Rigid Analysis
A Thesis
submitted to
Indian Institute of Science Education and Research Pune

in partial fulfillment of the requirements for the
BS-MS Dual Degree Programme

by

Nikhil Gupta

IISER PUNE

Indian Institute of Science Education and Research Pune
Dr. Homi Bhabha Road,
Pashan, Pune 411008, INDIA.

April, 2020

Supervisor: Prof. Manish Mishra
(© Nikhil Gupta 2020

All rights reserved






Certificate

This is to certify that this dissertation entitled Rigid Analysis towards the partial fulfilment of the BS-MS
dual degree programme at the Indian Institute of Science Education and Research, Pune represents

study /work carried out by Nikhil Gupta at Indian Institute of Science Education and Research under the
supervision of Prof. Manish Mishra, Assistant Professor, Department of Mathematics, during the academic
year 2019-2020.

Prof. Manish Mishra

Committee:
‘b‘“"i—'
Prof. Manish Mishra

Prof. Baskar Balasubramanyam






This thesis is dedicated to my mother.






Declaration

I hereby declare that the matter embodied in the report entitled Rigid Analysis are the results of the work
carried out by me at the Department of Mathematics, Indian Institute of Science Education and Research,
Pune, under the supervision of Prof. Manish Mishra and the same has not been submitted elsewhere for

any other degree.

Nikhil Gupta






Acknowledgments

I express my gratitude to Prof. Manish Mishra for helping me in pursuing my Master’s thesis and the
semester projects prior to that. I also thank Prof. Baskar Balasubramanyam for accepting to be my expert
advisor and Prof. Laurent Berger for having me in ENS de Lyon as a summer intern, during the beginning

of my thesis work. I also thank the ENS administration for their warm hospitality.

I would also like to thank the Kishore Vaigyanik Protsahan Yojana for their financial support and the Infosys
Foundation for covering my tuition fees during the SPRING 2019 semester.

ix






Abstract

Rigid Analysis is the p-adic analogue of the classical complex geometry. After Hensel discovered the p-adic
numbers in 1893, attempts were made to formulate a theory of analytic functions over Q. Initially, the
question of interest had been to find out if there existed an analog of the theory of classical functions over
the field of complex numbers. But then as Algebraic Geometry developed and was applied to number theory,
there was a need for a good theory of analytic functions. Modern non-Archimedean geometry was born in
1961 when J. Tate, motivated by the question of characterising elliptic curves with bad reduction, gave a
seminar at Harvard with the title "Rigid Analytic Spaces". The theory was subsequently further developed by
Kiehl, Remmert, Grauert, Gerritzen, among others. It was apparent from the beginning that rigid geometry
was much closer to algebraic geometry than to complex analysis. This algebro-geometric view was worked
upon by Raynaud. In this thesis, we give an exposition to Rigid Geometry (in the first five chapters), and

then introduce the theory of Formal Geometry.

In the last chapter, we introduce the Ramification Theory of Local Fields. In particular, we introduce the

so-called APF extensions and give a characterization of the strictly APF extensions.
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Introduction

Consider a field K. A map |-|: K — Rx¢ is said to be a non-Archimedean absolute value if for every
z,y € K, these conditions hold:

(a) 2| =0 < z=0,

(b) [zy| = |=[lyl,

(©) |z +y| < max{lz|, [y}

It is this third condition, also called the ultrametric property, which is a special case of the triangle inequality
and that gives rise to the interesting properties of this space that necessitates the need for an alternate version
of algebraic geometry. In particular, we see that the topology is totally disconnected which further implies
the non-existence of a line integral in this setting. This further means that we can no longer provide a link
between holomorphic and analytic functions. We proceed via analyticity and define Tate algebras in the first
chapter. Affinoid algebras and Affinoid functions are introduced in the subsequent chapters and we give a
proof of the Tate’s Acyclicity theorem. We then define the GAGA-functor and go on to prove the Proper

Mapping theorem. In the rest of the thesis, Raynaud’s view of Formal Geometry is introduced.






Chapter 1

Tate Algebras

1.1 The topology

Definition 1.1.1. Consider a field K. A map |- | : K — Rxq is said to be a non-Archimedean absolute
value if for every x,y € K, we have:

(a) |z] =0 < z =0,

(b) zy| = |zllyl,

(c) |z +y| < maxflz], |y[}-

We say that this absolute value is trivial if |z| = 1 for = # 0. Absolute values |- |; and | - |2 on K are called

equivalent, if we have some r > 0s.t. |- |2 =|-|].

An absolute value | - | defines a distance function on K. For z,y € K, we put d(z,y) = |z — y|. This makes
K a metric space, and the completion of K with respect to this metric is denoted by K. Equivalent absolute

values define the same topology on K, and thus give rise to the same completion.

Proposition 1.1.1. Consider x and y in K s.t. |z| # |y|. Then, we have |z + y| = maz{|z|, |y|}.
Proof. 'WLOG let |y| < |z|. So, |z + y| < |z| gives

2] = [(z + y) — y| < max{|z +yl,|y|} < ||,

which is a contradiction. O

This means that every triangle in K has to be isosceles. Also, it can be seen that we can take any point

inside a disc in K to be its center. So, when two disks intersect, they are concentric.
Now, consider a disc without periphery, around a € K with radius r € Rx>o:
D™ (a,r) ={zx € K : d(z,a) <r}.
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This is both open and closed in K. It is said to be the “open” disk of radius r centered at a. In the same

way, let’s look at the disk again but with the periphery:
Dt (a,r) = {x € K : d(z,a) < r},

This is also open and closed in K and is said to be the “closed” disk of radius r centered at a. Also, we have
a periphery:
0D(a,r) ={z € K : d(z,a) =1},

This is closed, and open, due to 1.1.1. 9D(0,1) is known as the unit tire in K.

Proposition 1.1.2. The topology of K is totally disconnected.

Proof. We need to prove that if a subset of K has two or more points, it can’t be connected. Take such
a subset in K and consider two different points in it. Then take a small ball around the first point and
intersect it with the chosen set. Then this intersection and its complement in the set are both open and
closed in the chosen set. Consequently, none of such chosen sets can be connected w.r.t the topology induced
from K on the set. O

1.2 Restricted Power Series

As usual, let K be a complete non-Archimedean absolute value that is not trivial and consider the algebraic
closure K. A standard result on field extensions says that the absolute value of K is uniquely extended to

K and that the absolute value is complete on every finite subextension of K /K. If n > 1 where n € Z, let

BY(K) = {(x1,...,2n) € K" :|z] <1}

be the unit ball in K .

Lemma 1.2.1. A formal power series

F=Y et =Y ., . e K[, ..., G

veNn? veNn

converges on B" (K) iff lim),| oo |cu| = 0.
Proof.  f converging at (1,...,1) € B"(K) means that the series Y _ ¢, is convergent due the non-Archimedean

v
property, which gives us the required result. Conversely, let  be a point in the ball, then we have K’, a com-
plete subextension of K over K, s.t. the coordinates of x are in K. So, if |c,| — 0, it implies |c, ||z¥| — 0,
and that f(z) converges in K'. O

Definition 1.2.1. The K-algebra T,, = K{l1,..., () of every formal power series

Z Cl/CV S KHCI) . anHv CIJ S Ka llmly‘—>oo|cl/| = 03

veNn

is known as the Tate algebra of restricted, or strictly convergent power series. Also, define Ty = K.
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It can be easily checked that T, is a K-algebra. Now, let’s define the Gauss norm on T, as:
|f] = max|c,| where f = Zc,,(’,”.

It can be seen that this definition implies that this norm is in fact a K-algebra norm. In particular, by the

multiplicative rule of a norm, we see that T;, is an integral domain.

Proposition 1.2.2. T, is complete w.r.t. the Gauss norm , i.e. T,, is a Banach K-algebra.

Proof. Let us have > :° f; where f; = >, (¥ € T, s.t. f; — 0. Since |cio| < |fi], we get |¢in] — 0
for each v, thus, the summations ¢, = Z;’io Civ exist. Now, it can be seen that f = > ¢,V is strictly
convergent and f =Y 2 f;. O

Corollary 1.2.3. A series f € T,, where |f| = 1 is a unit iff its reduction (modulo the unique mazimal
ideal) fe K[C1,...,0,) is a unit, i.e. iff f~’ € K*. More generally, an arbitrary series f € T,, is a unit iff
|f = f(0)] < |f(0)], or iff the absolute value of the constant term of f is strictly larger than that of the rest
of the coefficients of f.

Proof. WLOG, let f € T,, s.t. |f| =1. If f is a unit in T),, it is so in R((y,..., (,) as well. But then fis a
unit in k[Cy, . .., C,] which means it is a unit in &*. On the converse, if f € k*, we have |f(0)| = 1. WLOG
f(0) =1. Then f =1— g for some g s.t. |g| < 1. So, >~ ¢ is an inverse of f. O

Proposition 1.2.4. (Mazimum Principle). For any f € T,, for every x € B"(K), we have |f(z)| < |f]|.
Furthermore, we have some x € N*(K) s.t. the equality actually holds.

Proof. The former claim directly follows from the ultrametric property and the convergence of the power
series to 0. Now, let |f| = 1. Also, let 7 : R(Cy, ..., Cn) — k[C1,.. ., Cp). Then, f = 7(f) is non-trivial and
there exists & € k s.t. f(Z) # 0. Letting R the valuation ring of K, choose a lift of # in B"(K), say z.

Now, we have a commutative diagram:

R<C17"'7C’n> — k[Chnd]

| |

R k

Here, the morphism on the left is the evaluation map at 2 and the other one, at #. Now f(z) € R — f(&) € k

and f(%) € k is not trivial, so |f(z)| = |f| = 1, and we are done. O

Definition 1.2.2. An element g = io: g, C € T, where g, € T,,—1 is called (,,-distinguished of some order
s e N if: v

(a) gs is a unit in Tp_1.

(b) lgs| = lgl and |gs| > |g| for allv > s.

[e)
Particularly, consider g = > ¢, s.t. |g| = 1. Then g is {,,-distinguished of order s iff the quotient § looks
v=0
like
ﬁ = gscz + §S—1Cifl +...+ 50&?,
with a unit g5 € K*. So, g € T}, is (,-distinguished of order 0 iff it’s a unit. Also, if n = 1, every non-trivial

g € Ty is (y-distinguished of some order s € N.



Lemma 1.2.5. For non-trivial fq,..., fr € T, we have a continuous automorphism of T,, where

¢ G+ (% wheni<n
i g
Cn when i =n

and oy, Qa, ..., an_1 are natural numbers and are suitable exponents s.t. o(f1),...,o(fr) are {,-distinguished.
Also, |o(f)| = |f] for every f € T,.

Proof. Define 07! as
(G — (% wherei <n
Ty —Th, G ' "
Cn where i = n
Observe that |o(f)| = | f| since |o(f)| < |f| for f € T, and similarly for o=1.
Now, let us consider r = 1 and for f € T, and letting WLOG |f| = 1, look at the image fof f. Let N be
minimal, or, ¢, # 0 for every v € N. Choosing r > max {v;} which are components of some v € N, consider

n—1

ost. ;g =r""",...,%,—1 =7r. Then,

F(F) =D (G + T (Guy + ()

vEN

_ § :~ X1Vt X -1V —1+Vn ~
o cvcnl 1 1 1 +g7
veEN

s.t. g € k[C1,...,Cy]. Then it can be seen that ¢z # 0 and o(f) is {,-distinguished of order s.
Now, this same method can be applied for cases where g > 1 by taking r big enough. O

We look at distinguished elements in 7}, since there is the so-called Weierstrass division by them, and is the

analog of Euclid’s division in polynomial rings.

Theorem 1.2.6. (Weierstrass Division). Consider a (,-distinguished series g € T,, of order s. Then, for
every f € T,, there exists unique q,r € T, s.t. degr < s and f = qg+r. Also, |f| = maz(|g||gl,|r])-

Remark. This theorem is important as it gives us a version of the usual polynomial divison in the Tate algebra
for certain kinds of power series. This incentive of a divison makes these restricted power series useful to

work with.

Proof. 'WLOG assume |g| = 1. Consider f = qg + 7 as desired. Then, |f| < max(|q||g|,|r]). If |f| < RHS,
let max(|q||g|,|r|) = 1. Then, gg +7 = 0 with ¢ # 0 and 7 # 0. But this contradicts Euclid’s division in
k[C1,...,Cn-1][Cn]. Hence we are done.
Let’s verify the existence now. For this, show that for every f € T, we have ¢, f1 € T,, and r € T,,_1[C,]
s.t. degr < s and

f=a9+fi+r

where || < |f], |7| < |f] and |f1| < €|f]. Then our result follows since we form equations

fi=ag+ri+ fir1,
gl Irsl < €1f1, | fira] < €S



and hence,

F=(a)o+ (

0
=0 =0

)

which is what we wanted. O

Corollary 1.2.7. (Weierstrass Preparation Theorem). Consider a (,-distinguished series g € T,, of order
s. We then have unique monic w € T,,_1[ly] having degree s s.t. g = ew for a unit e € T,,. Also, |w| = 1.

Thus w is (,-distinguished and has order s.

Proof. By the previous theorem, observe that
Go=q9+r

where ¢ € T,, and r € T,_1[C,] with degr < s. s.t. |r| < 1. Let w = {5 —r. So, w = qg where w is
(n-distinguished of order s and has norm one. To show that the given decomposition of g exists, we prove
that ¢ is a unit in 7;,. By 1.2.3, on observing the reductions we see that it is actually the case.

For the uniqueness, take g = ew and let r = (), — w. Then
Go=elg+r,
which gives us that e~! and r are unique by the previous result. O

Corollary 1.2.8. The Tate algebra Ty = K(C1) is a Fuclidean domain.
Proof. Fach non-zero g € T is (;-distinguished of some order s € N. So, T; {0} — N is a Euclidean

function. Here, the map associates to g its order s. O

Definition 1.2.3. Monic w € T,_1[C,] s.t. |w| = 1, as seen in 1.2.7, are known as the Weierstrass

polynomials in C,,.

This means that every (,-distinguished element f € T, corresponds to a Weierstrass polynomial. Also, if
f is a power series that is not trivial in 7T;,, notice using 1.2.5 that (y,...,(, € T, can be chosen s.t. f is

(n-distinguished of some order s.

Corollary 1.2.9. (Noether Normalization). Consider an ideal a C Ty, we then have a K-algebra injective
homomorphism Ty — T, for some d € N s.t. Ty — T,, — T, /a is a finite injective homomorphism. Here, d
is seen to be the Krull dimension of T, /a.

Proof. Let a be non-trivial. So , there exists a non-zero f in a. Using some automorphism on T,,, ¢
can be taken to be (,-distinguished of order s > 0. Using 1.2.6, any f € T, equals r € T,,_1[(,] s.t.
degr < s modulo g, or, the natural map T,,_1 — T,, — T,/(g) is finite. We can also use the uniqueness
of Weierstrafl divison to claim that T,,/(g) is free T,,_1 module that is generated by the equivalence classes
of 0,..., 7L

Take T,—1 — T),/(g9) — T /a with kernel as a;. If a; = 0, the proof is over. Otherwise, repeat the same
procedure for a; and T,,_1. Since we get a finite morphism on composing finite morphisms, we arrive at such
a map Ty — T),/a in finitely many steps.

Now, the final statement can be readily seen. O



Corollary 1.2.10. Consider mazimal m C T,,. Then T,,/m is finite as a K-vector space.

Proof. By the last result, we have a finite injective homomorphism Ty «—— T,,/m where d is a natural

number. Since T;,/m is a field, so is T, which implies d = 0, or, T; = K. (]

Corollary 1.2.11. The morphism
B"(K) — Max T,,, z+—m, ={f€T,: f(x) =0},

from unit ball in K" to the set of all maximal ideals in T}, is a surjection.

Let’s now look at a few properties of the Tate algebra T,.

Proposition 1.2.12. T, is Noetherian.
Proof. We prove that each ideal a C T,, is finitely generated. We proceed inductively. For the inductive

step, we assume a non-trivial ideal inside T}, and use Weierstrass division to decrease the index n. ]

Proposition 1.2.13. T,, is a UFD. In particular, it is integrally closed in its field of fractions.

Proof. We will prove this inductively. Let T,,_1 be a UFD. By the Gau8l lemma, 7T},_1[(,] is a UFD as well.
Let f #£ 0 in T;, that is not a unit. By the previous results, we can take f to be (,-distinguished and hence
a Weierstraf polynomial. Considering f = w; ... w, for w; € T,,_1[(,], w; are Weierstral polynomials as well.
Now, we show that w; which are primes in T,,_1[(,] are primes in T,,. It suffices to show that T},_1/(w) —
T,/(w) is an isomorphism. But that is easily seen as they are free T,,_1-modules generated by equivalence

classes of ¢¥, ..., ¢t O

Proposition 1.2.14. T,, is Jacobson.

Proof. Claim: For a C T,,, rad a is the intersection of maximal ideals that contain a. We know that rad(a)

is the intersection of all prime ideals of T}, that contains a. So,

rad(a) C ﬂ m.

meMax(Ty)aCm

We need to prove that every prime ideal p of T;, is an intersection of maximal ideals.

Take p = 0. If f € Nmemax(t,), f(7) = 0 for every x € B"(K). By 1.2.4, we get |f| = 0 which implies f = 0.
In the general case, using 1.2.9, we have an injective homomorphism T, — B = T,,/p s.t. B is finite over
Ty. Claim: Nyemax(p) ™ = 0. This can be seen by considering some f in the intersection and using the fact

that it is integral over T;. Finally, we get a contradiction to the p = 0 case by using 1.2.11. 0

1.3 Ideals in Tate Algebras

Take some ideal a = (aq,...,a,) s.t. |a;] = 1. We are interested in knowing if every f € a can be represented

T
as f = Y fia; where f; € Ty, s.t. |f;| < |f|. If it were actually the case, we see that a is complete under the
i=1
norm on 7, which means a is closed in T;,.



Definition 1.3.1. Consider a ring R. A ring norm on R is a map |-|: R — R>q s.t. forz,y € R
(a) 2] =0 <= z =0,

(b) lzy| < [x[lyl,

(c) l& +yl < mazf|z|, [yl},

@<

This is said to be a multiplicative norm if we replace (b) with:

(0)" |zy| = [x[[y].

Definition 1.3.2. Consider a ring R along with a multiplicative ring norm |- | s.t. |z| <1 for each x € R.

(a) R is said to be a B-ring if {v € R: |z| =1} C R*.
(b) R is said to be bald if sup{|z|: x € Rwhere|z| <1} < 1.

Lemma 1.3.1. Let S C R be some bald subring of the valuation ring of field K. Let a € R s.t. |a| = 1.
Then, S[a] C R is a bald subring.

Proof. We can take S to be a B-ring by localizing S w.rt. {x € S||z| = 1} C S. Let m C S be the
maximal ideal and let 7= S/m. Also let M C R be the maximal ideal of R and k = R/ M.

Then, @ € k is either algebraic or transcedental over T'. In either of the cases, it can be seen that the lemma

is true. O

Proposition 1.3.2. Consider a field K with a valuation on it and call its valuation ring R. Then the
smallest subring R’ C R that contains some sequence ag,aq, ..., <€ R converging to zero is bald.

Proof. The smallest subring T of R is either Z or Z/pZ where p is a prime. T is seen to be bald in both of
the cases. As lim,,_,o|an| = 0, there are only finitely many a; with |a;| = 1. Substituting 7' by T'[a;||a;| = 1],
by 1.3.1, it is still bald. So, assume there exists ¢ < 1 s.t. |a;| < ¢ for all i € N.

Now let 2 € Tas||a;| = 1], then @ = 3~ . cpai’ ... aj". Then, |z| < max{|c,|-€!"l}. But then, |c,|-e/*l < 1

unless v = 0, in which case, |z| = |¢,| < 1 since |z] < 1. O

If we have a bald subring R’ C R, we can localize R’ with all the elements of norm 1 to get a B-ring R”
in R containing R’ and is bald. Also, if R is complete, we can pass on to the completion of R”. Since on
completing a B-ring, we get a B-ring again, the smallest complete B-ring in R that contains some bald

subring of R is again bald.

Definition 1.3.3. Consider a vector space V over a field K. A norm on'V is a map |-|: V — Rxq, s.t.
(a) la] =0 iff a =0,

(b) |a -+ b| < max {lal, ]},

(c) |ta] = |t|]a] fort € K and a,b e V.

Definition 1.3.4. Consider a complete normed K-vector space V.. A system (x,),en of vectors in V, s.t.
N is at most countable, is said to be a (topological) orthonormal basis of V if:
(a) |z,| =1 for every v € N.

(b) Every x € V may be expressed as a convergent series . = Y c¢,x, with coefficients in K.
vEN
(¢) For each equation x = Y ¢, 2, as in (b), |x| = maz,en |c,|. Particularly, ¢, in (b) are unique.
veN

As an example, ¢V € T,, form an orthonormal basis when 7,, = K () is the normed vector space over field

9



K. For a normed vector space V over K, denote:
Ve={azeV:|z| <1},
as its "unit ball" and
V=Ve/{zeV:|z <1},
as its reduction.

Theorem 1.3.3. Consider a field K that has a complete valuation and a complete normed vector space V.

over the field K with an orthonormal basis (z,),en. Let R be the valuation ring of K, and let’s have a

system

Yu = chs,j evVe, peM,
veEN

s.t. the smallest subring of R that contains all c,,’s is bald. Then, if the residue classes §j,, € V forms a

K-basis of ‘7, Yu s form an orthonormal basis of V.

Corollary 1.3.4. Consider some ideal a C T;,. We then have generators ay,...,a, of a s.t.:
(a) la;| =1 for every i.
(b) If f € a, we have f1,..., fr € T, s.t.

F=Y_ fiai, |fil <IfI.
=1

Corollary 1.3.5. Every ideal a in T,, is complete, which implies it is closed in T, .

10



Chapter 2

Affinoid Algebras and Spaces

2.1 Affinoid Algebras

If a C T, is an ideal, it’s zero set defined as

V(a)={z eB"(K): f(x)=0Vf €a}

can be looked as restriction of elements of B"(K) to V(a). Thus, A = T, /a can be interpreted as an algebra

of “functions” on V' (a).

Definition 2.1.1. A K-algebra A is said to be an affinoid K-algebra if we have a K-algebra surjective

homomorphism « : T, — A where n € N.

Proposition 2.1.1. Consider an affinoid K-algebra A. Then, A is Noetherian, Jacobson, and it satisfies

the Noether normalization (or, there exists a finite injective homomorphism Ty — A where d € N.)

Proposition 2.1.2. Consider an affinoid K -algebra A with an ideal q in A s.t. its nilradical is mazimal in
A. Then A/q has a finite dimension as a K -vector space.

Proof. Take m =radq. By the previous result, we have a finite injective morphism T, < A/q where d € N.
Since q C m, we get Ty — A/m and as A/m is a field, d is zero. O

We can easily describe a norm on affinoid K-algebras. For a surjective morphism o« : T,, — A, the Gaufl

norm | - | of T}, induces a residue norm | - |, on A as:

|x(f)lo = inf |f—al

aE€kero
Intuitively, for any f € A, this norm takes the infimum over all the pre-images of f in T,.

Proposition 2.1.3. For an ideal a C T, let A =T, /a be an affinoid K -algebra with projection o : T,, — A.

Then for |- |« : A — Rx>q, we have:
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(i) |- |« is a K-algebra norm. Also, o : T,, — A is open and continuous.
(ii) A is complete under | - |«.
(iii) If f € A, we have a pre-image f in T}, s.t. |f| = |f|«. So, for each f € A, we have c € K s.t. |f|x = |c|.

Viewing the elements f of A as functions taking values in K on V(a), the zero set , consider the supremum
| flsup of every value taken by f. This value is finite by 1.2.4. To make this independent of the specific

representation of A as T,,/a, we set for f € A, called the supremum norm, by

|f|sup = Sup |f($)‘
A

xeMax

where Max A is the spectrum of maximal ideals of A. Also, if x € Max A, f(z) is the equivalence class of f in
A/z. But A/x is a finite extension of K because of 1.2.4, so | f(z)| is well-defined. Note that this supremum

norm is in fact only a semi norm, since it doesn’t satisfy |f|sup = 0= f =0.

Proposition 2.1.4. Consider an affinoid K-algebra morphism ¢ : B — A. Then, for every b € B,

[ (0)[sup < [blsup-
Proof. Since A/m is finite over K, we write t = ¢~ !(m) to obtain finite maps K < B/t < A/m and hence

t C B is maximal. Since for b € B, |b(t)| = |¢(b)(m)], this completes the argument. O
Proposition 2.1.5. The supremum norm | - |sp on T, coincides with the Gaufl norm | - |.

Proof. Before we start with the proof, note that this means that on T}, | - |sup is really a norm. Now, by
1.2.4

|[fI =sup{|f(2)| : = € B"(K)}

for all f € T,,. We associate to x € B"(K), the maximal ideal of T}, given by m, = {h € T}, : h(z) = 0}.
Evaluation at z gives T},/m, — K. Also, f(m,) = f(x) which implies |f(m,)| = |f(z)]. As B*(K) —

Max T, s.t. x — m, is a surjection by 1.2.11, we have the proof. O

Proposition 2.1.6. Consider an affinoid K-algbera A. Then, for f € A, TFAE:

(i) |flsup = 0.
(it) f is nmilpotent.

We now wish to give some relation on the supremum norm and the residue norm on affinoid K-algebras.

Lemma 2.1.7. For any polynomial
PO =C+al 4.+ =[] o)

in K[{] with zeroes «1, ..., %, € K, we have
maz |o;| = maz |ci|%.
j=1,...r i=1,...,r

Proof. Up to sign, since ¢; are the ith elementary symmetric function of zeroes «y, ..., &, we have

il ¥ < max o]
J=1,...r

s
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fori=1,...,r. If |o;| is maximal only for j = 1,...,s, then |cs| = |&1]...]|ots|. This implies

.....

and hence we are done. O

Consider a monic polynomial p = {" +¢; ("1 + ... + ¢, where ¢; belong to a normed (or semi-normed) ring

A, define

.....

as the spectral value of p. Thus the last lemma implies that the spectral value of p is the maximal value of

its zeroes.

Lemma 2.1.8. Let Ty — A be a finite monomorphism where A is a K-algebra. Assume some f € A and

let A, as a Tg-module, be torsion-free.

(i) We have a unique monic polynomial py = " +a1(" 1 +...+a, € Ty[l] of minimal degree s.t. ps(f) = 0.

In other words, the kernel of the T4-homomorphism
Tulc) — A, C— f

is generated by py.
(ii) Taking x € Mazx T4, assume that y1,...,ys € Maz A are the mazximal ideals that restrict to x on Ty.
Then

(iii) The sup-norm of f is obtained by

1
‘f|sup =  mazx |ai|§up~
=1 r

Proof. Since A is finite over Ty (as ideals in T, are finitely generated), for y € Max A, A/y is a finite
K-vector space. Hence the norms are well-defined.
Let F = Q(Ty) be the field of fractions of Ty. Also, let F(A) = A®r, F be the F-algebra obtained from A.

As A has no torsion over T, we have this commiutative diagram of inclusions:

Ty —— A

|

Take the kernel of the F-homomorphism F[{] — F(A), s.t. { — f, which is generated by a unique monic
ps € F[{]. Claim: py € T4[¢]. Now this can be proved using Gau Lemma and the fact that A is integral
over Ty. This finishes (i).

Now, for (ii), we know from the properties of integral ring extensions that the restrictions of maximal ideals
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yields surjective maps
Max A — MaxTy[f] — MaxTy.

Hence, since we are looking at maximal ideals in A that restrict to =, we can look at A instead of Ty[f]. So
let A = Ty[f]. Let L = Ty/x. Also, let f be f’s image in A/(x) and py that of p; in L[], then, we get
a finite map L — A/(x). Here, A/(z) = L[C]/(Pf) as is evident by the First Isomorphism Theorem. Take

&1,..., 0 to be the zeroes of Dy in an algebraic closure of L. Then consider these canonical maps
Af(z) = L[f] — Llew], fr o

Their kernels are the maximal ideals in A/(x) and hence they coincide with the maximal ideals of A lying

over z.
By 2.1.7, we have
1
max |f(y;)] = max |oy| = max |a;|7
Jj=1,...,s i=1,...,r i=1,...,r
and this finishes (ii).
As for (iii), it can be seen directly using (ii). O

We now generalize (iii) in the next lemma.

Lemma 2.1.9. Consider a finite affinoid K-algebra homomorphism ¢ : B — A . Then, for every f € A,

we have an integral equation
ffHbfr 4+ . +b.=0

1
where bj € B s.t. |flsup = magi=1,...r |bi|dup-

Theorem 2.1.10. (Mazimum Principle) For every affinoid K-algebra A and f € A, we have z € Max A
st [f(@)] = [f]sup-

Proof. Since A is Noetherian, it consists only of a finitely many minimal prime ideals, denoted by p1, ..., ps,
and we look at Max A as the union of max A/p;,j =1,...,s. Let f; be the equivalence class of f in A/p;.
Then we have an index j s.t. |flsup = |fjlsup- S0, A can be replaced with A/p; and consider A to be an
integral domain. By Noether Normalization, we get a finite monomorphism 7y — A from which, the result

can now be easily derived using 1.2.4 and 2.1.8. (]

Lemma 2.1.11. Consider an affinoid K-algebra A and take f1,..., fn € A.

(1) Let there be a K-map ¢ : K(Ci,...,0n) — A s.t. ©(G;) = fi fori=1,...,n. Then |filsup <1 for every
1.

(it) Conversely, if |filsup < 1 for every i, we have a unique K-map ¢ : K{((1,...,¢n) — A s.t. (&) = fi
for every i. Also, ¢ is continuous w.r.t. the Gaufl norm on T, and any residue norm on A.

Proof. By 2.1.5, since |;|sup = |Gi| = 1, we have (i). For (ii), fix a residue norm | - |, on A and define ¢ as

() el )= et

veEN™ veEN™

It can now be seen that |filsup < 1 means that the f; are power bounded w.r.t. the residue norms on A,

i.e. the sequence |f™|«,n € N is bounded. (To do this, first prove that there exists an integral equation
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ff+afr'+...+a = 0 where a; € A s.t. |a;lx < 1.) This means that ¢ is well-defined and is
unique as a continuous map for which ¢; — f;. So we just need to prove now that ¢ is the only K-map
K{l1,...,0n) — Ast. G — fi

Let’s start with A being finite dimensional as a K-vector space. Then, every K-map ¢’ : K((3,...,(,) — A
is continuous. Now, any norm on A induces the product topology since any A -~ K@ is a homeomorphism.
Now viewing T, /ker ¢’ as an affinoid K-algebra with the natural residue norm, it’s clear that T), /ker ¢’ — A
is continuous since for a finite dimensional vector space V', the linear maps V' — K are continuous if V' has
been given the product topology. So, ¢’ is continuous.

Now, consider K-maps ¢, ¢’ : T, — A, s.t. {; — f;. Then taking r > 0, A/m" is of finite vector space
dimension over K for a maximal ideal m C A. Hence, the two induced maps 7,, — A/m" are continuous
which means that they coincide. So, all we need to prove is that the map from A to A/m" is trivial. This

can be achieved by using 6.1.2 on all localizations A, where m € Max A. O

Proposition 2.1.12. Any affinoid K-algebra morphism B — A is continuous w.r.t. a residue norm on A

and B. Particularly, residue norms on an affinoid K-algebra are equivalent.

Proof. Take a surjection T,, — B which results in 7;,, — B — A. We know from the previous result
that this composition is continuous w.r.t. any residue norm on A, which implies the map from B to A is

continuous as well. O

2.2 Affinoid Spaces

Let A be an affinoid algebra over K. The affinoid space associated to A is given by Sp(A) = Max(A). For

a C A, an ideal in A, its zero set
Vie)={zeSpA:acm,}={reSpA: f(z) =0 for every f € a}
is called a Zariski closed subset of A.

With this definition of Zariski closed subset, we state some results similar to as that in Algebraic Geometry.

Lemma 2.2.1. Consider an affinoid K-algebra A with ideals a and b. Also, assume a family (a;)icr of
ideals in A. Then:

(i))aCb = V(a) DV(b).

(it) V(3 ier %) = Nier V(ai).

(iii) V(ab) = V(a) |V (b).

Proposition 2.2.2. Consider an affinoid K-algebra A. Then the sets given by
Dy={zeSpA: f(x)#0}, feA

form a basis of the Zariski topology of Sp A.
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For Y C Sp A, associate to it, the ideal given by

idY)={feA: flyy=0,foreveryyeY} = ﬂ m,.
yey

Theorem 2.2.3. (Hilbert’s Nullstellensatz) Consider an affinoid K-algebra A and an ideal a in A. Then,
id(V(a)) = rada.

Proof. By definition,
id(V(a)) =id({z € SpA : a Cm,}) = n m,.

aCmy

Here, the R.H.S. is the nilradical of a, as affinoid K-algebras are Jacobson. O

Corollary 2.2.4. For an affinoid K-algebra A, assume a set of functions f; for i € I. Then TFAE:
(i) fi’s do not have any common zeroes on Sp A.
(ii) fi’s generate the unit ideal in A.

Any affinoid K-algebra map o : B — A induces an associated morphism
“%:SpA— SpB, m— o '(m)
Here, 0~1(m) C B is a maximal ideal as we have a chain of injective maps
K <« B/o '(m) — A/m

and as A/m is a finite field over K. “c : Sp A — Sp B along with ¢ is said to be a map of affinoid K-spaces.
We write ¢ : Sp A — Sp B for an affinoid K-space morphism and we represent the map between the affinoid
K-algebras by p* : B — A.

Now, ¢* can also be seen as the pulling back of maps from Sp B to Sp A since for x € Sp A, we have

B—A

B/mso(ﬂﬁ) — A/m,

which gives ¢*(g)(z) = g(p(x)) for every g € B.

2.3 Affinoid Subdomains

The Zariski topology is quite coarse. One issue with it is that it is exactly the same as in Algebraic Geometry
and does not use the non-Archimedean topology of the base field. Another issue is that the open subset
Dy C Sp (A) corresponds to the A-algebra A[%], which is not complete.
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To remedy these issues, we want a finer topology which is directly induced from the topology of K. For
some n € N, see Sp A as a Zariski closed subspace of SpT;,. Now, when K is algebraically closed, Sp T}, can
be identified with B™(K). So the topology of the affine n-space K™ induces a topology on Sp A, called the
canonical topology of Sp A.

Let A be an affinoid K-algebra and X = Sp (A). If f € A and € € R>p, we put X(f,¢) ={z € X : |f(z)| <
e}.

Definition 2.3.1. The natural topology on Sp (A) is the topology generated by every set of type X (f,¢€), i.e.
U C Sp A is open for the canonical topology iff it is a union of sets X (f1,€1) N+ N X (fr,&r).
By convention, X (f) = X(f,1) and X(f1,---, fr) = X(f1)N---NX(f.) where f, f1,..., fr € A.

Proposition 2.3.1. The natural topology is generated by sets X(f) for f € A, i.e. each open subset of
Sp (A) is a finite union of subsets X (f1,- -, fr)-

Proof. We know that |f(z)| € [K | for each f € A and z € Sp (A). For all f € A, and ¢ € Rx,

X(rheo= U Xe)

e'<ee’e|K"|
As ¢/ € |[K'|, there exists ¢ € K* and s > 0 in Z s.t. ¢ = |¢|. Hence, we have X (f,¢/) = X(f*,¢*) =
X(c7tfe). O
We now see the next result that helps us derive the openness of various kinds of sets.

Lemma 2.3.2. Let f € A and v € SpA s.t. ¢ = |f(x)] > 0. Then we have g € A s.t. g(x) = 0 and
|f(y)| = ¢ for every y € X(g). Particularly, X(g) is an open nbhd of x in {y € X : |f(y)| = ¢}.

Proof. Let f be the equivalence class of f in A/m, and take P(C) = (" + ;"' 4+ ... + ¢, € K[{] to be
the minimal polynomial of f. Also, set P(C) = [[ (¢ — o), &; € K as the factorization into roots. Then,
i=1

fixing A/m, — K, ¢ = |f(x)| = |f| = |o| for every i since P(f) = 0 and since valuation is unique on K.
Now, let g = P(f) € A. Then g(z) = 0 and the next equation can now be easily seen (hint: contrapostive)
y € X where [g(y)| <" = [f(y)|=¢

which gives a contradiction. O

Corollary 2.3.3. If f € A and € € Rsq, the given sets are open w.r.t. natural topology:
{zr e pA: f(x) #0}{x € SpA : |f(z)| < e}, {x € SpA: [f(z)| =¢e}.{z € SpA: [f(z)] = e}

Proposition 2.3.4. For ¢ and ¢*, and f1,..., f. € A:

80_1((5PA)(f1» R fT)> = <SpB)(90*(fl)7 EEE) W*(fT))
Particularly, ¢ is continuous w.r.t. the natural topology.
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Proof. For every y € Sp B, we have

Afmy) — B/my,

where the bottom row is a monomorphism. Hence, for every f € A, |f(o(y))| = |¢*(f)(y)|. This implies
¢~ (SpA)(f)) = (Sp B)(¢*(f))
and by taking intersections, we are done. O

Definition 2.3.2. Consider an affinoid K-space X = Sp A.
(i) A subset of X of type
X(fr,o o fr)={z e X : [fi(z)| <1}

where f1,..., f» € A is said to be a Weierstrafi domain in X.
(ii) A subset of X of type

X(fisoosfrgi o) ={z € X 1 |filo)] < 1,195 () > 1]}

where fi,..., fryg1,---,9s € A is said to be a Laurent domain in X .
(iii) A subset of X of type
fi b
X%y ) ={z e X ¢ |fi(o)] < | fol2)}
Jo fo
where fo, ..., fr € A without common zeroes is said to be a rational domain in X.

Lemma 2.3.5. The domains in the last definition are open in Sp A w.r.t. the natural topology. Also, the

set of WeierstrafS domains is a basis for this topology.

Definition 2.3.3. Consider an affinoid K-space X = Sp A. Then U C X is said to be an affinoid subdomain
of X if we have a map of affinoid K-spaces i : X' — X s.t. i(X') C U and the given universal property is
satisfied:

Any map of affinoid K-spaces ¢ :' Y — X for which o(Y) C U admits a unique factorization through
i: X' — X wvia a map of affinoid K -spaces o' : Y — X.

Lemma 2.3.6. With the previous definition, let X = SpA, X' = Sp A’ and t* : A — A’ be the K-morphism
associated to i. Then:

(i) i is an injection and i(X") = U. Hence, a bijective map X' = U is induced.

(ii) For every x € X' and n € N, i* induces an isomorphism of affinoid K -algebras

Afmi, ) = Ajmp.

(iii) my = My A" when v € X', .

Proof. For y € U, there is a commutative diagram:
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Afmn T A fmn A

So Sp (A/my) is a singleton space which is mapped to y € U. Using the universal property of affinoid

subdomains, we have a commutative diagram:
i
A——m A
T & !

Afmn T A fmn A

We claim that the lower triangle is commutative. Firstly, the morphism of affinoid K-spaces corresponding
to o o7 is mapped to y € U. Since ¢ o w factors through ¢* via both 7* and ¢ o «, by the uniqueness, we
have 7’ = oo .

Since 7' is a surjection, the same is true for 0. Also, the surjectivity of  implies that of . ker 7’ =mj A" C
ker «, thus, sigma is injective, which means it’s bijective. For n =1, myA’ is maximal in A’. So, the fiber of
i over y is not trivial and is singleton with € X’ for m; = m,A’. Hence, we have shown (i) and (iii). For
(ii), note that m, = my A" = m;,y A" O

When working with affinoid subdomains, we use the previous lemma to identify U C X to X’. Thus there is
an affinoid K-space structure on every affinoid subdomain U in X which is unique up to natural isomorphism.

Consider the affinoid subdomain X’ «—— X. It is said to be open in X if it is open w.r.t. the natural topology.

Proposition 2.3.7. The Weierstrafs, Laurent, and Rational domains for any affinoid K-space X = Sp A

are open affinoid subdomains. We call them as special affinoid subdomains.

Proof. We have already seen the openness before. We will only prove the proposition for Weierstral domains
here. The rest of the two domains can be done similarly. Let’s look at Weierstrafi domain X (f) C X. Let
A{ly,. .., ) be the affinoid K-algebra of restricted power series over A. Here, we have the residue norm on

A. Consider an affinoid K-algebra

AUf) = Alfrse o) = Al G (Gi= fi s i =1, r).

There is a canonical affinoid K-algebra morphism i* : A — A(f) with map i : Sp A(f) — X. Claim: i is
mapped to X (f) and every other morphism of affinoid K-spaces ¢ : Y — X with imgy — X (f) admits
a unique factorization through i.
Take an affinoid K-space morphism ¢ : Y — X and the associated affinoid K-algebra morphism ¢* : A —
B. For every y € Y, observe that

l™(f) W) = fileW))], i=1,...,m7
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since A/my(,) — B/m, between finite extensions of K. So, ¢(Y) C X(f) is equivalent to [¢*(f;)[sup <1
for every i. As i*(f;) is the equivalence class of ¢; in A{f), |filsup < 1 since |f|sup < |f|a for every f. This
proves that ¢ has image in X (f). The rest of the claim can now be proved by extending ¢* from A to A(Q)
s.t. G — @*(f;) for every i.

Remark: For rational domain, consider

Syl Ty =
A<f0>_A<f0’ ’f0> A<C13-~~7Cr>/(f1 f()Cq,.'L 1,...,’[")

O

Proposition 2.3.8. (Transitivity of Affinoid Subdomains) For affinoid K-space X, take an affinoid subdo-

main'V in X, and an affinoid subdomain U in V. Then U is an affinoid subdomain in X.

Proposition 2.3.9. Take an affinoid K-space morphism ¢ :' Y — X and also an affinoid subdomain
X'~ X. ThenY' = ¢~ Y(X") is an affinoid subdomain of Y, and we have a unique affinoid K -space map

o Y — X' s.t. the given diagram commutes

/

4
vy’ < X/

|, |

Y —X

If X' is Weierstraf8, Laurent, or rational in X, the same holds for Y’ C Y.

Proposition 2.3.10. Consider an affinoid K-space X and affinoid subdomains U,V in X. Then UNYV is
an affinoid subdomain of X. If U and V are any of three domains, the same will hold for UNV as well.

Corollary 2.3.11. Consider an affinoid K-space X = Sp A. FEvery Weierstrasf§ domain in X is Laurent,

and every Laurent domain in X is rational.

Proposition 2.3.12. Consider an affinoid K-space X = Sp A and a rational subdomain U C X. Then we

have a Laurent domain U’ C X s.t. U C U’ is a Weierstrafs domain.

Proof. TakeU =Sp A’ = X(%, I f—g) where f;’s do not have common zeroes on X. Since |f;(x)| < |fo(x)]
for every 4, observe that fo(x) # 0 for every x € U. Hence, fo|y is a unit in A’. Applying 2.1.10 on (foly) ™!,
we have ¢ € Kx s.t. |cfo(z)] > 1 for every x € U. Putting U’ = X ((cfo)™!), observe U C U’ and that

U=U'(falor - (folo)™ s frlor - (folo) ™).
Here fo|y is a unit on U’. Hence, U’ as constructed above, works. O

Proposition 2.3.13. (Transitivity of Special Affinoid Subdomains). Consider an affinoid K-space X,
Weierstraf$ (respectively rational) domain V- C X, and a Weierstraf8 (respectively rational) domain U C V.
Then U is a Weierstraf$ (respectively rational) domain in X. By the last propositiion, the same does not hold
for Laurent domains.

Proof. Put X = Sp A. Let’s prove for Weierstrafi domains first. Let V = X (f) and U = V(g). Since A’s

image is dense in A(f) and since we can subtract a tuple of supremum norm < 1 from g without altering
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U =V/(g), we can let g to be the restriction of a tuple of functions in A. In that case, U = X(f, g) and the

result follows.

Let’s look at rational domains now. Let V = X(%7 e ,fc—n) where fo,..., fr € A with no common zeroes
in X. By the previous results, we know that U is a Weierstral domain in a Laurent domain of V and
that the intersection of finitely many rational domains is again a rational domain. So it is enough to work
with U = V(g) or U = V(g~!) where g € A(% e ,%), the affinoid algebra of V. By using a subtraction
argument as in the previous case, we have n € N s.t. fi'g extends to a function ¢’ € A. Since fy does not

have a zero on V,

Vig)=Vn{zeX :|¢@) <=1}
Vg =vVn{zeX :|g@)>|f@)l}

Using 2.1.10 on f "|v, we have ¢ € Kx s.t. |f(z)| > |c| for every € V. But

g < - fo
V(g):VQX(737)7 V(g 1):VQX(70/77,)a
o o 9 g
and hence by 2.3.10, V(g) and V(g~1) are rational subdomains in X. O

Proposition 2.3.14. Let ¢ : Y = Sp(B) — X = Sp(A4) be a map of affinoid K *-spaces, and let x € X
correspond to the mazimal ideal m C A.

(i) Let ©* induce a surjection A/m — B/mB. Then we have a special affinoid subdomain X' — X con-
taining = s.t. the induced map ¢' : Y' = o 1 (X') — X' is a closed immersion, i.e. the corresponding
homomorphism of affinoid K-algebras is a surjection.

(ii) Let ©* induce isomorphisms A/m™ — B/m"B for every n € N. We then have a special affinoid
subdomain X' — X that contains x s.t. the induced map Y' = ¢~ 1(X'") — X’ is an isomorphism.

Proof. (i) Note that since A/m is a field, either B/mB = 0 or A/m = B/mB. Take the first case where
B/m = 0, i.e. m is a unit ideal and hence, by 2.3.6, ¢~!(z) is empty, i.e. there is no element in Y that

corresponds to a maximal ideal in B. Then
e (m)br + ...+ *(my)b, =1, my,...,m. €m, by,...,b. € B.

We want to find a special affinoid subdomain X’ C X s.t. ¢ }(X’) is empty. Let ¢ € K* s.t. |¢[7! >
max; {|bi]sup }-
We claim that X' = X (¢ tmyq,...,c tm,) suffices. Indeed, given z € X(c"tmy,...,c7tm,), if y € o~ (),
then

0" (ma) ()biy) = ma(@)[[bi(y)] < lel max {[bilsup} < 1,

which contradicts ), bjp*(m;) = 1.
Now, let A/m = B/mB. Choose power bounded elements b; € B for i = 1,...,r s.t. we have a surjection
o A(Ty,...,T,) — B, T;—b;
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extending ¢*. Let m = (mq,...,mg). Since p* gives an isomorphism A/m - B/mB, we have a; € A and
Cij € B s.t.

S
bi — go*(al) = Zcijgo*(mj).
j=1
Note that we have |b;] < 1. Also, since we can always multiply the last equation with a constant,
we can assume |c;;| < 1. Put A = A{c™'my,...,c 'mg) for ¢ € K* with < 1. We claim that

X' = X(c7tmy,...,c7tmg) = Sp (A’) suffices. Indeed, we have

Cc

ATy, Ay ‘D

(P/* 1

A — ATy,..., T,y ———— Blc™

B
©*(my),...,c Lo (my)) = B’

where ®* and ®* are surjective. We need to show that the composed map in the lower row is surjective.

Since ®* is surjective, we have for every element & € B’

b= D0t @) (pla) + 3 erjet () - (plar) + 3 erji” (my)

J

with |¢; ;| < |b'|. On applying the argument to ¢; ;, we can see that the resulting series is convergent.

(ii) By (i), ¢* is surjective. Also we get, ker (¢*) C a:= (] m™. Since A is noetherian, a is finitely generated
n>1
over A and we have m - a = a. Hence, by Krull’s Intersection theorem, a is annihilated by f =1 — m with

m € m. Since A — A(f~1) factors through A[f~!], kernel of A — A{f~!) contains ker(¢*), and we have

*

a—F——p
J ot J
A Bl ()Y

s.t. the square and the upper triangle is commutative. Since ¢* is surjective, the lower triangle is commutative
as well.

Now all we have to prove is that ¢* is an isomorphism. The surjectivity is clear since the surjectivity of ¢*
implies that of ¢*. To show the injectivity of ¢*, note that o*(¢*(f)) = f is invertible and power bounded
in A(f1).

By the universal property of B(o*(f)™'), we have a homomorphism 1* : B{p*(f)™") — A(f™1) s.t. «

coincides with the composition B — B{p*(f)™") >, (Ff~h.

/%

*

Hence, ¥* o ¢'* is the identity on A(f~!), in particular, ¢’* is injective. O

Corollary 2.3.15. Consider an affinoid K-space morphism U — X s.t. U C X is as an affinoid subdo-
main. Then U is open in X, and the natural topology of X restricts to that of U.
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Chapter 3

Affinoid Functions

3.1 Germs of Affinoid Functions

Consider an affinoid K-space X = Sp(A4). For any affinoid subdomain U in X, Ox(U) is the affinoid
algebra that corresponds to U. For example, if U = X(f), then Ox(U) = A{f). Then, if U,V are affinoid
subdomains s.t. U C V, we have a natural map Ox (V) — Ox(U). This can be interpreted as the
restriction of affinoid functions on V' to those on U. In fact, Ox is a presheaf of affinoid K-algebras on the

category of affinoid subdomains of X. We will refer this presheaf as the presheaf of affinoid functions on X.

Take x € X, then
Ox o = th Ox(U)
zeU

where the limit is over all affinoid subdomains U in X that contain z, is known as the stalk of Ox at x.
The elements of this stalk are known as the germs of affinoid functions at x. We now discuss an explicit
characterisation of Ox . We represent f, € Ox, by f € Ox(U) for U C X, an affinoid subdomain
that contains z. Also, f; € Ox(U;) where i = 1,2 and = € Uy N Uy represent the same germ f, € Ox
iff there exists an affinoid subdomain U in X st. o € U C Uy NU; and pgl(fl) = ng(fg) . Here,
pt : Ox (W) — Ox(U) is the map f — f|y s.t. pf = id and p}; = p¥ o pY, for subdomains U C W C V.

Proposition 3.1.1. Consider an affinoid K-space X and a point that corresponds to a maximal ideal

mC Ox(X) z € X. Then Ox 5 is a local ring where mOx 5 is the mazimal ideal.

Proof. Consider an affinoid subdomain U C X. Using 2.3.6, there exists an isomorphism
Ox(X)/m =5 Ox(U)/mOx (U).
Using a limit argument, observe that
Ox(X)/m & Ox ,/mOx ,
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which shows that mOx , C is maximal.

Now we show that there is no other maximal ideal in Ox ,. Take f; = Ox\a. Then f, is represented
by, say f € Ox(U) for some affinoid subdomain U C X. So, f(z) is non-trivial, and upto multiplication
with a scalar, let |f(x)| > 1. Then U(f~?!) is an affinoid subdomain containing z, and f is invertible in
Ox(U(f™1)), hence f, is invertible in Ox . O

Proposition 3.1.2. For x € X, assume m to be the mazimal ideal that corresponds to x. Then the natural

morphism A = Ox(X) — Ox , factors as
A— Ay — Oxy.

Here, Ay, is the localization of A at m and the former map is canonical sending A into its localization at m

and the latter one is an injection. It further induces isomorphisms
A/m” = Am/m"Am = OX@/ITL"OXJ

for all integers n > 1. In particular, we have isomorphisms between the m-adic completion of A and the

mazimal adic completions of Ay and Ox 5 :

lim A/m" = Ay = Ox .

n

Proof. By 6.1.2, An, — Ox , is an injection, since the composition Ay, — Ox , — @X,I = Ay is injective.
The isomorphism A/m™ & A, /m™A,, can be seen from the exactness of the localization functor and because
A/m™ = (A/m™)y,. By 2.3.6, we have

Ajm™ = Ox (U)/m"Ox (U).

Now by taking the direct limit on U, we get A/m™ = Ox ,/m"Ox (U). d

Corollary 3.1.3. An affinoid function f € A = Ox(X) is trivial iff the image of f at Ox 4 is trivial for
every x € X.

Proof. The statement follows from

A— J] An— ][] Oxa-

meSp(A) zeX

Here, the first injection is true for arbitrary noetherian rings. The second injection follows from Ay, = o X,z
and Ay — Apn . O

Corollary 3.1.4. Consider a covering of affinoid subdomains X = U;c;X;. Then the restriction map

Ox(X) — [ ox(X3)
icl

1s injective.
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Proof. This follows from the previous corollary and from the fact that Ox(X) — [],cyx Ox. factors
through [],c; Ox (X;). O

Proposition 3.1.5. Consider an affinoid K-space X. Then for any x € X, Ox . is noetherian.

Proof. Take X = Sp A and m C A to be the maximal ideal that corresponds to x € X. Claim: Ox , is
m-adically separated, or, ﬂneN m"Ox, =0. If f € Ny>om"Ox 5, we have an affinoid subdomain U C X
that contains x s.t. f, is represented by f € Ox(U) and since Ox (U)/m"OxU = Ox ,/m"Ox , by 3.1.2,
it follows that f € m"Ox (U) for all n > 1. Writing U = Sp(A4’) and m’ = mA’, then the image of f in Ox ,

lies in Np>1m™ which is zero by Krull’s intersection theorem. Hence, we are done.

Similarly, it can be shown that for any finitely generated ideal a, C Ox ,, Ox /0, is m-adically separated.

This means that
OX,x/aw R— (OX,m/aw> = Oxx/aw

Thus 6, N1 Ox ; = a,.

Now, to show that Ox , is noetherian, to is enough to prove that any ascending chain of finitely generated
ideals in Ox 4z, a1 C a3 C ... C Ox, is stable. Since 6X7x = Am is noetherian since so is A, the chain

d; C dy C ... 1is stable in éx,x. Then we see that the statement is true from a; = 6, N Ox ;. O

3.2 Locally Closed Immersions of Affinoid Spaces

Definition 3.2.1. An affinoid K-space morphism ¢ : X' — X is said to be a closed immersion if the
affinoid K-algebra morphism ¢* : Ox(X) — Ox/(X') corresponding to ¢ is a surjection. Also, we call ¢
as a locally closed immersion (respectively an open immersion) if it is an injection and, for every x € X',

the induced morphism @5 0@ Ox 5 1s a surjection (respectively bijection).

Definition 3.2.2. An affinoid K-space morphism ¢ : X' — X is called a Runge immersion if it is the
composition of a closed immersion X' — W and an open immersion W — X which defines W as a

Weierstraf$ domain in X .

Theorem 3.2.1. (Gerritzen-Grauert). Consider a locally closed immersion of affinoid K -spaces ¢ : X' —
X. We then have a covering X = U]_,;X; that conatins finitely many rational subdomains X; C X s.t. ¢

induces Runge immersions p; : =1 (X;) — X; wherei=1,...,7.

3.3 Tate’s Acyclicity Theorem

Consider an affinoid K-space X and the category of affinoid subdomains T = Tx in X, where the inclusions

are morphisms.

Definition 3.3.1. A presheaf T on T is called a sheaf if for all U € T and all coverings U = |J;c; Us for
U; € T, we have:
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(S1) If f € F(U) s.t. flu, =0 for everyi € I, then f =0.
(S2) For fi € F(U;) s.t. filv.nu; = f;
i €1. This f is unique by (S1).

vinu; for every i, j € I, we have f € F(U) s.t. f

v, = fi for cvery

These conditions can be rephrased by requiring that the sequence

0— Ox(U) — [[ox () — [] O0x(U:nU;) (*)

i€l i,j€T

where the first morphism is given by f — (f

v, )ier and the second map by (f;)ier — (filv,nu, — filvinu, )ijers
be exact for every U € T and every covering { = (U;);er of U by sets U; € . Furthermore, for a presheaf F
on X and a covering $l = (U;);er of X by affinoid subdomains U; € X, F is called as a l-sheaf, if for every

affinoid subdomain U in X, (+) applied to 4|y = (U; N U;)er turns out to be exact.

By 3.1.4, we know that (S7) holds for Ox. However that is not the case with (S2) as the natural topology
on X is totally disconnected. So, Ox does not satisfy the conditions of a sheaf. However, Tate showed that
the two conditions hold on Ox for finite coverings U = U;c;U;. In the rest of the section, we will introduce

several intermediate results and finally prove the above theorem due to Tate.

Let us take coverings i = (U;);er and U = (V;)jes of X. Then 9 is said to be a refinement of il if we have
amap 7:J — Ist. V; C Uy for every j € J. Now, let’s assume that F is a presheaf of X.

Lemma 3.3.1. For coverings 3 = (U;)ier and B = (V})jes of X by affinoid subdomains s.t. U is a
refinement of A, if F is a V-sheaf, it is a U-sheaf as well.

Proof. Let’s prove that (x) is exact for . Then the same for 4|y for affinoid subdomain U in X will
follow similarly. Let f; € F(U;), i € I s.t. filu,nu, = fir
V; C Ur;). Write g; = fr(j|v; for every j € J. Then

v.nu,, for every i,/ € I. Choose 7 :J — I s.t.

gilvinv, = (Frlv.gynu, )lvinw,

= (frgnlv,ynu, ) lvinv, = gilviav,, -

As T is a U-sheaf, we have a unique f € F(X) s.t. fl|v, = g; for every j € J. Claim: f
1 € 1. To see this, take ¢ € I and observe that

u; = fi for every

(flo)lvinv; = fluaav; = giluinv;
for j € J. Also,
filvinv; = filvinu, gyav; = Frylvinu,gyov; = giluiny;
wherefrom, filv,nv, = (flv;)lv.nv,. Since F is a Y-sheaf when restricted to U;, observe that f|y, = f; for
every i € I. Now f is uniquely determined and we are done. O

Lemma 3.3.2. For coverings 4 = (U;)ier and B = (V})jes of X by affinoid subdomains. Let
(i) F be a V-sheaf

(ii) F|v, be a Uly,-sheaf for every j € J.

Then F is a -sheaf as well.
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Definition 3.3.2. We define affinoid covering as a finite covering of X by affinoid subdomains. Taking

fo, .-+, fr € A with no common zeroes,

fO fr

Uizx<ﬁ7...’ﬁ

and hence we obtain a finite covering s = (U;)i=o,...» of X by rational subdomains. & is said to be the
rational covering associated to fo,..., fr.. We can also refer to it as the rational covering.

Lemma 3.3.3. FEvery affinoid covering U = (U;);cr of X admits a rational covering as a refinement.

Proof.  'WLOG let U to be consisting of rational subdomains, or 4 = (U;);=1,... , where

.....

(4) ()

L 1 Ti
U’_X( @ (z‘))'
0 0

Now, I be the set of tuples (vy,...,v,) € N* where 0 < v; < r; and for such tuples, let

H 1,

Let I’ be the set of all (vy1,...,v,) € I s.t. at least one of the coordinates of the all elements is zero. Then,

claim:
f’vl...vna (vl . ~vn) € I/7

have no common solution on X and, so, generate a rational covering ¥ on X. To see that there really is no
common zero, let € X s.t. all functions vanish at . Then x € U; for some index j, and hence, f; (9) # 0.
So all products
[1+2, 0<vi<n,
i#]
evaluate to 0 at x. But this is a contradiction as, for every 4, , fr.;, generate the unit ideal in

A = Ox(X). U is hence well-defined.

(@) ()
0 s

Let’s now prove that 2 is a refinement of . Take (vy,...,v,) € I’ and let
Xy = X(;”l (s ) € 1’) €.
Claim: X,,, . . CU,. Fixing v € X, ., and ps.t.0 < w, < ry,, claim:
@) < 1" @) = 11 @)

For some index j, z € U;.If j = n, we are done. So, let j # n, say j = 1. Then |fflll)(w)\ < \fél)(xﬂ for

0 <y <7 and since (0,v9,...,v,—1, 1n) € I’, we have

(H|@w0 @) <16 (@) (Huﬁmo m>|<Hv@m

Now, since []}_, fé, () # 0, we can divide by T[], 15?(1) and we are done. O
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Definition 3.3.3. Let A be an affinoid K-space and X = Sp A. Also, let f1,..., fr € A. Then
X( ]?‘17"~7f7(‘xr>7 “l€{+1771}7
s a finite covering of X by Laurent domains. This is said to be the Laurent covering associated to f1,..., fr.

We can also refer to it loosely as the Laurent covering.

Lemma 3.3.4. Consider a rational covering 4 of X. We then have a Laurent covering U of X s.t., for
every V € 0, M|y is a rational covering of V' that is generated by units in Ox (V).
Proof. Consider fo,..., fr € Ox(X) s.t. they have no common zeroes on X and they generate the rational

covering 4. There exists c € K* s.t.

-1 .
£ ( , )
|c| < jnf { max | fi(z)]

fi?  fi
Denote by U, the Laurent covering of X that is generated by cfy,...,cf,. Claim: U is as required. Let

This follows since f; is invertible on U; = X (@ .. ﬁ) and as its inverse assumes maximum on U;.

V= X((cfo)“o,...,(cfr)“") ey

s.t. og,..., 0 € {+1,—1}. For some s > —1, we can have o9 = ... = s = +1 and x5y = ... = ¢, = —1.
Then
X(@,...,&)mvzg
fi fi
fori=0,...,s, as

max |fi(z)] <[] 7 < max_|fi(z)]
1=0,...,s 1=0,...,r

where z € V. Particularly,

Jax |fi(x)] = _max |fi(z)]
for every x € V. Here U]y, generated by fsi1|v,..., fr|lv, is a rational covering. Also, these elements are
units in Ox (V') by construction. O

Lemma 3.3.5. Let 3t = (fo,..., fr) be a rational covering of X = Sp A. We then have a Laurent covering
U of X which is a refinement of Ll.

Proposition 3.3.6. Consider a presheaf F on the affinoid K-space X. If F is a U-sheaf for every Laurent
covering 8 of X, then it is a U-sheaf for every affinoid covering U of X.

Theorem 3.3.7. (Tate) Consider an affinoid K-space X. The presheaf Ox of affinoid functions is a
$-sheaf on X for all finite coverings 4 = (U;)icr of X by affinoid subdomains U; C X.

Proof. Using 3.3.6, it suffices if we show the theorem for Laurent coverings. By induction, it suffices to
prove only for Laurent convering that is generated by f € Ox(X). Then the proof is immediate using the

next result. O

Lemma 3.3.8. For f € A= Ox(X), we have an exact sequence:
0—A— A(f) s A(fT) S A(f ) —0
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where o(g,h) = g — h.
Proof. 1Tt’s clear that A — A(f) ® A(f~!) is injective and A{f) ® A(f~1) — A(f, f~1) is surjective. We

now need to show the exactness at A{f) @ A(f~!). Now, since
A(f) = AQ/(C— f), AfTY = Alm)/(1~ fn)

which means A(f, f~) = A((,n)/(C— f,1— fn) = A(Ln)/(C— f,1— ) = A(G, 7 /(C— f).
Let g =Y ooga;(' and h = Z;io bn’ with a;,b; € A. Let there exist >~ ¢m’ with ¢; € A s.t.

Zam‘i - ijﬂj =(a—fn) Z em'.
i=0 =0

1=—00

Claim: There exists d € A s.t. d = gmod ({ — f) and d = hmod (1 — fn). It can be assumed that ay = 0.
We have
a;=c_;— feoj_1, 1 2 1;
—bj =Cj — ijfl, j Z 0.

Hence, we have

9= (coi—fei)l = (0= )Y el + feu,
i>1 i>1
and - -
h = Z(fcj—l — ¢’ = feor — (11— fn) chﬂj'
Jj=0 Jj=0
So, we may take d = fc_1. O

Corollary 3.3.9. Let M be a finite module over A and f € A. Take M(f) :== M ®4 A(f), and similarly
define M{f~') and M(f, f~1). We then have an evact sequence

0— M — M(f)® M(f™!) — M(f,f!) —0.

Proof. This follows from 3.3.8 and from the fact that A(f, f~!) is flat over A. O
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Chapter 4

Rigid Spaces

4.1 Grothendieck Topologies

Definition 4.1.1. A Grothendieck topology T comprises of a category CatT and a set Cov¥ of families
(U; — U)ier of maps in CatX, known as coverings, s.t. we have:

(i) If & : U — V is an isomorphism in Cat%, then (®) € Cov¥.

(it) If (Us — U)ser and (Vij — U;)jeg, where i € I are in CovE, then so is the composition (Vi; —
Ui — U)ier jeu,-

(iii) If (Ui — U)ier is in CovT and if V.— U is a map in CatT, then the fiber products U; xy V are in
Cat%, and (U; Xy V. —> V)ier are in Cov¥ .

The elements of Cat ¥, called as admissible open subsets of X, can be thought of as open sets of the new
topology and the maps in Cat ¥ as the inclusions of these open sets. A family (U; — U);¢s of Cov T, called
the admissible coverings, can be seen as the covering of U by U; and a fiber product U; xy V asof U; N V.
Note that we have not talked about the unions of open sets, and even in situations where that makes sense,
we would not require the union of open sets to be open. Now, it can be easily seen that a usual topological
space X is naturally endowed with a Grothendieck topology . Note that we only would only consider the

admissible coverings (U; — U);ec; which really are coverings of U by open sets Us.

The notion of presheaves and sheaves can be naturally generalized to the setup of Grothendieck topology :

Definition 4.1.2. Consider a Grothendieck topology ¥ and a category € that admits cartesian products. A
presheaf on ¥ taking values in € is defined as a contravariant functor F : CatT — €. A presheaf F is

called a sheaf if the sequence

FU)— [[F0) = ] 7 xv U))

el i€l
is exact for any covering (U; — U);er in Cov¥ .
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We will next define a Grothendieck topology ¥ on X and say that X is a G-topological space. We would

take X as an affinoid K-space and assume a topology on X w.r.t. which Ox is in fact a sheaf.

Definition 4.1.3. Consider an affinoid K-space X and the category CatT of affinoid subdomains in X s.t.
the inclusions are morphisms. Also, let CovT be the set of all finite families (U; — U);er of inclusions of

affinoid subdomains of X s.t. U =J,c; Us. Then ¥ is said to be the weak Grothendieck topology on X .

Remark 4.1.1. It’s clear from 2.3.5 and 2.3.15 that every admissible open subset of X is open w.r.t. the
canonical topology. Also, by 2.3.14 if ¢ : 7 — X is an affinoid K-space morphism, ¢~ Y(U) for any
U C X admissible open, is also admissible open in Z. This will referred by saying ¢ is continuous w.r.t. the

Grothendieck topology in question. Also, note by Tate’s result that Ox is actually a sheaf.

We will now canonically extend the this weak topology and include more admissible open sets and admissible
coverings s.t. affinoid K-space morphisms remain continuous and sheaves extend to sheaves in the new

topology.

Definition 4.1.4. Consider an affinoid K-space X. Then the strong Grothendieck topology on X is defined
as:

(1) U in X is called admissible open if we have a covering U = J,c; Us of U by affinoid subdomains U; in X
s.t. all affinoid K-space morphisms o : Z — X for which o(Z) C U the covering (¢~ (U;))ier of Z admits
a refinement that is a finite covering of Z be affinoid subdomains.

(ii) A covering V = UjeJ Vi of some admissible open subset V in X with admissible open sets V; is called
admissible if for any map of affinoid K-spaces p : Z — X s.t. p(Z) C V, the covering (¢~ *(V;))jes of Z

admits a refinement that is a finite covering of Z by affinoid subdomains.

Proposition 4.1.1. Consider an affinoid K-space X. The strong Grothendieck topology is a Grothendieck
topology on X if:

(Go) @ and X are admissible open.

(G1) Consider an admissible covering (U;)icr of an admissible open subset U in X. Also, let V C U s.t.
V N U; is admissible open for every i € I. Then V is admissible open in X.

(G2) Consider a covering (U;)icr of admissible open U C X by admissible open U; in X s.t. (U;)icr admits

an admissible covering of U as refinement. Then (U;)icr is admissible.

Proposition 4.1.2. Let ¢ : Y — X be an affinoid K-space morphism. Then ¢ is continuous w.r.t. the
strong Grothendieck topologies on X and Y.

Proof. Take an admissible open U in X and an admissible covering { = (U;);ecs of U where U,’s are affinoid
subdomains of X. Claim: V = ¢ }(U) is admissible open in Y. Take an affinoid K-space morphism
7:7Z — Y st. 7(Z) C V. Then g o7 sends Z into U and (17 1p~1(U;))ics of Z is refined by a finite
affinoid covering. O

In particular, if U is an affinoid subdomain in X, the strong Grothendieck topology on X restricts to that
on U.
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Proposition 4.1.3. Consider an affinoid K-space X. If f € Ox(X) consider:

U={zeX :|f(z)] <1},
U'={zeX:|f(z)]>1},
U'={zxeX :|f(z)] >0}

Then a finite union of such sets is admissible open and a finite covering by finite unions of such sets is

admissible.

Lemma 4.1.4. Consider an affinoid K-algebra A and

f=Unf) 9=1(91,--.95), h=(h1,.... )

be systems of elements in A s.t. at least one of the following conditions is satisfied by every x € Sp A:
lfo(@)] <1, lgo(x)] > 1, [hr(x)[ > 0.

Then there are o, 3,y € v/|K*| where, « < 1 < 3 s.t. at least one of the following conditions is satisfied by
every x € Sp A
lfo@) <o, go(z)| = B, |hr(z)] = 7.

Corollary 4.1.5. Consider an affinoid K-space X. Then the strong Grothendieck topology on X is finer
than the Zariski topology.

Proof. This is clear as any Zariski open subset of X is a finite union of sets of type U".

Proposition 4.1.6. Consider a Grothendieck topology T on a set X s.t. the three conditions hold. Consider
an admissible covering (X;)icr of X. Then:

(i) U in X is called admissible open iff every U N X; is admissible open fori € I.

(it) A covering (U;)jes of an admissible open U in X is admissible iff (X; NUj) e is an admissible covering
of X;NU for everyi e I.

Proof. (i) follows from (G7). Also, (ii) follows from (G3) as we have admissible coverings (X; N U);e; and
(XiﬂUj)ieLjeJ Of U O

Proposition 4.1.7. Consider a set X and (X;)ier one of its coverings. Consider a Grothendieck topology
T on X;,1 € I s.t. the three conditions are satisfied. Fori € I,j € J, let X; N X; be T;-open (admissible
open w.r.t. T;) in X; and T; and T; restrict in the same Grothendieck topology on X; N X;. Then we have
a unique Grothendieck topology ¥ on X s.t.:

(i) X; is T-open in X and T induces T; on X;.

(ii) T follows the three conditions.

(iii) (X;)ies s a T-covering of X, or, admissible w.r.t. X.

Proof. By 4.1.6, we have a unique way of defining T. U C X is called T-open if X; NU is T;-open for i € 1.

Also, call 8 = (U;);jes, where U; C X are T-open, a T-covering if U|x, = (X; NUj)jes is a T;-covering of

X;NU for every i € I. Then it can be checked that ¥ is a Grothendieck topology . O
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4.2 Sheaves

We will assume that X is a G-topological space in this section. We wish to show that sheaves on the weak
Grothendieck topology on X can be canonically extended to the strong Grothendieck topology . For a
presheaf F on X and z € X, define
Fyp = lim F(U)
€U

as the stalk of 7. Consider a map of presheaves o : F — F’ on X. Then there is a system of maps
oy : F(U) — F'(U) for all U s.t. oy are compatible with the restriction maps of F and F’. This induces
Oy @ Fy — F,, for every z € X.

Definition 4.2.1. let F be a presheaf on X. A sheafification of F is a map F — F' for a sheaf F' s.t.
the next universal property holds:

Every morphism F — G for a sheaf G, factors through F — F' via a unique morphism F' — G.

Here, F’ is said to be the sheaf associated to F. We will now show that this sheafification is always possible.
Assume that F is a presheaf of abelian groups. Thus, methods of Cech cohomology are at our disposal. For
admissible open U in X, let

HI(U, F) =lim HY(4, F), q€N.

Here, the limit is over every admissible covering il of U. Also, partial ordering here is being a subset. This
ordering is directed as, for any such coverings (U;)icr, (V;)jes admit a common admissible refinement, like,
(U; N V)ierjes- On altering U, one obtains the presheaf Hq(X , J) that associates the cohomology group
HY(U, F|y) to the admissible open U C X . For an admissible covering (U;);e; of admissible open U C X,
there is a natural map F(U) — HO(4,F). On altering U, we get F(U) — HO(U,F). This gives us
F — HOX, F).

Proposition 4.2.1. Let F be a presheaf (not necessarily of commutative groups) on X, a G-topological
space.

(i) The presheaf Ft* = ?vlo(X, F) satisfies (S1), i.e. the first property of sheafs. This can be reformulated
as: the natural morphism F*(U) — [,c; F T (Us) is an injection for every admissible covering (U;)ier of
admissible open U in X.

(ii) When Fsatisfies (S1), then FT satisfies (S1) and (Sa) which means F is a sheaf.

(iii) F*+ = HO(X,HO(X, F)) is a sheaf. Furthermore, F — F* — F*+ is a sheafification of F.

Definition 4.2.2. The image of a map o : F — G of abelian sheaves is the sheaf corresponding to the
presheaf U — oy (F(U)) where U is varied as usual. The quotient F/Fo of an abelian sheaf F by subsheaf
Fo is the sheaf corresponding to the presheaf U — F(U)/Fo(U).

Proposition 4.2.2. Consider the Grothendieck topologies € and ' on X s.t.:

(i) ' is finer than T.

(ii) Fvery X' -open U in X admits a T'-covering (U;)ier s.t. U; are T-open in X.

(iii) Every T'-covering of a T-open U in X admits a T-covering as a refinement.

Then every %-sheaf Fon X admits an extension F' as a ¥'-sheaf on X, which is unique up to a natural

isomorphism.
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Proof. Consider presheaf 7' w.r.t. ¥’ on X s.t.

U lim H°(4, F)
1t

where the limit varies over all ¥'-coverings 4 = (U;);er of U containing T-open sets U;. By (ii), F’ is an
extension of F. Since Fis a sheaf, F' is one as well. F’ can be interpreted as the sheaf H°( X</, F). O

Corollary 4.2.3. Consider an affinoid K-space X. Then any sheaf F on X w.r.t. the weak Grothendieck
topology can be uniquely extended w.r.t. the strong one. This holds particularly on F = Ox, which we have

seen in 3.3.7 that it is a sheaf w.r.t. the weak Grothendieck topology .

This extended sheaf on Ox is called the sheaf of rigid analytic functions on X. We denote it by Ox.

4.3 Rigid Spaces

A ringed K-space is a pair (X, Ox) where X is a topological space and Ox a sheaf of K-algebras on it.

Definition 4.3.1. A G-ringed K-space is a pair (X,Ox) where X is a G-topological space. (X,Ox) is
called a locally G-ringed K -space if, additionally, all stalks Ox 5 forz € X are local rings.

A G-ringed K-space morphism (X,0x) — (Y,0y) is a pair (p,¢*) st. ¢ : X — Y is a mor-
phism, continuous w.r.t. the Grothendieck topologies, and where ¢* is a system of K-homomorphisms
0y 2 Oy (V) — Ox(e~Y(V)) with V wvarying over the admissible open subsets of Y. Also, o}, needs

to be compatible with restrictions, i.e. for V' in V, the diagram

*

Pv

Oy(V) Ox (¢~ 1(V))

I

Oy (V) — X 0x (o= (V1))

commutes.
Also, if (X,0x) and (Y,Oy) are locally G-ringed K -spaces, (p,¢*) : (X,0x) — (Y,Oy) is said to be a

map of locally G-ringed K -spaces if the ring homomorphisms
4)0; : OY,«p(oc) - OX,x> € X,

induced from the 3y, are local, i.e. the mazimal ideal of Oy, ) maps into that of Ox 4.

Consider a G-topological space X which has the strong G-topology on it. Also, take the corresponding locally
G-ringed K-space (X, Ox) where Ox is the structure sheaf on X. By 3.1.1, we know that all stalks of Ox
are local rings. Hence, (X,Ox) is a locally G-ringed K-space. Claim: every affinoid K-space morphism
¢ : X — Y induces (¢, ¢*) : (X,0x) — (Y,0y). By 4.1.2, ¢ defines a continuous map of G-topological

spaces. By 2.3.9, for an affinoid subdomain V in Y, ¢ ~1(V) is an affinoid subdomain in X. Hence, ¢ induces
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an affinoid K-algebra morphism ¢fy,) : Oy (V) — Ox (o71(V)). More generally, if V C Y is only admissible
open, take an admissible affinoid covering (V;)ier of V to get ¢}, : Oy (V) — Ox (¢~ 1(V)). This can be
seen using:

oy(V) — [[ov(i) = [] ov(vinVy),
el i,jel
Ox(e'(v) — [Tove ' (vi) == T] ov (e (i) ne™ (%)),
el ij€I
¢y, : O,y — Ox (¢ (V2)),
Py, Owinvy) — Ox (¢~ (Vin V).

Denoting the system of maps ¢}, by ¢*, we have a morphism of locally G-ringed spaces (X, Ox) — (Y, Oy).

Proposition 4.3.1. Consider two affinoid K-spaces X and Y. Then the map from affinoid K-space mor-
phisms X — Y to that of locally G-ringed K -spaces (X, Ox) — (Y, Oy), as described abpve, is a bijection.
Proof.  Associate to any morphism (¢, ¢*) : (X,Ox) — (Y, Oy), the affinoid K-space morphism X — Y
that corresponds to ¢} : Oy (Y) — Ox(X). Then the result follows. O

Definition 4.3.2. A rigid (analytic) K-space is a locally G-ringed K -space (X,Ox) s.t.
(i) the G-topology of X satisfies the three coniditions (Gy), (G1) and (G2)
(ii) There is an admissible covering (X;)ier on X where (X;, Ox

x,;) s an affinoid K -space for alli € I.
A morphism of rigid K-spaces (X,Ox) — (Y,Oy) is one in the sense of locally G-ringed K -spaces.

For admissible open U C X, call (U, Ox|y) (also denoted as U) as an open subspace of (X, Ox). Now, we

construct global rigid K-spaces by gluing the local ones.

Proposition 4.3.2. Let us consider the given information:

(i) rigid K -spaces X;, fori € I, and

(1) open subspaces X;; C X; and ismorphisms p;; : X;; == X,; for i,j € I, and assume:

(a) pij o pji = id, Xs = X5, for everyi,j € 1.

(b) @i; induces isomorphisms ;i + Xij N Xy == X N Xjp s.t. @ijk = ©kji © @ik for every i,j,k € I.
Then X;’s can be glued by identifying X;; with Xj; via ;5 to yield a rigid K-space X admitting (X;)ier
as an admissible covering. In other words, there is a rigid K-space X together with an admissible covering
(X,;)/L‘e] and ismorphisms ; : X; == X; restricting to isomorphisms 1;; @ X;; —> X; N XJ/- s.t. the next
diagram

Yij
Xij ’

X NX;

Vji oo
Xji —— X;NX,

commutes. Moreover, this X is unique up to natural isomorphism.

Proof. For constructing X, we glue the X;’s by identifying ¢;;’s. Or, we say X' = [[,.; X; and for z,y € X’
if ¢;; = y. This is an equivalence relation. Set X as X/ ~. Since X can be covered by X;, by 4.1.7, we have
a unique Grothendieck topology on it s.t. (X;);er is an admissible covering of X. We then construct Ox by

gluing Ox,. If U C U;, Uy, then we identify O, and Ox, using ¢;;. O
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Proposition 4.3.3. Consider rigid K-spaces X,Y and an admissible covering (X;)ier of X. Also, consider
maps of rigid K-spaces p; : X; — Y s.t. @;

xinx; : Xi N X; — Y coincides with p;|x,nx, — Y for
i,7 € 1. Then we have a unique map of rigid K-spaces p : X — Y s.t. p|x, = @; for everyi € I.

Proof. This can be seen using the fact that Ox is a sheaf. O

Corollary 4.3.4. Let X be a rigid K-space and Y an affinoid K-space. Then the natural morphism
Hom(X,Y') — Hom(Oy (Y), Ox (X)), ¢ — ¢y, (4.1)

is bijective.
Definition 4.3.3. A rigid K-space is said to be connected if there are no non-empty admissible open
X1,Xo CX s.t. X1NXy =g and (X1, X2) is an admissible covering of X.

Note that by Tate’s result, an affinoid K-space Sp A is connected iff A cannot be written as a non-trivial

cartesian product of two K-algebras.

We now give the definition for the connected components of a rigid K-space. For z,y € X, we say = ~ y is
there exists connected admissible open Uy, ..., U, C X s.t. s € Uy,y € U, and U;_1NU; # @ fori=1,...,n.

"

Proposition 4.3.5. Consider a rigid K-space X and the relation "~" on it.

(i) “~7is an equivalence.

(ii) For x € X, the equivalence class Z(x) is admissible open in X, and is called the connected component
of X containing x.

(iii) The connected components of X form an admissible covering of X .

4.4 The GAGA-Functor

The aim of this section is to associate a rigid K-space Z'8 to any K-scheme Z of locally finite type. This
is knows as the rigid analytification of Z. We first construct the rigid version of the affine n-space A’%. For
r > 0, let T,,(r) denote the K -algebra of power series >, a,C" for { = ({q,...,C,) s.t. limya,r!?l = 0. So,
T,.(r) contain power series that converge on a closed n-dimensional ball with radius r. For ¢ € K, |c| > 1,
identify " = T,.(|c|?) with Tate algebra K{c"'(y,...,c 'C,). Now,

T, =T ——TM TP - K[
induces inclusions
B" = SpTr(LO) — SpT,(Ll) — SpT,(LQ) — ...

where Sp TT@ is the n-dimensional ball of radius |ct|. By gluing, the union of these balls can be constructed.
The rigid K-space obtained, denoted by A%"® has the admissible covering A%"¢ = [ J°, Sp 7). 1t is called

the rigid analytification of the affine n-space A% .

Lemma 4.4.1. The inclusions
TO 57V 573 5. 5 K[
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induce inclusions
MazT") ¢ MazTV € MazT® C ... C MazK|[(]

s.t. Maz K[C] = U2, MazT.".

Proof. Since Sp Téi) — Sp T,(Liﬂ), the inclusions in the lemma are clear.

Claim: (i) Consider maximal m C K (). Then m’ = m N K[{] is maximal s.t. m = m’K({).

(ii) For maximal m’ C K[(], we have iy € N s.t. m'K(c™"() is maximal in K(c™‘C) = T for every i > ig.

To prove (i), consider the commutative diagram

K[ —— K()

l |

K[]/m" — K(C)/m

where the horizontal morphisms are injective. Since K(C)/m is a finite field over K, it must be true for

K[{]/m’ as well. So, m’ is maximal in K[(]. Now consider the commutative diagram:

K[g/m" —— K(Q)/m'(()

| |

K[g/m" ——— K(()/m

The horizontal maps are surjective since K[| is dense in K () and since finite-dimensional vector spaces are

complete, and hence closed. The lower one is actually bijective by the definition of m’. This implies that the

upper map is also bijective. This implies (i) as we now have that right vertical map is bijective.

For (ii), consider maximal m’ C K[{]. Then KI{]/m’ is finite over K and hence the absolute value is

well-defined. For some ig € N s.t. ¢; € K[(]/m’ have their absolute values satisfy [(;| < |¢|". Hence,

K[{] — K|[{]/w' factors, for i > ig, through T = K{c™) via a unique K-morphism 7 —s K[{]/w’
/

st. ¢ — ZJ The kernel, deonted by m, of this latter map is maximal in Téi) st. mNK[{] =w'.
(i) and (ii) imply that Max K[{] is the union of Max T, O

Let’s consider the Sp K[(]/a, an affine K-scheme of finite type. Here, a C K] is an ideal. We wish to

construct its rigid analytification. We have
T /(@) — T (@) — TP/ (a) — ... — K[{]/a
and the associated sequence of inclusions
Max T /(a) — MaxT" /(a) — MaxT? /(a) — ... — Max K|[(]/a.

By the previous lemms, Max K[(]/a = |J;-, Max T /(a). This union can be made as a rigid K-space by
4.3.2, and is called as the rigid analytification of Spec K[(]/a.

Lemma 4.4.2. Consider an affine K-scheme of finite type Z and a rigid K-space Y. Then the set of maps
of locally G-ringed K-spaces (Y, Oy ) — (Z,0z) corresponds in a bijection to the set of K-homomorphisms
0z(Z) — Oy(Y).

Proof. Using 4.3.4 here, first, let’s assume that Y is affinoid. Let B = Oy (Y) and C = Oz(Z) and consider
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o : C — B, a K-morphism. Taking pre-images of maximal ideals, we get Max B — Max C' — Spec C

and hence, ¢ : Y — Z that is continuous w.r.t. Grothendieck topologies. If f € C and ¢ € K*, we have

c g B
Clr Ble-o(f)™)

where the bottom map is unique since o (f) is invertible in the range. Varying €, we get

g

0z(Z) Oy (Y)

| |

Oz(Zy) Oy (¢~ '(Zy))

where the lower map is unique again. Zy C Z s.t. f is non-trivial. Using the globalization argument with

this, we get a map of ringed K-spaces (¢, ¢*) : (Y,0y) — (Z,0z) s.t. ¢} = o. For injectivity and the

generalization, the argument is readily seen. O

Now, we want to prove that the rigid analytifications do not depend on the constant c € K.

Definition 4.4.1. Consider a K-scheme (Z,0z) of locally finite type. A rigid analytification of (Z,0z) is
a rigid K-space (Z™9, O zriy) along with a map of locally G-ringed K -spaces (i,i*) : (279, O grig) — (Z,0%)
s.t. the following universal property holds:

For a rigid K -space (Y,Oy) and a map of locally G-ringed K -spaces (Y,Oy) — (Z,0z), the latter factors
through a unique map of rigid K-spaces (Y, Oy) — (Z79, 0 zrig).

Proposition 4.4.3. Z™9 give rise to analytifications in the sense of the previous definition.
Proof. Consider an affine K-scheme of fininte type Z = Spec K[{]/a and the corresponding rigid K-space
obtained by Z'& = U Sp Téi)/(a). We have natural morphisms K[(]/a — Téi)/(a) which constitute

Oz(Z) — O(z+is). Using the previous lemma, we get a map of locally G-ringed K-spaces
(i,i*) : (Zrigv OZ“g) I (Zv OZ)

To see that this (7, ") satisfies the universal property, look at a map of locally G-ringed K-spaces (Y, Oy ) —
(Z,0z).

By the previous lemma, this morphism corresponds to a K-morphism o : K[(]/a — B s.t. B = Oy (Y).
Claim: for any ¢ € N sufficiently large, we have K[({]/a — Tr(f)/a — B. Choose i € Ns.t. ¢; € K[(]/a
satisfies [0(C;)|sup < |c[* in B. Then K[{] — B extends uniquely to 7" and the proof follows. O

Proposition 4.4.4. Any K-scheme Z of locally finite type admits an analytification Z™9 — Z. Also, the
underlying map of sets identifies the points of Z™9 with the closed points of Z.

Proof. This holds when Z is affine. In generality, choose a covering of Z by affine open subschemes Z;,i € J.
These elements admit analytifications, say, ;. Then, i; ' (Z;NZ;) — Z; N Z; is an analytification of Z; N Z;.
We can now glue to get Z"¢ and a morphism Z"® — Z. Also, the last assertion follows since the same is

true for the affine open parts of Z. O
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Corollary 4.4.5. Rigid analytifications defines a functor from the category of K-schemes of locally finite
type to the category of rigid K-spaces, called the GAGA-functor.
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Chapter 5

Coherent Sheaves on Rigid Spaces

5.1 Coherent Modules

For X = Sp A and a module M over A, consider the functor F from the affinoid subdomains in X to abelian
groups that associates M ® 4 A’ to any affinoid subdomain Sp A’ in X. Then F is a presheaf on X w.r.t.
the weak G-topology. By 3.3.7, it is seen as a sheaf. By 4.2.2, F is, in fact, a sheaf w.r.t. the strong
G-topology. We say that F is an Ox-module, or, for any admissible open U in X, the abelian group F(U)
has an Ox (U)-module structure, s.t. these structures are compatible with restriction maps. Then, F is
called the module over Ox that is associated to M, the module over A, and F = M ® 4 Ox. Also,

'/__.|X' = (M ®A A/) ®A/ OX‘X’
for the restriction on any affinoid subdomain X’ = Sp A’ in X.

Proposition 5.1.1. Toke an affinoid K-space X = Sp A. Then:
(i) The functor
- 40x: M— M®iq0x

from modules over A to modules over Ox is fully faithful.
(it) It commutes with images, tensor products, kernels, and cokernels.

(iii)) 0 — M' — M — M" — 0 of modules over A is exact iff the corresponding sequence
0—M40x — M®s0x — M"'"®40x — 0.
of Ox-modules is exract.
Proof. As an maps over Ox, M ®4 Ox — M’ ®4 Ox can be determined uniquely by this A-map
M= M40x(X) — M'@40x(X) =M,
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the natural morphism
Hom 4 (M, M') — Home, (M®40x, M'®40x)

is a bijection.
Hence, the functor - ® Ox is fully faithful and (i) is done. Also, by definition, it commutes with tensor
products.
Now, if
0— M —M-—M'—0

is an exact sequence of modules over A, the induced sequence
0— M UA —MeuA — M" @4 A —0

is exact for any affinoid subdomain Sp A’ in X as the associated morphism from A to A’ is flat. Hence, it
takes short exact sequences to the short exact ones. Now, since a module M over A is trivial iff M ® 4 Ox

is trivial, the rest of the parts follow. O
Definition 5.1.1. Consider a rigid K-space X and a module over Ox denoted by F. Then:
(i) F is said to be of finite type if there is some admissible covering (X;)ier of X along with exact sequences

O;HX: —>]:|X7 — 0, 1€1.

(ii) F is said to be of finite presentation if we have some admissible covering (X;)icr of X along with exact

sequences

i
OX

Xi—>0§gxi—>‘7'-xi—>0, i€l

(iii) F is said to be coherent if F is of finite type and if for every admissible open subspace U in X, the
kernel of O%|u — Flu is of finite type.

Remark 5.1.1. If we have a module F over Ox on a rigid K-space X, the it is coherent iff we have an
admissible affinoid covering 4 = (X;)ier of X s.t. Fl|x, corresponds to a finite module over Ox,(X;) for
every i € I. F is said to be U-coherent then.

Theorem 5.1.2. (Kiehl). Consider an affinoid K-space X = Sp A and a module F over Ox. Then F is

coherent iff F corresponds to some finite module over A.

Corollary 5.1.3. Consider a rigid K-space X and a module F over Ox on SX. Then TFAE:

(i) F is coherent, or, F is $-coherent for an admissible affinoid covering ik of X.

(ii) F is th-coherent for every admissible affinoid coverings $ of X.

Proof. Let’s prove that (i) gives (ii). Let F be coherent. Also, let X be affinoid, say X = Sp A. By the

previous theorem, F corresponds to a finite module over A and we are done. The other way is readily seen. [J

For proving 5.1.2, we need the next the couple of lemmas. We will leave them only with the statements here.
Lemma 5.1.4. If F is U-coherent, H' (U, F) = 0.

Lemma 5.1.5. Let H'(L, F) = 0 for every U-coherent Ox-modules F. Then this kind of module corresponds

to some module over A which is finite.
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5.2 Grothendieck Cohomology

We talk about modules over Ox on rigid K-spaces X. Their cohomology is formulated via derived functors.

We consider the section functor
rnz-):rF—IX,F) =FX)

that for an Ox-module F, associates F(X) to it, i.e. the group of its global sections, and, for a rigid K-space

map ¢ : X — Y, the direct image functor
Ox 1 F = @ F
that for an Ox-module F, associates its direct image .. Note that these functors are left exact.

Consider the category of modules over Ox as €.

Definition 5.2.1. F € € is called an injection if the functor Hom (-, F) is exact, or, given

0—& —€—&"—0
in €,
0 — Hom (", F) — Hom (E,F) — Hom (&', F) — 0

is exact for all such short exact sequences.

We now give the next proposition without a proof.

Proposition 5.2.1. The category € of modules over Ox on a rigid K-space X contains enough injectives.
In other words, if F is an onject in the category, we have an injective morphism F — I for some injective

Zekd.

Corollary 5.2.2. Every F in € admits some injective resolution, or, we have an exact sequence
0—F —T1I° —1' — ...

where T8, i =0,1,... are injective objects.
Proof. Consider F «— Z° where ZV is an injective. Also, take embedding Z°/F —— T! into an injective

object Z!, then we have embedding Z' /im Z° < Z2 into some injective Z%, and similarly. O

We define the right derived functors of I' = T'( X, -), the section functor, and of ¢, the direct image functor.

We choose an injectivce resolution

0 1 2
0 — 70 X 7t 2, 712 &,

of Ox-module F. We now get a complex of abelian groups on applying the nfunctor I:

0 — rx,7% " rex, N pex,zz) T
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The cohomology of the complex gives
RIT(X,F) = HY(X,F) =ker['(a?)/im T (a? ).

Here, R1T(X, F) is called the gth cohomology group of X with values in F. It can be shown using homotopies
that these cohomologies are not dependent on the particular resolution. Also, RIT(X,:) = H?(X,") is a
functor on €, called as the gth right-derived functor of I'( X, ), the section functor. As the section functor is
left-exact, we have ROT'(X,-) = T'(X,-). Also, in case of F = Ox, HY(X,F) can be seen as some invariants
of the rigid K-space X.

In the same way, we see ¢.. Using ¢, on the given resolution of F, we have

0 1 2
s . O O
0 — <p*IO i <p*Il A @*22 it

and
R% ¢, (F) = ker g, o/ imp, o4~ !

is a module over Oy, called as the gth direct image of F. We have R? ¢, (F) = p.(F) and R? ¢, (F) is the

sheaf that corresponds to the presheaf
Y OV HY o V), Flo-1v))-
Theorem 5.2.3. Consider an exact sequence
0— F S FEF —0
of objects in €. We then have a corresponding long exact sequence:

0 — oF) 2 oF) B (F

i} Rl (I)(F/) Ri()‘x) Rl @(F) Ri()ﬁ) Rl @(J—_-//)

92, RroF) Y r2o(F) TP R2o(F

12}

When F is a module over Oy, introduce the Cech cohomology groups H9(i, F) for admissible covering
of X. Then ﬁq(X, F) is said to be the gth Cech cohomology group of X taking values in F. We then have

the following theorems:

Theorem 5.2.4. Consider an admissible covering 3 of a rigid K-space and a module F over Ox. Let

HY(U,F) =0 where ¢ > 0 and take a finite intersection of sets in 3 called as U. Then the canonical map
HYU,F) — HIX,F)
is bijective for all g > 0.
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Theorem 5.2.5. Consider an affinoid K-space X. We then get
HY(X,0x) =0 where ¢ > 0.

This is the case for any Ox-module F instead of Ox that corresponds to a module over Ox(X).
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Chapter 6

Adic Rings and Formal Schemes

6.1 Adic Rings

Definition 6.1.1. A ring R which has been endowed with a topology is called a topological ring if the addition

and multiplication maps are continuous from R x R to R.

Consider a commutative ring R which contains identity and take an ideal a C R. Then we have a unique
topology on R s.t. it is a topological ring and the ideals a”, n € N form a basis of nbhds of 0 in R. U C R
is said to be open if for each x € U, we have n € N s.t. x + a™ C U. This is called the a-adic topology on
R. All ideals a™ are open as well as closed in R. A topological ring R is called an adic ring if its topology

coincides with this for an ideal a C R. Finally, this ideal a is called the ideal of definition.

Similarly, an R-module M where R is a topological ring and we have a topology on M is called a topological
module over R if the addition and the multiplication maps are continuous. Also, for a module M over R and
ideal a in R, the a-adic topology on M is defined as: give the a-adic topology on R and the unique topology
on M so that it is a topological R-module, s.t. a™M for n € N form a basis of nbhds. These submodules are

also open and closed in M.

Proposition 6.1.1. Let R be a ring and M a module over R along with a-adic topologies for a C R.
(i) R is separated (i.e. Hausdorff) iff NS>, a™ = 0.
(i) M is separated iff N2> aM = 0.

Proof. N2 ga™ = 0 iff for each € R — {0}, we have n € N s.t. ¢ a”. Since a” is both open and closed

in R, we have (i). (ii) is shown similarly. O

We have the next theorem that follows from standard commutative algebra.

Theorem 6.1.2. (Krull’s Intersection Theorem). Consider a Noetherian ring R and an ideal a in R. Also,
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let M be a finite module over R. We have:

ﬂamM:{mGM:Elrel—i—as.t.rx:()}

n=0

Corollary 6.1.3. Consider a local Noetherian ring R and a mazimal ideal m. Then R is m-adically separated.
This also holds for finitely generated R-modules M.

Lemma 6.1.4. (Artin-Rees). Consider a Noetherian ring R, an ideal a C R, a finite R-module M, and an
R-submodule M’ in M. We then have ng € N s.t.

(@"M)NM' =a"" "™ ((a™M)N M)

for each n > ng.

Proof. Let R, = ®pena™ be a graded ring and M, = ®,ena™M a graded R,-module. As R is Noetherian,
a C R is finitely generated this kind of a system generates R, as an R-algebra when seen as a system
of homogeneous elements with degree as 1. Now, Hilbert’s Basis Theorem implies that R, is Noetherian.
Similarly, M, is Noetherian.

Let M, = a®M N M’ where n € N. Also, let

m
@M,;@ EB a»™ ™ meN,
n=0 n>m

be an ascending sequence of graded submodules of M,. The sequence is stationary since M, is Noetherian.

So, we have m =t € N s.t.

’

M, = a""'M, (6.1)

no

for every n > t. Hence, (a™)M N M’ = a™*((a'M) N M’) for n > t. O

Corollary 6.1.5. Taking the assumptions as in the previous lemma, the a-adic topology of M restricts to
that of M'.
Proof. Since

a"M' C (a"M)NM' and (a"t™M)NM' Ca"M',

the result follows. O

Let R be an integral domain and K be its field of fractions. Then R is said to be a valuation ring if z € R
orz '€ Rforallz € K.

Proposition 6.1.6. Consider a valuation ring R.

(i) Each finitely generated ideal in R is a principal ideal.

(ii) If a,b are elements in R that are ideals, then a is contained in b or vice-versa.

Particularly, R is a local ring.

Proof. Take non-zero a,b in R. Then either ab~! or a='b is in R. So, we get (i). For the next part, let
a ¢ band b ¢ a. We then have some a and b s.t. @« € a — b and b € b — a. Using this, we arrive at a

contradiction and we are done. O
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Let R be a valuation ring. Then R can be seen as a topological ring by having its system of non-trivial ideals
for a basis of nbhds of 0. In that case, R becomes separated except for when it is a field. We now discuss

the valuation rings that are adic.

Proposition 6.1.7. Consider a valuation ring R which isn’t a field. Then TFAE:
(i) R is adic with an ideal of definition that is finitely generated.
(ii) There is a minimal non-zero prime ideal p in R.

When both (i) and (ii) hold, R’s topology coincides with that of the p-adic for any non-zero p € p.

Proof. Claim: For every p € R which is not a unit, rad(p) is a prime ideal in R.

Let a,b € R s.t. ab € rad(p). By the previous proposition, rad(a) C rad(b) can be assumed. Then b|a™ for
some n € N. Now, ab € rad(p) gives a € rad(p). Hence, rad(p) is a prime ideal.

Let (i) be true. Again by the previous result, R’s topology coincides with the p-adic one for non-trivial
p € R. Since any non-trivial ideal in R contains a power of p, any non-trivial prime ideal in R contains
rad(p). But the latter is a prime ideal as has been seen, which means it is minmial as required.

Conversely, let’s assume (ii). Consider non-trivial p € p and a non-trivial ideal a C R. Claim: Some power
of p is contained in a.

Let a be principal, or, a = (a). On comparing rad(p) and rad(a), we see that both are primes. Hence,

rad(p) C rad(a), and we are done. O

We now deal with general adic rings. Let R be that and let a C R be the ideal of definition. Since the a-adic
topology on R does not change on translating, we can define convergence naturally. A sequence x, € R is
said to converge to x € R if for all n € N, we have vy € N s.t. z, —x € a” for every v > vg. In the same
way, T, is said to be a Cauchy sequence if for all n € N, then vy € N s.t. z, — 2, € a” for every v,v" > vg.
We construct a separated completion Rof R by quotienting the ring of all Cauchy sequences in R by the

ideal of all the sequences that converge to zero.

Consider a projective system
.— R/a" — ... — R/a®> — R/a' — 0
with an ideal of definition a of R. Its projective limit

R =1lim R/a"
n
is the (separated) completion of R. Now, the topology on this limit is the coarsest possible one s.t. every
natural projection m,, : R— R/a™ is continuous. Here, we have the discrete topology on R/a™. So, some
subset of R is open iff it’s a union of some fibers of the m,’s and hence, the ideals kerm, C R is a basis of

nbhds of 0 in R. We also have that kerm, is closed in R and that a” is dense in ker ,,. We, in fact, have:

Proposition 6.1.8. If the ideal of definition a C R is finitely generated, alk is the closure of a in R and
hence R is adic with aR as the ideal of definition.
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Now, let’s take that R is complete and separated under its a-adic topology, or, the natural morphism

R — limR/a"

n

is isomorphic. If f € R, call

R(f~") =lim((R/a")[f~"])

n

as the complete localization of R by the multiplicative system generated by f. We have a natural morphism
R — R{f~1). Also,
R[f~'] — (R/a")[f "]

yields a natural morphism R[f~!] — R(f~!) which means img f is invertible in R{f~1).

Proposition 6.1.9. The natural morphism R[f~'] — R(f~') implies that R{f~1) is the adic completion
of R[f~1] w.r.t. the ideal {a) in R[f~']. If a is finitely generated, R{f~1)’s topology coincides with the
aR(f~')-adic one.

Proof. When this exact sequence
0—a"—R—R/a"—0
is tensored with R[f~!] (flat over R), we get this exact sequence:
0 — a"R[f™] — R[f '] — (R/a")[f '] —0

which gives an isomorphism

R[f~1/(a") = (R/a™)[f71].
Hence, R(f~!) = lim R[f~!]/(a") is the aR[f~!]-adic completion of R[f~1]. But then, the topology on the
latter is the aR(f~!)-adic one when a is finitely generated. O

We show another way to describe R(f~!) now. For the R-algebra R(C) of restricted power series, we have
a natural continuous map R(() — R(f~!) s.t. Cis mapped to f~!. Finally, we end the section and state

the next result.

Proposition 6.1.10. The natural morphism R(C) — R(f~1) gives the isomorphism

R(Q)/(1— f0) =5 R(f ).

6.2 Formal Schemes

Locally topologically ringed spaces are called Formal schemes where all rings are viewed as elements in the
category of topological rings. They are constructed out of local affine parts. We now give their definition.

Consider from now onwards that adic rings are both complete and separated. Now, consider some adic ring
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A and ideal of definition a of A. Let Spf A be the set of all open prime ideals p in A. Since p € A, a prime
idea, is open iff a” € p where n € N which means, a € p, we have that Spf A can be naturally associated

with the closed subset Spec A/a in Spec A, for any ideal of definition a.

The Zariski topology on Spec A induces one on Spf A. So
D(f) > A(f~Y) = lim(A/a"[f 1))

defines a presheaf O of topological rings on the category of subsets D(f) in Spf A for f € A, which is a sheaf.
We can extend the sheaf O to the category of all Zariski open subsets of Spf A.

Definition 6.2.1. Let A be an adic ring and a C A is the ideal of definition. Also let X = SpfA and Ox
be the sheaf of topological rings as described in the last paragraph. Then (X,Ox), the locally ringed space,
is said to be the affine formal scheme of A. We still denote it by SpfA.

We run into a subtle issue with this definition. If we have X = SpfA as an affine formal scheme and
V = D(f) C SpfA as basic open for f € A, (V,Ox|v) should be interpreted as the affine formal scheme
Spf A(f~1). However, it’s not necessary that A(f~1) is an adic ring again. But there are no issues when a

is finitely generated because of 6.1.9, since the A(f~1)’s topology coincides with the a-adic one then.

We need to construct Spf A for more general topological rings when we wish to avoid such finiteness condi-
tions. We need that A be admissible in the sense of Grothendieck, or:

(i) A is linearly topologized, i.e. we have a basis of nbhds (I))xea of 0 for ideals A € A. Note that these
ideals are open.

(ii) There is an ideal of definition in A, i.e. we have an open ideal a in A s.t. a™ — 0, i.e., for every nbhd
U C Aof 0, we have n € Ns.t. a™ C U.

(iii) A is both separated and complete.

If A is an admissible ring along with (Ix)xea as a basis of nbhds of 0, the natural morphism A = lim A/,
—2

is a topological isomorphism. To deal with such rings, we replace (a™),en with (I))xea.

Definition 6.2.2. A formal scheme is a locally topologically ringed space (X,Ox) s.t. every x € X admits
an open nbhd U where (U,Ox|y) is in isomorphism with some affine formal scheme SpfA, as we had seen

above.

We construct the global formal schemes by gluing the local ones, as we do usually.

6.3 Algebras of Topologically Finite Type

Consider a (complete and separated) adic ring R and an ideal of definition I C R which is finitely generated.

Assume R have no I-torsion, or, in other words,
(I —torsion)g ={re R : I"r =0 for n € N}
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is the zero set. This condition does not depend on what [ is. Fixing generators g¢i,...,9, € I, observe R
has no I-torsion iff the canonical map
-
R — [ Rlg; "]
i=1

is an injection. Now, we will consider only two kinds of rings:

(V) Ris an adic valuation ring and has its ideal of definition as finitely generated, that is in fact principal by 6.1.6.

(N) Ris a Noetherian adic ring along with an ideal of definition I s.t. R does not have I-torsion.

Proposition 6.3.1. If R is of class (N ), R{C1,...,C,) is Noetherian.
Proof. If we have that R is Noetherian, then so is (R/I)[(1,. .., (y]. The result now readily follows. O

Proposition 6.3.2. R{(i,...,C,) is flat over R.

Proof. Flatness holds iff for every ideal a in R that is finitely generated, the natural morphism a® g M — M
is an injection. If we have that R is an integral domain and also, if each finitely generated ideal is principal
in R, the latter is the same as M not admitting any R-torsion. So, if R belong to the class (V'), the proof is
done by 6.1.6.

When R belongs to class (N), R — R[4, ..., (] is flat since it’s module-free. Also, the morphism from
R[C4,. .., () into its IT-adic completion is flat. This gives the required result. O

We now introduce the analogs of affinoid algebras.

Definition 6.3.1. Let A be a topological R-algebra. Then it’s

(i) of topologically finite type if it is in isomorphism with an R-algebra R((1,...,(,)/a which has the I-adic
topology, a being an ideal in R{(1,..., ).

(ii) of topologically finite presentation if a is finitely generated as well.

(iii) admissible if A has no I-torsion as well.

Theorem 6.3.3. (Raynaud-Gruson). Consider an R-algebra A of topologically finite type and a finite A-
module M that is flat over R. Then M has a finite presentation, or, M is in isomorphism with the cokernel
of an A-linear morphism A" — AS.

Proof. Since A is as given, it is a quotient of some algebra of R((y,..., (). Taking M to be a module over
this ring, let A = R((4,...,Cy,). In the case (IV), we are done since A is Noetherian. In the case (R), choose
t € R that generates an ideal of definition. Then A/tA is an R/(t)-algebra of finite presentation and M /tM

is a finite module over A/tA, flat over R/(t) and also of finite presentation. Take this exact sequence:
0—N—A"— M —0.

All these are A-modules. As M is flat over R, when the sequence is tensored with R/(t) over R, the sequence
stays exact. Now, finite presentation mentioned above implies N/¢N is a finite module over A/tA. Taking
N to be a submodule of A® for A = R((4,..., (), we get that N is a finite module over A, which gives that

M is an A-module and has a finite presentation. O

Corollary 6.3.4. Consider some R-algebra A of topologically finite type. If A has no I-torsion, then A is
of topologically finite presentation.
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Definition 6.3.2. Consider an A-module M. Then it is said to be coherent if M is finitely generated and
if each finite submodule of M 1is of finite presentation. Also, A is said to be a coherent ring if it’s coherent

as a module over itself.

Corollary 6.3.5. Consider some R-algebra A of topologically finite presentation. Then A has to be a

coherent ring. Particularly, any module over A of finite presentation is coherent.

Lemma 6.3.6. Consider an R-algebra A of topologically finite type, a finite module M over a ring A and
a submodule N C M. Then:
(i) If N is saturated, i.e.

Neygt={zeM : IneNs.t.I"z C N}

coincides with N, we have N to be finitely generated.
(ii) The I-adic topology of M restricts to that on N.
Proof. The proof for (i) is straighforward when R is of class (N) and that of (ii) is clear from 6.1.5. Now,
consider a ring R of class (V). M/N admits no I-torsion when N is saturated, which implies N is flat over
R as R is a valuation ring. So, by 6.3.3, M/N has a finite presentation over A. Also, we have an exact

sequence of modules over ring A:
0—K-—F— M/N—0.

Here, we have F' as finite free and K as finite. It can be assumed that F — M/N is factored through M
via a surjection FF — M since M is finitely generated. This map then restricts to a surjective morphism
K — N which implies N is finitely generated. hence, (i) is done.
For (ii), consider Ngy C M, a saturation of N. By (i), it’s finitely generated. So, we have m € N s.t.
I™Ngoy C N and

I'"*"MnANCI'NCI'"MNN

where n € N. This concludes (ii). O

Proposition 6.3.7. Consider an R-algebra of topologically finite type A and also a finite module M over
A. Then M is I-adically complete and separated.

Proof. WLOG substitute A with R{(). So, A is I-adically complete and separated. Then, using 6.3.6 and
taking M as a quotient of a finite cartesian product of A, M is I-adically complete. Now, let m € N5 1" M
and let N = Am C M. By 6.3.6 again, there exists n € Nst. N = I"M NN C IN. We thus have

(1 —s)m = 0 for some s € I. But then, 1 — s is unit in R, so, m = 0. O

Corollary 6.3.8. An R-algebra of topologically finite type is I-adically complete and separated.

Particularly, for A, an R-algebra of topologically finite type, associate it with lim A/I" A. We denote R,, =

R/I™! and A, = A/T""!' = A®R R, where n € N. We use such concepts for modules over R as well.

Proposition 6.3.9. Consider A, an R-algebra that is I-adically complete and separated. We have:

(i) A is of topologically finite type iff Ao is of finite type over Ry.

(ii) A is of topologically finite presentation iff A, is of finite presentation over R, for everyn € N.

Proof. We just show the if ways, as the other ways are trivial. For the rest of the parts, let Ay of finite
type over Ry. We then have a surjective map g : Ro[C] — Ao where { = ({1, ..., (m). Represent ¢g(;) by
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a; € A and define a continuous R-algebra homomorphism ¢ : R({) — A s.t. {; — a;. Then A=imp+ITA
and ¢ is a surjection.

Let a = ker ¢, and take an exact sequence
0—a— RS A—0

where A, is of finite presentation over R,,. By 6.3.6, there exists n € N s.t. an I®*! C Ia, and hence we
have
0 — a/anI"™R(() — R,[(] — A, — 0.

We know a/a N It R(C) which gives us that a/Ia are finitely generated. So we have finitely generated o’
in as.t. a=a’+ Ia. Using limits, we get that a = a’, which implies a is finitely generated. ]

Proposition 6.3.10. Consider a map ¢ : A — B of R-algebras of topologically finite type and let M
be a finite module over B. Then M is a flat (respectively faithfully flat) module over A iff M, is a flat
(respectively faithfully flat) module over A, for every n € N.

Proof. We prove the if part, the other way is easy as base change preserves the flatness. Claim: the natural

morphism a ® 4 M — M is an injection for every finitely generated a in A, which resolves the proof. O

Corollary 6.3.11. Consider an R-algebra A of topologically finite type and f1,..., f. € A be the generators
of the unit ideal. Then the natural morphisms A — A(f;') are flat and A — T, A(fYY s faithfully
flat.

Proof. To prove this, use the previous result along with the results on localization.

Corollary 6.3.12. Let A be an I-adically complete and separated R-algebra and f1, ..., f. € A generate the
unit ideal. Then TFAE:

(i) A is of topologically finite type (respectively finite presentation, respectively admissible).

(ii) A(f;1) is of topologically finite type (respectively finite presentation, respectively admissible) for every i.

6.4 Admissible Formal Schemes

Consider an [-adically complete and separated R-algebra A.

Definition 6.4.1. Consider a formal R-scheme X. Then it is said to be locally of topologically finite type
(respectively locally of topologically finite presentation, respectively admissible) if we have some open affine
covering (Us;)icq of X where U; = SpfA; and A; is an R-algebra of topologically finite type (respectively of
topologically finite presentation, respectively an admissible R-algebra).

Proposition 6.4.1. Consider A an I-adically complete and separated R-algebra. Also, consider X = SpfA
as the associated formal R-scheme. Then TFAE:

(i) X is locally of topologically finite type (respectively locally of topologically finite presentation, respectively
admissible).

(ii) A is of topologically finite type (respectively of topologically finite presentation, respectively admissible)
as R-algebra.
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Proof. This follows directly from 6.3.12.

As in schemes, a formal R-scheme X is said to be of topologically finite type if it is locally of topologically
finite type and quasi-compact. It’s said to be locally of topologically finite presentation if it is locally of

topologically finite presentation, quasi-compact, and quasi-separated.

Consider a formal R-scheme X that is locally of topologically finite type. Also, consider Ox to be its
structure sheaf. Let J C Ox be the I-torsion of Ox s.t. for any open V C X, J(V) contains every section
f € Ox (V) s.t. we have an affine open covering (Vy)xea of V s.t. every f|y, is annihilated by I™ for an n
of the ideal of definition I in R. Now, J is an ideal sheaf in Ox. Also, for an affine open formal subscheme
V C X, say V = Spf A, we have

J(U) = (I —torsion)y ={f €A : I"f=0forne N}

Actually, we get (I — torsion) 4 C J(U), and A/(I — torsion)4 has no I-torsion locally on Spf A because of
6.3.12. Particularly, we can substitute Ox, the structure sheaf, with Ox /7 and restrict X to the support Xaq
of Ox/J. So we now have a formal R-scheme X,q4 that is locally of topologically finite type s.t. its structure
sheaf has no I-torsion. X,q is locally of topologically finite presentation then, by 6.3.4, it is admissible. X.q4
is called the admissible formal R-scheme induced from X. When R is consisting of a complete valuation ring

of height 1, we have the next result:

Proposition 6.4.2. Consider a complete valuation ring R of height 1 and its field of fractions K. Then
the functor A — A®pr K on R-algebras A of topologically finite type gives another one: X — X,y from the
category of formal R-schemes that are locally of topologically finite type, to that of rigid K -spaces.

Here, X, is called the generic fiber of the formal R-scheme X.

Definition 6.4.2. For a rigid K-space Xg, any admissible formal R-scheme X s.t. X,y = Xk is known

as a formal R-model of X .
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Chapter 7

Raynaud’s View on Rigid Spaces

7.1 Coherent Modules

Here, R is either of type (V) or (N), and it has an ideal of definition I that is finitely generated. This means

R is a Noetherian adic ring or an adic valuation ring where the ideal of definition is finitely generated.

Consider an R-algebra of topologically finite type A and the associated formal R-scheme X = SpfA. We

have a functor M — M% associating an @ x-module M2 to any A-module as: set

MA2(Dy) =lim M ®4 A,[f7]
neN
for Dy = D(f) C X, a basic open subset. Here f € A and A,, = A/I""'A. We have a sheaf since lim is

left-exact. We can extend this to every open subset in X. We say that M? is the inverse limit of M/n’s,
induced on X,, = Spec A,, from the A,-modules M,, = M ®4 A,,. When M is a finite A-module, M, the

sheaf has this description:

Proposition 7.1.1. Let X = SpfA be a formal R-scheme of topologically finite type. Then, for every finite
module M over A, the sheaf M® coincides on basic open subsets Dy C X, f €A, with the functor

Dj— M®a A(f71).

Proof. Since A{f~!)is an R-algebra of topologically finite type by 6.4.1, 6.3.7 implies M ® o A(f 1), which is
a finite A(f~1)-module, is I-adically complete and separated. We can see M*(D;) as the I-adic completion
of M @4 A[f~1]. As the latter is dense in M ®4 A(f~1), the result follows. O

Corollary 7.1.2. Consider a formal R-scheme X = SpfA of topologically finite type.
(i) M +— M? from the category of finite modules over A to that of modules over Ox is fully faithful and
exact.

17 (& e 0 opoiLogica nite presentation (wnich means 18 conerent). en [ aad commutes
(ii) Let X be of topologically finite presentation (which A is coherent). Then M r— M2 t
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with the formation of images, tensor products, kernels, and cokernels on the category of coherent modules

over A. Also, this sequence of coherent modules over A
0—P—M-—Q—0
is exact iff the corresponding sequence of modules over Ox
0— P> —M>— Q> —0

is exact.

Definition 7.1.1. Consider a formal R-scheme X and a module F over Ox. Then

(i) F is said to be of finite type if we have an open covering (X;);cs of X along with exact sequences:
O%lx, — Flx, — 0, je
(it) F is said to be of finite presentation if we have an open covering (X;)jes of X along with exact sequences
OYlx; — O — Flx;, — 0, je

(iii) F is said to be coherent if F is of finite type and if for every open subscheme U in X the kernel of any
map O%|v — Flu is of finite type.

In the case of an affine formal R-scheme X = Spf A, the powers O% can be seen as the module (A2 over
Ox corresponding to the module A" over A. Also, by 6.3.4, A is coherent if it is of topologically finite
presentation. We can then conclude from the previous result that kernels and cokernels of maps O% — O%

correspond to finite A-modules.

Proposition 7.1.3. Consider a formal R-scheme X that is locally of topologically finite presentation, and
consider a module F over Ox. Then TFAE:

(i) F is coherent.

(ii) F is of finite presentation.

(iii) We have some open affine covering (X;);es of X s.t. F|x, corresponds to a finite module over Ox,(X;)
for every i € J.

Proof. The first two parts are trivial. Now, for (iii), let F be of finite presentation as in (ii). We need to
consider Xas affine, say X = Spf A where A is an R-algebra that is of topologically finite presentation. Also

take the exact sequence

(A2 — (492 — F —0.

Then, by 7.1.2, (A")» — (A*)? corresponds to A-linear morphism A" — A* and F to its cokernel, which
being a finite module over A, we are done.

Let F satisfy (iii). Claim: F is coherent. To prove this, let X = Spf A where A is of topologically finite
presentation and F is associated to a finite module M over A. Consider an open subscheme U C X. Also, let
¢ : O%|v — Flu be a map of modules over Ox. We let U = X. So, ¢ corresponds to A-linear A* — M.

By 6.3.5, as A is coherent, ker ¢ is of finite type which is the case for the associated module over Ox as well.
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Since the latter coincides with kernel of ¢, the result follows. (]

We now want to know whether coherent modules on affine formal R-schemes X = Spf A are associated to

coherent modules over A, as in schemes or rigid K-spaces. Towards that goal, we see:

Proposition 7.1.4. Let X = SpfA be an affine formal R-scheme of topologically finite presentation. Also,

consider a coherent module F over Ox. Then F is associated to a coherent module M over A.

7.2 Admissible Formal Blowing-Up

Before introducing the definitions, we state a couple of lemmas that will be useful.

Lemma 7.2.1. Consider a module M over A and let m1 € A be not a zero-divisor. Then TFAE:
(i) M s flat over A.
(ii) The torsion

(m — torsion)yy ={x € M : 7"z =0 forn € N}

of m in M is trivial, M/mM is flat over A/mA, and M @4 A[r~"] is flat over Alx—1].

Lemma 7.2.2. (Gabber). Consider R, an adic ring of one of the types (V) and (N). Also, consider an
R-algebra A of topologically finite type and an R-algebra C of finite type. Then C, the I-adic completion of
C, is flat over C.

This concept of coherent modules also applies to ideals in Ox. An ideal A C Ox is said to be open, if it
consists of powers I"Ox, locally on X. Now, consider a formal R-scheme X that is locally of topologically
finite presentation because a coherent open ideal A C Ox is associated on Spf A C X, an affine open part,

to a coherent open ideal a C A.

Definition 7.2.1. Let X be as above. Then the formal R-scheme

Xa = lim Proj (P A? @0, (Ox/I"Ox))
neN d=0

along with the natural projection X 4 — X is called the formal blowing-up of A on X. Such a blowing-up

is said to be an admissible formal blowing-up of X.

Proposition 7.2.3. Admissible formal blowing-up commutes with flat base change.

Proof. WLOG let X = Spf A s.t. A corresponds to a finitely generated open ideal a in A. Then, in X 4, we
can substitute A¢ with a? and R with Ox. Let ¢ : X’ — X be a base change morphism s.t. X’ is assumed
to be affine, say, X’ = Spf A’ where A’ is an R-algebra of topologically finite presentation. Then

oo
X4 xx X' =lim Proj (P o’ ®4 A’ ®r (R/I™)).
neN d=0
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When we have A’ flat over A, a? ®4 A’ and a®A’ are canonically isomorphic, which gives

X4 xx X' = lim Proj (P(ad’)* @r (R/I™))
neN d=0

as the admissible blowing-up of the coherent open ideal AOx: C Ox: on X’. This proof is enough when a
complete adic ring R’ of the two types are used instead of A’. Then IR’ is the ideal of definition of R’. O

Corollary 7.2.4. Let X be as above. Also, let A in Ox be a coherent open ideal. For U C X, an open
formal subscheme, the restriction X4 Xx U of X4 on X to U coincides with the formal blowing-up of the
coherent open ideal Aly C Oy on U.

Let’s now establish a relation between admissible formal blowing-up and scheme theoretic blowing-up.

Proposition 7.2.5. Take X = SpfA as described above. Consider a coherent open ideal A = a® C Ox
that corresponds to a coherent open ideal a in A. Then X 4 is the I-adic completion of the scheme theoretic
blowing-up (Spec A)q of a on Spec A. Or, it is the formal completion of (Spec A)q along its subscheme defined
by IA C A.

Proof. The scheme theoretic blowing up of a on Spec A is

P = Proj (EB a?).
d=0

Also, the I-adic completion of P is

P =lim(P ®g R/I") = lim Proj (P a’ @r R/I")
neN neN d=0

as tensoring with R/I™ over R is compatible with localization. This implies, it coincides with A on X. O

So, when X is admissible, we can give a much precise description of admissible formal blowing-ups.

Proposition 7.2.6. Tuke X = SpfA as usual. Also , consider a coherent open ideal A = a® in Ox that
corresponds to a coherent open ideal a = (fo, ..., fr) in A. We have:
(i) Ideal AOx 4 C Ox a4 is invertible, or, as modules over Ox 4, it’s in local isomorphism with Ox 4.
(i1) Consider the locus U; in X o with AOx 4 generated by f; ,i =0,...,7. Then the U;’s are an open affine
covering of X 4.
(iii) Let

Ci=A<f vj#EN)=AG  JEN/ il — fi 5 # ).
Then the I-torsion of C; coincides with its f;-torsion, and U; = SpfA; is true for A; = C; /(I — torsion)c, .
Proof. We see S =@, a? as graded rings. Then the scheme theoretic blowing-up of a on X = Spec A is

o0
X’ = Proj S = Proj @ad.
d=0
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This admits the canonical open covering X’ = U7_, D, (f;) where D, (f;) is the open set of all homogeneous
prime ideals in S. Here, f; is seen as a homogeneous element with degree as 1 in a' C S and it doesn’t
vanish. Also, D (f;) = SpecSy,), S¢s,) being the homogeneous localization of S by f;.

Also, X 4 is covered by Spfg(fi), the I-adic completions of D (f;) = Spec S(s,). By Gabber’s lemma, S’(fl)
is flat over S(y,) and hence the ideal aS’( £ in 5’( ) is invertible. AOx 4 is hence, an invertible ideal on X 4.
hence, (i) is done.

Now, the restriction of D (f;) to X is U;. We observe U; = SpfS(;,). Hence, (ii) is done. We now need to
verify (iii) for A; = S’(fi). For that, choose (g, ..., (.. We have the natural surjective map

A[Cj 2 7&1] - S(fi) - sz‘? CJ = ;7]

This factors through

éizA[%:j#ﬂzA[cj AN G = f G A,

hence we have an isomorphism
C‘i/(fz — torsion) == Sy,),

as S(y,y admits no fi-torsion. Since a is open, it contains a power of I. So, as aC; is generated by f;, and

(f; — torsion) s C (I — torsion)s

As X is admissible, A, S = &3 ja? and S(s,) have no I-torsions. Hence, we must have the equality:

(fi — torsion) s = (I — torsion)s

i

We consider the I-adic completion C; of C; now. We see that

ci=A<%:jaéz'>=A<cj AN~ f A1),

By Gabber’s lemma, C;, the I-adic completion of C; is flat over it. Hence,

k3

(I —torsion)¢, = (I — torsion)s, ®e, C;
®C~' C’a

(fi — torsion)c, = (f; — torsion)g,

k3

so the torsions coincide. But then
A; = S‘(fi) = A<% : j #1)/I — torsion,
and we are done. O

Corollary 7.2.7. Consider an admissible formal R-scheme X and a coherent open ideal A in Ox. Then
X4, the formal blowing-up of A on X admits no I-torsion and due to 6.3.4, X 4 is again an admissible

formal R-scheme.
Proposition 7.2.8. Consider a formal R-scheme X and a coherent open ideal A in Ox. Then X4 — X
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satisfies this universal property:
Every map ¢ :' Y — X of formal R-schemes, s.t. AQOy is an invertible ideal in Oy uniquely factorizes
through X 4.
Proof. WLOG let X be affine. Let X = SpfA and A correspond to a = (fy,...,fr) C A. Consider
¢:Y — X, a map of formal schemes, s.t. AOy C Oy is invertible. Let Y = Spf B and AQy be generated
by f; for an i. Then AQy corresponds to f;B = aB C B.
Consider ¢* : A — B, a map of R-algebras given by ¢ : Y — X. As aB is invertible, fjfi_1 € B are
well-defined. So, we have a unique homomorphism

A; = A(% 2 j #4)/(fi — torsion) — B

i

which extends ¢p* : A — B s.t. fjf;1 € A; are mapped to the corresponding fractions in B. Now, the
existence is done by Y — X 4. For the uniqueness, every factorization Y — X 4 of ¢ : Y — X takes Y

into U; = Spf A; and we are done. O

Corollary 7.2.9. Consider an admissible formal R-scheme X and the coherent open ideals A,B C Ox on
X. Assume B' = BOx . Then
(X.A)B/ — XA — X

or, composition of the formal blowing-up of B’ on X o with that of A on X is in natural isomorphism to the
formal blowing-up of AB on X.
We now state that the formal blowing-ups are transitive in this manner:

Proposition 7.2.10. Consider an admissible formal R-scheme X that is quasi-compact and quasi-separated.
Also let ¢ : X' — X and ¢’ : X" — X' be formal blowing-ups . Then @ o ¢’ : X" — X is again an

admissible formal blowing-up.
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Chapter 8

Ramification in Local Fields

8.1 Herbrand’s Theorem

If g € Gal(L/K), let if,(g9) = infaeo, val(g(a) — a).
If G=Gal(L/K)and u > —1,let G, ={g € G :ir(g) > u+1}.

If u is a real number s.t. u > —1, G,, denotes the ramification group G;, where 7 is the minimum integer s.t.
1> u. So
s € Gyiffig(s) > u+1.

Take

() _/u dt
4 o (Go:Gy)
Proposition 8.1.1. For allo € G/H,

. 1 )
ig/u(0) = o Z ic(s).
S§—0O
Here, € = ek
Proof. If o =1, we have 400 on both sides, thus we have the result in this case. Assume o # 1. Let x be
an Ok-generator of Oy, and let y be an Ok-generator of O .
So, € “ig/u(0) = vr(o(y) —y), and ig(s) = vp(s(x) — ). On choosing s € G a pre-image of o, the other

pre-images are st and ¢t in H. So, we need to prove:

a=s(y)—y and b= [](st(x) - 2)
teH

generate the same ideal in Oy,
Consider the minimal polynomial f € Ok/[X] of x over an intermediate field K’. So, we have f(X) =
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[I,cn (X —t(x)). Let s(f) be the polynomial that we get by applying s on the coefficients of f. Then

s(X) = [T (X = st(a)).
teH
Since s(y) —y divides all the coefficients of s(f)— f, s(f)(z)— f(x) = s(f)(z) = £bis divisible by a = s(y) —v.
Claim: bla.
Take a polynomial y in x, with coefficients coming from Ok, i.e. y = g(x). Then x is a root of g(X) —y and

the coeflicients of g(X) — y lies in Ok. So, the minimal polynomial f divides it:
9(X) —y = f(X)-h(X), where h € Og[X].
Applying s and substituting = for X, we get

y —s(y) = s()(x) - s(h) (),

and hence b = +s(f)(x) divides a. O

Lemma 8.1.2. ¢ /k(u) = \Gilol Y osec Infig(s),u+1) — 1.

Proof. Assume that 0(u) represents the RHS of the above equation. Observe that it is piecewise-linear,
continuous and is zero at u = 0. If m <u <m+1,st. me€Z, 0'(u) = ﬁHs € G:ig(s) > m+2}. Thus
0 (u) = m, but this equals ¢’(u), so 6 and ¢ coincides. O

Lemma 8.1.3. Let 0 € G/H, and consider the upper bound j(o) of the integers ic(s) as s runs through
the pre-images of o in G. Then
ig/u(o) —1=wr/k(j(o) —1).

Proof. Let s € G have image o and ig(s) = j(o). Also, put m = ig(s). Two cases arise: (a) If t € H is in
Hp—1, ig(t) > m which means ig(st) > m, and hence ig(st) =m. (b) If t € H is not in Hy,—1, ig(t) < m,
and ig(st) = ig(t). So, clubbing the two cases, we get i¢(st) = inf(ig(t), m). Applying 8.1.1, we get

) 1 e

iq/u(0) = Z inf(ig(t), m).

e
L/K' i

Now, ig(t) equals ig(t), and ek equals the cardinality of Hy. Using 8.1.2 on H,

O

Theorem 8.1.4. (Herbrand’s Theorem) If v = ¢k (u) then G,H/H = (G/H),. (Writing in the upper

numbering, it implies that upper numbering stays unchanged on taking quotients.)

Proof. The theorem follows from this observation:
o€ G H/H iff j(0) —1>uiff p(j(0) = 1) > pr/x(u) it ig/u(0) — 1> ¢r/k(u) iff o € (G/H),. U
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8.2 Cyclotomic Extensions of Q,

Proposition 8.2.1. Let K = Q,. For n = p™ we adjoin a primitive nth root of unity ¢ to K and call it
K,. Then

() (K s K] = (p— 1.

(b) We can identify G(K, /K) with G(n), the group of invertible elements in Z/nZ.

(¢) Ky, is a totally ramified extension of K. Also, m = ( — 1 is a uniformizer of K,, and Ok, = Ok|[(].

Proof. It can be easily seen that we can identify G(K, /K) with some subgroup of G(n). Now, since the
cardinality of G(n) is ¢(n) = (p — 1)p™ !, (a) and (b) are equivalent.

Now, let v = ¢?"~1. Since it’s a primitive pth root of unity, u?~* +u?~2 + ...+ 1 = 0 must be true, whence

m—1 m—1

¢p=bp 4 ¢P=2)p +..4+1=0.

Let’s denote LHS by F. Then, 7 is a zero of F(1 4 X). But this is a degree ¢(n) Eisenstein equation since
F(1) = p is the constant term, and since X#(") =0 is the reduction modulo p . It can then be easily seen

that [K,, : K] = ¢(n), and that 7 is a uniformizer of K,,. Also, 7 generates Ok, and hence so does . O

If v € Z such that 0 < v < m, let G(n)” be the subgroup of G(n) that consists of all elements a s.t.
a = 1modp". Also, we can identify G(n)/G(n)" with G(p?), i.e., Gal(Kp»/K). So G(n)” = Gal(K,,/Kp»).

Proposition 8.2.2. The ramification groups G, of Gal(K,/K) are:

Go =G,
G,=G(n)', for1 <u<p-—1,
Gu:G(n)Za fOfpSUSPQ_L

Gy, — G(n)™ = {1}, for p™~ ! <. (8.1)

Proof. Consider a € G(n) that does not equal 1, and the corresponding element s, of G. Consider the

maximum integer v s.t. @ = 1mod p¥. Then we have a € G(n)" and a ¢ G(n)"*1. But,
ic(sa) = vk, (5a(¢) = ¢) = vk, (¢ = () = vk, (77" = 1).
As (P! <u < p* — 1, observe that s, € G, iff v > k. So, G, = G(n)". O
Corollary 8.2.3. The jumps in the filtration (GV) are integers. Furthermore,
G*=Gn)" for 0 <v<m,

and
G' ={1} forv>m,

Proof. Notice that the jumps happen for u = p¥ — 1, where 0 < k < m — 1 (except when p = 2 as 0 isn’t a
jump). Then, it suffices to prove that @L/K(p"' —1) =k where k =0,1,...,m — 1, which is direct.
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8.3 APF Extensions

Consider a local field K and a separable closure K of K. Let L be an extension of K C K. If M is an
extension of K C K, we notice G is the Galois group of K /M.

Let’s first assume L/K is finite. If o is a K-embedding of L in K, we say iz, (0) = mingeo, (vp(oz —z) — 1)
(we agree that if i, (o) = 400 if ¢ is an inclusion). If o is not an inclusion, we can easily see that for any

uniformizer 7 of L, we have:

ir(o) = UL(g —1) ifo acts trivially onkp, (8.2)
T
= —1 otherwise. (8.3)

If for all ¢ > —1, we note ; as the number of K-embeddings o of L in K which satisfies iz, (o) > t, we pose,

for u > 0:
Y ydt
‘PL/K(u):/ L-
o 70

For —1 <u <0, we say ¢y, (u) = u. The function ¢y, is an increasing bijection on [—1, 4-00), continuous

and piecewise linear; we note that 1,k is the inverse function.
Define G* = {0 € G :ip(0) > ¢/ (uw)}.

Definition 8.3.1. The extension L/K is said to be APF (arithmetically profinite), if, for all, u > —1, the
groups GG, is open in Gk (it does not depend on what K is).

If L/K is APF, we pose GY = G N GY% and we define a bijection of [—1,+00), increasing, continuous,

piecewise linear, such that:

Yk (u) = / (G% : GYGY)dv ifu >0,
0

=u if —1<u<0. (8.4)

The extension L/K is said to be strictly APF if:

Y1k (w)

—— Ao A > 0.
(G : G1GY)

lim inf, 4
We notice i(L/K) is the upper bound of i > —1 such as G% G, = Gg. If the extension L/K is in fact, a
totally ramified p-extension (or, if i(L/K) > 0), we pose:

¢L/K(U)

(L/K) Z(L/K)(G(;{:G%GK)
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L/K is therefore strictly APF iff ¢(L/K) > 0. (We observe that i(L/K) and ¢(L/K) do not depend on what
K is).

Proposition 8.3.1. Let M and N be two extensions of K contained in K with M C N. So:

(a) If M/K is finite, N/K is (strictly) APF iff N/M is;

(b) If N/M s finite, N/K is (strictly) APF iff M/K is;

(¢) If N/K is (strictly) APF, M/K is;

(d) If N/K is APF (respectively if N/K is APF and i(N/K) > 0 we have i(M/K) > i(N/K) (respectively
c(M/K) > ¢(N/K))); also if M/K s finite, we have i(N/M) > ¢k (i(N/K)) > i(N/K) (respectively
e(N/M) > e(N/K))

Proof. (a), (b), (c¢) can be shown using:

(GK : GNG}?) = (GK : GMG?{)(GM : (GM ﬂG}L()GN).

(d) If N/K is APF, we have G\ Gy = Gk so GN9) Gy = G from where i(M/K) > i(N/K).
If moreover M/K is finite, we have GEQM/K(Z(N/K))GN = (Gg((N/K) N Grp)Gy = Gy and so i(N/M) >
Yy i (i(N/K)). Since ¢y i (i(N/K)) 2 i(N/K), we have i(N/M) > bk (i(N/K) = i(N/K)).

Suppose that N/K is APF and that ¢(N/K) > 0. For all u/geq0, we have:
uwyacn) = [ (G GhGrdo
and ¥k (u) = [;'(GY% : GXGY%)dv. For all v > 0, we see that:
(G : G{G%) = (G : Gy GR)(GYy : (G N GRHGY)

Vs x (u) Yy i (u) X [M:K]
We then deduce that @GOG < GaTar)

It then follws that ¢(M/K) > ¢(N/K). O

Definition 8.3.2. Let L/K be finite, and let i be a positive rational number. We say that L/ K is elementary
of level i ifG’kGL =Gk and GigeGL =Gy, for all e > 0.

If L/K is elementary of level 4, it is totally ramified and since G% /G% € is a pro-p-group, the degree of L/K
is a power of p. Furthermore, if L/K is Galois, Gal(L/K) is a direct sum of order p cyclic groups.

8.4 Construction of fields X (L)

Consider a separable algebraic extension L of a field K. Denote by &1,k the filtration of ordered set of

finite extensions of K C L. Then, we pose:

Xg(L)* = lm E7,
E€€L/K
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and the image of E'" in E* (if E C E') being Ng/ /.
We denote Xx (L) = Xk (L)*U{0}. If @ € Xk (L), it’s the same as having a family (ap)ges, ,, With ap € E
and NE//E(aE') = Qaf if ECUFE.

We now assume throughout that L is an infinite APF extension of a local field K. Denote Ky (respectively

K,) for the maximal unramified extension (respectively moderately ramified) of K C L.
If a € Xk (L), ve(ag) for E € £,/k, does not depend on E: we pose v(a) = vp(ag).

Theorem 8.4.1. (a) Let a and 3 € Xk (L). Then for all E € £, the Ny jg(ap + Ber) (for E D E)
converges (w.r.t. £,/) to an element yp € E and o+ 8 = (Yr)gee, ,, to an element of Xk (L).

(b) Equipped with the addition and multiplication of v as previously defined, X (L) is a local field of char-
acteristic p and v(Xk(L)*) = Z. The map fr/k is an embedding of local fields kr, of L in Xy (L) and it

induces an isomorphism of ki with the residue field of Xk (L).

Let E” be an extension of E C E’. Then, if (a) holds for E”/E and E’/E", it holds for E'/E as well.

The families of i(L/E) and r(E) for E € £k, are increasing. If (K,),c(n) is the tower of elementary
extensions of L/K, then i(L/K,) = i(K,t1/Kp).

Let a = (ap) € Og(L). If a # 0, we have E € £/, , s.t. ag # 0. For E' € £/, let @g be a pullback of
apr in Opr. Then for E' € £/, vp (ﬁEl) does not depend on E’ and neither on the choice of the pullback.

We pose w(a) = vg(ap:). If a = 0, we pose w(a) = +oo.

Let « € kr. For all E € £k, let xg be the [E : K;]-th root of x, [xg] the multiplicative representative of

rp in Op and [rg] the image of [zg] of Op. Then

([mEDEegL/Kl €O (L)} We pose f(r) = ([IE])EE‘SL/Kl'

Proposition 8.4.2. Ok (L) is a ring of characteristics p. The function x : Ok (L) — NU{+o00} is surjective.
It is an valuation for which Ok (L) is separable and complete. f is an embedding of ki in the ring O (L)

and it induces an isomorphism of ki, with the residue field of O (K).

8.5 A Characterisation of Strictly APF Extensions

Theorem 8.5.1. Consider an infinite, totally wildly ramified extension L/K. Then L/K is strictly APF
iff we have a tower of finite extensions {Ep}n>2 of E1 := K in L where L =\ E,, and a norm-compatible
sequence {mp n>1 where m, is a uniformizer of Ey s.t.:

(a) The degrees qp := [Ent1 : En] are bounded above.

(0) If fn(z) = 2% + ap,q, 2 4+ -+ ap12 + (—1)Pm, € E,[z] is the minimal polynomial of mp11 over
E,,, then the non-constant, non-leading coefficients a, ; of fn satisfy vk (an;) > € for some ¢ > 0, that are

not dependent on either n or 1.
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Furthermore, if L/K is strictly APF, {E,} can be taken as the tower of elementary subextensions and {m,}

as any norm-compatible sequence of uniformizers.

Proposition 8.5.2. Consider a tower of finite extensions Ey,,>o of By := K and also consider their rising
union L = J,~q En. Let ® := ¢, /k and denote o, := sup{x : @, 1(v) = ®,(x)}. Then, L/K will be
APF iff the fol?owz'ng two conditions hold:

(a) We have limy— ooy, = 00. In particular, the pointwise limit ®(x) 1= lim,—oPn(x) exists, and further-
more, on fixing x1, we obtain ®(x) = @,,(x) for every x < x1 and suitable large n.

(b) ®(z) as in (a) is continuous and piecewise linear, and has vertices {(in,bpn)}n>1 where {i,} and {b,}
are unbounded increasing sequences.

If L/K is APF, we have ®(x) = ¢1,/k for ¢r/K-

69



70



Bibliography

Bosch S., Lectures on Formal and Rigid Geometry, Springer 2014.

Tian Y., Introduction to Rigid Geometry (Course Notes).

Bosch S., Algebraic Geometry and Commutative Algebra, Universitext (Springer) 2013.
Berger L., Local Fields (Course Notes).

Wintenberger J.P., Le corps des normes de certaines extensions infinies de corps locaux ; applications,
Annales scientifiques de I’Ecole Normale Superieure, Serie 4, Volume 16 (1983) no. 1, p. 59-89. doi :
10.24033/asens.1440

Bryden C.R., Christopher, D., Jonathan, L., A characterization of strictly APF extensions, Journal de
Theorie des Nombres de Bordeaux. 2016; Vol. 28, No. 2. pp. 417-430.

Serre J.P., Local Fields, Springer, 1979.

71



