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ABSTRACT

Fair pricing of financial instruments is at the heart of market stability. Mispricing
securities can lead traders into suffering massive losses which can indirectly
affect the financial health of markets. It is thus, vital to be able to derive the
fair price of tradable financial instruments as this indirectly leads to optimized
financial portfolios. This thesis aims to present a new approach to quantify the
fair price of an Option contract given the underlying asset data. The models
presented here would be constraint free when contrasted with traditional Option
pricing models. We attempt to achieve the stated goal by leveraging advances in
computational techniques.
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Part 1

GETTING TO KNOW THE BASICS

An attempt is made to lay the groundwork required to understand
the operative parts of the thesis. Starting off with Chapter 1 that
provides the theory behind Option Pricing in sufficient detail, we
move on to Chapters 2 and 3 that aim to get the reader acquainted
with the theory behind decision trees models and neural networks
that were used in this thesis.






PRELIMINARIES :: PART A

"Give me six hours to chop down a tree and I will spend
the first four sharpening the axe.”
— Abraham Lincoln

OVERVIEW The chapter begins with a primer on Options and then briefly
discusses the models using which Options have been traditionally priced. The
chapter ends with a brief discussion on what the thesis aims to achieve.

1.1 UNDERSTANDING OPTIONS

In financial markets there exist a variety of instruments that one can invest
their money in. The most common financial instruments are stocks, bonds,
commodities, derivatives etc. This thesis focuses on Option contracts, a special
class of financial instruments. In order to better understand what Options are, it
is vital to know what derivatives are. Put simply, derivatives are "securities" whose
worth is dependant on the value of an underlying asset. Option contracts too are
built upon the structure of derivatives. In practical terms, an Option is a contract
that gives the holder (of the contract) the right to buy or sell the underlying asset,
at a later time, from the writer (of the contract) at a predetermined price. The
holder of the contract may choose to exercise (or not) the specified right. We go
into more specific details regarding this a later in this chapter. Option contracts
can be of two types as detailed below.

1. Put Options :: Put contracts gives the holder, the right to sell the underlying
asset at the predetermined price.

2. Call Options :: Call contracts give the holder, the right to buy the underlying
asset at the predetermined price.

It is important to clarify that the contracts are valid only within a specified
timeframe. The choice of exercise of the contracts by the holder must be made
within the timeframe. This nuance regarding the timeframe and the exercise of
the contracts leads us to another important distinction in the type of Option
contracts that are available in the markets. Specifically we have two types of
contracts that can be written -

1. American Options :: These contracts can be exercised anytime within the
timeframe specified.

2. European Options :: These contracts can be exercised only at the end of the
timeframe specified.

Much of the
introductory
discussion has been
inspired by
Investopedia

Note that an Option
contract involves 2
parties. A holder and
a writer

The term Options,
when used
henceforth, refers to
European Call
Options
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This thesis primarily focuses on European Call Options and refers to them
as Options. Before we can proceed any further, it is important to define some

Take note of the technical terms that are associated with a general Options contract.
symbols used. They
will be used 1. Strike (K) :: This denotes the predetermined price, at which the underlying

Frequently asset can be brought or sold, as specified in the contract.

2. Spot (S) :: This denotes the current priced of the underlying asset at the
time of writing the contract.

3. Expiry Date (ttm) :: The value of the ttm denotes the "timeframe" of the
contract. Put simply, it is a measure of how long is a given contract valid
for.

4. Premium :: This is the amount of money paid to the writer (of the contract)
by the holder (of the contract), in order to initially acquire an Option.

The terms defined above are the defining characteristics of an Options contract.

At this point, it is natural to wonder "Why exactly are Options even impor-
tant?". Options are frequently used by fund managers and traders to hedge
their risks. In fact, some traders even use Options as a means to speculate the
future state of markets and hold positions in the market at a lessor cost. Op-
tion contracts allow traders to realise massive profits at a fraction of the cost
of the underlying asset. This aspect makes it a very lucrative financial instrument.

1.2 PRICING OPTIONS

As previously stated, the Premium represents the worth of an Options contract.
The value of the Premium can also be understood as the price of an Option
The terms Premium contract. It is also possible to purchase an Option contract from the original
and Price are used  buyer of the contract, but the price paid to acquire it would then depend on
Z’fo;ﬁ“:ﬁgglyoz the current valuation of the contract. It is natural to wonder how exactly is this
Premium calculated. Let us first try to understand the difficulties in determining

the worth of Options.

Commonly traded securities in the market, like Stocks and Bonds derive
their value from the health of the company or the market sector they are based
on. Options on the other hand derive their value based on the price of the
underlying asset (usually stocks) and the anticipated future price of the asset.
This complicated relationship between the value of an Options contract and
the market sector/company is difficult to model. Moreover, the Premium of an
Option contract, can be influenced by factors like the interest rates of bonds,
the duration of the validity of the contract etc. All these factors, while being
dynamic quantities themselves, interact with each other, in a non linear fashion
making it difficult to price an Option contract. To add to this complexity, we need
to factor in the fact that, the writer of the contract, aims to minimize the risk to
him (he seeks to minimize the maximum loss he could suffer), while the holder
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of the contract looks for a deal that maximizes the potential gains. The ideal
scenario for a writer of the contract is to pocket the Premium and pay nothing to
the holder of the contract while the holder desires to earn the maximum possible
payoff and pay the least possible Premium. The intricacies illustrated above make
Option contract valuation a hot topic of research.

Numerous attempts have been made to determine the price of an Option
contract. Some prominent ones include the Black Scholes Merton (BSM) model
and Cox Ross Rubenstein (Binomial) model. The following paragraphs give a
brief summary of both the models.

1.2.1  Black Scholes Merton Model

In 1973, Black and Scholes, published a work on derivatives that considered
instruments like futures, swaps, forwards and Option contracts. The approach
showed that it was possible to obtain a unique price for Options regardless
of the risk of the underlying security. The model was based on a number of
assumptions. We list a few of them here :

1. The value of the underlying asset (eg. stock) is a continuous random
variable.

2. The risky asset does not pay any dividend.

3. The risky asset price follows the dynamics of geometric Brownian motion.

4. The market is arbitrage free.

5. The transactions made in the market are frictionless implying there is no
cost associated with a transaction.

6. The ideal bank has a constant interest rate.

Assumption 1 — 3 are made on the nature of the underlying asset, while

the rest of the assumptions impose conditions on the nature of the markets.

Black-Scholes came up with a partial differential equation that modeled the price
formation dynamics of European Options. The equation is given below without
the derivation -

oV 1 ,.,0°V A%

—t+§(7 S W—rv rsg (1.1)
V  Price of the Option
S Price of the underlying asset

where t  the current date
T the risk free interest rate

o the volatility of the market

The discussion in
this section is
inspired from

www. tinyurl.com/
smtcdh5

A derivation of the
equation can be
found in John Hull’s
book on Options


www.tinyurl.com/smtcdh5
www.tinyurl.com/smtcdh5

We only focus on the
value of the
European Call
Options
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The Black-Scholes formulae is a solution to the above partial differential
equation. For a Call Option we obtain the following;:

V(S,T) = max(0,S — K) (1.2)

where
K Strike price of the Option contract
T the expiry time (maturity) of the Option contract
Note that this is the terminal boundary condition for which the Black Scholes
PDE (1.1) is supposed to be solved. Black Scholes in their paper showed that the
analytical solution for the PDE is :

V(S,t) =N(d7)S — N(dy)Ke "(T-1) (1.3)
where,
1 d 1,2
N(d) = mJ e 2% dx (14)

represents the cdf of the standard Normal distribution and the values of d;
and d; are given by :

d; = e (1.5)
S o
dzzln(f)ﬂ 7)(T t) (1.6)

One could think of the Black Scholes formulae as the probability weighted
sum of what the holder of the contract would get and what the holder would pay
for the contract (a negative value). As mentioned previously, the Black Scholes
model assumes that the market is frictionless. Merton in 1976 extended the
model to account for transaction costs.

LIMITATIONS OF BLACK SCHOLES MERTON MODEL The BSM model makes
assumptions that do not hold in real life scenarios. For example, the assumption
that the price of the underlying asset is a continuous function is far from reality
as price movements seen in the markets are discrete in nature. Moreover, trading
takes place in sessions, not continuously as assumed by the model. Also, note
that the the PDE involves terms like o and r. Both of which are subject to
estimation themselves. The BSM model also assumes that the asset dynamics
are generated by a stationary process, leading to underestimation of extreme
moves in the price dynamics. These deficiencies make it difficult to apply the
BSM model with confidence.
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1.2.2  Binomial Pricing Model

This model was proposed by William Sharpe and was mathematically described
by Cox, Rubenstein and Ross in 1979. * Unlike the BSM model, where the
price dynamics of the underlying asset is assumed to be generated from a
geometric Brownian process, the binomial pricing model assumes that the asset
pricing dynamics follow a binomial distribution. This assumption mitigates the
drawbacks of the continuous pricing assumption made in the BSM model. The
model assumes importance as it shows us a way to do away with closed form
solutions for complicated PDEs as in the BSM model.

The worth of Option contracts in the Binomial Pricing model is evaluated by
following the two step process, which are described in brief below :

1. Generation of the binomial price tree :: An assumption is made that the un-
derlying asset could have only two possible moves (UP or DOWN) at
each discrete time step with a distinct probability for each of the moves.
Simply put, the log return values for each move are taken from a set of
only two constants, one positive, the other negative. A massive price tree is
constructed that allows us to trace the possible paths the asset could take.

2. Finding the Option value at each node of the price tree :: This is done by find-
ing the expected value of the future payoff of the underlying asset after
discounting it by the risk free rate.

The exact equations that detail the pricing mechanism is given in the Appendix.
Because of the way the model is constructed, it can be shown that this variant of
Option valuation is a special case of explicit finite difference method to solve the
Black Scholes PDE 2.

LIMITATIONS OF THE BINOMIAL PRICING MODEL The binomial model
is severely ineffective when asked to value Options that are valid for longer
periods of time. The massive price tree that needs to be built is computationally
expensive too.

1.3 RELATIONSHIP BETWEEN THE STRIKE AND THE SPOT

At this juncture after examining two prominent models used to value Option
contracts, it is important to illustrate the type of Options that can exist depending
on the relationship between the values of the Strike price (K) and the Spot price
(S). We can have :

1. Case I : When K < S. Such Option contracts are called In-the-Money (ITM)
Options

This subsection is inspired from Paul Wilmott’s Book "Wilmott on Quantitative Finance"
2 Georgiadis, Evangelos (2011). "Binomial options pricing has no closed-form solution". Algorithmic
Finance

A brief description of
geometric Brownian
motion and binomial
distribution is given
in the Appendix
section
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2. Case II : When K = S. Such Option contracts are called At-the-Money
(ATM) Options

3. Case III : When K > S. Such Option contracts are called Out-of-the-Money
(OTM) Options

The focus of this thesis is to develop a pricing model for ATM Options. The
methodology proposed in the thesis can be extended to include ITM and OTM
Option contracts too. More regarding this is detailed later in the thesis.

1.4 THESIS ROADMAPT

EXPECTATIONS FROM A MODEL As seen previously, both the BSM model
and the binomial pricing model have their shortcomings. This is primarily due
to the models making few overarching assumptions that do not hold ground in
reality. It is therefore pertinent to realise that models after all are theoretical in
nature. They frequently make assumptions that seek to ignore some practicalities
in order to preserve mathematical rigor. It is therefore highly desirous to come
up with a constraint free approach to price Option contracts.

ROADMAP  After laying the groundwork required to understand Option con-
tracts, the later parts of the thesis attempt to explain the theory behind the
computational algorithms used to achieve the stated objective. The chapters
following that, delve into the specifics of how the market derived price of Option
contracts is obtained by using classification algorithms. The final chapter talks
about the results and gives a brief overview of the future studies that are in
progress.
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"The less I understood of this farrago,
the less I was in a position to judge of its importance”
— R.L Stevenson

OoVERVIEW This chapter attempts to present the basics of the machine learning
techniques used to solve categorization problems. It also gives an overview of
decision trees along with a specific adaptation of such methods (XGBoost).

2.1 THE MACHINE LEARNING AGE

A buzzword these days, Machine learning, strictly speaking is the study of
algorithms and models that allow a computer to perform a specific task without
explicitly outlining the outcome of the task. It is an attempt to make computers
"learn" to perform a task by recognizing patterns in data. Specific examples of
this would be an algorithm that allow computers to recognize if an email is
important or not to the user, based on previously made decisions by the user for
similar emails.

It is important to point out that conventional algorithms can not perform
such tasks as it is almost impossible to design a rule set that covers all possible
use cases for a subjective task like email importance. It is here that Machine
Learning algorithms shine and show their superior inferential power.

The earliest Machine Learning technique was derived from the application of
Bayes Theorem, wherein the probability of an event happening given historical
data was calculated. Thereafter, as research continued into making machines self
sufficient, researchers developed algorithms that could learn "strategies" from
previous mistakes (this forms the basis of modern reinforcement learning). Now
algorithms that could beat the world’s best players in games like chess, and the
Chinese board game Go could be designed. The process of machine learning
could be summarized as, the machine takes in some training data and learns the
objective of the task. This "learning" is achieved by trying to minimize a loss
function. Loss functions are easy to define when contrasted with a subjective
description of a task. For example, we could define a function that calculates
the points lost in a chess match. The objective here is to learn the correct way to
minimize the loss. The "goodness" of the model obtained can be found by testing
the model on data that wasn’t used for training the model and measuring the
accuracy.

THIS 15 YOUR MACHINE LEFRNING SYSTET??

YUP! YoU POUR THE. DATA INTO THIS BiG
PILE OF LINEAR ALGEBRA, THEN (OLLECT
THE ANSLERS ON THE OTHER SIDE.

AT F HE ANGLIERS PRE LIRONG? )

JUST SR THE PILE. UNTIL
THEY START LOOKING RIGHT.

u,i
KNy

A good reference for
the basics of Machine
Learning is the book
"The Elements of
Statistical Learning”
by Hastie et al.
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As research continued in the field of machine learning, sophisticated al-
gorithms began to be developed for specific tasks in areas like forecasting,
categorizing, clustering etc. In fact, broadly speaking, two separate classes of ma-
chine learning algorithms emerged. Supervised and Unsupervised algorithms. The
difference between them being that Unsupervised algorithms can infer pattern in
a data without being explicitly told what to look for.

In this thesis, we bring to focus a particular class of supervised machine
learning algorithm known as decision trees. We build up the concepts from
decision trees to gradient boosting and end with a brief note on XGBoost.

2.2 DECISION TREES

Decision tree algorithms are some of the most versatile machine learning algo-
rithms that are in use. They can be used for both regression as well as classifica-
tion problems. Decision trees seek to mimic the decision making process used by
humans. They let the user see the logic at the base level and allows us to draw
useful inferences at every step of the logic. In the following discussion we focus
on decision trees that are used for classification problems. The reason for doing
so would become clear once chapter 4 is read. Let us first formally try to define
what decision trees are -

Decision Trees are a special kind of flowchart where each node of the flowchart
describes a test on a specific attribute which is determined by a rule that forms the link
between nodes. The ultimate node, or the leaf represents the outcome

Formally, given a feature space X, the classification tree model aims to partition
the feature space into a set of n non overlapping regions (Ry, Rz, ..., Rn).

Is a Person Fit?

Age<307

Yes?/\ No?

Eat'salot Exercisesin
of pizzas?  the morning?

Yes?/\No? Yes?/\mo?

Unfit! Fit Fit Unfit!

Figure 2.1: A representative decision tree
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As an example of how decision trees could look like, the image 2.1 * depicts
a decision tree for a task that seeks to determine if a person is fit or not. While
the given example is trivial, it is important to know how decision trees are
built. There exist a many algorithms that serve the purpose, however we briefly
describe the CART algorithm as an example of how trees are built.

CLASSIFICATION USING CART The CART (Classification and Regression
Trees) algorithm uses the Gini index as a criterion to build tree. Refer figure 2.2
for context.

CART trees are built in a manner that the parent nodes are split to satisfy the
equation -

Goodness of Split = 2P Pr. Y  [P(k|L) — P(k/R)| (2.1)
k=0,1
where
L The left child node
R The right child node
P __ The number of records in the left child node
L - Total number of records
P __ The number of records in the right child node
R - Total number of records
P (k“_) __ The number of class "k" records in the left child node
- Total number of records in the left child node
P(kR) = The number of class "k" records in the right child node
- Total number of records in the left child node

The term Goodness of Split refers to a quantity that determines whether the
node is to be split or not. The goal of CART algorithms is to maximize the value
of the Goodness of Split at each node. The above process is performed repeatedly
till we reach a state where the decision tree ends. The tree is split in a greedy
manner from the top down using binary splits. As can be seen in section 2.4,
algorithms similar to CART find their use in a technique known as XGBoost. >

Parent Node
or
Root Node

Right Child
Node

Figure 2.2: Common terms used in CART trees

1 The image was taken from https://dimensionless.in/building-blocks-of-decision-tree/
2 An example of the above equation in action can be seen at http://ucanalytics.com/blogs/
decision-tree-cart-retail-case-example-part-5/

11

XGBoost is
explained in detail a
bit later in this
chapter


https://dimensionless.in/building-blocks-of-decision-tree/
http://ucanalytics.com/blogs/decision-tree-cart-retail-case-example-part-5/
http://ucanalytics.com/blogs/decision-tree-cart-retail-case-example-part-5/
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A detailed exposition
of Bagging and
Boosting can be

found in the textbook

by Hastie et al.
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2.3 MOVING ON FROM DECISION TREES

While decision trees are relatively easy to understand, they become extremely
difficult to construct when dealing with large amounts of data. Moreover, the
trees are very susceptible to data modifications. Any small addition or deletion to
the data could mean the creating the entire tree again. This is a major limitation
of decision trees making it imperative to further develop the concept of decision
trees.

As research continued into decision trees, methods like Bagging and Boosting
were developed. Bagging basically involved constructing a large number of
decision trees and then choosing the final output as the one given by a majority
of the decision trees that were constructed. This method was again found to be
limited by the same issues that plague a simple decision tree model. However,
bagging made the process of classification a tad bit more robust than a single
decision tree based model.

Then came techniques like Random Forest classifier, which used a small subset
of randomly selected features (the factors that make up a model, one can think
of them as the columns that make up a dataset. Each column is a feature for a
prospective model) from the entire feature set and constructed a large number
of decision trees. This collection of many small decision trees is then subjected
to majority vote on similar lines like Bagging. The technique Random Forest too is
sensitive to dataset modifications as it is after all a technique built upon Bagging,
but is more robust.

It is important to state here that decision trees are what are termed as strong
learners. What this term means is that one could use the output of a decision
tree with a very high degree of reliability. This reliability stems from the fact that
the trees make use of all the data in the dataset to come up with a rule based
system that generates an output. One could say that (in the case of decision
trees) the strength of a learner increases with the increase in the depth of the
tree.

The above described techniques can be described as variants of aggregate
decision tree methods, as multiple trees are constructed and an output is obtained
after applying some rule to the collection of trees. A new take on decision
tree methods came from ensemble techniques like Boosting which involved the
sequential construction of multiple decision trees in a manner that the new
tree builds upon the gains in prediction from the previous tree that was built.
What this means is, aggregate methods construct multiple tress, all of which
are independent from each other, however, ensemble methods construct trees
one after the other taking in the feedback from the previously constructed
collection of trees. Practically speaking, Boosting basically combines a sequence
of weak learners (decision trees with limited depths) such that the errors from
the previous sequence models are minimized. Ensemble techniques are faster
than the aggregate techniques as building weak learners is much easier, faster
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and computationally inexpensive when compared to strong learners. In the
following section we describe a particular class of ensemble method known as
Gradient Boosting Machines (GBM).

2.4 GRADIENT BOOSTED MACHINES

Boosting techniques result in a additive (sequential) tree based model as described
by the following equation -

M M
fx)= ) fm(x)=fo(x)+ Y Omdm(x) (2.2)
m=0 m=1

where f(x) describes the final model, f;(x) is the m™ learner, fo(x) is the
initial guess (the first weak learner), 0., is the weight of the m™ learner and
$m is the base estimator at the m' iteration. Most Boosting algorithms aim to
optimize the values of {¢rn, Om}

Gradient Boosting was introduced by Friedman in 2001. This method basically
constructs an additive model by implementing a gradient descent (implying
that the target outcome for each step is based on the gradient of the errors in
prediction, wrt to the actual values) in the function space. Each new weak learner
takes a step in the direction that minimizes the prediction error. Recall that every
supervised machine learning algorithm "learns" by achieving the objective of
minimizing the loss function (refer the last section of chapter 3 for more about
Loss functions). Assume that we have a loss function defined as below -

Ly, yl) =) (yi—yP)?* vV ieN (2.3)

where, L(y;,y?) is the Loss function, y; is the ith target value and y? is the
predicted i value.

The goal is to minimize the value of this Loss function. We do so by optimizing
the Loss function using gradient descent. Think of it as trying to find the lowest

point in a valley. Gradient descent is used to update the weights of the nodes.

Formally, the algorithm finds the local minimum of a differentiable function as
given below.

Ly, y?) =) (yi—yP)? (2.4)
Ly, yD) =) (yi — (mx; +b))? (2.5)

We replace the value y? by mx; + b where m is the weight (the importance given
to a node) of the xtih node and b is the bias. The gradient is obtained by-

QLW T oy (o,
L'(yby?)[ T ][Z 2xi(yi — (mx; + b))

d(L(yi,u?
w > —2(yi — (mx; +b)

13

It is highly
recommended that
one read the paper by
Friedman
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XGBoost is so
famous that most
entries on Kaggle

use it and achieve a
respectable
submission score.
Improving the score
further depends on
how well can one
engineer the features
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To solve for the gradient, we iterate through our data points using our new
m and b values and compute the partial derivatives. This new gradient tells us
the slope of our loss function at the current iteration and the direction the next
move should be made in order to update the weights. The size of our update is
controlled by the learning rate as follows.

0
Y=yl +ua (2.6)

oy}
where « is the learning rate. Learning rate can be thought of as the speed with
which we change the weights of the learners wrt the loss gradient.

One can interpret the above equation as trying to minimize the residuals
(these are the errors wrt a prediction, refer Hastie et al. for more) to a value as
close to 0 as possible and obtaining predictions that are the closest to the actual
values. GBM can be intuitively understood by thinking of the entire process as
an corrective model that first fits a simple model and then updates itself to a
more complicated one in order to minimize the errors that were obtained in the
simple model fit.

xGBoOST XGBoost is an extension of gradient boosting machines. Developed
by Tiangi Chen in 2016, this variant of the GBM has become the mainstay of
every machine learning scientist. XGBoost primarily became popular because
of its ability to work with almost every type of Loss function. Moreover, the
algorithm can be deployed to solve problems in regression and classification with
ease as it couples some impressive hardware and software optimizations "under
the hood" to achieve a really fast execution speed. XGBoost is available as a
ready to use package in PYTHON, R etc. The most useful feature of the algorithm
is that it comes built in with a cross validation routine that obviates the need to
manually engineer the algorithm to avoid overfitting and bias. XGBoost is also
capable of "learning" the best missing values in a dataset by taking in feedback
from the Loss function behavior during training. The utility value of XGBoost is
so high that machine learning practitioners often give out the advice "When in
doubt, use XGBoost!".



PRELIMINARIES :: PART C

"There are no patents in finance.”

OVERVIEW This chapter aims to build up on the previous chapter by intro-
ducing computational techniques like Deep Learning.

3.1 WHAT IS DEEP LEARNING?

Chapter 2 gives a brief history of machine learning techniques. A big break-
through was obtained when algorithms that aimed to mimic the neural networks
of the human brain were developed. Broadly speaking, one could consider Deep
Learning (DL) algorithms as a subset of the broad class of Machine Learning
algorithms.

Most Deep Learning algorithms are based on a variation of a general neural
net. The figure 3.1 *

output layer
input layer
hidden layer

Figure 3.1: A general Neural Net

Theoretically, DL algorithms can "learn" the discrete representation of any
type of input and output data. The term Deep tries to convey that the algorithms
rely on multiple layers of neurons to extract various facets of information from
the given data. The only limitation to such algorithms is the amount of data that
might be required to achieve the objective. These algorithms are very useful in
their specific applications but tend to be computationally intensive in general.
They often require the dedicated use of a GPU. In the following sections, efforts
are made to explain the exact working of neural networks.

3.2 DEMYSTIFYING DEEP LEARNING

At its core, DL is nothing but a series on encoders or decoders or a combination
of both. Encoders seek to find pattern in data and create abstract interpretations,

1 The figure is taken from Stanford’s CS231 course slides.
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One of the most
useful references for
deep learning is
"Deep Learning” by
Ian Goodfellow
(2016). The book is
freely available
online at www.
deeplearningbook.
org

Deep can also be
understood to refer
to the hidden layers
in 3.1

It is particularly
instructive to look at
the code
implementation of a
neural net along
with the math behind
it
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while decoders seek to create meaningful data from the "learnt” representations.
This chapter focuses on a particular class of neural nets known as Feed Forward
Neural nets (FNNs). It is to be noted here that Neural Networks perform a
specific task based on their architecture, ie. the way the neurons are structures
and arranged in the network. Special architectures exist for tasks like image
classification, object detection etc. More about this can be found in the book by
Ian Goodfellow.

A Feed Forward Neural Net (FNN) is the technical term for neural networks
that do not cycle information through the nodes. The network is unidirection-
al/linear in the sense of learning an input and giving out an output (can be seen
in figure 3.1).

1. Feed Forward Neural Networks
Human Annotated

Input: Network: Output: Ground Truth:
Af D

ew > ense Representation » Prediction [«-|---- Prediction :
numbers Encoder : 1

Figure 3.2: A Feed Forward Net : Function Flow Chart

The image ? 3.2 shows the general function-wise structure of what a FNN
looks like. FNN's are chosen as the preferred architecture for our problem as
they are excellent at constructing mappings from a set of values, referred to as
features, to a categorical variable. FNN’s can be trained to on a sufficiently large
dataset to perform the task optimally.
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Figure 3.3: A general neuron

In order to understand how FNN’s work, it is essential to get to know a
few terms and their significance. Refer figure 3.3. The figure 3 shows a single
neuron from the generalized neural net depicted in figure 3.1. The values x1,x2
are inputs to the neuron. The values wj, w, are the respective weights of the
inputs. The term b in the figure refers to the bias of the neural network. It is very

2 Image credit to MIT DL Basics blog by Lex Fridman. https://medium.com/tensorflow/
mit-deep-learning-basics-introduction-and-overview-with-tensorflow-355bcd26baf0
3 Image credits to Udacity DL Course
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3.2 DEMYSTIFYING DEEP LEARNING

important to note that the job of a neural net is to "learn" the value of the weights
and the bias. Some important terms are explained in the following paragraphs.

WEIGHTS AND BIAS They represent the importance that is given by the neuron
to an input. Initially, the neurons start off with random values for weights. But
as more examples are provided, the weights get adjusted accordingly to reach
an optimum value that lets the network perform the assigned task well. Figure
3.3 illustrates a part labelled the Sum. It basically implies that the value of
wix1 +Ww2x, is computed here. A general input can be represented as ) ; wix;.
This value can be considered analogous to a general linear equation (y = mx +c),
where m is the weight of the neuron.

The bias part of figure 3.3 plays the role of the intercept in this case. One can
finally represent the "sum" part of the figure 3.3 as )} _; wixq + bj.

ACTIVATION FUNCTION  Once the inputs are processed, the inputs are passed
through an activation function. They are the operative part of the neuron (re-
ferred to in figure 3.3 as h) as they are responsible for the output. Some common
examples of activation functions are the siGmoIp function and the TANH function.
Activation functions are responsible for deciding when the neuron would give
out its output. The sigmoid function, represented by-

B 1
1 4ex

is a commonly used activation function.

h(x) h(x) € [0, 1] (3.1)

Building on from the previous paragraphs, the output of a neuron in this
example can be written as -

y=h <Z (wixq + bi) (3-2)
1

A neural net generally comprises of many neurons. The outputs of all the
neurons are combined to give a meaningful output. A simplified way to think of
this would be considering the weights to be either 0 or 1. This would force the
neurons be in wither of the states "on" or "off". The output would then depend
upon whether the input triggers an "off" neuron leading to an "off" as the output
and so on.

LOSS FUNCTIONS Every Machine Learning algorithms needs to have a feed-
back mechanism that tells the algorithm whether the "representations” learnt by
it are correct or not. This feedback mechanism is coded in as the Loss function.
One could think of Loss functions as type of mapping between events and
real values. Depending upon the nature of the problem, one could choose to
maximize or minimize the value of the Loss function. Most machine learning
tasks can be considered as some variants of regression or classification problems.
There exist Loss functions that are specific to the nature of the problem. Some
common Loss functions are listed below-
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1. Regression Loss Functions

a)

b)

Mean Squared Error This is given by the expression -

S yi—yh)?

MSE = .
o (3-3)
Mean Absolute Error is given by the expression -
T oy —yP
MAE = W (3.4)

where y? is the predicted value and y; is the actual value.

2. Classification Loss Functions

a)

b)

Hinge Loss In this Loss function, all categories are assigned a score. The
aim to make sure that the sum of all the correctly predicted categories
should be greater than those incorrectly predicted categories by some
margin (which is usually set as 1).

Loss = Z max(0,s; — sy, +1) (3-5)

where s; is the predicted class and sy, is the actual class.

Cross Entropy This is the most useful Loss function when it comes
to classification problems. It is applied to models that predict the
probability of a class being the final output. For example, if a model
is trained on 3 classes, the output to be considered would be the class
with the highest predicted probability. The cross entropy is given by -

M
Loss =— Y Yo cIn(poc) (3.6)
c=1

where M is the number of classes, y is the binary indicator that signals
if the predicted output is correct or not and p,,c is the probability of
the instance o belonging to the class c.



Part II

EXPERIMENTING WITH DATA

This part details the process in which experiments were conducted. It
begins with a chapter that describes the details behind the processing
of data and follows up with a chapter that describes the rationale
and the methodology of the approaches used to build models.






SETTING THE STAGE

"Be patient, good things take time.”

OoVERVIEW This chapter lays down the methodology in which the objective of
the thesis is achieved.

4.1 OUTLINING THE METHODOLOGY

THE NEED FOR A FRESH APPROACH  As chapter 1 shows, theoretical models
are not enough for a trader as the price quotes obtained using traditional Option
pricing models differ significantly from the market price of the Option contracts.
It is highly desired that a new approach to pricing Options be developed. Chap-
ters 2 and 3 lay the ground for the approach this thesis proposes. We use the
powerful ML and DL algorithms described in order to predict the fair price
of Options by learning the behavior of the market. It makes a lot of sense to
learn the market perceived contract prices instead of trying to create a new
theoretical model from scratch as proposing any model would require it to be
mathematically robust which usually requires making unwanted assumptions.
It is here that we leverage the abundance of financial data and attempt to learn
the market behavior that determines the Option contract prices. Furthermore,
having a data - driven model makes tweaking the inputs to the model much more
easier than any theoretical model on a fundamental level.

HOW DO WE GO ABOUT IT? If we want to build a data-driven model, we must
first obtain data, clean it, process it, feed it to a ML/DL algorithm and study the
results based on which we tweak the strategy used to "learn" the behavior. Now
each of these steps in itself merit a section or a chapter devoted to them. We also
describe in detail the specifics of how the models are set up and evaluated along
with the rationale behind each aspect of constructing a model.

CHAPTER ROADMAP What this chapter does is, it provides a discussion
regarding parts 1,2,4 & 5 as detailed in figure 4.1. We discuss part 3 in the
following chapters as it forms the crux of the thesis.

4.2 DATA COLLECTION

In line with the objective of the thesis, we seek to train a ML/DL model to learn
the market perceived Option contract prices. This would require large amounts
of data. We would need data corresponding to the price quotes of Options market
and the Asset market. Keeping in mind the requirement of large amounts of data,
we need to choose indices on which large volumes of Option contracts are traded.
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). Data Collection

2). Data Cleaning

SETTING THE STAGE

Now as discussed in chapter 1, Option contracts can be based on any sort of
underlying security. NIFTY, an Indian exchange, trades large volumes of Option
contracts on stocks and various indices. Having large volumes is essential as it
is generally correlated with high trader participation which offers us a better
chance to "learn" the market behavior.

Some of the most traded Option contracts on the NIFTY exchange are the
NIFTY50 and BANK NIFTY index based contracts.Some contracts for ex. SBI
Bank, Reliance etc, in the equity segment of the markets are traded in large
quantities too, but we do not consider them in this thesis. We download the
Option contract data (for Call Options) for NIFTY50 and BANK NIFTY for the

3. Feature Extraction V€4S 2014 — 2018 (5 years data) from the contract wise archive section of the

). Category Mapping

5. Model Building

Figure 4.1: Process

NIFTY website. *

A representative cross-section of the downloaded data is presented in figure
4.3. Note that each row of the sample data shown here corresponds to 1 Option
contract. Some of the terms that can be seen in the column headers of the sample
data are self explanatory. The value of ttm is calculated by finding the number
of days between the Date column (this column denotes the date on which the
trade is made) and the Expiry column of the Option contract data (both the days
are included in the computation for ttm). The "Option Type" column gives a
description of the type of contract. Data with "CE" as the entry in the symbol
column, indicates that the data corresponds to European Call Option contracts.

Flowchart A brief description of the rest of the terms is given below-

1. Open/Close : Indicates the first/last price quote respectively (note that here
we compute the volume weighted average of the trades executed in the
first/last half hour of the trading session) at which the Option contract was
purchased on a trading day.

2. High/Low : Indicates the highest/lowest price quotes respectively at which
the Option contract was purchased as during the trading day.

3. LTP : This is the actual last price at which a contract was sold. Most days
the value of LTP equals the value of Close, but some Option contracts are
traded in a short post trading session. This might cause the value of LTP
to differ from the value of Close.

4. Settlement Price : This is the average price at which the Option contract was
traded during the open and close hours of the trading session.

5. Open Interest : This quantity denotes the number of active contracts that
exist in the market. An analogue for Volume of the contract.

Having seen a sample of what the Options data looks like, we present a
sample of the underlying asset data in figure 4.4. Most of the terms would be
familiar to the reader and are self explanatory.

1 The data can be downloaded from the link - https://wwwl.nseindia.com/products/content/

derivatives/equities/historical_fo.htm
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4.3 DATA CLEANING

P I
Option  Sirlke Settle No.of Turnover S ahEn Open Change Underlying

Symbol Date  Explry Open High Low Close LTP Turnover

Type Price Price contracts inLacs '\ o Wt Ol Vaue
NETY s CE 7000 0S5 110 085 100 110 100 2644 855516 - 81950 10750 630165
NETY e nss CE 7050 000 000 000 025 025 140 o 000 - me 0 630185
NETY o sow  CE 6850 000 000 000 275 275 685 o om - 15350 0 630165
NETY o man CE 6900 140 185 130 155 185 155 915 3159485 - 77ezs0 39950 630165
Figure 4.3: Option Data Sample

Date Open High Low Close Shares Traded Turnover (Rs. Cr)
01-Oct-2014 15370.70 15377.60 15270.95 15316.20 20666460 1323.06
07-Oct-2014 1521425 1534460 15157.70 15180.25 20801315 1574.35
06-Oct-2014 1513035 15371.80 1513035 15344.00 19840589 1410.06
09-Oct-2014 1543435 1579565 1543435 15741.20 27780819 1784.65
10-Oct-2014  15603.45 15628.75 1543935 15453.80 24179823 1362.02

Figure 4.4: Asset Data Sample

4.3 DATA CLEANING

Obtaining data is just one part of the entire model building process. While in
most cases, it is the most time consuming part, the financial sector generates
data in large volumes everyday sparing us a lot of trouble in finding reliable
sources of data. However, as important is the collection of the data it is equally
important to closely monitor how the obtained data is processed. Often it is
found that the data obtained contains a lot of missing entries and a decision
is to be made regarding them. Too many missing data points make it difficult
perform any sort of analysis on the data. Often, the rows that contain missing
values are discarded if doing so does not significantly affect the characteristics of
the data. One can check this by computing the column statistics of the raw data
and then computing the same for a dataset that is devoid of any missing entry
containing row. If the column statistics do not change by a significant value, it is
generally safe to proceed ahead with "cleaned" dataset.

The Options price data collected by us contains more than 1.2 crores rows. This
is expected as on each trading day large volumes of Option contracts with various
different Strike values (K) are traded (giving rise to ITM/ATM/OTM type
contracts). We first remove rows that contain settlement data as they generally
are rows that correspond to Option contracts that are expiring (technically have
a ttm of 0). These rows are generally of little use to us as the price of such
contracts on the day of expiry tend to near O values. This is because there is
almost no uncertainty left in the price dynamics of the underlying asset.
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As far as the asset price data is concerned, unlike Option contract data, there
are no dates on which the asset is "settled". Furthermore, using the Index equity
as the underlying security helps us in making a model as the index does not
give out any dividend. This leads to a continuity in the pricing of the Index
based equity.

FILTERING OUT THE ATM OPTIONS To summarize thus far, we have two
datasets, one that contains data corresponding to all possible Options contracts
between 2014 — 2018 and a dataset with the daily price value of the underlying
Index. We now seek to filter out the ATM Option contracts from the raw Option
contracts dataset. It must be specified here that for now we are interested in
Option contracts that are ATM in nature. The method proposed in this thesis can
be extended to other Option contract types.

As was discussed in chapter 1, an ATM contract is the one which satisfies the
relation K = S. However, contracts that are perfectly ATM are rarely observed
in real life. What we see instead are near ATM contracts. The reason for this is
the Strike prices (K) of the contracts have a granularity of 50 points while the
underlying index price movement is granular to 0.01 points. This disparity in
the granularity makes it rare for a situation to arise when the Strike of contract
exactly matches the Spot of the index. To account for this, we create a filtering
algorithm to screen out near ATM contracts from the raw data. A pseudo code
version of the same is given below.

Listing 4.1: Filtering Algorithm
###### Filtering Algorithm ##########
create filtered.dataframe = []

for (row) in dataset:
value = |1 - Strike/Spot|
if (value <= 0.02):
append row to filtered.dataframe
else:
pass
HHHHHRHBHBHBHBHBH B AR AR AR AR AR AR SH

What the above filtering algorithm does is compute the value of p (= |1 — %I),
where p is the filtering parameter, and check if the value (of p) obtained is less than
the predetermined value 0.02. This implies that we seek Option contracts with a
Strike-Spot tolerance of 2%. The value 2% was decided after experiment with
different values of the filtering parameter. Setting 2% as the filtering parameter
gave us just the right amount of data needed for the steps that follow "data
cleaning", while allowing us to retain (to some extent) the rigour of the theoretical
definition of an ATM Option.



4.4 CATEGORY MAPPING

4.4 CATEGORY MAPPING

Refer figure 4.1. Category mapping is the 4'" step in the process flowchart. Step
3 will be covered in detail in the following chapter. For now we assume that we

have generated the feature set. We first briefly describe what feature sets are.

One can think of them as the inputs to a ML/DL algorithm. They are generated
from the raw dataset and basically attempt to present the information contained
in the raw dataset in a more meaningful way. What constitutes a feature set
depends solely on the type of problem being solved.

Assuming that we already have a feature set, It is now important for us to
label the data. Doing so helps create a feedback mechanism for the ML/DL
algorithms through the Loss functions. A natural question that arises at this
point would be "How do we label the price of an Option contract?", as price
quotes are integers, not attributes that can be labelled easily. This can be resolved
by observing the filtered data for ATM Option contracts. One can see that there
exists a very wide range for the price quotes of the contracts. Furthermore, if
we aim to "learn" the market perceived pricing, we cant really use the value of
Option prices directly as the value of the underlying asset does not remain a
constant over the years. In fact the index value has significantly increased. What
this means is that a price quote of 30 Rs. in 2015 does not have the same market
significance as a price quote of 30 Rs. in 2018. What we could however use is the
ratio of the contract price and the Strike price of the contract as it takes care of
the changing nature of both the K and S. Studying the data shows that over the
years, the distribution of the ratios is similar.

From the discussion had so far, we can say that it is better to map the features
of the Option contracts to the ratio of the Close price C and the Strike price K of
the contract than just the Close price of the contract. Refer figure 4.5

parcentage

Figure 4.5: % histogram for NIFTY50

In figure 4.5, the x-axis and y-axis represent the (% x 100) and the number of
observations respectively. The histogram was plotted with the number of bins
set as 50 as after experimenting with different values for the number of bins it
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was found that using 50 bins gave us a segregation where there was just enough
data points per bin and yet have enough number of categories (ie. bins) to make
the model robust.

Once the value of £ x 100 is calculated for each Option, we map the Option
features to its respective "bin". For example, the first bin contains all Option
contracts that have a & x 100 value in the range (0,0.1]. It is important to clarify
here that the bins here are arranged in the intervals given by the expression,
(0.1(n—1),0.1(n)], where n represents the number of bins decided. All the
Option contracts are assigned their respective bin values in this manner by
comparing the value of & x 100 and finding the bin interval in which the value
lies.

ttm atmError percentage repoRate yleld03 yleld1 Target

28.0 1.008089 3.045968 7.75 830 8.293 30
280 1.013538 3.422432 7.75 830 8.293 34
280 1.013048 37173 7.78 830 8.293 a7
28.0 0.986866 1.819211 775 830 8.293 18

Figure 4.6: Cross-section of the Dataset after Category Mapping

Figure 4.6 gives a small subset of one of the Feature sets that is generated.
For now, lets just focus on two of the columns shown. Columns Target and
Percentage. As just discussed, the value of Percentage is calculated for all rows.
The Target column shown how each percentage value is mapped to a bin in
the histogram. Other columns represent some of the features that are used in
the ML/DL algorithms. For the sake of completeness, we give the pseudo code
version of Category Mapping.

Listing 4.2: Category Mapping

#it#######AAA Category Mapping #########

ratio_list = []

for (row) in filtered.dataset:
ratio = (Close_Option)/(Strike_Option) * 100
ratio_list.append(ratio)

plot.hist (ratio, bins = 50)

# We obtain the histogram and the bin boundaries
# Binl = 0-0.1, Bin2 = 0.1-0.2 and so on...

for j in Bins:
for i in ratio_list:
if (i >= Bins_lower_limit) and (Bin_upper_limit > i):
append target = j to feature_set row
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To summarize, what we do in this step is map the features of each Option
contract to its respective bin by computing the value of % and assigning the cor-
responding bin number to it as its label (Target). This helps us in understanding
the predictions of the models.

4.5 MODEL BUILDING

This is the most important section of the entire chapter. What we have done so
far with the datasets is just build up the required background for this section. In
this section we describe how the models are implemented in specific details with
some code snippets to illustrate the point better. Do note that the feature sets
generated as described in chapter 5 are common for the DL and ML models. We
begin by describing the process of model building and then give details about
how a model is evaluated.

The process of model building broadly involves the following steps -

1. Creating the Test Train Set : This involves splitting the feature data set into
two parts, the test and the train dataset. The feature set is usually split in a
80 : 20 ratio.

2. Training the Model : Once a suitable model is selected, ie. a suitable algo-
rithm is identified, the train dataset is fed into it. The model then attempts
to "learn” the intended objective from the training data.

3. Testing : Once the model has "learnt" the objective, it is desirous to deter-
mine how well has the model performed its task. We do so, by testing the
model on a dataset that the model has not been trained on. By testing, it
is implied that the model is fed in the test dataset as the input while the
correct outputs are hidden. The model predictions are then compared with
the correct outputs and a measure is designed to determine how well the
model has "learnt" the objective.

This summarizes the process of model building. We now explain the specifics
of the listed steps.

Step 1 of the process is generally straightforward. Most ML /DL problems
ensure that the test-train data is split randomly to prevent over fitting 2. However,
for the problem being tackled by this thesis, Step 1 would entail splitting the
feature set that has been ordered date-wise in the ratio of 80 : 20, ie. the test data
set contains the first 80% of the data point, while the train data set contains the
rest 20%. This is because our problem does not require any sort of randomized
splitting as it could lead to training a model with future data points, making
no sense for a trading model as a trader has no way to generate the future data

overfitting is when a model that is fit so well to a custom dataset that its predictions fail when
exposed to newer data points
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points. A trader can obtain only the past data points. Furthermore, randomizing
the dataset splitting could lead to the models creating higher order interpolations
between the future of an Option contract and the past leading to an unintended
biasing of the model.

We now look at Step 2 in detail. The next two subsections, describe two
different approaches for Step 2.

4.5.1  Implementing XGBoost

XGBoost or Extreme Gradient Boosting, is a special implementation of the
Gradient Boosting algorithm developed by Tianqi Chen. The algorithm makes
use of a lot of "under the hood" optimizations to make the execution of the
algorithm very fast. The paper 3 by Tianqi Chen details the said optimizations.

XGBoost can be thought of as a modified version of the GBM algorithm that
combines many weak learners to create a strong learner. Implementations of
XGBoost can be found in Python and R easily. Refer figure 4.7. The figure shows
a naive implementation of a XGBoost model. As the code snippet shows, we
tirst create a blank XGBoost classifier model. The model is then trained on the
datasets X_train. The feedback to the model is given via the dataset Y_train.
Here the dataset X and Y contain the features and the corresponding labels
respectively. To put it simply, the dataset X_train contains the feature set section
on which we wish to train the XGBoost classifier model. The dataset Y_train
contains the row wise mapping of each of the feature set rows to Target variable

model = XGBClassifier()

Stime model.fit(X train, Y train)
print(model)

CPU times: user 38.5 s, sys: 56 ms, total: 38.5 s

wall time: 41.3 s

XGBClassifier(base score=0.5, booster='gbtree', colsample bylevel=1,
colsample bynode=1, colsample bytree=1, gamma=6,
learning rate=0.1, max delta step=0, max depth=3,
min child weight=1, missing=None, n estimators=180, n jobs=1,
nthread=None, objective='multi:softprob', random state=@,
reg_alpha=0, reg_lambda=1l, scale pos weight=1, seed=None,
silent=None, subsample=1, verbosity=1)

Figure 4.7: Python Implementation of XGBoost

As can be seen in figure 4.7, the model XGBClassifier contains a lot of function
arguments like booster, gamma, learning_rate etc. These function arguments
are what are termed as model hyperparameters. The model XGBClassifier
shown in the figure is a naive one. Tuning the hyperparameters can help prevent
overfitting, increase the accuracy, speed up the algorithm etc. Each of the hyper-
parameters mentioned, have a range over which they can be set. The process
of tuning the hyperparameters is beyond the scope of this thesis, but has been
done to prevent the overfitting. Refer the Appendix for more details about this.

3 The paper can be found here https://arxiv.org/abs/1603.02754
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4.5.2 Implementing a FNN
Over the last few years, it has become extremely easy to set up neural nets. From
complicated (in terms of neural net architecture) ones like Convolution Neural
Nets (CNN) to relatively simple ones like FNN’s. There exist plenty of packages
in Python and R that make setting up a neural net very easy.

Refer figure 4.8. The figure shows the construction of a very basic FNN with
just T hidden layer. There is a lot to unpack in the figure. We will deal with
everything in a step by step manner. Let us first understand the architecture out
of the way. The Appendix contains some important information regarding the
neural net configurations used.

THE NET STRUCTURE Examine the code snippet. The part that says model is
to be focused on. We first initialize a sequential model by making use of the
keras package in PyrHoN. This implies that neurons are arranged sequentially
in a layer after layer fashion. As shown in the snippet we add neurons to the
initialized model to form 3 layers.
opt=optimizers.Adam(1lr=0.85);
model = keras.models.Sequential()
model.add (keras.layers.Dense(units=128, activation='relu’',input dim=X train.shape[1]))
model.add(keras.layers.Dense(units=64, activation='relu'))
model.add(keras.layers.Dense(units=50, activation='softmax'))
model . summary ()
model.compile(loss='categorical crossentropy’,
optimizer=opt,
metrics=['accuracy'l,)
history=model.fit(X train, Y _train,
batch_size=16,
epochs=45,
verbose=1,
class_weight=class_weights,
validation data=(X test, Y test),
shuffle=True)
Model: "sequential 1"
Layer (type) Output Shape Param #
dense_1 (Dense) (None, 128) 3456
dense_2 (Dense) (None, 64) 8256
dense 3 (Dense) (None, 50) 3250
Total params: 14,962
Trainable params: 14,962
Non-trainable params: ©
Train on 8304 samples, validate on 2076 samples
Epoch 1/45
8304/8304 | ] - 3s 363us/step - loss: 3.9126 - accuracy: 0.0305 - val loss: 3.9618 -

val_accuracy: 0.8289

Figure 4.8: Python (Keras) based implementation of FNN

Each of the layers contain 128,64 and 50 neurons each. To confirm this, we
can look at the output of the code. The terms dense_1 to dense_3 contain the
exact number of neurons specified. As described previously, we are trying to
map the feature set data to 50 bins. This is the reason why the last layer has 50
neurons. If we change the number of bins we are trying to map data to, we would
need to change the network structure, specifically alter the number of neurons
in the last layer. The rationale behind this is that the last layer is structured

Confirm this by
looking at the
Output Shape
column of the output
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in a manner that allows each bin/category to have a neuron dedicated to it.
Activation of that particular neuron would imply that the features are mapped
to the corresponding category.

OPTIMIZER 45 Before even the model was initialized, we set a parameter
called the Optimizer to Adam Optimizer. Recall from chapter 2 that the task of a
ML/DL algorithm is to minimize the Loss function. Optimizer functions help
to do just that. In order to minimize the Loss function, one needs to update the
values of weights and the biases to reach the state with the lowest value of Loss.
The Optimizer is what helps one do that. It basically is a strategy to update the
weights of the FNN after every iteration of training. There are many optimizers
that one can use. Few of the prominent ones are Adam, AdaGrad, AdaDelta,
SGD (Stochastic Gradient Descent) etc. The details of the Optimizer algorithms

Simply put, are beyond the scope of the thesis.
Optimizers are just
different ways to
execute the gradient
descent algorithms

LOSS AND TRAINING As can be seen, the model uses categorical cross-entropy
as the Loss function. The Loss function has been explained in chapter 3. We focus
on the activation functions for each of the layers. The first and the second layers
use an activation function called "ReLu" or "rectified linear unit". A graphical
representation of "ReLu" is given in figure 4.9a

The "ReLu" function can be written as f(x) = max(0,x) and is a commonly
used activation function. The last layer uses the "softmax" or the sigmoid activa-

Refer chapter 3 for tion function.
more about the
sigmoid function flu) = max(0, u)

6 4 2 0 2 4 6
x

(a) ReLu (b) Softmax

TRAINING THE MODEL Neural networks are trained in iterations. The first
iteration starts off with random weights and the next ones take feedback from
the value of the Loss functions and adjust the weights accordingly based on the
scheme prescribed by the Optimizer. The number of iterations during which
the model is trained is termed as epochs. Care must be taken to not set the
value of epochs as too high as it might lead to overfitting the model. The model

4 An excellent resource on Optimizer function is the blog
post that can be found here https://towardsdatascience.com/
types-of-optimization-algorithms-used-in-neural-networks-and-ways-to-optimize-gradient-95ae5d39529f
5 W do not delve into much detail regarding Optimizers as it is beyond the scope of the thesis
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is validated after every epoch to compute the value of training error. One can
consider training error as a metric that describes how well is a model learning
the objective. Note that the validation set is NOT used to adjust the weights of
the neurons in the model. Moving on to the term batch size, its a computational
addition to the FNN algorithm to reduce memory constraints. We wont delve
into the specific details in this thesis.

46 TESTING THE MODEL

Once a model is trained, it is imperative to test the performance of the model by
exposing it to data that it hasn’t been trained on (the test dataset) and study the
predictions. The most common way to evaluate the predictions is to examine the
value of the accuracy metric. It is defined as -

A= % (4.1)
where C; are the number of correct predictions and N is the total number of
prediction. However, using the accuracy metric holds very little value for this
kind of classification problem with a large number of bins. This is because, if we
obtain a model that outputs a prediction close to the actual value of the input,
the accuracy metric would discard the importance of this “flawed" prediction.
We are, however interested in understanding how flawed the prediction is. We
desire a range of values, over which a trader could claim, with some confidence,
to be the market derived fair price of an Option contract. It is therefore imperative
to come up with a metric does a better job than the accuracy metric. We do so
by proposing a metric called the Error Metric (EM). We compute EM as -

i=T
w
EM = <T ZO IC; — Pi|> x 100 (4.2)
1=

where,
w  the binwidth, which is the width of each bin

T  number of terms in the test dataset
Ci the ground truth category value

P; the model predicted category value

The figure 4.9 attempts to visually present the aim of the EM metric. It is possible
to have a model that is able to capture the market perception the Option contract
prices. But a particular prediction is off by a bin or two or more. This might
happen for a lot of Option contracts. The EM metric allows us to gain an insight
into how off the predictions by the model are. It is desired that we have a model
that has the value of EM metric as low as possible. This signals a departure
from the classic approach used in ML models. During the course of building the
models, we aim to minimize the value of the EM metric not maximize the value
of the Accuracy metric. Doing so would help a trader understand the predictions
of the model better.
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There are many types
of scaling methods
available, but it was
found that using
Robust scalar gave
us the best results
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Class Width

L‘ Misclassification Error

Predicted Class

True Class
Figure 4.9: EM visualization

4.7 MISCELLANEOUS DETAILS

This section covers some operation details regarding model building. The fol-
lowing paragraphs can be read independently.

SCALARS A feature set when generated would contain the actual values of the
independent features that are computed. Say for example, one of the features
we consider is the value of Close price of the asset. For our use case, we consider
data spanning over 4 years. The price of the index in the beginning of the data
was in 7000 range and moved up to 11000 range by the end. This could bias
the model to recognizing towards the lower or higher data ranges. This is very
possible in the DL approach as the neurons are sensitive to the scale of the data
being fed to it. In order to reduce the chances of such kinds of bias, we scale the
data using the Robust Scalar method. This is basically scaling each data point as
per the equation given below-

o Qi)
Q) —Qi(x)
where

X; the new value of the it" observation

(4-3)

xi the old value of the it observation

Q; the value of the ith Quartile range of the entire data column
The term Q; is basically the value of the feature at the it" percentile of the
data column (represented as x without any label). The scalar is applied to every
column in the feature set leading to the values in all the columns being scaled
appropriately.

ONE HOT ENCODERS This is an operational aspect of presenting data to DL
algorithms. What one hot encoding does is create a tuple and uses the 1 —0
representation to indicate the class value. For example, if we had a three class
classification problem and we wanted to represent the second class, one hot
encoding would give an output of [0 1 0] for an input of 2.



4.7 MISCELLANEOUS DETAILS

UNDERSTANDING TRAINING Refer figure 4.8. In the output section of the
figure terms like loss, accuracy, val_loss, val_accuracy have been mentioned. The
quantities with the suffix "val" are computed on the test data set. Note that
during validation, the model weight are NOT changed. The values of all the
quantities mentioned are calculated every iteration or epoch of the training period.
It is very instructive to plot the values of the losses (loss and val_loss) vs. the
number of epochs. Doing so will help in understanding the progress of the
training process for the model. It also gives us an indication of whether the
model is being over fit or not. We don’t explain the detailed interpretation of the
figure 4.10a, but a good resource on this can be found at the link in the footnote
6. The figure can also be used to estimate the correct number of epochs that are
needed to train a model without overfitting it. Refer the link mentioned above
for more.

CLASSIFICATION REPORTS  Along with the accuracy and EM metric, one par-
ticularly useful tool is the classification report. Figure 4.10b shows a sample
classification report for a model. What it basically does is breakdown the predic-
tion of the model for each class. Using the value of F1 scores could help us in
figuring out if a model is performing well across all classes.

model loss

—— tain
375 test

H 100 precision recall fl-score support
275 0.0 0.38 0.28 .32 39
1.0 0.41 0.38 0.40 45
250 i\\“‘i“*‘xﬁiikh_ 2.0 0.27 0.75 .40 53
2as 3.0 0.00 0.00 0.00 44
4.0 0.13 0.42 .20 45
’ . o “ 5.9 0.25 0.02 0.03 63

(a) Loss Plot (b) Classification Report

A brief explanation of the terms in figure 4.10b is given below.

A. Precision : This is the measure corresponding to how many predictions

were correct. Mathematically given by Precision = %JFFP

B. Recall : This measure gives us a sense of how well the model was able to

catch the positive cases. Mathematically given by Recall = %

c. F1 score : This measure combines the values of Precision and Recall to

give us an indication of how many positive predictions were correct.
2 x (Precision x Recall)
Recall+Precision

Mathematically given by F1 =

D. Support : It gives the number of predictions made in every class.

Note that here TP, FP, FN mean true positives, false positives and false nega-
tives repsectively.

7732/2
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6 https://forums.fast.ai/t/determining-when-you-are-overfitting-underfitting-or-just-right/
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DESCRIBING VARIOUS APPROACHES

"Stay committed to your decisions,
but stay flexible in your approach.”
— Tony Robins

OoVERVIEW This chapter describes three different approaches to build the
feature sets that are required to build a predictive model. This chapter completes
the feature generation step left for later in chapter 4.

5.1 APPROACHT :: USING THE ORDER STATISTICS OF TIME SERIES

As explained in chapter 1 the pricing of an Options contract is largely dependent
upon the nature of the underlying security. If a newly minted trader was told this
and asked to build a predictive model based on this statement, it would seem

natural to him that the model should focus on the underlying asset time series.

From the perspective of a trader, he’d be aware of the inputs to a Black-Scholes
based pricing model, which are the following, K,S,r and ttm. The value of K
(the Strike Price), S (the Spot) and the ttm is readily available from the Option
contract itself. The closest real world approximate would be the government
bonds yield or the central bank interest rates. .

From the parameters that are available to the trader, the most important
determinant of the value of the Option contract would be the past value of the
underlying security and the price dynamics it has been following over the past
few days. The trader would want to come up with a feature set that is majorly
drawn from the past Spot (S) values. Directly using the Spot prices would make
the values scale dependent. This problem is especially pertinent when features

are computed across years. It is then much better to use the value of returns.

The "return" of a time series is defined as -

ATy =Ty —Ti (5.1)

where, T; is the ith term of a time series. The expression gives us the value of
the simple returns. Simple returns too are scale dependent. However, a trader
could do better by detrending the time series . Detrending of a series can be done

1 All these terms have been defined in Chapter 1
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This corresponds to
approximately a
month including all
the Sundays and
holidays

Note that 20 time
series observations
would result in 19

log return values

DESCRIBING VARIOUS APPROACHES

by computing the log return values as shown in the expression below. 2

BuogT = 10g[Ty) ~log(Ty_1) = log - 52)

One advantage of computing the log returns is that it renders the quantity

dimensionless, making it a robust quantity to add in the feature set. The returns

series can be computed for an ad-hoc number of days. It is important to set a

limit. We set a limit of 20 trading days. Simply put, the fictional trader would

compute the log returns for the 20 trading days and obtain 19 log return values
to be used as features.

At this point, the trader could use the asset log returns to compute specific
features like the mean, the standard deviation, etc. But, the trader instead chooses
to do the following. He adopts an extremely naive approach of letting the model
compute the features. What this means is, the trader constructs an empirical
cumulative function (the Order Statistics) from the obtained log returns and feeds
it into the model as the input. He then lets the model compute the required
moments from the obtained Order Statistics. Let us explain the rationale this
step a bit more.

The quantities mean and the standard deviation are the first and second mo-
ments of the Order Statistics of the log returns. Computing only those and using
them as features, would mean that we are ignoring the possible contribution
of higher order moments to the accuracy of the model. It might so happen,
that those values be actually very important in letting the model determine the
market perceived price. In order to avoid excluding the higher order moments,
its better to supply the model with the Order Statistics of the log returns.

COMPUTING THE ORDER STATISTICS The Order Statistics is computed by
simply arranging the log returns in either ascending or descending order. For-
mally stated, given n observations, (x1,x2,X3 ... ,Xn), we can arrange them in
order as Xig) Xi g, X, ...and so on. where Xig) denotes the lowest amongst the
n values. The final output we get obeys the relation - x;,, < xi,, 5 S

- < Xp - The ith order statistics in this out is the ith term of the series. To
firmly put the point across, we take a small example. Say we have the following
observations - (3,6, 1,2). The order statistics of the the observations would be
(1,2,3,6), with 3 being the third order statistic.

7 Xioyr Xi

< X4

WHAT DOES THE FEATURE SET LOOK LIKE From the preceding discussions,
the features that the naive trader chooses are -

1. The 19 log return order statistics.

2. ttm values for each Option contract.

The book on Time Series Analysis by Box, Jenkins et al. gives a comprehensive argument in favour
of detrending in the chapter on ARIMA processes.



5.2 APPROACH II :: EXAMINING THE ASSET TIME SERIES CLOSELY

3. T, the interest rate : Note that we use the 1 year sovereign bond yield rates
as an approximation for the risk free interest rates.

4. atmError : This quantity, computed as atmError = % (the value of Spot on
the day of purchasing the contract), gives an indication of how far from
the theoretical definition of an ATM Option is the current contract.

The features 2 — 4 are constant for all the other approaches that will be
discussed in the following sections. The focus of this approach was the rationale
behind finding the order statistics of the log returns.

5.2 APPROACH II :: EXAMINING THE ASSET TIME SERIES CLOSELY

In this approach, the trader decides to get more sophisticated in his analysis of

the asset time series after using a very naive Order Statistics based approach.

He takes a look at figure 5.1 and realises that the available asset data is not
only limited to the "Close" values of the asset. A lot more information can be
gleaned by taking into account the values of "High", "Low" and "Open" along
with the values of "Close". The rationale behind this being adding more asset
data information would only help the model understand the dynamics of the
asset better. This approach can then be reduced to a problem involving 4 time
series.

Open High Low Close

10861.70 10923.60 10807.10 10910.10
10868.85 10895.35 10735.05 10792.50
10796.60 10814.05 10661.25% 10672.25
10699.70 10741.05 10628.65 10727.35

10804.85 10835.85 1075015 10771.80
Figure 5.1: Cross section of an Asset Time Series

It is natural to consider extending the approach taken in the previous section
and feeding in the Order Statistics of each of the time series as an input to the
model. But that would give us about 19 x 4 = 76 features. It is cumbersome to
feed in that many features to the model . It would also increase the time taken
by the models to train. This limitation, makes extending Approach I to problems
with multiple time series very inefficient.

The trader, then decides to do the following. He first computes the log returns
of all the series. He then computes the means for each of the log returns series.
In addition to the means, he also computes the co-variance values of all possible
pairs.

Formally put, the trader does the following -

A. Compute the log returns of all 4 series.
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Combining Series

Figure 5.2: Pairwise series combinations to compute the co-variances

B. Find the respective p;’s.
c. Compute the covariance matrix for the 4 series.

a) Obtain the 4 x 4 matrix -

Covi1 COVy2 COVi3z COViyg

COV21 COV22 COV23 COV)4
cov =

COv31 COV32 COV33 COV3yg

COV41 COV42 COV43 COVg4

where

N
1
COVxy = N_1 E (i — 1x)(Yi — ”y)
i=0

here, x and y denote two separate series and covy, represents the
Y Y
pairwise covariance of the series x and y)

b) Consider the values in the Lower Triangular half of the covariance
matrix. These values are directly used as features.

The feature set for this approach is then given by -

1. The 14 (= 4 series mean(s) and + 10 pairwise covariances ) statistical quan-
tities mentioned above.

2. ttm values for each Option contract.
3. T, the interest rate : The 1 year sovereign bond yield rates

4. atmError

5.3 APPROACH III :: INCLUDING THE OPTION TIME SERIES

Having implemented Approach II, the trader now realises that it is possible
to use the Option time series itself as an input to the model. A snapshot of the
Option Time Series is given in figure 4.3. As can be seen, the Option contract data
contains many time series. Using an extension of Approach I or even Approach



5.3 APPROACH III :: INCLUDING THE OPTION TIME SERIES

II would be unpractical. (Approach I would lead to an extremely large feature
set, while Approach II would result in a feature set that contains more than 40
features.) It is important that we choose our features wisely. Through many
iterations of feature engineering, it was found that the most useful feature that
actually added value to the process of model generation was the ratio of previous
"Close" (of the contract) by the "Strike" of the Option contract. It is very important
to state here that this ratio is very different from the quantity atmError described
previously. The term atmError used the value of the Spot (obtained from Asset
data) and Strike (obtained from Option contract). The newly defined ration
uses the value of Close and Strike, both of which are obtained from the Option
contract data.

In order to understand the rationale behind this, note that there exists a very
complex relationship between past Option contract prices and the past asset price
dynamics. Including the previous day’s contract price would help us account for

any auto-regressive feature that might be present in the Option price dynamics.

Simply put, Approaches I and 1I aimed at trying to find an association between
the asset price dynamics and the market perceived price of the contracts. In
Approach 111 we knowingly include a member of a time series that we are trying to
predict. This key addition makes it possible to factor in all the previously present
uncertainties in the asset price dynamics by using the previously determined
market price of the contract.

To summarize, when compared to Approach II, the only addition in Approach
I11 is the addition of a feature computed as the ratio of previous Option contract
"Close" and the Option Strike price. Table 5.1 gives a quick summary cum
comparison of the different feature sets generated.

Feature sets at a glance

Approach | Approach I1 Approach 11
Order Statistics u of log returns
ttm Pairwise covariance Approach II Features
Interest rate ttm
atmError Interest rate Ratio of C/K
atmError
22 features 17 features 18 features

Table 5.1: Comparison of Feature Sets
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THE RESULTS

"Realists do not fear the results of their study.”
— Dostoevsky

ovERVIEW This chapter presents the results along with the inferences drawn
from those results.

6.1 RESULTS

The approaches described in Chapter 5 are applied to the NIFTY50 dataset. The
table 6.1, presents the EM values of all the three approaches when the models
are trained on the NIFTY50 dataset.

Experiment Type M

EM EM

Approach I 27.06 23.46

Approach 11 28.27 20.91

Approach III ~ 22.60 17.90

Table 6.1: Models trained on NIFTY50

As can be seen in the table, the NN performs better than the XGB variant of
the model for all approaches. A reason for this could be that the NN is able to
capture the higher order dependence of the asset price dynamics better than the
XGB variant.

We then perform a different experiment where the models were trained on
the complete NIFTY50 dataset, but tested on the entire BANKNIFTY dataset.
Note that the model is never exposed to data from BANKNIFTY Option contracts
during training. Table 6.2 presents the results for this experiment. These results
allow us to make an interesting observation. The model performance does not
deteriorate significantly when ported to BANKNIFTY contract data. This could
imply a similar price forming mechanism. We elaborate on this a bit later in this
chapter.

The results in table 6.2 motivate us to perform another variant of the same
experiment wherein models were trained on 80% data of both NIFTY50 and
BANKNIFTY. And then tested on the rest of the dataset. The results for this
experiment are given in table 6.3. The EM metric values decrease significantly
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Experiment Type XGB—NN

EM EM

Approach 1 34.66 32.57

Approach 11 33.61 29.42

Approach 11 24.60 24.59

Table 6.2: Models trained on NIFTY50 and tested on BANKNIFTY

when compared to the previous results. These results again seem to suggest that
the assets NIFTY50 and BANKNIFTY have similar pricing mechanisms for their
respective Option contracts. Another possible explanation of the improved results
could be the increase in the training data. It is likely that the improved results are
caused by a combination of both the factors. This observation is very significant
as it suggests the possibility of creating asset agnostic models that perform very
well. One can further confirm this hypothesis by examining the quantile-quantile
(Q-Q) plot for BANKNIFTY and NIFTY50 datasets. Figure 6.1 shows the Q-Q
plot as obtained. It is to be noted here that a Q-Q plot is principally a probability
plot. It allows one to compare the probability distribution of 2 random variables.
One can easily infer from the Q-Q plot how similar the probability distributions
of 2 random variables are.

Figure 6.1: Q-Q Plot for BANKNIFTY and NIFTYs50 data

As can be seen in the figure, if the distributions are very similar the Q-Q
points are observed very close to the line fit on the y = x axis. The figure
shows a remarkable fit and lends strength to the hypothesis of the probability
distributions of BANKNIFTY and NIFTY50 being very similar.

For the sake of completeness we present the results of the models trained
on BANKNIFTY Option contracts in table 6.4. The EM values obtained lend
credence to the hypothesis that having more data might result in better training
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Experiment Type XGB—NN

EM EM

Approach I 23.93 19.16

Approach I1 23.46 17.85

Approach 111 22.05 14.94

Table 6.3: Models trained on both NIFTY50 and BANKNIFTY

of the models. (BANKNIFTY data contains about 20% more ATM contract data
than NIFTY50).

Experiment Type XGB—NN

EM EM

Approach I 23.94 22.41

Approach 11 22.47 18.89

Approach 111 20.64 15.47

Table 6.4: Models trained on BANKNIFTY

We also present the results of the experiment where the BANKNIFTY trained
models were ported to data from NIFTY50 asset in table 6.5

Experiment Type XGB—NN

EM EM

Approach I 31.66 30.61

Approach I1 31.82 27.37

Approach 111 27.98 2248

Table 6.5: Models trained on BANKNIFTY and tested on NIFTY50

USING THE MODELS Consider the scenario where the trader has an Approach
I model that is trained on data from NIFTY50. He wishes to find the fair price
of an ATM Option as determined by the market. He can set the value of S, K
for that trading session and feed in those values along with the 19 values of
the log returns of the underlying security. The model would then output a bin
value. The trader can then use the bin value to find the approximate price of the
contract. The EM value for Approach I as given in table 6.1 would determine the
bandwidth in which the real value of the contract would lie. Simply put, if the
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bin number is extrapolated to a price of 500 Rs for the contract, the fair value of
the ATM Option would be 500 £ 27.06 Rs.

It is obvious that the smaller the value of the EM metric, the better the model
has performed. Put simply, it would give the trader an idea of how accurate the
predictions are. As table 6.3 shows, a trader would be interested in a model that
gives a small EM value. The DL models seem to show the most promise for a
trader.

6.2 EXTENDING THE MODEL

The focus of this thesis has been determining the market price of ATM Option
contracts. Recall that during the process of data cleaning, we set the value of the
filtering parameter p as 0.02 to imply a Strike-Spot tolerance of 2%. This choice
of p allowed us to screen out near ATM Option contracts from the raw Option
dataset.

However a trader might be interested in contracts that are ITM/OTM. The
models described in this thesis can be extended by simply modifying the filtering
algorithm to include Option contracts that lie within a particular range of p values.
Doing so would create datasets of OTM/ITM contract types as per requirement
and models can be built using the feature set generated.

6.3 FUTURE WORK

Significant progress has been made in extending the models described to develop
a system that would help qualitatively diagnose the health of markets. Work
has also been planned to develop variants of the models described and make
the predictions asset independent. It is anticipated that the performance of
the models could be improved by incorporating specialized features that are
designed to convey more information about market dynamics. An example of
this would be using variants of a commonly used technical indicator like the
ATR (Average True Range) or the RSI (Relative Strength Index).
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APPENDIX

A.1 GBM AND BINOMIAL DISTRIBUTION EXPLAINED
A.1.1 GBM

A geometric Brownian motion is a continuous time stochastic process given by
the stochastic differential equation -

dS(t) = uS(t)dt+ oS(t)dB(t) (a.1)

where the term S(t) represents the time evolution of an asset, the coefficients p
and o represent the drift and volatility respectively and the term B(t) represents a
Brownian motion. We present without proof the solution of the above differential
equation -

1
S(t) = S(0) exp <(u— 202> t+ GB(t)> (a.2)
The above equation is used to model the movement of an asset. The stock

prices obtained are then used as inputs to the BSM model described in chapter 1
to obtain the corresponding Option price.

A.1.2  Binomial Distribution
If a random variable X follows the binomial distribution B(n, p), the pmf of the
distribution is given by -
n _
B(n,p) = <k>pk(1 —p)n K (@.3)

where n is the sample size, p is the probability of a successful outcome and k is
the number of successful outcome.

A.2 BINOMIAL PRICING MODEL

The binomial model tries to factor in the future payoff of Options contract. It is
mostly used to evaluate the worth of American Options. Such pricing models are
also termed as path dependent models as the price of the contract is dependent
on the path followed along the nodes of the binomial price tree. We briefly
describe how the price of a Call Option is computed.

49



50

APPENDIX

Consider an asset with the initial price So. The price of the asset after n steps
in the binomial price tree would then be -
Sn = So&™ (a-4)
where
£ u with probability p
d with probability 1 —p

The value of S,, can then be written as -

G — Sou"d™™ " with probability p,
n
Pr for some r = [0, n] such that ZB‘ pr=1

Note that the value of p; is given by the binomial distribution.

b= (M- @s)

We now define a risk neutral measure p* such that

* N —
ot = ()1 —mr (@6)
where 7 is defined as -
1+r—d
TS u—a @7)

Using the above, we can define the price of the Option contracts at time t =0
as follows -

Co =E*((Sn —K)ISo =5) (a.8)

which finally gives us the value as -

N
Co = Z e NT(sud™ T —K)p* (a.9)
r=0

For more details about this, one may refer the book by Paul Wilmott (Wilmott
on Quantitative Finance).

A.3 HYPER PARAMETER OPTIMIZATION

Hyper parameters are values that are set before we even begin the process of
training a model. They might help in preventing overfitting of data, speed up
the training process etc. Hyper parameter tuning usually refers to searching for
values of the hyper parameters that output the best model evaluation metric
values. There exist specialized algorithms like grid search, to perform a thorough



A.4 CODES

search for the best values of the hyper parameters. Such algorithms are compu-
tationally expensive. For the purpose of this thesis, we initially used the cluster
computing facilities at IISER to brute search for the optimum values of the hyper
parameters. It was later decided to discard the obtained optimum values as the
models then did not port well to other assets (we obtained EM metric values
that were almost half of those reported in this thesis). A possible reason for this
could be that optimizing the hyper parameters makes the models over fit to a
particular asset class. It is however recommended that a trader perform hyper
parameter tuning and obtain the best possible model for a given asset class.

A.4 CODES

The complete set of codes and datasets required to replicate the results of the
thesis will be uploaded to a GitHub public repository that can be accessed here.
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