as follows. S(Ma) is defined as the restriction of the span of Ma to S3 singlets,
i.e. restriction to S3 singlets of module elements of the form r.Ma where r is an element of the ring
(i.e. is a polynomial of s and t). In other words S(Ma) are all the S3 invariant descendants of the
generators.

Similarly any Lagrangian L can be associated with an infinite class of Lagrangians C(L) defined
as follows. C(L) is defined as the set of Lagrangians obtained by taking derivatives the fields that
appear in the Lagrangian and contracting the indices of these derivatives in pairs. We say that
a Lagrangian L is associated with the generators Ma if the set of S-matrices obtained from the
Lagrangians C(L) coincide with S(Ma). This association allows us to use Lagrangians to label
generators (and more generally elements) of the local module. We will use this association in the
next section. As an example consider the photon Lagrangian Tr(F2)Tr(F2). The corresponding
generators of the local Module are Tr(F1F2)Tr(F3F4), Tr(F1F3)Tr(F2F4) and Tr(F1F4)Tr(F3F2);
this set of generators transforms in the 3 of S3.

For another example consider the photon Lagrangian term Fab∂aFµν∂bFνρFρµ . In this case
the generators corresponding to the given Lagrangian consist of the single element

1
4
(Fab

1 ∂aFµν

2 ∂bFνρ

3 Fρµ

4 +Fab
2 ∂aFµν

1 ∂bFνρ

4 Fρµ

3 +Fab
3 ∂aFµν

4 ∂bFνρ

1 Fρµ

2 +Fab
4 ∂aFµν

3 ∂bFνρ

2 Fρµ

1 ).

(4.2.1)
(4.2.1) had four terms rather than one because no single one of the terms above is Z2×Z2 invariant.
The resultant expression (4.2.1) transforms in the 1S of S3.
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Chapter 5

Explicit photon S-matrices and
corresponding Lagrangians

The quasi-invariant polynomial S-matrices form a module, called the local module. In this section
we completely characterize this module by specifying the generators EJ(pi,εi) for 4-photon S-
matrices. We also present an explicit parameterization of the physical (S4 invariant) S-matrices
that are ‘descendants’ of these generators and thereby present an explicit parameterization of the
most general allowed polynomial four photon S-matrix in every dimension. Finally we also present
explicit expressions for the Lagrangians from which these S-matrices follow.

Before we dive into the analysis let us spare some time fixing up the notation and convention.
In the case of photons, we denote the parity even generators of the local module as ER and parity
odd generators as OR. The subscript R is either S,A or 3 denoting its S3 representation 1S,1A

or 3 respectively. When there are multiple generators transforming in the same representation are
present, we assign them serial numbers which are also denoted in the subscript. For example, if
there two symmetric parity even generators then they are denoted as ES,1 and ES,2. In the case
when R = 3 or 3A, we use a superscript to denote the specific state of the three dimensional
representation. By convention, we always choose E(1)

3 (or O(1)
3 ) to be invariant under the swap 1↔

2. The second and the third components are obtained by permuting (234)→ (342). This means,
the component (2) is invariant under the swap 1↔ 3 and the component (3) is invariant under the
swap 1↔ 4. In one case we have to deal with the generator transforming in 3A representation.
Recall that this is the representation obtained by acting on a state (1) that is antisymmetric in the
exchange of 1↔ 2 by the cyclic permutation (234)→ (342). Sometimes we also include the
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space-time dimension in the superscript when it needs to be emphasized, e.g. ED=4,(1)
3 .

For gravitons, we have the same notation except that the letters G and H are used, instead
of E and O, to denote the parity even and parity odd local module generators. In all cases, the
corresponding bare module generators are denoted by lower-case letters i.e. the parity even and
parity odd bare module generators for photons are denoted as e and o respectively and for gravitons
they are denoted as g and h respectively. In order to avoid excessive notation we use the photon
notation E,O and e,o for scalars as well.

To construct the most general physical (i.e. S4 invariant) S-matrix in the span of a quasi-
invariant generator, say ER we need to take the ”inner product” with a general polynomial of (s, t)
that transforms in the same representation R. For example, if R = S,

S = F ES(t,u)ES. (5.0.1)

where the function F ES(t,u) is totally symmetric under S3. When R = A,

S = F EA(t,u)EA. (5.0.2)

where the function F EA(t,u) is totally antisymmetric under S3.

The S-matrix is more involved for quasi-invariant structure that transforms in 3 representation
of S3. It is given by

S = F E3(t,u)E(1)
3 +F E3(u,s)E(2)

3 +F E3(s, t)E(3)
3 . (5.0.3)

where F E3(t,u) is a symmetric function in its two arguments (symmetry under the exchange of t

and u is the same as the symmetry under the exchange of 1↔ 2 which matches with the symmetry
of E(1)

3 and so on). Sometimes, it helps use the shorthand

F E(1)
3 (t,u)≡F E3(t,u), F E(2)

3 (t,u)≡F E3(u,s), F E(1)
3 (t,u)≡F E3(s, t). (5.0.4)

So that the above S-matrix can be written as

S = ∑
i=1,2,3

F E(i)
3 (t,u)E(i)

3 . (5.0.5)

The S-matrix corresponding to a generator transforming in 3A representation is also given by the
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equation (5.0.3) except that the function F is antisymmetric rather than symmetric in its two
arguments. We will always label the function F by the quasi-invariant structure that it multiplies.

5.1 Scalar polynomial S-matrices and Lagrangians
As scalar S-matrices don’t have any index structures, the local module and the bare module are
identical (and so, in particular, are freely generated). In D≥ 4, they both are generated by a unique
generator ES = 1 which is clearly S3 invariant (i.e. transforms in the 1S representation of S3). The
Lagrangian corresponding to this generator is simply φ 4.

5.1.1 Module generators and S-matrix partition functions

It is obvious why all four scalar scattering amplitudes in D ≥ 4 are parity invariant. The reason
for this is easy to understand. Four scalar scattering involves only 3 independent vectors (which
can be chosen to be any three of the four scattering momenta). It follows that no D ≥ 4 parity
odd S-matrix exists as the number of free indices in the Levi-Civita tensor exceeds the number of
independent vectors.

It is clear that the argument of the previous paragraph fails in D = 3 however. In this case we
have the following parity odd structure which is a second generator of the local Module (the first
generator continues to be unity)

OD=3
A = εµνρkµ

1 kν
2 kρ

3 . (5.1.1)

The generator (5.1.1) is precisely ε̃ in (2.1.16) for D = 3. The ‘Lagrangian’ associated with this
generator (in the sense of subsection 4.2) is1,

εµνρ∂µφ∂νφ∂ρφφ . (5.1.2)

For completeness we present a completely explicit parameterization of the most general 4 scalar S-
matrix and associated Lagrangians. For D≥ 4, there is a unique quasi-invariant generator ES = 1.
The general S-matrix is

S = F ES(t,u) (5.1.3)

where this function is completely symmetric under the exchange of s, t,u. Recall that F ES(t,u) is

1The Lagrangian (5.1.2) vanishes for symmetry reasons; however its ‘descendants’ (Lagrangians obtained by taking
derivatives of the four φ fields in (5.1.2) and contracting the indices in pairs) do not, in general, vanish. Consequently
the Lagrangian (5.1.2) - while trivial as a functional - is non-trivial as the Lagrangian that labels module generators in
the sense of subsection 4.2.
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a polynomial in t and u and so can be expanded as a finite sum of the form

F ES(t,u) =
(
F ES

)
n,m

tnum (5.1.4)

It follows from the analysis of subsection 2.6 that the only S-matrices of the form (5.1.3) that grow
no faster than s2 in the Regge limit are

F ES(t,u)|<s2 = a0 +a4(s2 + t2 +u2)+a6(stu). (5.1.5)

The Lagrangian from which the S-matrix (5.1.5) follows is proportional to

LD≥4 = ∑
m,n

(
F ES

)
m,n

2m+n

(
m

∏
i=1

n

∏
j=1

(
∂ν j∂µiφ

)
φ∂µiφ∂ν jφ

)
. (5.1.6)

We can extend the above analysis to the case of D = 3, where the new content would be the parity
odd sector. This has been done in detail in [1].

5.2 Construction of all parity even photon S-matrices for D≥ 5

In this subsection we begin this analysis by presenting an explicit construction of all parity even S-
matrices in D≥ 5. It can be shown that the most general parity even gauge invariant Lagrangian can
be obtained by taking linear combinations of pairs of contracted derivatives on the three ‘generator’
Lagrangians

Tr(F2)Tr(F2), Tr(F4), −Fab
∂aFµν

∂bFνρFρµ (5.2.1)

The generators of the local module dual to these Lagrangians (in the sense of section 4.2) are given
by

E(1)
3,1 = 8Tr(F1F2)Tr(F3F4), E(2)

3,1 = 8Tr(F1F3)Tr(F2F4), E(3)
3,1 = 8Tr(F1F4)Tr(F3F2),

E(1)
3,2 = 8Tr(F1F3F2F4), E(2)

3,2 = 8Tr(F1F2F3F4), E(3)
3,2 = 8Tr(F1F3F4F2),

ES ' −6Fab
1 ∂aFµν

2 ∂bFνρ

3 Fρµ

4 |Z2×Z2

= 6
(
−Fab

1 ∂aFµν

2 ∂bFνρ

3 Fρµ

4 −Fab
2 ∂aFµν

1 ∂bFνρ

4 Fρµ

3 −Fab
3 ∂aFµν

4 ∂bFνρ

1 Fρµ

2 −Fab
4 ∂aFµν

3 ∂bFνρ

2 Fρµ

1

)
.

(5.2.2)
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Note that there are two four derivative generators in the 3 and one six derivative generators in the
1S of S3. The second subscript on E3 is simply an arbitrarily assigned serial number. It turns
out (as has been shown in [1]) that the above local module generators are freely generated for
D ≥ 5. However, the number of local module structures appear to be more than the counting of
bare module structures for D = 3 and D = 4, which signifies that the local module is not freely
generated.Hence, the S-matrix module is not completely specified by their generators (5.2.2); we
also need to specify the relations obeyed within the modules generated by these generators. To
proceed we express local module generators (5.2.2) in terms of the generators of the bare modules
eI(αi,ε

⊥
i ) that were constructed in section 3.1.2. Explicitly, we have:

E(1)
3,1 = −8s2e(1)3,1 +8s2e(1)3,2−8s2eS, E(2)

3,1 =−8t2e(2)3,1 +8t2e(2)3,2−8t2eS,

E(3)
3,1 = −8u2e(3)3,1 +8u2e(3)3,2−8u2eS,

E(1)
3,2 = −2(u2e(2)3,1 + t2e(3)3,1)+2(u(s− t)e(2)3,2 + t(s−u)e(3)3,2)−2(t2 +u2)eS,

E(2)
3,2 = −2(s2e(3)3,1 +u2e(1)3,1)+2(s(t−u)e(3)3,2 +u(t− s)e(1)3,2)−2(u2 + s2)eS,

E(3)
3,2 = −2(t2e(1)3,1 + s2e(2)3,1)+2(t(u− s)e(1)3,2 + s(u− t)e(2)3,2)−2(s2 + t2)eS,

ES = 3stu(e(1)3,2 + e(2)3,2 + e(3)3,2−2eS). (5.2.3)

For completeness we present an explicit parameterization of the most general parity even S-matrix
for four photon scattering in D ≥ 5 and also of the Lagrangians that generate these S-matrices.
The most general S-matrix is parametrized by two Z2 symmetric functions of t and u, and one
completely s, t, u symmetric function. The expression is rather cumbersome, and hence is written
explicitly in the next page. However, the essential point is that any parity even four photon local S-
matrix in D≥ 5 can be written in the form of (5.2.4), and hence is characterized in terms of unique
well-defined functions. These functions would be determined by the set of interaction vertices of
the theory in which we evaluate the four photon S-matrix.
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Explicitly we have:

S D≥5
even = 4

(
F E3,1(t,u)

(
p1

µε1
ν − p1

νε1
µ

)(
p2

µε2
ν − p2

νε2
µ

)(
p3

αε3
β
− p3

β
ε3

α

)(
p4

αε4
β
− p4

β
ε4

α

)
+F E3,1(u,s)

(
p1

µε1
ν − p1

νε1
µ

)(
p3

µε3
ν − p3

νε3
µ

)(
p2

αε2
β
− p2

β
ε2

α

)(
p4

αε4
β
− p4

β
ε4

α

)
+F E3,1(s, t)

(
p1

µε1
ν − p1

νε1
µ

)(
p4

µε4
ν − p4

νε4
µ

)(
p3

αε3
β
− p3

β
ε3

α

)(
p2

αε2
β
− p2

β
ε2

α

))
+4
(

F E3,2(t,u)
(

p1
µε1

ν − p1
νε1

µ

)(
p3

νε3
α − p3

αε3
ν

)(
p2

αε2
β
− p2

β
ε2

α

)(
p4

β
ε4

µ − p4
µε4

β

)
+F E3,2(u,s)

(
p1

µε1
ν − p1

νε1
µ

)(
p2

νε2
α − p2

αε2
ν

)(
p3

αε3
β
− p3

β
ε3

α

)(
p4

β
ε4

µ − p4
µε4

β

)
+F E3,2(s, t)

(
p1

µε1
ν − p1

νε1
µ

)(
p3

νε3
α − p3

αε3
ν

)(
p4

αε4
β
− p4

β
ε4

α

)(
p2

β
ε2

µ − p2
µε2

β

))
+F ES(t,u)((

p1
aε1

b − p1
bε1

a
)

p2
a

(
p2

µε2
ν − p2

νε2
µ

)
p3

b

(
p3

νε3
α − p3

αε3
ν

)(
p4

αε4
µ − p4

µε4
α

)
+
(

p2
aε2

b − p2
bε2

a
)

p1
a

(
p1

µε1
ν − p1

νε1
µ

)
p4

b

(
p4

νε4
α − p4

αε4
ν

)(
p3

αε3
µ − p3

µε3
α

)
+
(

p3
aε3

b − p3
bε3

a
)

p4
a

(
p4

µε4
ν − p4

νε4
µ

)
p1

b

(
p1

νε1
α − p1

αε1
ν

)(
p2

αε2
µ − p2

µε2
α

)
+
(

p4
aε4

b − p4
bε4

a
)

p3
a

(
p3

µε3
ν − p3

νε3
µ

)
p2

b

(
p2

νε2
α − p2

αε2
ν

)(
p1

αε1
µ − p1

µε1
α

))
. (5.2.4)

The functions F E3,1(t,u),F E3,2(t,u) are each arbitrary functions that are symmetric in their two
arguments. These functions with permuted arguments transform in the 3 of S3. On the other hand
F ES(t,u) is a function that is completely symmetric under interchange of s, t and u. Since, we
are eventually interested in the Regge limit of S-matrices, and constrain the space of consistent
theories by the CRG conjecture, we can see that the most general S-matrix of the form (5.2.4) that
grows no faster than s2 in the Regge limit is given by the four parameter set

F E3,1(t,u) = c1, F E3,2(t,u) = c2 + c3(u+ t), F ES(t,u) = c4. (5.2.5)

The S-matrices parameterized by c1 and c2 are both four derivative. The S-matrices parameterized
by c3 and c4 are both 6 derivatives. All 4 S-matrices corresponding to ci, i = 1,2,3,4 grow like s2

in the Regge limit.

The three functions F E3,1(t,u),F E3,2(t,u) and F ES(t,u) in (5.2.4) can be Taylor expanded in
a manner completely analogous to (5.1.4). The Lagrangian that generates the S-matrix (5.2.4) is
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given by

LD≥5
even =∑

m,n

(
F E3,1

)
m,n 2m+n

(
m

∏
i=1

n

∏
j=1

Tr
(
∂ν j∂µiFF

)
Tr
(
∂µiF∂ν jF

))

+∑
m,n

(
F E3,2

)
m,n 2m+n

(
m

∏
i=1

n

∏
j=1

Tr
(
∂ν j∂µiF∂µiFF∂ν jF

))

+∑
m,n

(
F ES

)
m,n 2m+n

(
−

m

∏
i=1

n

∏
j=1

∂µi∂ν jFabTr
(
∂µi∂aF∂ν j∂bFF

))
.

(5.2.6)

As mentioned above (5.2.4) and (5.2.6) describe the most general polynomial S-matrix (and cor-
responding local Lagrangian) for parity even four photon scattering in dimensions D≥ 5. In these
dimensions the three functions label polynomial S-matrices in a one to one manner; every distinct
choice of these functions yields a distinct S-matrix, and every polynomial S-matrix corresponds to
some choice of these functions.

In fact the expressions (5.2.4) and (5.2.6) also apply to D = 4 and D = 3. In this case, however,
the map between the functions F E3,1(t,u),F E3,2(t,u) and F ES(t,u) and polynomial S-matrices
is many to one. While every S-matrix continues to correspond to some choice of these three
functions, many different choices of these functions yield the same local S-matrix (this is another
way of saying that the parity odd local S-matrix module in these dimensions is not freely generated
but has relations). The situation for D = 4 and D = 3 has been explained in further detail in [1].

We now turn to a brief discussion of parity odd S-matrices, i.e. S-matrices that use a single copy
of the Levi-Civita tensor. As this tensor has a different numbers of indices in different dimensions,
the structure of the parity odd local module tends to be very specific to dimension. However there
is one universal statement about parity odd S-matrices that is easy to make, namely that no such S-
matrices exist for D≥ 8. This simple fact follows from the observation that in these the Levi-Civita
tensor has 8 or more indices but only 7 independent vectors - three momenta and four polarizations
- for these indices to contract with. It follows that all four photon S-matrices are parity even in
D ≥ 8 (this fact is also clear from Table 3.1). However, there are parity odd S-matrices in lower
spacetime dimensions, and a complete classification of the S-matrices and the local Lagrangians
from which they follow have been done in [1].
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Chapter 6

Explicit graviton S-matrices and
corresponding Lagrangians

We now turn to a study of Gravitational S-matrices and corresponding Lagrangians for the case
of D ≥ 8. As in the case of photon scattering, there are no parity odd gravitational S-matrices for
D≥ 8. In the rest of this section we will provide a detailed description of the (automatically parity
even) local S-matrix module in D ≥ 8. A complete listing of the parity odd as well parity even
S-matrices and their corresponding local Lagrangian’s for lower spacetime dimensions is done
exhaustively in [1].

6.1 Modules generated by Lagrangians with 8 or fewer deriva-
tives

No gravitational Lagrangian that is linear or quadratic in Rµναβ produces a polynomial 4 graviton
S-matrix (see subsubsection 4.1.2). GS,1 ≡ χ6 is the unique 3 Riemann Lagrangian that produces
a polynomial S-matrix (see (4.1.15) and (4.1.20)). All other parity even Lagrangians that gener-
ate polynomial S-matrices can be written as the sum of products of derivatives of four Riemann
tensors.

The simplest four Riemann Lagrangians are those with eight derivatives. These are constructed
from contractions of four Riemann tensors (no derivatives). All inequivalent contractions of four
Riemann tensors have been enumerated in [5]. Excluding those structures that involve R and Rµν

and so can be removed by field redefinitions (see subsubsection 4.1.2), the authors of [5] find 7
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inequivalent contractions in D≥ 8.

Five of the seven transform as 3 and are labeled as G3,i, i = 1, . . . ,5. One generator transforms
as 6left, it is labeled as G6. It is convenient to decompose 6left into 3⊕ 3A. We label these pieces
as G3,6 and G3A . All these are listed in (6.2.4) and the associated Lagrangians are in (6.2.5). The
remaining 8-derivative generator G3,9 transforms in the 3. The Lagrangian associated to it is,

G3,9 = RpqrsRptruRtvqwRuvsw. (6.1.1)

Finally there is one additional subtlety that needs to be taken into account. Each of the seven
generators G3,1 . . .G3,6 and G3,9 have a single generator in the 1S

1. One linear combination of
these seven 1S structures is simply the third Lovelock term.

χ8 = ε
abcde f gh

ε
αβγδ µνρσ Rabαβ Rcdγδ Re f µνRghρσ

∝
(
G3,1 +2G3,2 +16G3,3 +32G3,4 +8G3,5−16G3,6−64G3,9

)
|S.

(6.1.2)

When expanded to fourth order in fluctuations, χ8 and all its ‘descendants’ simply vanish on-
shell. It follows that χ8 corresponds to no module element and plays no role in the discussion that
follows. When studying S-matrices, therefore, one of the seven 1S structures above - lets say the 1S

in G3,9 - can be re-expressed as a linear combination of the other six, and so is not an independent
module generator. As we remove the completely symmetric part from G3,9, let us relabel it as G2M

to reflect its correct transformation properties. In the rest of this subsubsection we focus on the
submodule - lets call it M8 - of the local gravitational module that is generated by Lagrangians with
at most 8 derivatives, i.e. the (independent terms in) descendants of GS,1 plus G3,1 . . .G3,6, G3A and
G2M

2. It turns out that the submodule of interest to this subsubsection is freely generated (the same
holds true for the full local module). This statement - which is simply an unproved assertion at this
stage - will effectively be demonstrated later in this subsection by comparison of the ‘module’ and
plethystic partition functions.

One simple description of the sub module M8 goes as follows. GS,1 is clearly a generator of
our submodule. The module generated by this 6 derivative element has exactly two 8 derivative
‘descendants’ which together transform in a single copy of in the 2M. This 8 derivative 2M is
a linear combination of the 8 eight derivative 2M’s present in the generators dual to the eight

1In each case this generator is simply the S-matrix that follows constructed from tree diagrams using the La-
grangians ‘dual’ the module elements above - i.e. the Lagrangians listed in [5].

2In the next subsubsection we will continue to describe the rest of the local module (the part of the module generated
by terms with 10 or more derivatives).
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derivative generators G3,1 . . .G3,6, G3A and G2M . The relation can be expressed as follows. Let us
define (r(1),r(2),r(3)) = (s, t,u). Then, for example3,

r(i)GS,1 = 4
(
−G(i)

3,1−2G(i)
3,2−16G(i)

3,3+16G(i)
3,4−2G(i)

3,5+10G(i)
3,6+16G(i)

2M
+(4G(i+1)

3A
−4G(i+2)

3A
)
)
.

(6.1.3)
where (i + 1) and (i + 2) are defined cyclically; - for instance when i = 2, (i + 1) = (3) and
(i+ 2) = (1). This means, the LHS of (6.1.3) (i.e. the 8 derivative descendant of GS,1) together
with the generators G3,1 . . .G3,6 and G3A span the space of 8 derivative module elements. Note that
G2M does not appear in this list of generators; we have (6.1.2) to eliminate the 1S part of G3,9 and
have used (6.1.3) to eliminate the 2M part of this generator.

6.2 The rest of the gravitational local submodule

In the previous section we have constructed the submodule of the local gravitational module that is
generated by 6 and 8 derivative terms. As we have already accounted for the contribution of GS,1,
all remaining polynomial S-matrices are produced by Lagrangians quartic in the Riemann tensor.
In order to capture the contribution of such terms to four graviton S-matrices, it is sufficient to
linearize each of the four Riemann tensors and also to work on-shell:

Rµνρσ ∝ (pµεν − pνεµ)(pρεσ − pσ ερ) ∝ FµνFρσ (6.2.1)

Note that the RHS of (6.2.1) is quadratic in ε as expected. At fixed momentum the Riemann tensor
is - formally- the second symmetric power of field strengths

Rµνρσ (p) =
1
2

Fµν(p)⊗Fρσ (p). (6.2.2)

One simple (but not necessarily exhaustive) way to construct polynomial graviton S-matrices is to
take the second symmetric tensor power of photon S-matrices. The set of all polynomial gravita-
tional S- matrices that can be constructed in this manner clearly form a submodule of the complete
local gravitational module. The symmetric products of the three generators of the local photon
module4 are a special set of states within this submodule. The products of generators may be

3 Each of G3,1 . . .G3,5 transforms as 1S + 2M, G6 transforms as 1S + 1A + 2 · 2M and G2M transforms as 2M. It
follows that there are a total of 8 2M’s.

4Recall that the module of parity even polynomial photon S-matrices in D≥ 5 was generated by two four derivative
generators E1 and E2 (both of which transform in the 3)and one six derivative generator E3 (which transforms in the
1S)
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decomposed into familiar representations of S3 as follows

1
16

S2E3,1 = G3,1⊕G3,2,
1
16

S2E3,2 = G3,3⊕G3,4,

1
16

E(3,1⊗E3,2) = G3,5⊕G6 = G3,5⊕G3,6⊕G3A ,

1
16

E(3,1⊗ES) = G3,7,
1

16
E(3,2⊗ES) = G3,8,

1
16

S2ES = GS,2. (6.2.3)

where S2 represents the symmetric square of an S3 representation. The new (with 10 or higher num-
ber of derivatives) generators are G3,7,G3,8 and GS,2. They are labeled by their S3 transformation
properties as per the convention.More explicitly the generators so obtained are given by

G(1)
3,1 ≡

1
16

E(1)
3,1 ⊗E(1)

3,1 = R1
abpqR2

abpqR3
cdrsR

4
cdrs

G(1)
3,2 ≡

1
16

E(1)
3,1 ⊗E(2)

3,1 |S = R1
abpqR3

abrsR
4
cd pqR2

cdrs +R1
abpqR4

abrsR
3
cd pqR2

cdrs

G(1)
3,3 ≡

1
16

E(1)
3,2 ⊗E(1)

3,2 = R1
abpqR2

cdrsR
3
bcqrR

4
dasp

G(1)
3,4 ≡

1
16

E(1)
3,2 ⊗E(2)

3,2 |S = R1
abpqR3

cdqrR
4
bcrsR

2
dasp +R1

abpqR4
cdqrR

3
bcrsR

2
dasp

G(1)
3,5 ≡

1
16

E(1)
3,1 ⊗E(1)

3,2 = R1
abpqR2

abrsR
3
cdqrR

4
cdsp

G(1)
3,6 ≡

1
16

E(1)
3,1 ⊗E(2)

3,2 |S = R1
abpqR2

abqrR
3
cdrsR

4
cdsp +R1

abpqR2
abqrR

4
cdrsR

3
cdsp

G(1)
3A
≡ 1

16
E(1)

3,1 ⊗E(2)
3,2 |A = R1

abpqR2
abqrR

3
cdrsR

4
cdsp−R1

abpqR2
abqrR

4
cdrsR

3
cdsp

G(1)
3,7 ≡

1
16

E(1)
3,1 ⊗ES|Z2⊗Z2 = R1

abpq∂pR2
abrs∂qR3

cdstR
4
cdtr|Z2⊗Z2

G(1)
3,8 ≡

1
16

E(1)
3,2 ⊗ES|Z2⊗Z2 = R1

abpq∂pR2
cdrs∂qR3

bcstR
4
datr|Z2⊗Z2

GS,2 ≡
1

16
ES|Z2⊗Z2⊗ES|Z2⊗Z2 = R1

abpq∂a∂pR2
cdrs∂b∂qR3

destR
4
eatr|Z2⊗Z2. (6.2.4)

In (6.2.4) we have explicitly only listed the (1) components of the generators that transform in 3
and in one case in 3A.
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The Lagrangians corresponding to all these generators are given by

G3,1 = RabpqRbaqpRcdrsRdcsr

G3,2 = RpqrsRpqtuRtuvwRrsvw

G3,3 = RpqrsRptruRtvuwRqvsw

G3,4 =−RpqrsRptuwRtvwsRqvru

G3,5 = RpqrsRpqtuRrtvwRsuvw

G6 = G3,6⊕G3A = RpqrsRpqrtRuvwtRuvws

G3,7 = Rpqab∂aRqpµν∂bRrsναRsrαµ

G3,8 = Rpqab∂aRqrµν∂bRrsναRspαµ

GS,2 = Rabpq∂p∂aRµνβγ∂q∂bRναγδ Rαµδβ .

(6.2.5)

Using Mathematica we have verified that this result has the following extension to the full local
gravitational module for D≥ 7. The set of module elements GS,1,GS,2 and G3,1 . . .G3,8 and G3A are

all independent generators of the the parity even part of the local gravitational module. In other

words no one of these objects can be written as a linear sum over descendants of the others. It will
turn out - and we will proceed under the assumption that - the list of generators described above
is exhaustive; i.e. that GS,1,GS,2 and G3,1 . . .G3,8 and G3A generate the local gravitational module.
This statement can be taken to be a guess at this stage, which will be verified by comparison with
explicit results of plethystic counting below (see [1] for details). As the number of local generators
matches the number of bare generators, it is of importance to know whether the stringent condition
(2.3.5) is obeyed. It turns out it is not. It follows that GS,1,GS,2 and G3,1 . . .G3,8 and G3A generate
the local gravitational module freely.

6.3 Explicit listing of gravitational S-matrices in D≥ 8

When D≥ 8, the four gravity scattering is necessarily parity even. In these dimensions the genera-
tors of the local S-matrix module are GS,1 = χ6 (see (4.1.15) and (4.1.20)) along with G3,1, . . .G3,8,
G3A and GS,2 (see (6.2.4)). It is relatively straightforward to list the S matrices generated by
G3,1, . . .G3,8, G3A , GS,2 as well as the Lagrangian’s that generate these S-matrices. It is also
straightforward to list the S-matrices generated by GS,1. In this subsection we first perform the
simple part of our listing. We list the S-matrices generated by G3,1, . . .G3,8, G3A , GS,2.

• The S-matrix corresponding to G3,1 in (6.2.5) is specified by the polynomial F G3,1(t,u)
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which exhibits a Z2 symmetry (t↔ u). In equations,

SG3,1 =
1
4
(
F G3,1(t,u)

[(
p1

pε
1
q − p1

qε
1
p
)(

p2
pε

2
q − p2

qε
2
p
)(

p3
r ε

3
s − p3

s ε
3
r
)(

p4
r ε

4
s − p4

s ε
4
r
)

(
p1

aε
1
b − p1

bε
1
a
)(

p2
aε

2
b − p2

bε
2
a
)(

p3
cε

3
d − p3

dε
3
c
)(

p4
cε

4
d − p4

dε
4
c
)]

+F G3,1(s,u) [3↔ 2]+F G3,1(s, t) [2↔ 4]
)
.

(6.3.1)

The most general descendant which gives rise to S-matrix in (6.3.1) is given by,

LG3,1 = ∑
m,n

(
F G3,1

)
m,n

2m+n

(
m

∏
i=1

n

∏
j=1

(
∂µi∂ν jRabpq

)
Rbaqp (∂

µiRcdrs)(∂
ν jRdcsr)

)
. (6.3.2)

We have defined the momenta polynomials as,

F G3,1(t,u) = ∑
m,n

(
F G3,1

)
m,n

tmun. (6.3.3)

In order to see the fact that Lagrangian (6.3.2) results in the S-matrix (6.3.1), we note that

RabpqRbaqpRcdrsRdcsr (6.3.4)

linearizes to give Tr(F1F2)Tr(F3F4)Tr(F1F2)Tr(F3F4) plus permutations. Once linearized,
it is clear that the structure has extra Z2 symmetry of 1 to 2 exchange. Upto permutations,
the descendant Lagrangian (6.3.2) therefore linearizes to,

LG3,1 =
1
16 ∑

m,n

(
F G3,1

)
m,n

2m+n

(
m

∏
i=1

n

∏
j=1

∂µi∂ν j

(
F1

abF1
pq
)

F2
baF2

qp∂
µi
(
F3

cdF3
rs
)

∂
ν j
(
F4

dcF4
sr
))

.

(6.3.5)

• The S-matrix corresponding to G3,2 in (6.2.5) is specified by the momenta polynomial
F G3,2(s,u) which has the Z2 symmetry (s↔ u). Explicitly it is given by

SG3,2 =
1
4
(
F G3,2(s,u)

[(
p1

pε
1
q − p1

qε
1
p
)(

p2
pε

2
q − p2

qε
2
p
)(

p3
vε

3
w− p3

wε
3
v
)(

p4
vε

4
w− p4

wε
4
v
)

(
p1

r ε
1
s − p1

s ε
1
r
)(

p4
r ε

4
s − p4

s ε
4
r
)(

p2
t ε

2
u − p2

uε
2
t
)(

p3
t ε

3
u − p3

uε
3
t
)]

+F G3,2(t,u) [3↔ 2]+F G3,2(s, t) [3↔ 4]
)
.

(6.3.6)
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The most general descendant is

LG3,2 = ∑
m,n

(
F G3,2

)
m,n

2m+n

(
m

∏
i=1

n

∏
j=1

(
∂µi∂ν jRpqrs

)(
∂

µiRpqtu
)

Rtuvw (∂
ν jRrsvw)

)
. (6.3.7)

That the descendant Lagrangian (6.3.7) generates the S-matrix (6.3.6) is easy to see; the
Lagrangian

RpqrsRpqtuRtuvwRrsvw (6.3.8)

linearizes to give Tr(F1F2)Tr(F3F4)Tr(F1F4)Tr(F2F3) plus permutations. This structure
has an obvious extra Z2 symmetry of 1 to 3 exchange. The descendant Lagrangian (6.3.7)
then linearizes to give,

1
16 ∑

m,n

(
F G3,2

)
m,n

2m+n

(
m

∏
i=1

n

∏
j=1

∂µi∂ν j

(
F1

pqF1
rs
)

∂
µi
(
F2

pqF2
tu
)

F3
tuF3

vw∂
ν j
(
F4

rsF
4
vw
))

. (6.3.9)

plus permutations.

• The most general S-matrix corresponding G3,3 in (6.2.5) is specified by the momenta poly-
nomials F G3,3(s,u) which is symmetric under (s↔ u).

SG3,3 =
1
4
(
F G3,3(s,u)

[(
p1

pε
1
q − p1

qε
1
p
)(

p2
pε

2
t − p2

t ε
2
p
)(

p3
t ε

3
v − p3

vε
3
t
)(

p4
qε

4
v − p4

vε
4
q
)

(
p1

r ε
1
s − p1

s ε
1
r
)(

p2
r ε

2
u − p2

uε
2
r
)(

p3
uε

3
w− p3

wε
3
u
)(

p4
s ε

4
w− p4

wε
4
s
)]

+F G3,3(t,u) [3↔ 2]+F G3,3(s, t) [3↔ 4]
)
.

(6.3.10)

The most general descendant Lagrangian that gives rise to the S-matrix (6.3.10) is as follows

LG3,3 = ∑
m,n

(
F G3,3

)
m,n

2m+n

(
m

∏
i=1

n

∏
j=1

(
∂ν j∂µiRpqrs

)
(∂ µiRptru)Rtvuw

(
∂

ν jRqvsw
))

. (6.3.11)

In order to see the fact that Lagrangian (6.3.11) results in the S-matrix (6.3.10), we note that

RpqrsRptruRtvuwRqvsw (6.3.12)

linearizes to Tr(F1F2F3F4)Tr(F1F2F3F4) plus permutations. This structure, like Tr(F4)

again has Z2 symmetry of 1↔ 3, which manifests in the u↔ s symmetry of the momenta
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functions F G3,3(s,u). It follows therefore the Lagrangian (6.3.11) linearizes to

1
16 ∑

m,n

(
F G3,3

)
m.n

2m+n

(
m

∏
i=1

n

∏
j=1

∂ν j∂µi(F
1
pqF1

rs)∂
µi(F2

ptF
2
ru)F

3
tvF3

uw∂
ν j(F4

qvF4
sw)

)
(6.3.13)

plus permutations.

• The S-matrix corresponding to G3,4 in (6.2.5) is specified by the momenta polynomials
F G3,4(s, t) with the Z2 symmetry (s↔ t). The explicit S-matrix is as follows

SG3,4 =
1
4
(
F G3,4(s, t)

[(
p1

pε
1
q − p1

qε
1
p
)(

p2
pε

2
t − p2

t ε
2
p
)(

p3
t ε

3
v − p3

vε
3
t
)(

p4
qε

4
v − p4

vε
4
q
)

(
p1

r ε
1
s − p1

s ε
1
r
)(

p2
uε

2
w− p2

wε
2
u
)(

p3
wε

3
s − p3

s ε
3
w
)(

p4
r ε

4
u − p4

uε
4
r
)]

+F G3,4(s,u) [3↔ 4]+F G3,4(u, t) [2↔ 4]
)
.

(6.3.14)

The most general descendant which gives rise to this S-matrix is given by

LG3,4 = ∑
m,n

(
F G3,4

)
m,n

2m+n

(
m

∏
i=1

n

∏
j=1

(
∂ν j∂µiRpqrs

)
(∂ µiRptuw)(∂

ν jRtvws)Rqvru

)
. (6.3.15)

In order to see the fact that Lagrangian (6.3.15) results in the S-matrix (6.3.14), we note that

RpqrsRptuwRtvwsRqvru (6.3.16)

linearizes to Tr(F1F2F3F4)Tr(F1F3F2F4) plus permutations. This structure has Z2 sym-
metry of 2↔ 3 (and hence the Z2 symmetry of the momenta polynomials F G3,4(s, t)). When
linearized, the most general descendant Lagrangian (6.3.15) becomes,

1
16 ∑

m,n

(
F G3,4

)
m,n

2m+n

(
m

∏
i=1

n

∏
j=1

∂ν j∂µi(F
1
pqF1

rs)∂
µi(F2

ptF
2
uw)∂

ν j(F3
tvF3

ws)F
4
qvF4

ru

)
. (6.3.17)

plus permutations.

• The S-matrix corresponding to G3,5 in (6.2.5) is specified by momenta polynomials F G3,5(t,u)
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which has a Z2 symmetry in (t↔ u).

SG3,5 =
1
4

(
F G3,5(t,u)

[(
p1

pε
1
q − p1

qε
1
p
)(

p2
pε

2
q − p2

qε
2
p
)(

p3
vε

3
w− p3

wε
3
v
)(

p4
vε

4
w− p4

wε
4
v
)

(
p1

r ε
1
s − p1

s ε
1
r
)(

p2
t ε

2
u − p2

uε
2
t
)(

p3
r ε

3
t − p3

t ε
3
r
)(

p4
s ε

4
u − p4

uε
4
s
)]

+F G3,5(u,s) [2↔ 3]+F G3,5(s, t) [2↔ 4]
)

(6.3.18)

The S-matrix (6.3.18) is produced by the general descendant Lagrangian

LG3,5 = ∑
m,n

(
F G3,5

)
m,n

2m+n

(
m

∏
i=1

n

∏
j=1

(
∂ν j∂µiRpqrs

)
Rpqtu (∂

µiRrtvw)(∂
νiRsuvw)

)
. (6.3.19)

In order to see the fact that Lagrangian (6.3.19) results in the S-matrix (6.3.18), we note that

RpqrsRpqtuRrtvwRsuvw (6.3.20)

linearizes to Tr(F1F2)Tr(F3F4)Tr(F1F3F2F4) plus permutation. The general descendant
Lagrangian (6.3.19) therefore linearizes to

1
16 ∑

m,n

(
F G3,5

)
m,n

2m+n

(
m

∏
i=1

n

∏
j=1

∂ν j∂µi

(
F1

pqF1
rs
)

F2
pqF2

tu∂
µi
(
F3

rtF
3
vw
)

∂
νi
(
F4

suF4
vw
))

(6.3.21)

plus permutations.

• The most general S-matrix generated by G6 = G3,6⊕G3A is specified by an arbitrary poly-
nomial F G6(t,u) with no symmetry restrictions. The corresponding S-matrix is

SG6 =
1
4
F G6(s, t)

[(
p1

pε
1
q − p1

qε
1
p
)(

p2
pε

2
q − p2

qε
2
p
)(

p3
uε

3
v − p3

vε
3
u
)(

p4
uε

4
v − p4

vε
4
u
)

(
p1

r ε
1
s − p1

s ε
1
r
)(

p2
r ε

2
t − p2

t ε
2
r
)(

p3
wε

3
t − p3

t ε
3
w
)(

p4
wε

4
s − p4

s ε
4
w
)]

+S3 permutations (also act on s, t,u).

(6.3.22)

This S-matrix (6.3.22) is produced (up to proportionality) by the Lagrangian

LG6 = ∑
m,n

(
F G6

)
m.n

2m+n

(
m

∏
i=1

n

∏
j=1

(
∂µi∂ν jRpqrs

)(
∂

µiRpqrt
)
(∂ νiRuvwt)Ruvws

)
(6.3.23)
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The fact that (6.3.23) yields the S-matrix (6.3.22) follows from the fact that

RpqrsRpqrtRuvwtRuvws (6.3.24)

linearizes to Tr(F1F2)Tr(F3F4)Tr(F1F2F3F4) plus permutations (where the superscript, as
usual, labels particles). It follows that the Lagrangian (6.3.23) linearizes to

1
16 ∑

m,n

(
F G6

)
m.n

2m+n

(
m

∏
i=1

n

∏
j=1

∂µi∂ν j

(
F1

pqF1
rs
)

∂
µi
(
F2

pqF2
rt
)

∂
νi
(
F3

uvF3
wt
)

F4
uvF4

ws

)
(6.3.25)

plus permutations. The replacement rule ∂µ → ikµ then turns (6.3.25) into (6.3.22).
• The S-matrix corresponding to G3,7 in (6.2.5) is specified by F G3,7(t,u) which has Z2 sym-

metry of (t↔ u). Explicitly,

SG3,7 =
1

16

(
F G3,7(t,u)

(
p1

pε
1
q − p1

qε
1
p
)(

p2
pε

2
q − p2

qε
2
p
)(

p3
r ε

3
s − p3

s ε
3
r
)(

p4
r ε

4
s − p4

s ε
4
r
)

+ F G3,7(s,u)
(

p1
pε

1
q − p1

qε
1
p
)(

p3
pε

3
q − p3

qε
3
p
)(

p2
r ε

2
s − p2

s ε
2
r
)(

p4
r ε

4
s − p4

s ε
4
r
)

+ F G3,7(t,s)
(

p1
pε

1
q − p1

qε
1
p
)(

p4
pε

4
q − p4

qε
4
p
)(

p3
r ε

3
s − p3

s ε
3
r
)(

p2
r ε

2
s − p2

s ε
2
r
))((

p1
aε

1
b − p1

bε
1
a
)

p2
a

(
p2

µε
2
ν − p2

νε
2
µ

)
p3

b
(

p3
νε

3
α − p3

αε
3
ν

)(
p4

αε
4
µ − p4

µε
4
α

)
+
(

p2
aε

2
b − p2

bε
2
a
)

p1
a

(
p1

µε
1
ν − p1

νε
1
µ

)
p4

b
(

p4
νε

4
α − p4

αε
4
ν

)(
p3

αε
3
µ − p3

µε
3
α

)
+
(

p3
aε

3
b − p3

bε
3
a
)

p4
a

(
p4

µε
4
ν − p4

νε
4
µ

)
p1

b
(

p1
νε

1
α − p1

αε
1
ν

)(
p2

αε
2
µ − p2

µε
2
α

)
+
(

p4
aε

4
b − p4

bε
4
a
)

p3
a

(
p3

µε
3
ν − p3

νε
3
µ

)
p2

b
(

p2
νε

2
α − p2

αε
2
ν

)(
p1

αε
1
µ − p1

µε
1
α

))
(6.3.26)

The S-matrix (6.3.26) is generated by the descendant Lagrangian

LG3,7 =−∑
m,n

(
F G3,7

)
m,n

2m+n

(
m

∏
i=1

n

∏
j=1

(
∂µi∂ν jRpqab

)(
∂aRqpµν

)
(∂b∂

µiRrsνα)
(
∂

ν jRsrαµ

))
(6.3.27)

In order to see that S-matrix (6.3.26) is generated by (6.3.27), we note that

Rpqab∂aRqpµν∂bRrsναRsrαµ (6.3.28)

linearizes to give Tr(F1F2)Tr(F3F4)F1
abTr(p2

aF2 p3
bF3F4) plus permutations. This structure
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again has only Z2 symmetry of 3↔ 4. The descendant Lagrangian (6.3.27) then linearizes
to give

− 1
16 ∑

m,n

(
F G3,7

)
m,n

2m+n

(
m

∏
i=1

n

∏
j=1

∂µi∂ν j

(
F1

pqF1
ab
)

∂aF2
qpF2

µν∂b∂
µi
(
F3

rsF
3
να

)
∂

ν j
(

F4
srF

4
αµ

))
(6.3.29)

plus permutations.

• The S-matrix corresponding to G3,8 in (6.2.5) is specified by the momenta functions F G3,8(s,u)

which has the Z2 symmetry (s↔ u). In equations,

SG3,8 =
1

16

(
F G3,8(s,u)

(
p1

pε
1
q − p1

qε
1
p
)(

p2
qε

2
r − p2

r ε
2
q
)(

p3
r ε

3
s − p3

s ε
3
r
)(

p4
s ε

4
p− p4

pε
4
s
)

F G3,8(t,u)
(
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1
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1
p
)(

p3
qε

3
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3
q
)(
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2
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2
r
)(
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4
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4
s
)
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(
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1
p
)(
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3
q
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4
r
)(
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2
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2
s
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aε

1
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1
a
)
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a

(
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µε
2
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2
µ

)
p3
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(
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3
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3
ν

)(
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4
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µε
4
α

)
+
(
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aε

2
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bε
2
a
)
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a

(
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1
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1
µ

)
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b
(

p4
νε

4
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4
ν

)(
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(
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(
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(
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4
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(
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3
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(
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2
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1
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))
(6.3.30)

The descendant is of the general form

LG3,8 =−∑
m,n

(
F G3,8

)
m,n

2m+n

(
m

∏
i=1

n

∏
j=1

(
∂µi∂ν jRpqab

)(
∂a∂

µiRqrµν

)
(∂bRrsνα)

(
∂

ν jRspαµ

))
(6.3.31)

Reader can convince himself/herself that the descendant Lagrangian (6.3.31) gives rise to
the S-matrix (6.3.30) by noting that

Rpqab∂aRqrµν∂bRrsναRspαµ (6.3.32)

linearizes to give Tr(F1F2F3F4)F1
abTr(p2

aF2 p3
bF3F4) plus permutations. This structure has

neither Z2×Z2, which although is preserved by the first trace but broken by the FTr(...) part,
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nor it has S3 which is preserved by the FTr(...) part but broken by the Tr(F4) part. Only Z2

is preserved, that is just 2↔ 4 flip symmetry. Consequently the Z2×Z2 symmetrization had
to be done explicitly in (6.3.30). The descendant Lagrangian (6.3.31) then linearizes to

− 1
16 ∑

m,n

(
F G3,8

)
m,n

2m+n

(
m

∏
i=1

n

∏
j=1

∂µi∂ν j

(
F1

pqF1
ab
)

∂a∂
µi
(

F2
qrF

2
µν

)
∂b
(
F3

rsF
3
να

)
∂

ν j
(

F4
spF4

αµ

))
|Z2×Z2

(6.3.33)• The S-matrix corresponding to GS,2 in (6.2.5) is given by the momenta polynomial F GS,2(s, t)

which is fully symmetric in s, t and u. The explicit expression for the S-matrix is given by,

SGS,2 =
1
16

(
F GS,2(s, t)

)
×[(

p1
aε

1
b − p1

bε
1
a
)

p2
a

(
p2

µε
2
ν − p2

νε
2
µ

)
p3

b
(

p3
νε

3
α − p3

αε
3
ν

)(
p4

αε
4
µ − p4

µε
4
α

)
(

p1
pε

1
q − p1

qε
1
p
)

p2
p

(
p2

β
ε

2
γ − p2

γε
2
β

)
p3

q

(
p3

γε
3
δ
− p3

δ
ε

3
γ

)(
p4

δ
ε

4
β
− p4

β
ε

4
δ

)
+ (1↔ 2)+(1↔ 3)+(1↔ 4)]

(6.3.34)

The most general descendant Lagrangian giving rise to (6.3.34) is

LGS,2 = ∑
m,n

(
F GS,2

)
m,n

2m+n

(
m

∏
i=1

n

∏
j=1

(
∂µi∂ν jRabpq

)(
∂

µi∂p∂aRµνβγ

)(
∂

ν j∂q∂bRναγδ

)
Rαµδβ

)
(6.3.35)

It is easy to see that the descendant Lagrangian (6.3.35) generates the S-matrix (6.3.34).
Consider the Lagrangian

Rabpq∂p∂aRµνβγ∂q∂bRναγδ Rαµδβ (6.3.36)

which linearizes to give F1
pqTr(p2

pF2 p3
qF3F4)F1

abTr(p2
aF2 p3

bF3F4) plus permutations. This
structure has S3 symmetry, because 2,3,4 can be permuted and the structure remains invari-
ant. The descendant Lagrangian (6.3.35) linearizes to give,

1
16 ∑

m,n

(
F GS,2

)
m,n

2m+n

(
m

∏
i=1

n

∏
j=1

∂µi∂ν j(F
1
abF1

pq)∂
µi∂p∂a(F2

µνF2
βγ
)∂ ν j∂q∂b(F3

ναF3
γδ
)F4

αµF4
δβ

)
(6.3.37)

plus permutations.

• Finally we turn to the specification of the S-matrices descended from GS,1. If we are inter-
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ested in specifying only the S-matrix - and not the Lagrangian that gives rise to this S-matrix
- this job is easily done. In addition to the S-matrices already listed in this appendix we have
one additional contribution specified by F GS,1 , a fully symmetric polynomial of s, t,u that is
otherwise unconstrained. The S-matrix is given by

S
GS,1
D≥7 = 24(3F GS,1(t,u)ε i jklmnp

ε
asd f gh j

ε
1
i ε

2
j ε

3
k ε

4
l p1

m p2
n p3

pε
1
a ε

2
s ε

3
d ε

4
f p1

g p2
h p3

j) (6.3.38)

At the level of S-matrices we have now completed our listings. The most general sum of
(6.3.38), (6.3.22), (6.3.18), (6.3.10), (6.3.14), (6.3.1), (6.3.6), (6.3.30), (6.3.26), (6.3.34)
gives the most general local S-matrix for gravitational scattering in D≥ 8. There is a slight
subtlety in constructing the Lagrangian corresponding to the S-matrix in 6.3.38. This is be-
cause of the fact that this S-matrix arises from a Lagrangian cubic in the Riemann curvature
tensor, and hence the Mandelstam variables s,t,u are not well defined. This problem has been
discussed with appropriate details in section 6 of [1].

To summarize the section, we have explicitly constructed all independent parity even four graviton
S-matrices for spacetime dimensions D ≥ 8. Also, we have provided an exhaustive listing of the
most general descendant Lagrangian corresponding to the basis of the four graviton S-matrices.
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Chapter 7

Exchange contributions

The most general classical (i.e. tree level) four particle S-matrix that follows from a local La-
grangian is given as the sum of two kinds of terms. These are

• Local S-matrices (i.e. S-matrices that are polynomials in the variables εi,ki). These S-
matrices, which have their origin in local contact type interactions in the Lagrangian.

• Pole terms that come from the exchange of an intermediate particle.

Consider for instance, a four graviton (gggg) scattering amplitude. Consider the pole contribution
to this amplitude from the exchange of a particle P of mass m that transforms in the representation
P of the massive Lorentz little group SO(D−1). The most important thing about this amplitude
is that the residue of its pole is completely fixed by the on-shell three particle S-matrix ggP1. It
follows that the most general S-matrix that comes from a local Lagrangian is characterized by the
masses and spins of the exchange particles P together with the three point (ggP) couplings - in
addition to the data that specifies polynomial S-matrices.

In order to complete the classification of polynomial (e.g. 4 graviton) S-matrices presented
earlier in this project into a complete classification of all S-matrices that could possibly originate

1Let s = −(k1 + k2)
2 denote the exchange momentum. The full exchange diagram involves an intermediate off-

shell P particle of squared mass s- and so is completely specified only once we are given a ‘generalized’ three point
amplitude in which the gravitons are on-shell but the particle P is off-shell. However all off-shell extensions of the
same on-shell amplitude agree when s = m2. Moreover these three point amplitudes are polynomial in momenta, so
the difference between the numerators exchange diagram built out of any two distinct off-shell extensions of the same
on-shell 3 point function contains at least one factor of (s−m2). This overall propagator cancels the pole originating
from the exchange propagator, and we are left with a polynomial S-matrix.
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in local Lagrangians, all we need to do is to work out all possible ggP couplings, and stitch two of
these couplings together through the propagator for the particle P. Every element in this program is
straightforward to carry through. It is easy to list the representations P of P that can have nonzero
on-shell three point functions with our scattering particles. For instance, scalar P scattering can
be nonzero only if P transforms in the traceless symmetric representation with an even number
of indices. It is also not difficult to enumerate the most general kinematically allowed on-shell
three point functions. The spin P propagator is given simply by the projection - in index space -
onto the representation space P (in the D− 1 dimensional space orthogonal to k1 + k2 ) divided
by s−m2. Sewing these elements together allows us to explicitly construct the most general pole
contributions to S-matrices. In this project we will not systematically carry through the program
outlined in the previous paragraph; we leave this exercise for future work. Detailed study for some
of the cases has been studied in the paper [1]. Here, we compute and present results for the most
general graviton exchange contribution to four graviton scattering.

The main focus of our discussion in this section is the Regge growth of exchange contributions
to S-matrices. As in the case of contact interactions discussed earlier in this project, we are partic-
ularly interested in classifying those exchange contributions to 4 particle scattering that grow no
faster than s2 in the Regge limit. 2 It is very easy to see that the exchange of a massive particle
of spin J 3 in the t channel yields a contribution to scattering that cannot grow faster than sJ . 4

Moreover we expect that this inequality is generically saturated - i.e. that spin J exchange in the
t channel will grow like sJ in the Regge limit. We thus expect that the exchange of spin J parti-
cles with J > 2 will always violate the CRG conjecture. We should note that this violation is non
polynomial in t and so cannot be cancelled by a local counterterm. This discussion applies equally
well to the scattering of scalars, photons and gravitons.

2More generally we would like to classify those exchange contributions which grow no faster than s2 in the Regge
limit after being combined with suitable polynomial S-matrices of the sort we have enumerated earlier in this paper.
Any such combination of an exchange S-matrix plus a ‘local counterterm subtraction’ reflects an addition to four
particle scattering that is not ruled out by the CRG conjecture.

3Any massive exchanged particle transforms under some representation of the little group SO(D− 1). There
representations can be labelled by Young Tableaux. We say that a particle has spin J if the length of the largest row in
the Young Tableaux labelling that particle is J.

4The reason for this is as follows. In the t channel, the scattering particles are grouped into those with momenta
k1, k3 and those with momenta k2, k4. Contraction of momenta within a group - e.g. the dot products k1.k3 - pro-
duces factor of t but never of s. Moreover the unique contraction of momenta between two groups - which happens
through the propagator of the exchanged particle - is (k1− k3).(k2− k4). If the exchanged particle has no more than
J symmetrized indices, there cannot be more than J factors of (k1− k3).(k2− k4), simply because the original three
point function between two scattering particles and the exchanged particle could not have had any vector - in this case
k1− k2 - contract with more than J indices of the exchanged particle.
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Let us now turn to the exchange of particles with spin ≤ 2. The t channel contributions to
such exchange processes are always consistent with the CRG conjecture. However the question of
whether the s and u channel contributions to exchange contributions violates the CRG conjecture
depends on the nature of the external particle. In Appendix L of [1] we demonstrate that spin zero
and spin 2 exchange contributions to four scalar and four photon scattering are both consistent
with the CRG conjecture even in the s and u channels. In four graviton scattering all possible (non
Einstein) exchange of massless gravitons, massive scalars and massive spin 2 particles violate the
CRG conjecture in a way that cannot be fixed by a local counterterm.

Why did the sample low spin exchange contributions that we have explicitly computed violate
the CRG conjecture for the case of external gravitons? The key point here is that three point ggP

S-matrices appear always to be generated by Lagrangian couplings of (derivatives of) two factors
of the Riemann tensor to the particle P; consequently the three point couplings are always at least 4
derivative order in derivatives. 5 Assuming this to be the case, in subsection 7.2, we have given an
argument that demonstrates that such exchange contributions always violate the CRG conjecture in
a way that cannot be canceled by local counterterms, at least in D≤ 6. The argument of subsection
(7.2) applies to every exchange contribution including those that we have not explicitly computed.

7.1 4 Graviton scattering from graviton exchange

In this section we construct and study all possible graviton exchange contributions to four point
scattering amplitudes of gravitons. As we have explained above, the pole contributions to these
exchange diagrams is given by sewing on-shell three point functions through graviton propagators.
The kinematically allowed on-shell 3 point functions for gravitons have been listed in (4.1.17) ,
(4.1.18), (4.1.19).

5The assumption of this section - namely that ggP couplings are always 4 derivative or higher - can, easily be
verified by algebraic means - i.e. by simply constructing all gauge invariant ggP three point scattering amplitudes.
This has been proven in a subsequent work [2].
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For the convenience of the reader we reproduce the relevant expressions here6.

AR = (ε1.ε2ε3.p1 + ε1.ε3ε2.p3 + ε2.ε3ε1.p2)
2 (7.1.1)

AR2
=(ε1∧ ε

2∧ ε
3∧ k1∧ k2)2 (7.1.2)

AR3
= F1

abF2
abF2

cdF3
cdF3

e f F1
e f +perm. (7.1.3)

The graviton propagator is simple; it is

Gµν ,ρσ =
1
k2

(
1
2
(ηµρηνσ +ηνρηµσ ) −

1
D−2

ηµνηρσ

)
. (7.1.4)

We will now use (7.1.1) and (7.1.4) to obtain the graviton exchange contribution for the four point
functions in a theory whose (ggg) three point function is given by

A = αRAR +αR2AR2
+αR3AR3

. (7.1.5)

The general exchange S-matrix takes the form

A = α
2
RAR−R +αRαR2AR−R2 +αRαR3AR−R3 +α

2
R2AR2−R2 +αR2αR3AR2−R3 +α

2
R3AR3−R3

(7.1.6)
Note that the structures AR2

and AR3
are gauge invariant off-shell (i.e. without using k2

i = 0). It
follows that exchange diagrams that sew two of these vertices together - i.e. AR2−R2 , AR2−R3

and AR3−R3 - are automatically gauge invariant separately in each channel. In other words these
three amplitudes are can be evaluated using the same sewing process utilized when the exchanged
particle is not a graviton but another particle78.

6The R2 and R3 three point functions are sometimes quoted as

AR2
= 2(ε1.ε2ε3.p1 + ε1.ε3ε2.p3 + ε2.ε3ε1.p2)(ε1.p2ε2.p3ε3.p1)

and
AR3

= 6(ε1.p2ε2.p3ε3.p1)
2

On-shell these expressions agree with those listed in (7.1.1). However the form of the expressions in (7.1.1) has the
added advantage that they are off-shell gauge invariant (i.e. gauge invariant without needing to use the conditions
k2

i = 0.
7In particular each of the amplitudes AR2−R2 , AR2−R3 and AR3−R3 can be decomposed admits a gauge invariant

decomposition into a piece that has an s pole, a piece that has a t pole and a piece that has a u pole.
8 On the other hand exchange pieces that involve one or two R vertices (i.e. terms proportional to one or two

powers of αR) cannot, in general, be decomposed as described above in a gauge invariant manner. This term is best
written in the form B

stu where B is a gauge invariant polynomial.
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The sewing process is easily performed in each channel: we find

AR2−R2 =

SG6 +SG3,1,

F G6(t,u) = 1
8s ,F

G3,1(t,u) = −D
32(D−2)s

AR2−R3 =


SG3,6 +SG3,5 +SG3,1 +SG3,2 +SG3,7 +SG3A ,

F G3,6(t,u) = 3
8 , F G3,5(t,u) = −3

16 , F G3,1(t,u) = −3(D+2)
64(D−2) ,

F G3,2(t,u) = 3
32 , F G3,7(t,u) = 3

2s , F G3A (t,u) = −12(t−u)
64s .

AR3−R3 =


SG3,6 +SG3,5 +SG3,1 +SG3,2 +SG3,7 +SG3A ,

F G3,6(t,u) = 9s
32 ,F

G3,5(t,u) = −9s
32 ,F G3,1(t,u) = −9(t2+u2+Dut)

64(D−2)s ,F G3,2(t,u) = −9s
128 ,

F G3,7(t,u) = −9
4 , F G3A (t,u) = −9(t−u)

32 .

These S-matrices (7.1.7) are formally generated by the non local Lagrangians

(stu)AR2−R2 ∝

(
− D

4(D−2)
∇µ∇νRpqrsRpqrs∇

µRabcd∇
νRabcd+2∇µ∇νRpqrsRpqrt∇

µRuvwt∇
νRuvws

)
(7.1.7)

(stu)AR2−R3

∝

(
6 ∇x∇y∇µRpqrs∇

µRpqrt∇
xRuvwt∇

yRuvws−12 ∇x∇y∇µRpqrsRpqrt∇
x
∇

µRuvwt∇
yRuvws

+6 ∇x∇y∇
µRpqrsRpqtu∇

x
∇µRrtvw∇

yRsuvw +
3(D+2)
2(D−2)

∇x∇y∇
µRpqrsRpqrs∇

x
∇µRpqrs∇

yRpqrs

+
3
2

∇x∇y∇
µRpqrs∇µRpqtu∇

xRtuvw∇
yRrsvw +12 ∇x∇yRµνab∇aRνµmn∇b∇

xRαβnp∇
yRβα pm

)
(7.1.8)
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(stu)AR3−R3

∝

(
−36∇

a
∇

b
∇

µ
∇

νRpqrs∇µRpqrt∇a∇νRuvwt∇bRuvws

−18∇
a
∇

b
∇

µ
∇

νRpqrsRpqtu∇a∇µ∇νRrtvw∇bRsuvw−18∇
b
∇

a
∇

µ
∇

νRpqrsRpqtu∇a∇µRrtvw∇ν∇bRsuvw

− 9
D−2

∇
a
∇

b
∇

µ
∇

νRαβcdRαβcd∇aRpqrs∇b∇µ∇νRpqrs

− 9D
2(D−2)

∇
a
∇

b
∇

µ
∇

νRαβcdRαβcd∇a∇µRpqrs∇ν∇bRpqrs +
9
2

∇b∇a∇
µ

∇
νRpqrs∇µ∇νRpqtu∇

bRtuvw∇
aRrsvw

−72∇l∇k∇γRµνab∇aRνµmn∇
γ
∇b∇

kRαβnp∇
lRβα pm

)
(7.1.9)

We now turn to the evaluation of the remaining three amplitudes; AR−R, AR−R2 and AR−R3 .
These amplitudes are distinguished by the fact that they sew diagrams including at least one copy
of the amplitude AR, which is gauge invariant on-shell but not off-shell. As the exchange diagram
includes an off-shell propagator, the corresponding diagrams are not gauge invariant. Note that
this complication is a direct consequence of the fact that the exchanged particle is, itself, a gravi-
ton - rather than some completely different particle. This is why the three point functions are not
automatically gauge invariant when the exchanged particle is off-shell. It follows that the three
exchange diagrams discussed in this paragraph cannot be computed simply by sewing the corre-
sponding three point functions with the graviton propagator. In order to recover gauge invariance
we must also add in the contribution of contact 4 point terms from the Einstein action (in the case
of AR−R), the contribution of the contact term of the Gauss-Bonnet action (in the case of AR−R2)
and the contribution of the contact term from Riemann cube action (in the case of AR−R3)9. A
direct computation of four graviton tree level scattering matrix starting with the Lagrangian

S =
∫ √

g (αRR+αR2(R2−4RµνRµν +Rµνρσ Rµνρσ )+αR3Rµνρσ RµνabRab
ρσ ), (7.1.10)

is algebraically intensive. We use a different method.

We first note that the full gauge invariant result for each of AR−R, AR−R2 and AR−R3 is given

9For example, consider the R−R2 exchange which occurs at O(αRαR2). There is a polynomial contribution to this
exchange diagram from the Gauss bonnet term to fourth order in perturbation. Together the exchange diagram and the
contact piece are gauge invariant.
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by the sum of a term with an s pole, a term with a t pole, a term with a u pole and a polynomial
contact term. Every such S-matrix can be manipulated into the form

∑i βiSi

stu
(7.1.11)

Here Si are the most general local gauge invariant S-matrices at 8 derivative order (in the case of
AR−R), 10 derivative order (in the case of AR−R2), and 12 derivative order (in the case of AR−R3).
Recall that we have already explicitly constructed a basis of all such local S-matrices in section 6
above. βi are the as yet unknown constant coefficients of these basis structures.

In order to determine the as yet unknown constants βi we now impose the following conditions.
The expression (7.1.11) is a meromorphic function εi and ki. Holding εi and all other components
of ki constant, for a moment, we note that (7.1.11) has a pole in the variable s. We impose the
condition that the residue of this pole is the residue of the s channel exchange diagram obtained
by sewing the relevant 3 point functions through the graviton propagator (this residue is gauge
invariant, because it only samples the 3 point functions when all participating particles are on-
shell). This condition unambiguously determines all βi coefficients in the case of the amplitudes
AR−R and AR−R2 . The fact that these two amplitudes are unambiguously determined by their poles
is easy to understand. These amplitudes are, respectively, of homogeneity 2 and 4 in derivatives.
An ambiguity in these amplitudes would be a gauge invariant 2 or 4 derivative polynomial S-
matrix, and we have demonstrated above that no such S-matrix exists.

On the other hand the amplitude AR−R3 is of homogeneity 6 in derivatives, and so is determined
by its poles only up to the addition of the unique 6 derivative local gauge invariant 4 graviton S-
matrix (6.3.38). Algebraically we do indeed find that βi are determined only up to this ambiguity10.
In reporting our answer below we make an arbitrary choice to fix this ambiguity. Our final results
are

10The fact that βi are determined only up to this ambiguity is very natural from a Lagrangian viewpoint. While
the Lagrangians that gave rise to the Einstein and Gauss-Bonnet 3 point functions were unique, the Lagrangians that
give rise to the R3 3 point function have a one parameter ambiguity, parameterized by the coefficient of the second
Lovelock terms - which is an R3 term whose contribution to the 3 graviton S-matrix vanishes. It is thus clear that the
4 point function that follows from the exchange of such a vertex has a contribution from the 2nd Lovelock term with
an undetermined coefficient.
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AR−R =


SG3,6 +SG3,5 +SG3,3 +SG3,4 +SG3,1 +SG3,2,

F G3,6(s, t) = −1
64stu , F G3,5(t,u) = −1

32stu , F G3,3(t,u) = −1
32stu ,

F G3,4(t,u) = −1
8stu ,F

G3,1(t,u) = 1
256stu ,F

G3,2(t,u) = 1
128stu ,

AR−R2 =


SG3,6 +SG3,5 +SG3,3 +SG3,4 +SG3,8 +SG3,7 +SG3A ,

F G3,6(s, t) = 1
32tu , F G3,5(t,u) = −1

16tu , F G3,3(t,u) = 1
4tu ,

F G3,4(t,u) = 1
4tu ,F

G3,8(t,u) = 1
stu ,F

G3,7(t,u) = −1
4stu ,F

G3A (t,u) = −(t−u)
32stu

AR−R3 =


SG3,6 +SG3,5 +SG3,3 +SG3,4 +SG3,1 +SG3,2 +SG3,8 +SGS,2 +SG3A ,

F G3,6(t,u) = −3s2+2t2+2u2

128stu , F G3,5(t,u) = 3
64s , F G3,3(t,u) = −2tu−10s2

64stu ,

F G3,4(t,u) = 5
16s ,F

G3,1(t,u) = 3tu+s2

512stu ,F
G3,2(t,u) = −tu−s2

256stu ,F
G3,8(t,u) = −1

tu ,

F GS,2(t,u) = −1
3stu ,F

G3A (t,u) = −s(t−u)
128stu .

(7.1.12)

The non-local effective Lagrangians that generate these amplitudes are

(stu)AR−R ∝

(
1

32
(RpqrsRpqrs)

2− 1
2

RpqrsRpqrtRuvwsRuvwt +
1

16
RpqrsRpqtuRtuvwRrsvw

− 1
4

RpqrsRpqtuRrtvwRsuvw−RpqrsRptruRtvwsRqvuw +
1
2

RpqrsRptruRtvuwRqvsw

)

(stu)AR−R2 ∝

(
−2 (∇µRpqrsRpqrt∇

µRuvwtRuvws)+2(∇µRpqrsRpqtu∇
µRrtvwRsuvw)

−8 (∇µRpqrs∇
µRptruRtvuwRqvsw)−8 (∇µRpqrs∇

µRptuwRtvwsRqvru)

−8Rαβab∇aRβγcd∇bRγδdeRδαec +2Rαβab∇aRβαcd∇bRγδdeRδγec

) (7.1.13)
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Exchange Regge behavior (large s, fixed t) Regge behavior after subtraction

AR−R s2/t -

AR−R2 s2 -

AR−R3 s2t -

AR2−R2 s3 -

AR2−R3 s4 s3t

AR3−R3 s5 s4t

Table 7.1: Regge behavior of exchange diagrams

(stu)AR−R3 ∝

(
(−∇

µ
∇

νRpqrs∇µ∇νRpqrtRuvwtRuvws +2∇
µ

∇
νRpqrsRpqrt∇µ∇νRuvwtRuvws

+∇
µ

∇
νRpqrs∇νRpqrt∇µRuvwtRuvws)+

3
2

∇
µ

∇
νRpqrsRpqtu∇

µRrtvw∇
νRsuvw

−10∇µ∇νRpqrs∇
µ

∇νRptruRtvuwRqvsw−11∇µ∇νRpqrs∇νRptruRtvuw∇
µRqvsw

+10∇µ∇νRpqrs∇µRptuw∇νRtvwsRqvru +
1
8

∇
µ

∇
νRabcdRabcdRpqrs∇µ∇νRpqrs

+
5

16
∇

µ
∇

νRabcdRabcd∇νRpqrs∇µRpqrs−
1
4

∇µ∇νRpqrs∇
µ

∇
νRpqtuRtuvwRrsvw

− 3
8

∇µ∇νRpqrs∇
νRpqtuRtuvw∇

µRrsvw−32∇µRαβab∇
µ

∇aRβγcd∇bRγδdeRδαec

− 8
3

Rabcd∇a∇cRαβγδ ∇b∇dRβ µδνRµανγ

)
(7.1.14)

While it is not manifest from the expressions above, we have checked that all scattering ampli-
tudes involving the Gauss-Bonnet 3 point function vanishes for D = 4 , as expected (recall the
Gauss-Bonnet Lagrangian is topological in 4 dimensions; in particular its contribution to 3 gravi-
ton scattering vanishes).

67



Regge growth

The Regge behavior of the amplitudes constructed in this section is easily determined11. In every
case the ‘t channel contributions’ (i.e. the terms in the S-matrix that are non polynomial in t when
expressed as functions of particle momenta and εi) grow no faster than s2, consistent with the fact
that we are studying the exchange of a spin 2 particle. All other contributions to the S matrix are
analytic in t. It follows from dimensional analysis that these remaining contributions can grow no
faster than s (in the case of AR−R), or s2 (in the case of AR−R2). Dimensional analysis would have
allowed AR−R3 s3 growth but we find that the amplitude actually grows more slowly like s2t.

In the case of AR2−R2 the sum of s and u channel exchanges gives rise to an S-matrix that is 6th
order in derivatives and grows like s3 - and so faster than s2 - in the Regge limit. It is easy to see
that this faster than s2 growth cannot be canceled by a local counter-term. This can be seen in two
equivalent ways. First, in our exhaustive classification of local counter-terms earlier in this paper
there is only one S-matrix that is of sixth order in derivatives, and this S-matrix grows like s2t

rather than like s3 in the Regge limit. Equivalently, we have explicitly constructed the Lagrangian
that gives rise to the AR2−R2 S-matrix (see (7.1.7)) and it simply is not local, even in the Regge
limit.

In the case of AR3−R3 the S-matrix is 10th order in derivatives and grows like s5 - and so
considerably faster than s2 - in the Regge limit. This growth can be slightly ameliorated by counter-
term subtractions. The explicit S-matrix for this term is listed in (7.1.7). Notice that in (7.1.7) the
functions F are all polynomials. It follows that all the contributions from these functions can be
canceled by local counter-terms. The only piece in AR3−R3 that cannot be cancelled by a local
counter-term is the part of the S-matrix parameterized by F G3,1(t,u) = −9(t2+u2+Dut)

64(D−2)s . After a
further local counter-term subtraction we are left with F G3,1(t,u) ∝

tu
t+u . In both the u and the

s channels the subtracted F G3,1(t,u) is now proportional to t in the Regge limit, resulting in a
(maximally subtracted ) scattering amplitude that scales like s4t in the Regge limit.

Finally, in case of AR2−R3 the explicit S-matrix (see (7.1.7)) is of 8 derivative order and grows
like s4. Once again counter-term subtractions can be used to reduce this growth down to s3t. In
particular, the contribution to this S-matrix from F G3,7(t,u) = 3

2s - a term which clearly cannot be
cancelled by a local counter-term - grows like s3t. It follows that local counter-terms cannot be

11As usual one obtains the Regge behavior by explicitly decomposing the polarizations into transverse and parallel
components using (2.1.11) and (2.1.13) and evaluating the resulting S-matrix at large s, keeping t fixed.
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used to further reduce the Regge growth of this S-matrix.

Our final results are summarized in Table 7.1. Plugging the results of Table 7.1 into (7.1.6)
we conclude that the only graviton exchange contributions (7.1.6) that grow no faster than s2

in the Regge limit are those with αR2 = αR3 = 0.1213 Hence, this computation reproduces the
CEMZ conclusion i.e adding just the GB and/or the (Riemann)3 correction to Einstein gravity is not
allowed. However, the reason for excluding such higher derivative corrections is different: CEMZ
used the physical criteria of causality, whereas here we assume the CRG conjecture to be true
(which we eventually expect to be proved by physical constraints such as causality, boundedness
of energy, and other classical constraints).

7.2 Exchange contribution to gravitational scattering and Regge
growth

Above we have computed the contribution to graviton scattering from the exchange of the graviton,
with the Gauss-Bonnet and (Riemann)3 term added to the Einstein-Hilbert action. Additionally, in
[1] we have also computed the contribution to 4-graviton S-matrix from the exchange of a massive
scalar, as well as massive spin-2 particle. In each case we have seen that the exchange contributions
grow faster than s2 in the Regge limit, and also that this growth cannot be sufficiently tamed (i.e.
brought down to growth like s2 or slower) by the subtraction of local counter-term contributions. In
this section we argue (under a plausible but not completely justified assumption) that this feature is
general: it applies to the contribution to four graviton scattering from the exchange of any particle,
atleast for the case when spacetime dimension D≤ 6.

7.2.1 Regge growth of general exchange contributions

The contribution to gravitational scattering of the exchange of a massive particle of any spin takes
the form

S =
|α1〉

s−m2 +
|α2〉

t−m2 +
|α3〉

u−m2 . (7.2.1)

Here |αi〉 are elements of the local Module (this follows from the fact that 3 point functions are
local and gauge invariant).

12While AR−R,AR−R2 and AR−R3 grow like s2 the remaining 3 amplitudes grow faster than s2. The fact that the
coefficient of AR2−R2 must vanish forces αR2 to vanish. The fact that the coefficient of AR3R3 must also vanish forces
αR3 to vanish.

13Also note that the six derivative contact term ambiguity that one encounters in AR−R3 , scales as stu and hence is
Regge allowed.
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Let us suppose that |αi〉 are of 2nth order in derivatives. It follows that

(s−m2)(t−m2)(u−m2)S (7.2.2)

is local, and of degree 2n+4 in derivatives. We note for later use that the part of (7.2.2) that is of
order 2n+4 in derivative is given by

stuS (7.2.3)

It follows that the growth of (7.2.2) is no slower that sα(n+2)+ a
3 where α(n) is listed in (2.6.8). It

then follows that the growth of S in the Regge limit is at least as fast as sα(n−1)+ a
3 . In the special

case that a = 0 the exchange contributions always grow faster than s2 whenever n−1 > 3, i.e. for
n > 4.

Let us now focus on the borderline ‘dangerous’ case n = 4. In this case we obtain an exchange
S-matrix S that grows like s2 in the Regge limit only when the quantity in (7.2.3) is of the form

3(stu)2|gS〉

where |gS〉 is a symmetric generator of the bare module (see subsection 2.6) 14. When this is the
case the S-matrix is given by

S = 3(stu)|gS〉 (7.2.4)

Comparing (7.2.4) and (7.2.1) we conclude that an exchange S-matrix can have the ‘dangerous’ s2

growth only if and only if the module elements |αi〉 take the form

|α1〉= s(stu)|gS〉, |α2〉= t(stu)|gS〉, |α3〉= u(stu)|gS〉. (7.2.5)

7.2.2 Structure of |αi〉 for the case of gravitational scattering.

Let us now specialize to the special case of exchange contributions to four graviton scattering by
a particle of general spin, χmn... We expect - and assume - that the three point function between
χmn.. and two gravitons to take the schematic form

χmn..RabcdRe f gh (7.2.6)

14The factor of 3 is inserted for later algebraic convenience.
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where all indices are appropriately contracted and the three point functions may also involve extra
derivatives15. The contribution of the exchange of χmn.. to four graviton scattering thus leads to
an S-matrix of the form (7.2.1) with |αi〉 given by descendants of four Riemann structures, i.e. by
elements of the module described in subsubsection 6.1.

We have argued in the previous subsubsection that such a contribution can grow like s2 or
slower only |αi〉 are 8 derivative objects (i.e. are linear combinations of the four Riemann genera-
tors described in subsubsection 6.1) and additionally if (7.2.5) holds. However the only multiplet
of four R structures that is of the form (7.2.5) are the descendants of |GS,1〉 (see subsubsection 6.1,
in particular see (6.1.3))16. We conclude that the only possible exchange contribution that grows
no faster than s2 in the Regge limit is one proportional to the S-matrix from GS,1. It follows, in
particular, that all exchange contributions to graviton scattering in D≤ 6 grow faster than s2 in the
Regge limit.

Note that while we have not been able to rule out the possibility of an exchange contribution
proportional to GS,1 in D≥ 7, it is entirely possible that such a term is never actually generated17.
We leave the careful investigation of this point to the future.

7.2.3 Counter-term cancellation

Say we have an exchange contribution that grows faster than s2 in the Regge limit. In this section
we investigate whether its growth can be cancelled by a local counter-term.

Let us once again focus on S-matrices of the form (7.2.1), and focus on the part of |αi〉 that is
of 8th order in derivatives. We have just argued that all such terms grow faster than s2 in D ≤ 6.
The denominator in (7.2.1) turns the 8 derivative numerator into a six derivative S matrix. It is
immediately clear in D≤ 6 that this six derivative term cannot be cancelled by local counter-terms,
simply because we have carefully enumerated all available counter-terms earlier in this paper, and
all these counter-terms are of 8 or higher order in derivatives when D≤ 6.

15Note that a coupling of the schematic form χmn..Rabcd induces mixing between χmn.. and the graviton at quadratic
order. Such couplings are eliminated by field redefinitions. The lowest order couplings that survive after field redefi-
nitions render the Lagrangian diagonal at quadratic level are those of the form (7.2.6).

16The fact that no other multiplet of four Riemann structures are of the form (7.2.5) follows from the fact that the
module M8 described in subsubsection 6.1 is freely generated. Had another relation like (6.1.3) existed, there would
have been null states in M8 - of exactly the same form as the null states of M′8.

17Such a term can only be generated |α1〉 = s|GS,1〉 is a sum of ‘perfect squares’; it is entirely possible that this is
not the case. We hope to address this issue in the future
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It follows that it is impossible to use local counter-terms to cancel the offending large s behavior
of exchange diagrams unless the 8 derivative part of |αi〉 vanish. It seems extremely unlikely that
this can happen unless |αi〉 itself vanishes18.

Cancellation between exchange diagrams

The reader may wonder whether the offending Regge behavior in exchange contributions to grav-
itational scattering can cancel between themselves. Could, for instance, the contribution from the
exchange of a particle at mass m1 in some representation cancel offending part from the exchange
of a particle of mass m2 in the same representation? We believe this cannot happen for the reasons
we now describe. When the particle exchanged lies in a representation with four or more sym-
metrized Lorentz indices, it is kinematically obvious that cancellation cannot sufficiently improve
Regge behavior. This is because the exchange of such particles lead to violation of s2 growth even
in the t channel. The violating contribution in this channel scales like

sl

t−m2 .

As the functional form of this amplitude is a function of t with complicated m2 dependence, it is
obvious that the Regge growths of particles of different mass cannot cancel each other.

When the particle exchanged lies in a representation with three or fewer symmetrized indices,
the faster than s2 Regge growth appears in the s and u channels. The dependence of these violations
on m2 are relatively simple. Even though this is the case, two different exchange contributions
cannot cancel against each other, simply because each exchange contribution is a perfect square;
contributions that are proportional to each other are all of the same sign, and so can only add
and never cancel. The positivity demanded above follows from the requirement that all exchange
particles have the right sign kinetic term, and that all three point couplings are real - these are both
constraints that any sensible classical theory should clearly have.

18Exchange contributions are not homogeneous in derivatives. An |αi〉 that, for instance, starts out at 10th order in
derivatives also has a piece at 8th order in derivatives obtained by Taylor expanding the answer in m2.
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Chapter 8

Conclusion and Discussion

The principal technical accomplishment of this project (which is a part of [1]) is the detailed clas-
sification of all polynomial four photon and four graviton S-matrices1. The basis of constraining
the space of classical S-matrices is using the CRG conjecture. This project has not presented any
details as to how the conjecture can be proved, and is left to future work. It is suspected that we
should be able to prove the CRG conjecture using classical constraints such as Causality, bound-
edness of energy and stability. One important point to note is that the CRG conjecture is violated
by exchange contributions using the three point scattering amplitudes from the Gauss-Bonnet and
three Riemann terms (see (4.1.15)). In other words the CRG conjecture, in addition to constraining
four graviton scattering, also gives an alternate derivation of the results for three graviton scattering
obtained in [6].

An important assumption made in this project was that the coupling of two gravitons to a
massive particle P, transforming in a general irrep of SO(D−1) is of the form below:∫ √

−g(RRP) (8.0.1)

This is an important assumption and was proven in a subsequent paper (see [2] for details). In [2]
have demonstrated that every graviton-graviton-P 3 particle S-matrix is generated by a Lagrangian
of the form (8.0.1) and so is of atleast fourth order in derivatives. It follows immediately from
this observation that every two derivative theory of gravity interacting with other fields admits a

1Somewhat unrelated to the main theme of the project, our classification of polynomial S-matrices can be thought of
the classification of counter-terms that contribute to four photon and four photon scattering. We thank R. Loganayagam
for this observation
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consistent truncation to Einstein gravity at cubic order in amplitudes. It seems very likely that this
result continues on to arbitrary order. A specification of all 3 point graviton-graviton-P S-matrices
completely specifies the Lagrangian (8.0.1). Expanding (8.0.1) in powers of the metric fluctuation
h then also specifies a class of (graviton)n P couplings for n ≥ 3 (these couplings are tied to
the given graviton-graviton-P couplings by diffeomorphism invariance). Of course (graviton)n P
couplings are not uniquely determined by three particle S-matrix data. For instance in the case
n = 4 we could have additional couplings generated by Lagrangians of the schematic form∫ √

−g(RRRS) . (8.0.2)

However every such Lagrangian is of 6 or higher order in derivatives. This discussion can be
continued. Once we have fixed (graviton)3 P scattering, the new data in (graviton)4 P scattering
appears likely to lie at 8 and higher order in derivatives and so on. In particular it seems extremely
likely to us that any two derivative theory of gravity coupling to any number of additional fields,
just on kinematical grounds, always admits a consistent truncation to Einstein gravity at the full
non-linear level.

Finally it would be useful to ’sew’ two identical copies of each of the graviton-graviton-P three
point functions, classified in [2] through a P propagator in order to compute the explicit form for
all kinematically allowed P exchange contributions to four graviton scattering. Conceptually, these
contributions are the scattering analogues of conformal blocks. Simple examples of these blocks
were constructed in [1]. It would be useful to have explicit expressions for these blocks for the
most general case.

In order to complete a classification of classical theories of gravity it is important that we are
able to generalize our analysis to the study of 5 and higher point scattering amplitudes as well.
Such a study might require a generalization of the CRG conjecture to higher point scattering, a
result that would be easiest to obtain once (and if) we are able to prove the CRG conjecture for
four particle scattering.

Once several issues (some of which have been stated here) are cleared up, it may be possible
to begin a meaningful study of the utterly fascinating possibility that string theory is the unique
consistent classical extension of Einstein gravity (as stated in Conjecture 1 of the paper [1]).
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