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Abstract

Galaxy clusters form the largest gravitationally bound structures in the Universe. Galaxy

clusters form at rare peaks in the initial density fluctuation field in the Universe. Therefore

their abundance is very sensitive to the cosmological parameters which describe our Universe.

The goals of this thesis are to understand how to characterize the abundance of galaxy

clusters from observations and constrain cosmological parameters from these observations.

The primary cosmological parameters of our interest are ⌦m, the matter-density pa-

rameter and �8, which is related to the amplitude of the linear power spectrum of density

fluctuations in the early Universe. The abundance of massive dark matter halos in which

galaxy clusters form is very sensitive to these cosmological parameters. We develop an

analytical and numerical framework to infer the cosmological parameters of interest from

the X-ray observations of galaxy clusters after marginalizing over the halo mass-observable

scaling relations and their scatter.

Our modeling scheme uses inputs from N-body simulations and follow-up observations of

galaxy clusters to fit the abundances of galaxy clusters selected using the ROSAT survey data.

We use a Bayesian framework to infer the posterior distribution of cosmological parameters

of interest given the observations using Monte Carlo Markov Chain (MCMC) techniques.

Although our framework is general, in this thesis, we present results using certain simplistic

priors on the halo-mass observable relations of galaxy clusters. We obtain ⌦m = 0.280+0.052
�0.046

and �8 = 0.721+0.030
�0.033. We also observe the well-known degeneracy between ⌦m and �8 in the

posterior distributions. In the future, we will improve on this estimate of the cosmological

parameters by marginalizing over the scatter of the mass-observable relation, appropriately.

Future work will involve using weak lensing data to better calibrate the masses used in

the mass-observable relation. Upcoming X-ray surveys like those conducted with the X-ray

telescope eROSITA, combined with follow-up studies of these galaxy clusters using the Large

Synoptic Survey Telescope (LSST) to constrain the mass-observable relationship can place

much stronger constraints on the cosmological parameters.
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Introduction

Dark matter halos form the backbone of the large scale structures of the Universe. The

most massive dark matter halos (> 1014 h�1 M� ) are hosts to galaxy clusters, an extensive

collection of galaxies bound by the gravitational potential of dark matter. Galaxy clusters

act as signposts of otherwise invisible dark matter halos, which can be as massive as 1015 M�

[1]. Structure formation proceeds hierarchically, where small dark matter halos form first

and merge to form bigger and more massive dark matter halos [1]. Baryonic processes such

as star formation within dark matter halos lead to the formation of galaxies. Clusters of

galaxies can be readily identified from galaxy observations in the optical or observations of

hot gas in X-rays [1]. These massive structures can act as beaming beacons of the cosmo-

logical model that describes our Universe. The inference of cosmological parameters from

various observations is crucial to verify the theoretical framework of modern cosmology. The

cosmological parameters are of paramount importance and give information about the ex-

pansion history and the evolution of structure in the Universe, as shown in section 1.3. They

are also crucial to infer distances to far-away galaxies from their redshifts [2].

After the Big Bang, the Universe was a hot dense plasma consisting of a soup of fun-

damental particles like quarks, which later combined to form the protons and neutrons [3].

The extremely high temperatures of the early Universe didn’t allow protons and neutrons to

combine with electrons to form neutral atoms. This meant that photons were easily scattered

by free electrons via Compton scattering [4]. Thus, photons were strongly coupled to mat-

ter for around 370,000 years until the expansion of the Universe cooled it down su�ciently

for neutral atoms to form, leading to radiation decoupling from matter [4]. This radiation

permeates all of space today and is detected as the Cosmic Microwave Background (CMB).

The CMB can place strong constraints fraction of energy densities of di↵erent components

like radiation, dark matter and dark energy and this has been achieved up to a great extent

3



by the Planck satellite [5].

Galaxy clusters provide a path to an independent measurement of these parameters. To

determine the cosmological parameters from galaxy clusters, we resort to the halo mass

function, which is the number density of dark matter halos as a function of their masses

[1]. It can be used to infer information about the cosmological parameters of interest after

marginalizing over the mass-observable relation because the mass function is closely related

to the linear power spectrum of density perturbations of the early Universe, which led to the

formation of large scale structures [1]. The shape of the power spectrum is highly sensitive

to the cosmological parameters, particularly the matter density parameter, ⌦m and the �8.

�8 is the average amplitude of primordial density fluctuations and is directly proportional

the amplitude of the linear power spectrum. Thus, the mass function can be used to infer

the cosmological parameters [6]. But measuring the masses of clusters is quite a daunting

task. Therefore, we use measurements of X-ray luminosities of galaxy clusters to obtain

the number density of halos as a function of their luminosities, also known as the X-ray

luminosity function. The X-ray luminosity function is then related to the mass function

through a mass-luminosity relation [7].

In this project, we make theoretical predictions of the X-ray luminosity function from a

mass function obtained from N-body simulations. This theoretical model is then used to fit

the observed luminosity function obtained from the X-ray luminosity measurements of the

REFLEX (ROSAT-ESO Flux-Limited X-ray) [8] survey of galaxy clusters and the RASS

BCS (ROSAT All-Sky Survey Extended Brightest Cluster Sample) [9]. Both of these are

sensitive to the cosmological parameters. We then use a Monte Carlo Markov Chain (MCMC)

technique, which is used in fitting models to data, to place constraints on the parameters

of interest [10]. MCMC techniques are widely used in cosmological parameter estimation

and are usually based on the Metropolis-Hastings algorithm. Simply put, MCMC methods

consist of random sampling from the parameter space to find a probability distribution of

the parameters. This sampling is done through a random walk in the parameter space

in the Metropolis-Hastings algorithm. We use emcee for sampling, which di↵ers from the

Metropolis-Hastings algorithm by having multiple random walkers instead of one [11].

Although Planck has been successful in measuring cosmological parameters to signifi-

cantly high accuracy, there are some systematics and tensions within the Planck dataset [5].

Since galaxy clusters provide an independent measurement of these parameters, they can
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act as powerful cosmological probes. Galaxy clusters have huge potential wells full of hot

X-ray emitting gas. X-ray observatories that have conducted extensive sky surveys can be

used to detect galaxy clusters by looking for such X-ray emission [12]. ROSAT1 is one such

observatory. It is an X-ray space telescope launched by the German Aerospace Centre. It

has provided us with one of the earliest and most extensive all-sky surveys in the soft X-ray

band (0.1-2.4 keV). Surveys like XMM-Newton and Chandra2, launched after the success of

ROSAT, have provided us with a deeper and higher resolution X-ray data of the night sky

covering even a larger area than ROSAT. Current missions like eROSITA3, built by the Max

Planck Institute for Extraterrestrial Physics (MPE) and launched in 2019, hope to provide

strong constraints on cosmological parameters, especially dark energy, in the future.

The first chapter of this thesis gives a brief review of the background of this project.

In Chapter 2, the theory of structure formation and the relation between the cosmological

parameters and the mass function is explored in greater detail. In Chapter 3, we describe

the details behind obtaining both the theoretical model of the X-ray luminosity function and

its observational counterpart. In Chapter 4, we throw light on the MCMC methods used to

obtain our final constraints on the cosmological parameters. The fifth chapter presents our

results and the discussion following them. The sixth chapter concludes the thesis with an

outline for future work.

1For details, refer to https://heasarc.gsfc.nasa.gov/docs/rosat/rosat.html
2For details, refer to https://cxc.harvard.edu/xraysurveys/
3For details, refer to https://www.mpe.mpg.de/eROSITA
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Chapter 1

Galaxies and Galaxy Clusters

The night sky is filled with wonderful objects called galaxies, which are gravitationally bound

systems of stars, dust, gases and dark matter. The number of stars in a galaxy can go up

to a billion and their sizes are of the order of a few kpc (kiloparsecs) to hundreds of kpc (1

parsec = 3.26 light year). Most galaxies have a supermassive black hole at the centre [12].

(a) Milky Way (b) M87 (c) Large Magellanic Cloud

Courtesy: NASA

Figure 1.1: Three di↵erent types of galaxies

On the largest scales of the cosmos, structures like galaxy clusters exist. As their name

suggests, clusters are large collections of galaxies bound together by gravity with their masses

ranging from 1014 � 1015 solar masses in a volume with the radius of the order of few

megaparsecs [1]. Smaller aggregates of galaxies are classified as groups. One such example

of a group is the Local Group, of which the Milky Way is a part. The Local Group is a part
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of a supercluster called Virgo, which is a part of a bigger supercluster called the Laniakea

Supercluster [13]. Massive surveys coming in the next decade, like the Large Synoptic Survey

Telescope (LSST)1 will help us in mapping out the structures in our cosmos to even higher

redshifts.

1.1 Dark Matter Halos

A large fraction of our Universe is composed of dark matter, a mysterious form of matter

that does not interact with electromagnetic radiation and hence it can’t be seen. But its

gravitational e↵ects are significant, which is how it was discovered in the first place [14].

A halo is a region that contains matter which is bound su�ciently strongly by gravity

that it has decoupled from the cosmic expansion. In our current models of galaxy formation,

every galaxy forms within a dark matter halo, with the halo extending much further than

the optical extent of the galaxy [15]. A crucial part of clusters is the hot intracluster medium

(ICM), which consists of hot gas between galaxies in the clusters with a peak temperature of

the order of 107 K, making the ICM emit strongly in X-ray bands. This temperature is due

to in-falling gas in the gravitational potential of the halo and due to line emission of heavy

elements in the ICM [12].

Multiple models have been proposed to understand the particle nature of dark matter

ranging from baryonic (protons and neutrons) objects like Massive Compact Halo Objects

(MaCHOS), white, or brown dwarfs to non-baryonic matter like axion-like particles, Weakly

Interacting Massive Particles (WIMPs), etc. MaCHOs have almost been ruled out now and

WIMPs and other non-baryonic models are being investigated as a possible candidate for

dark matter [16].

1.1.1 History of Dark Matter

One of the earliest evidence for dark matter was obtained by Fritz Zwicky, who obtained an

unexpectedly high-velocity dispersion of eight galaxies in the Coma Cluster (� = 1019± 360

km s�1) [17]. From this, he concluded that the mean density of the Coma Cluster would have

1For more details, refer to https://www.lsst.org/
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to be much higher than what is derived from luminous matter. Similarly, it was observed

that the Virgo cluster had unexpectedly high mass [17]. In 1939, Babcock obtained the

rotation curve (velocity as a function of radius) of the outer arms of the Andromeda galaxy

(M31). He observed that these curves weren’t falling o↵ as expected and instead remained

flat [17].

Many similar observations led to the hypothesis of dark matter. Another way to explain

such anomalies is by modifying the theory of gravity itself. One such theory is Modified

Newtonian Dynamics or MOND for short [14]. MOND has now been mostly discredited due

to one powerful observation, the Bullet Cluster, which was formed due to the collision of

two giant galaxy clusters. From weak lensing, it was observed that there was an 8-sigma

significant spatial o↵set between the center of total mass and baryonic mass [18]. This could

not be explained by alteration to gravity and hence it provided a strong piece of evidence

for the existence of dark matter, although modified gravity theories have not entirely been

ruled out yet [19].

1.2 The Cosmological Parameters

It is a well-known fact now that the Universe is expanding. This expansion of the Universe

can be characterized by the scale factor, a(t). At present, its value is set to 1 and as we

go backward in time, its value decreases. More specifically, a(t) characterizes how physical

distances evolve with time, with the physical distances given by a(t)d0, where d0 is the

distance measured at the present time.

In 1915, Einstein proposed his General Theory of Relativity, which revolutionized how we

thought about gravity. His equations, Rµ⌫� 1
2gµ⌫R = 8⇡GTµ⌫ are the foundations of modern

cosmology [2]. With just the simplifying assumptions of homogeneity and isotropy, one can

derive the Friedmann-Lemâıtre-Robertson-Walker metric, also known as FLRW metric, for

our Universe [2]:

ds
2 = �c

2
dt

2 + a
2(t)

✓
dr

2

1� k r2
+ r

2
d⌦2

◆
(1.1)

Here, k characterizes the geometry of the universe. There are three possibilities: open

(k = �1), closed (k = +1) and flat (k = 0). An open Universe has a saddle-like geometry, a

closed Universe has a sphere-like geometry and a flat Universe has a Euclidean geometry.
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To understand the evolution of the Universe, it is necessary to understand how the scale

factor evolves with time. This is done so by the Friedmann equations, which can be directly

derived from Einstein’s equations by putting in the FLRW metric in the left-hand side of the

equation and a perfect fluid’s energy-momentum tensor on the right-hand side. A perfect

fluid’s energy-momentum tensor is given by Tµ⌫ = (⇢ + p)UµU⌫ + p gµ⌫ [2]. The Friedmann

equations are [2]

✓
ȧ

a

◆2

=
8⇡G

3
⇢� k

a2
(1.2)

ä

a
= �4⇡G

3
(⇢+ 3p) (1.3)

Here,
�
ȧ

a

�
is the Hubble parameter, H. It tells us about the rate of expansion of the Universe.

It has dimensions of time�1. If we take the first Friedmann equation (1.2) and divide it by

H
2, we get the following,

8⇡G

3H2
⇢� k

a2H2
= 1

We can define 3H2

8⇡G to be a quantity called the critical density, ⇢c (for reasons explained later),

so that we have a dimensionless parameter, ⌦ = ⇢

⇢c
.

⌦� k

a2H2
= 1 (1.4)

The density ⇢ in this equation can include the density of baryonic matter, dark matter,

radiation and dark energy which can be represented by ⌦m, ⌦b, ⌦r, ⌦⇤ respectively. So,

⌦ = ⌦m+⌦b+⌦r+⌦⇤. Sometimes, the term � k

a2H2 is referred to as the curvature parameter,

⌦k [2]. We therefore have, X

i

⌦i = 1 (1.5)

Since the sum over all ⌦i is 1, these quantities directly tell us about the fractional

distribution of dark matter, baryonic matter, dark energy and radiation. The curvature

parameter tells us about the intrinsic geometry of the Universe. Note that ⌦k is not a

density parameter.
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⌦k < 0 =) k > 0 =) closed

⌦k > 0 =) k < 0 =) open

⌦k = 0 =) k = 0 =) flat

Measurements from the Cosmic Microwave Background (CMB) have shown us that we live

in a flat universe, as ⌦k ⇡ 0 [5].

These ⌦i are conventionally referred to as the density parameters of the di↵erent com-

ponents of the energy density in the Universe. All cosmological observations seem to point

to a cosmological model consisting of just six parameters, referred to as the cosmological

parameters [5]:

⌦m = Matter density parameter

⌦k = Curvature parameter

! = Dark energy equation of state parameter

h = Hubble parameter = H0/100

✓CMB = CMB Temperature

�8 = Amplitude of the linear power spectrum

ns = Power spectrum index

Of these parameters our primary focus is ⌦m and �8, as the galaxy cluster observations we

will model in this thesis are primarily sensitive to ⌦m and �8 in the context of a flat ⇤CDM

model. As defined earlier, ⌦m is the fraction of matter density in the Universe. Roughly,

�8 is the amplitude of primordial density fluctuations. After linearly growing the primordial

density fluctuations to present time, if we take spheres of radius 8 Mpc randomly in the

Universe and calculate the mean overdensities for each sphere, then these mean overdensities

roughly follow a Gaussian distribution. The width of this Gaussian distribution is defined

as the �8 parameter.

10



1.3 Time dependence of the scale factor

The energy conservation equation gives us a relation between energy density and the scale

factor [2]. It is given by

rµ T
µ
0 = 0

�⇢̇� 3
ȧ

a
(⇢+ p) = 0 (1.6)

For perfect fluids, there is a relation between density and pressure of the form p = w⇢. This

is known as the equation of state of the fluid. Using this, (1.6) becomes,

⇢̇

⇢
= �3(1 + w)

ȧ

a
(1.7)

which can be integrated to obtain

⇢ / a
�3(1+w) (1.8)

In the cosmological context, matter is defined to be any collection of non-relativistic,

collision-less particles with essentially zero pressure, pM = 0 [2]. Thus, w = 0 for a matter-

dominated universe and its energy density scales with the scale factor as

⇢M / a
�3 (1.9)

The equation of state for relativistic particles and radiation is given as pR = ⇢/3 [2]. Hence,

the energy density for radiation, ⇢R is given by

⇢R / a
�4 (1.10)

According to quantum field theory, the vacuum has a non-zero expectation value of

energy known as the vacuum energy. Assuming, ⇢vac to be a constant overall space, its

contribution to the energy-momentum tensor is given by �⇢vacgµ⌫ [4]. This constant is
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called the cosmological constant ⇤. The negative sign is there so that T00 is positive since

it is energy density. Now, assuming a perfect fluid, we can derive the equation of state for

vacuum energy,

(⇢vac + p)UiUi + p gii = �⇢vac gii

pgii = �⇢vacgii

p = �⇢vac (1.11)

This means w = �1 and thus, ⇢vac / a
0. Thus, we have the dependence of ⇢ on the

scale factor in various epochs such as radiation-dominated, matter-dominated and vacuum

dominated epochs. The Universe was radiation dominated initially [4]. But since ⇢R dies o↵

faster than ⇢M , the Universe became matter-dominated. Now, ⇢M is also very small and the

Universe is vacuum dominated.

1.3.1 Solving the first Friedmann equation

Now, that we have obtained a relation between the scale factor and energy density, ⇢

⇢0
=
�
a0
a

�n

we can solve the first Friedmann equation.

Case I: k=0, Flat Universe

✓
ȧ

a

◆2

=
8⇡G⇢0

3

⇣
a0

a

⌘n

1

a

da

dt
/ a

�n/2

a / t
2/n (1.12)

For a flat universe, it is quite easy to solve the equations. We know n = 3 for a matter-

dominated universe and it is equal to 4 for a radiation-dominated universe. Hence, a / t
2/3

for a matter-dominated universe and a / t
1/2 for a radiation-dominated universe.
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For a vacuum-dominated universe with ⇤ as the cosmological constant

✓
ȧ

a

◆2

=
8⇡G

3

⇤

8⇡G

a = a0 e

p
⇤/3t (1.13)

Thus, the scale factor grows exponentially fast in a vacuum-dominated universe.

Case II: k=+1, Closed Universe

Let us first consider a matter dominated universe. Then, ⇢ / a
�3

✓
ȧ

a

◆2

=
8⇡G⇢0

3

⇣
a0

a

⌘3
� 1

a2

da

dt
=

r
8⇡G⇢0a

3
0

3a
� 1

We can define a quantity called as conformal time, ⌘, where d⌘ = dt

a

da

d⌘
=

r
8⇡G⇢0a

3
0

3
a� a2

a = A (1� cos⌘) (1.14)

Now, dt = ad⌘. Therefore,

t =

Z
⌘

0

A(1� cos⌘
0)d⌘0 = A (⌘ � sin ⌘) (1.15)

We can obtain similar equations for a radiation-dominated universe. These are, (A0 = 2A)

a =
p

A0 sin ⌘ (1.16)

t =
p

A0 (1� cos ⌘) (1.17)

The parametric equations we obtained we obtained for a and t are equations for a cycloid

for both the radiation and matter-dominated cases.
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Case III: k=-1, Open Universe

✓
ȧ

a

◆2

=
8⇡G⇢0

3

⇣
a0

a

⌘3
+

1

a2

a = A (cosh ⌘ � 1) (1.18)

Now, Z
dt =

Z
ad⌘ = t = A(sinh ⌘ � ⌘) (1.19)

Similarly, for a radiation-dominated universe, we obtain the following equations for a and t

a =
p
A0 sinh ⌘ (1.20)

t =
p
A0 (cosh ⌘ � 1) (1.21)

Figure 1.2: Schematic representation of the time dependence of the scale factor

From figure 1.2, we can see that the evolution of the scale factor depends on the curvature

and densities of various constituents of the Universe. Interestingly, for a closed universe, the

scale factor always turns around and goes back to zero. Thus, the Universe starts contracting

14



after some point in time and ends in a possible singularity like the Big Bang. This is known

as the Big Crunch. For other cases, we can see that the scale factor continues to grow.

We derived the dependence of the scale factor on time, assuming contribution from only a

single component, i.e., matter or radiation or vacuum. But in reality, the energy density has

contributions from all components. Then the Friedmann equations can be solved numerically

to obtain the actual expansion history of the Universe. Hence, measuring the values of the

cosmological parameters is essential, in this case, to obtain the expansion history of the

Universe.

1.4 Evolution of the Hubble Parameter

We have shown ⇢m = ⇢0m

�
a0
a

�3
and ⇢⇤ remains constant. Since, a

a0
= 1

1+z
, we have ⇢m =

⇢0(1 + z)3. From the first Friedmann equation (1.2) we obtain,

H
2 =

8⇡G

3
[⇢m + ⇢⇤]

H
2

H
2
0

=
8⇡G

3H2
0

[⇢0m(1 + z)3 + ⇢⇤]

H
2 = H

2
0 [⌦m(1 + z)3 + ⌦⇤] (1.22)

where, H0 is the hubble parameter at redshift z = 0. Sometimes, [⌦m(1+ z)3 +⌦⇤] is called

as the evolution factor, E(z) and is used to quantify the evolution of the Hubble parameter

with redshift [2].
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Chapter 2

Structure Formation and the

Cosmological Parameters

To understand how galaxies, galaxy clusters and everything else around us formed from tiny

density fluctuations in the early Universe, we need to study the theory of structure formation.

This is a dynamic and elegant theory where we have to take into account the competing

e↵ects of the expansion of the Universe and gravitational attraction. As can be seen from

the Cosmic Microwave Background, the early Universe was highly homogeneous with small

density fluctuations. The origin of these fluctuations is thought to be of quantum in nature

and were supposed to have been amplified by inflation. These small density fluctuations

started accumulating more matter and eventually grew to form the large-scale structures

that we see today. Since the initial fluctuations are tiny, their evolution in time can be

studied using the linear perturbation theory in a background expanding universe.

The study of these perturbations leads us to the linear power spectrum, the shape of

which determines ⌦m as will be explained later. In this chapter, we first discuss the principle

of Jeans instability in a homogeneous, static universe. Then we proceed to describe the

evolution of perturbations in an expanding universe in section 2.2. We then introduce the

power spectrum and its role in the measurement of cosmological parameters in section 2.3.

The relation of the power spectrum to the mass function is discussed in section 2.4. The

mass function by Press-Schechter [20] is outlined in section 2.5. In section 2.6, we discuss

the luminosity function and its relation to the mass function.
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2.1 Jeans Instability

At the beginning of the twentieth century, Sir James Jeans demonstrated how studying

perturbations to a fluid in a gravitational potential could be used to study the formation

of stars and planets. At that point in time, the fact that the Universe is expanding was

unknown and he carried out his calculations in the context of a static background fluid [21].

He showed how fluctuations in density, �⇢ and velocity, v could evolve in time.

Let us consider a collisional fluid in a static background. Then the equations of motion

are given by [21],

@

@t
⇢+r .(⇢v) = 0 (Continuity equation) (2.1)

@

@t
v+ (v.r)v+

rp

⇢
+r� = 0 (Euler equation) (2.2)

r2
� = 4⇡G⇢ (Poisson equation) (2.3)

Now, let us perturb the density, velocity, pressure and potential from their mean values

⇢0, v0, p0, �0 to ⇢, v, p, � respectively, assuming the perturbations (⇢1, v1, p1, �1) are

small so that we can ignore terms of second order or higher in the equations later.

⇢ = ⇢0 + ⇢1 v = v0 + v1

p = p0 + p1 � = �0 + �1

Then we have the following linearised equations,

@

@t
⇢1 + ⇢0rv1 = 0 (2.4)

@

@t
v1 +

rp1

⇢0
+r�1 = 0

=) @

@t
v1 +

v
2
s
r⇢1

⇢0
+r�1 = 0 (* Sound speed, v2

s
=

p

⇢
) (2.5)

r2
�1 = 4⇡G⇢ (2.6)

Di↵erentiating (2.4) with respect to time and (2.5) with respect to space and then sub-
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tracting the the two equations gives us @
2
⇢1

@t2
�v

2
s
r2

⇢1�4⇡G⇢0⇢1 = 0. The Fourier transform

of this equation gives us

@
2
⇢̃1(k, t)

@t2
+ (v2

s
k
2 � 4⇡G⇢0)⇢̃1(k, t) = 0 (2.7)

where, ⇢̃1(k, t) =
R
⇢1(x, t) e�ik.x

d
3
k. Here, we have used the fact that the Fourier transform

of r2
⇢1 is �k

2
⇢̃1.

Let !
2 = (vsk)2 � 4⇡G⇢0. We see that (2.7) admits oscillatory plane wave solutions if

!
2
< 0 and exponentially decaying or growing solution if !2

> 0. Thus, !2 = 0 sets a

characteristic scale, �J which is known as the Jeans length [21]. It is given by

kJ =

r
4⇡G⇢0

vs

�J =

r
⇡

G⇢0
vs (2.8)

Thus, for � > �J (k < kJ) we have unstable exponentially decaying or growing solution and

for � < �J (k > kJ) we have a stable oscillating solution.

2.2 Linear Perturbation theory

From the Cosmic Microwave Background, we see that the Universe had small density vari-

ations during the epoch of recombination. These variations later grew, due to gravitational

instabilities, to to form the structure that we see today, including the galaxy clusters. Since

these inhomogeneities were small, we can use linear perturbation theory to study their evo-

lution [3].

We consider a perturbation of g↵�(x) and the source T↵� in the form (g↵� + �g↵�) and

(T↵� + �T↵�), where �g↵� and �T↵� denote the perturbation. Perturbations may grow at

di↵erent rates when we change the system of coordinates. To solve this for length scales

much smaller than the Hubble radius (dH), we can use Newtonian gravity for which this is

not a problem [3]. In the early Universe, the wavelength of the modes was larger than the
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Hubble radius. But as the Universe expanded, the wavelength of the modes, � became equal

to dH at one point of time, tenter. As the Universe expanded further, the modes become

much smaller than the Hubble radius, dH [3].

Since Newtonian analysis can’t be used for modes with wavelengths greater than dH ,i.e.,

for times t < tenter, thus, the early evolution of any mode needs to be treated using general

relativity by either sticking to one coordinate system or constructing quantities which are

linear combinations of various perturbed physical variables [3].

2.2.1 Case I

Let us consider the case, � >> dH (t < tenter). Here, we consider a spherical region of radius

� and k = +1 containing matter with mean density ⇢1 embedded in a k = 0 Friedmann

Universe of density ⇢0 such that ⇢1 = ⇢0 + �⇢ [3]. Then,

H
2
1 + 1/a21 =

8⇡G

3
⇢1; H

2
0 =

8⇡G

3
⇢0 (2.9)

where, H0 =
ȧ0
a0

and H1 =
ȧ1
a1
, a0 and a1 being the corresponding scale factors. Let H0=H1.

We then get,

8⇡G

3
(⇢1 � ⇢0) = 1/a2

(⇢1 � ⇢0)

⇢0
=

�⇢

⇢0
=

3

8⇡G⇢0 a
2
1

If �⇢/⇢0 << 1 then a0 ⇡ a1 ⇡ a.

Since, ⇢0 / a
�4 for t < teq and ⇢0 / a

�3 for t > teq, where teq corresponds to the time of
matter-radiation equality, we get

�⇢

⇢
=

(
a
2

, t < teq

a , t > teq

(2.10)
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2.2.2 Case II

Let us now consider the case of � < dH . Now, gravitational collapse or amplitude growth is
opposed by pressure support, specifically [3],

tpressure re�adjustment < tgravitational collapse (2.11)

�

v
<

1p
G⇢

� < �J

where, 1p
G⇢

is the free fall time, v is the velocity dispersion of the perturbed component, ⇢

is the density of the most gravitationally dominant component and �J =
p
⇡ vp
G⇢

is the Jean’s
length. As we derived in the earlier section, modes with � < �J don’t grow.

Another reason which prevents the growth of perturbations is that the Universe may be
expanding faster than the rate of gravitational collapse which causes the dominant species
to be smoothly distributed [3]. In this case,

texpansion < tgrav < tpressure (2.12)

=) 1p
G⇢R

<
1p

G⇢DM
<

�

v

where, ⇢R is the radiation density, and ⇢DM is the dark matter density. From (2.12), we
can see that expansion of the Universe will prevent growth in all modes with � < dH in the
radiation dominated phase since ⇢R > ⇢DM then. Thus, in the radiation dominated phase,
only modes with � > dH and they grow as a2 (from 2.10). In the matter-dominated phase,
since we can ignore pressure e↵ects for all � < dH , the analysis leading to (2.10) is still valid.
Thus, the amplitude grows as a in this case.

Thus, we have heuristically shown that in the radiation-dominated phase, only modes
with � < dH and modes with � > dH don’t grow. In the matter-dominated phase, all modes
grow.

2.3 The Power Spectrum as a Cosmological Probe

Overdensities in the early universe refer to the change in the density at a particular point
as compared to the average density of the Universe [22]. The overdensity field in the early
Universe is given by,
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�(x) =
⇢(x)� ⇢̄m

⇢̄m
(2.13)

where, ⇢̄m is the mean density of the Universe. It is assumed that �(x) is a homogeneous
and isotropic Gaussian random field [22]. We can take a Fourier transform of �(x) which is
�(k) and the power spectrum is given by [22],

P (k) /< |�(k)|2 > (2.14)

The two-point correlation function is defined to be ⇠ =< �(x)�(x+R) >. It tells us given a
random galaxy what is the probability another galaxy will be found within R. The Fourier
transform of the correlation function also gives us the power spectrum [22],

P (k) =

Z
⇠(r) e�ik.r

d
3r (2.15)

From the Fourier transform of the Poisson’s equation, r2
�� = 4⇡G ⇢̄ �(x) [1], we have

k
2
�� / �(k)

k
4
P� / P (k) (2.16)

where P� is the power spectrum of the potential. From (2.15), we can see that P (k) has
dimensions of volume and hence k3

P� is dimensionless and also turns out to be scale invariant
[1]. Since, k3

P� is scale invariant, we conclude (from 2.16) P (k) scales as k just after inflation
for k beyond the horizon. The horizon at an epoch is defined to be the maximum distance
any particle could have travelled from inflation to that epoch [1]. For k within the horizon,
P (k) scales as k�3 since k

3
P (k) becomes constant at this scale.
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Source: NED (NASA/IPAC Extragalactic database)

Figure 2.1: Evolution of the matter power spectrum of density fluctuations during the radi-
ation dominated era

In the radiation dominated phase, there were two kinds of fluctuations: ones which
were within the horizon and ones which were outside the horizon. Fluctuations beyond the
horizon grow and those within the horizon don’t grow because the expansion timescale of the
Universe is larger than the timescale of collapse (Section 2.2). Also, with time the horizon
keeps growing due to the expansion of the Universe. On the other hand, in the matter-
dominated phase, all scales grow equally. So, the shape of the power spectrum remains
constant after the Universe becomes matter-dominated and as a result, the power spectrum
forms a characteristic shape, as shown in fig. 2.2. This shape eventually smoothens due to
di↵erent rates of growth of di↵erent components before and after matter-radiation equality
[3]. The peak of the power spectrum characterizes the matter-radiation equality and thus,
the shape of power spectrum is dependent on the fraction of matter and radiation in the
Universe making it sensitive to the cosmological parameters, specifically ⌦m and �8.

Observing the power spectrum directly is not trivial. The clustering of galaxies as a
function of luminosity can be observed, which gives the shape of the power spectrum (which
is sensitive to ⌦m), but not to the amplitude of density fluctuations (�8). To put constraints
on this parameter, one can resort to abundances of galaxy clusters as a function of their
luminosity, also known as the luminosity function.
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Source: NED (NASA/IPAC Extragalactic database)

Figure 2.2: The Power Spectrum measured from di↵erent observations

2.4 The Mass function and its relation to the Power
Spectrum

The luminosity function depends on the power spectrum through the mass function, which
is the number density of galaxy clusters as a function of their mass. The mass function is
then related to the variance of the density field, which relates to the power spectrum (as
shown below) and thus acts as a probe for cosmological parameters.

The power spectrum can be directly related to the variance in the following way [1]:

�
2(R) =

1

(2⇡)3

Z
P (k)|W̃ (k, R)|2 d3k (2.17)

�(R) =

Z
�(x� r)W (r, R) d3r (2.18)

Here, W (r, R) is a window function defined as [1]

W (r, R) =

8
<

:

3
4⇡R3 , r < R

0 r > R
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The variance is just the average of the overdensity field squared: lower the variance,
higher the probability of forming massive clusters.

Let us choose a random point in our Universe. At high redshifts, mass and radius are
interchangeable according to the relation M = 4⇡/3 ⇢̄R3 [22]. As we increase R, M increases
and �

2 �! 0 because ⇢ �! ⇢̄ and as a result � �! 0. Conversely, for small R, the the variance
can be quite high if we are centred around a density peak.

Figure 2.3: Distribution of primordial overdensities. The orange curve has a higher variance
than the blue curve. The black vertical represents the critical overdensity �c

The densities at early times in the Universe can be approximated by a Gaussian distri-
bution peaked at the mean density ⇢̄m, where � = 0. For clusters to form, the overdensity at
a point must be higher than a critical overdensity, �c [1]. Now, since clusters with low mass
have higher variance than more massive clusters, the tails of their probability distribution
beyond �c have a higher area under the curve compared to clusters with high mass, which
have a lower area under the curve beyond �c, as can be seen in fig. 2.3. Hence we have a
large number of low mass clusters and a small number of very massive clusters. This gives
us the characteristic shape of the mass function, as can be seen in fig. 2.4.

2.5 Press-Schechter Mass Function

The first attempt to understand the abundance of galaxies was done by Press & Schechter
(1974) [20]. It is one of the simplest mass functions to derive. If we assume a Gaussian
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random field as our initial overdensity field and evolve it linearly from �(0) to �(t) then, the
probability that the � is greater than the critical density, �c required to form haloes is given
by

P(> �c(t)) =
1p

2⇡�(M)

Z 1

�c

exp


� �

2

2�2(M)

�
d� =

1

2
erfc


�c(t)p
2�(M)

�
(2.19)

where, erfc is the complementary error function. As we know, overdensities above the critical
density, �c(t) will collapse to form halos. Therefore, Press and Schechter argued that P(>
�c(t)) is equal to the mass fraction of collapsed objects above a particular mass M , given by
F (> M). However, there is the following caveat to this argument. As M ! 0 or equivalently
R ! 0 and hence �(R) ! 1, P(> �c(t)) ! 1/2. However, it is expected that P(> �c(t)) !
1 because if the mean overdensity, �(R), is infinite then it is always greater than �c(t) and
hence, clusters will always be formed. Thus, to account for this, Press and Schechter added
an adhoc ‘fudge factor’ of 2, i.e., F (> M) = 2 P(> �c(t)).

Then the number density as a function of mass, n(M), can be obtained using properties
of the error function [20]

n(M) =
⇢m

M

@F (> M)

@M
=

r
2

⇡

⇢m�c

M�
exp

✓
� �

2
c

2�2

◆ ����
d ln �

d lnM

���� (2.20)

Press and Schechter proposed this mass function model in 1974. Now, the mass function
is obtained numerically from N-body simulations and the Press-Schechter mass function
qualitatively reproduces the mass function in the simulations, although it shows quite some
deviations, as seen in fig. 2.4. Since 1974, several advancements have been made in our
computational power and therefore, more refined mass functions have been proposed (Jenkins
et al. (2001) [23], Tinker et al. (2008) [24]).
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Figure 2.4: Mass function obtained from numerical simulations (green and red) [23]. The
dotted line represents the mass function fit from Jenkins et al. (2001) and the dashed line
represents the Press-Schechter fit to the mass function.

2.6 Luminosity function

The luminosity function is a very important quantity in the study of galaxies and galaxy
clusters and is our primary observable. The luminosity function �(L)dL is the number
density of galaxy clusters within the luminosity range L ± dL/2 in a specific wavelength
band [25],

�(L) =
1

Vmax

dn

dL
' 1

Vmax

�n

�L
(2.21)

�(lnL) =
1

Vmax

dn

d lnL
' 1

Vmax

�n

� lnL
(2.22)

The luminosity function is calculated as a histogram with the weights as 1/Vmax. Vmax is
the co-moving volume corresponding to the maximum distance a cluster with a particular
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luminosity can be detected by our telescopes. Here, L is the mean luminosity of each bin,
�n is the number counts in that bin, �L (or � lnL in logspace) is the bin width. For more
details on Vmax refer to section 3.2.2.

The luminosity is commonly fitted with a Schechter function of the form

�(L) dL = �⇤
✓

L

L⇤

◆↵

exp

✓
� L

L⇤

◆
dL

L⇤ (2.23)

This was proposed by Paul Schechter in 1976 [26]. Here, L⇤, ↵ and �⇤ are parameters of
the model. As shown below (fig. 2.5), this function fits observed data of luminosities of the
REFLEX clusters of galaxies quite well.

Figure 2.5: X-ray Luminosity function in Stanek et al. (2006) [7]. The filled squares represent
data from REFLEX survey of clusters and the line is the Schechter fit to the luminosity
function.

The luminosity function is related to the mass function through a mass-luminosity rela-
tionship and hence also related to the power spectrum. Thus, the luminosity function is a
good measure of the cosmological parameters.
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Chapter 3

Modelling the Luminosity function
and Comparing it with Data

In the previous chapter, we have established how initial density perturbations grew to form
galaxies and galaxy clusters we see today and how the power spectrum of density fluctuations
is related to their abundances. The power spectrum is a powerful cosmological probe as its
shape and amplitude characterizes our cosmological parameters of interest, ⌦m and �8. But
we do not directly measure the power spectrum. Our observable is the luminosity function,
which can be related to the power spectrum via the mass function. The luminosity function
is related to the mass function with the help of a mass-luminosity relation and the mass
function is then related to the power spectrum via the variance in the initial density field.

In this chapter, we will describe how we can obtain the luminosity function from the
mass function obtained from numerical N-body simulations while assuming a particular
cosmology, i.e., a particular set of cosmological parameters (section 3.1). This acts as our
theoretical model, to which we will try to fit the luminosity function obtained from surveys
of galaxy clusters (REFLEX survey, in our case). In section 3.2, we describe the process of
obtaining the luminosity function from luminosity data from surveys(we use and the caveats
associated with it, like the flux-limit and Vmax. Finally, in section 3.3, we discuss the jackknife
resampling technique we use to obtain the error bars in the luminosity function obtained
from observations.

3.1 Theoretical Model of the Luminosity function

Our theoretical model consists of a mass function obtained from N-body simulations while as-
suming a particular cosmology. The mass function is then related to the luminosity function
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via a mass-luminosity relation.

A relation between mass and luminosity is expected from our understanding of non-linear
models of structure formation, particularly the self-similar model [22]. Thus, this relation is
expected to hold across di↵erent clusters, assuming they evolved via the self-similar model.
We use the following relation between the cluster mass, M and luminosity L̄ [7],

L̄ = L15

✓
M

M0

◆p

(3.1)

From the self-similar model, p is expected to be around 4/3 [7]. We use the logarithm of this
relation, ln L̄ = lnL15(z)+p (lnM � lnM0). Here, lnL15 is the intercept, M0 = 1015 h�1

M�
and p is the slope. There is a redshift dependence on the intercept,

lnL15(z) = lnL15,0 + s ln

✓
⇢c(z)

⇢c(0)

◆
(3.2)

where, ⇢c(z) is the critical density at redshift z and s is the self-similar evolution parameter,
with s = 7/6 for self-similar evolution and s = 0 for no evolution [7].

But, the above mass-luminosity relation, (3.1) not an exact relation. There is a scatter
around this mean relation which is assumed to be lognormal. For any given M , the scatter
in L is

P (lnL| lnM, z) =
1p

2⇡�lnL

exp


�(lnL� ln L̄)2

2�2
lnL

�
(3.3)

The standard deviation in mass at a fixed luminosity is �lnM = 0.37 [7]. From this, we
can obtain the standard deviation in luminosity at a fixed mass as �lnL = �lnM p.

Using the mass-luminosity relation, we can find the luminosity function, �(L). For each
luminosity L, we can add all the clusters of di↵erent masses within a volume to get the
number density of clusters for that luminosity. We can do this for a range of luminosities
and take the continuous limit to change the summation to integration,

�(L) =

Z
n(M, z)P (L|M, z)dM (3.4)

In log scale we have, �(lnL) =
R
n(lnM, z) P (lnL| lnM, z) d lnM where, n(M, z) and

n(lnM, z) are related as follows,

n(M, z) dM = n(lnM, z) d lnM

n(lnM, z) = n(M, z)M ln 10 (3.5)
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�(lnL) is then converted to �(L) in the following way:

�(L) dL = �(lnL) d lnL

�(L) =
�(lnL)

L

Thus, we finally have

�(L) =
1

L

Z
n(M, z) M P (lnL| lnM, z) d lnM (3.6)

3.1.1 Obtaining the model

The mass-luminosity relation has a strong dependence on the cosmological model used. In our
case, we assume a flat ⇤CDM cosmology with ⌦m = 0.3, �8 = 0.8 and H0 = 70 km/s/Mpc.
We use the mass-luminosity relation parameters (slope, intercept and scatter), as mentioned
in Stanek et al. (2006). They use the counts and scaling relations of low-redshift clusters
in the HIFLUGCS survey (Reiprich & Böhringer, 2002) [27] to obtain the mass-luminosity
relation. For mass measurements via the assumption of hydrostatic equilibrium (refer to
Appendix A), measurements of the X-ray gas temperature and density profiles are used.
They have also provided the values of the mass-luminosity relation parameters for three
di↵erent values of ⌦m (⌦m = 0.24, 0.30, 0.36) between which we can linearly interpolate.
Then we have the following values of the slope, intercept and scatter from Stanek et al.
(2006) [7],

p = 1.59± 0.05 lnL15,0 = 1.34± 0.09 �lnM = 0.37± 0.05

We later compare our model luminosity function to the the luminosity function obtained
from data of REFLEX survey of galaxy clusters (Section 3.2), which are at a mean redshift
of zmean = 0.085. From (3.2), we can calculate lnL15. Since ⇢c(z)/⇢c(0) = E(z)2, we can use
(1.22) to calculate the evolution factor, E(z) and it turns out to be 1.08 for a mean redshift
of 0.085. This gives lnL15 = 1.53 for the REFLEX clusters of galaxies.

Using a python class1 written by Dr. Surhud More, which has a function that returns
the mass function for a given mass and redshift and using the mass-luminosity parameters
written above, we obtain the luminosity function model by numerically integrating (3.6) from
1011 to 1016 h

�1
M� in the log scale. The halo mass used here is M200, which is the mass

within a sphere whose mean interior density is � = 200 ⇢c(z). We use the mass function as

1For details, refer to http://surhudm.github.io/aum/code.html#module-cosmology
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given in Tinker et al. (2009) [24]

n(M) =
dn

dM
= f(�)

⇢̄m

M2

d ln ��1

d lnM
(3.7)

where, f(�) is the mass fraction and � is the variance in the primordial density field as
described in section 2.4. The mass fraction is universal to changes in redshift and cosmology.
It is parametrized by

f(�) = A

⇣
�

b

⌘�a

+ 1

�
e
�c/�

2
(3.8)

The parameters A, a, b, c are calibrated by simulations. These parameters are sensitive to
the redshift and the overdensity � used to define the halos [24]

A(z) = A0 (1 + z)�0.14 (3.9)

a(z) = a0 (1 + z)0.06 (3.10)

b(z) = b0 (1 + z)�↵ (3.11)

log↵(�) = �
✓

0.75

log(�/75)

◆1.2

(3.12)

Figure 3.1: Luminosity function model
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3.2 Luminosity function from data

We use the REFLEX survey of galaxy clusters as our dataset. It consists of 447 clusters and
covers an area ⌦ = 4.24 sr in the southern sky below a declination of 2.5�. Due to obtrusion
by the galactic plane, a region of ±20� around it is excluded. As mentioned before, the mean
redshift of the clusters is 0.085 and the brightest clusters are towards a redshift of 0.35 [28].

3.2.1 Flux limit

Flux is the energy per unit area per unit time received by a detector. Luminosity is the total
energy per unit time emitted by an object. If dL(z) is the luminosity distance, the flux is
then related to luminosity as [4]

F =
L

4⇡d2
L
(z)

(3.13)

Like most X-ray telescopes, the ROSAT telescope has a lower bound below which it can’t
measure the flux. The clusters were selected by their X-ray emissions in the ROSAT band
(0.1-2.4 keV) down to a flux-limit of Fx lim = 3 ⇥ 10�12 ergs s�1 cm�2 (3 ⇥ 10�15 W m�2)
[28]. This means that any cluster whose flux is less than Fx lim won’t be detected.

3.2.2 Luminosity limit and Vmax

To obtain the luminosity function from data, we first created 40 logarithmically spaced bins
from 1044 to 1046 h�2

70 ergs/s as that is the range of luminosity function we are trying to
reproduce.

From the flux limit defined earlier, we can find a luminosity limit, i.e., for each luminosity,
there is a maximum distance dL max and hence a maximum redshift up to which a cluster
can be detected, as shown in fig. 3.2. Because of this, we can detect only very bright clusters
at higher redshifts. The luminosity limit can be defined as

Lx lim = Fx lim 4⇡d2L max(z) (3.14)

To find the luminosity function, we can first create a histogram of the REFLEX luminosity
data. But the luminosity function is not just the number of clusters in each bin. It is, in
fact, the number of clusters per unit volume in each bin. This volume, Vmax is defined as
the maximum volume proportional to the cube of the maximum distance a cluster can be
pushed to, from where its flux equals the flux limit Fx lim. In other words, we can use dL max
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Figure 3.2: The REFLEX clusters (filled circles) plotted in luminosity-redshift space. The
blue line represents the luminosity limit

to find the maximum co-moving distance, dc max =
dL
1+z

which defines a co-moving volume,

Vmax =
⌦

3
dc max(zmax)

3 (3.15)

Note that we use ⌦ = 4.24 and not 4⇡ to define the volume, since the REFLEX survey only
includes an area of 4.24 sr and not the entire sky [28].

To find Vmax, we fit a spline to the luminosity limit (3.14) so that we can invert it to find
the zmax for each cluster, given the luminosity of the cluster. This zmax can be used to find
a dL max, which in turn can give us Vmax (from (3.15)).

3.2.3 Towards a luminosity function

After calculating Vmax, a histogram is calculated with the the weights as 1/Vmax. This gives

us 1
Vmax

⇣
dn

d logL

⌘
d logL. So, we divide by d logL, which is the logarithmic bin width to obtain

1
Vmax

⇣
dn

d logL

⌘
.
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To go from dn

d logL to dn

dL
, we use the chain rule,

d n

dL
=

d n

d logL

d logL

dL
=

d n

d logL

1

L ln 10

giving us the final luminosity function, �(L) as

�(L) =
1

Vmax

dn

d logL L ln 10
(3.16)

Thus, we obtain the luminosity function from data, as shown in fig. 3.3. As we can
see, the luminosity function we obtained (Black) closely matches the luminosity function
obtained by Stanek et al. (2006) [7] and Böhringer et al. (2002) [25].

Figure 3.3: Observed Luminosity function from REFLEX data (black) compared with lumi-
nosity function from Böhringer et. al.[25] and Stanek et. al.[7]
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3.3 Getting the error bars: Jackknife

Jackknife resampling is a statistical technique, which we use to determine error bars in our
data. In general, the procedure involves removing one element from the sample set and
constructing the observable from the remaining samples [29]. The scatter in the observable
obtained after resampling multiple times gives the error bars.

In our case, we are constructing the luminosity function from the luminosity observations
of REFLEX clusters in the southern sky. What we have to do is take N equal sized patches
of the sky and remove one patch and construct the luminosity function from the remaining
patches. This returns a luminosity function slightly di↵erent from the full luminosity func-
tion, which was obtained earlier without deleting any patch of the sky. After repeating this
procedure N times, we get N luminosity functions, which slightly di↵er from each other. For
each bin of the luminosity function, the standard deviation times

p
N of the N resampled

data points for that bin gives us the error bar on that bin. In our case, we use N = 16.

3.3.1 RA, DEC

Right ascension (RA) and Declination (DEC) corresponds to the equivalent of longitude and
latitude, respectively, in the celestial sphere. The zero of RA is chosen to be line perpendicu-
lar to the equatorial plane and passing through the point of intersection of the earth’s equa-
torial plane and its orbital plane around the sun. RA is in units of hours:minutes:seconds,
where 360� corresponds to 24 hours, hence 1 hour = 15�. DEC is usually in units of
deg:arcmin:arcsec.

1 deg = 1� ; 1 min =
1

60

�
; 1 sec =

1

3600

�

3.3.2 Creating equal-sized patches for Jackknife

It is challenging to create equal-sized patches in the sky because simply taking equally spaced
bins of RA and DEC won’t work since we have a 2D projection of a 3D spherical map. Also,
obtrusion by the Milky Way and Magellanic clouds is another problem.

To achieve this, first, we have to have to change our coordinates from RA, DEC (in deg.)
to � (in rad.) and ✓,

� = RA
⇡

180
; ✓ = (90� �DEC)

⇡

180
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The map, shown in fig. 3.4, shows all the points surveyed by the telescope. Note, these
are not the clusters. An equal number of points correspond to equal areas. To make 16
patches:

• First we plot cos(✓) vs � as shown in fig. 3.4.

• We sort the data along the x-axis, i.e., �.

• Then we divide the x-axis into four equal bins, with each bin containing the same
number of points and call these as � bins.

• We then make a 5 ⇥ 9 matrix to store the points such that the first column contains
all the coordinates of the � bins.

• We sort the data along y-axis, i.e., cos(✓).

• Then we divide each � bin into four patches with an equal number of points and call
these as the cos(✓) bins.

• To enter the cos(✓) bins in the matrix, for each � bin edge (each row of the matrix),
we write down the coordinates of the cos(✓) bins for that � bin.

Figure 3.4: Area of the sky covered by the REFLEX survey. The points represent the areas
surveyed by the ROSAT telescope.
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This matrix contains the coordinates of all the patches. Now we can go over all the galaxy
clusters and if check if it lies in a particular patch. If it does, we can delete the luminosity
data of that cluster and thus implement jackknife resampling.

3.3.3 Implementing Jack Knife

To implement Jackknife, we select one patch and delete the data of all galaxy clusters that
lie in it. Then from the remaining luminosity data, we construct a luminosity function. We
then repeat this procedure for all patches such that we get multiple luminosity functions
(N , if there are N patches) scattered around the original one. We calculate the standard
deviation of all the new luminosity functions for each bin and multiply it by

p
N to get the

error on each bin.

Figure 3.5: Luminosity function from REFLEX data plotted with errorbars calculated using
jackknife resampling
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Chapter 4

Monte Carlo Markov Chain

In the previous chapter, we have described how to get the theoretical model of the luminosity
function from the mass function obtained from simulations and on obtaining the luminosity
function from luminosity data. To see how well the model matches the data, refer to chapter
5. We have also described the jackknife resampling technique to obtain the error bars on the
luminosity function we obtained from data.

Monte Carlo Markov Chain (MCMC) techniques, mostly based on the Metropolis algo-
rithm, are widely used in the estimation of cosmological parameters. We employ Bayesian
inference to obtain the posterior probability distribution of the cosmological parameters of
interest (⌦m and �8). Using the MCMC algorithm ‘emcee’, we have tried to reproduce the
cosmological constraints obtained by Allen et al. (2003) [30]. emcee is a Python-based imple-
mentation of the A�ne-Invariant MCMC Ensemble Sampler by Goodman & Weare (2010)
[31].

In this chapter, we first describe random sampling from a probability distribution and the
problems associated with it. Then, in section 4.2, we outline the principles behind bayesian
likelihood analysis to obtain the posterior probability distribution. In section 4.3, we briefly
summarise the mathematical principles behind emcee algorithm. In section 4.4, we describe
in detail the implementation of emcee, including the details of the likelihood, priors, model
and the observed luminosity function. These functions must be defined correctly before
running the MCMC chains. Finally, we end this chapter with a brief discussion on the
autocorrelation analysis of MCMC chains.
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4.1 Random Sampling

In statistics, sampling refers to the selection of a subset of a population to infer properties
about the entire population, since the entire population may be too large to practically study.
For example, we may want to find out the average height of an Indian male. But it is not
possible to measure the heights of all men of India. Therefore, we select a subset from the
Indian male population and find their mean height, assuming the sample mean is equal to
the mean of the entire population. To reduce bias, we may want to randomly select people
from all states of India. This is known as random or uniform sampling. Random sampling
occurs when each subset has an equal probability of being selected to minimize selection
bias. But this has its own problems. We may end up selecting a subset that doesn’t reflect
the true distribution of the population as we may not have selected a subset that can have a
significant contribution to the sample mean. Coming back to our example, we may not end
up sampling a small population of extremely tall men from a particular region. In this case,
our assumption of the sample mean being equal to the population mean is being violated.

Suppose we are given a probability distribution, P (x), whose exact functional form is
unknown or complicated. Then our problem is to generate samples from this distribution,
P (x), also referred to as the target distribution. Since we can’t possibly sample from every
x, particularly if x is a higher-dimensional vector, then it becomes imperative to sample from
a smaller subset of the whole sample space. In this case, uniform sampling seems like the
most straightforward solution. But uniform sampling can have the following problems [10]

1. We might not know the normalization, Z of P (x), Z =
R
P

⇤(x)dNx, where P ⇤(x) is the
unnormalized distribution. If N is large, calculating Z becomes an immensely di�cult
task.

2. Even if we know Z drawing from P (x) can be quite tough because the sampling space
might be so huge (especially in higher dimensions like the Ising model with thousand
spins which has a 1000 dimensions with each dimension taking values +1 or -1) that
we won’t be able to sample all possible states in the state space. In this case, we’ll
have to uniformly sample and for our samples to give accurate statistical results (like
mean, median, etc.) close to the true statistics we’ll have to ensure we’re not missing
those regions with high probability density. So, our number of samples should be
high enough that we don’t miss the typical set, i.e., the set where most of the high
probability region is concentrated. How high should this be? For the Ising model with
1000 spins, it is about 2500 ⇡ 10150.

Thus, uniform or random sampling is not the best choice we have to sample from a probability
distribution, especially in higher dimensions. We can use other techniques like importance
sampling, rejection sampling, Metropolis-Hastings algorithm and Gibbs sampling, the details
of which are briefly discussed in Appendix B. We use emcee for this purpose.
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4.2 Bayesian Inference

A common problem in science is establishing how well a model function with given parameters
‘fits’ our observed data, or in other words, we want to determine the values of the model
parameters for which the di↵erence between the observed data and our model function is
minimized. Thus, we would like to determine the probability distribution of the parameters
given our data.

We use likelihood analysis based on the Bayes’ theorem for this purpose. Let ✓ represent
the set of parameters and y represents the measured outcome to which we have to fit the
model. In our case, y = �(L), the luminosity function and ✓ = {⌦m, �8}. Then the posterior
distribution of the parameters, P (✓|y) is given by,

P (✓ |y) / L(y | ✓) p(✓) (4.1)

where L is the likelihood function. It tells us that, given our model parameters, how well
does the model match the data. p(✓) is the prior distribution. Just as it sounds, it enforces
some range of values that the parameters are allowed to have, based on ‘prior knowledge’ of
the parameters, say from previous experiments or theory.

MCMC methods are sampling methods that allow us to sample from the posterior dis-
tribution, P (✓ |y), given the likelihood L and priors p(✓).

4.3 Introduction to emcee

In the Metropolis-Hastings algorithm, we have one random walker sampling the entire space.
Instead, we can have multiple random walkers so that the ensemble of walkers denoted by ✓

converges faster to the target distribution, P (✓ |y). This is what is done in emcee.

In emcee, to update the position of a walker ✓j (j 6= k), the walker is selected randomly
and a new position is proposed [11]:

✓k(t) ! ✓
0 = ✓j + Z [✓k(t)� ✓j]

where, Z is a random variable. Then, the proposal is accepted with probability

q = min

✓
1, Z�1 P (✓0)

P (✓k(t))

◆
(4.2)

where, N is the dimension of the parameter space. This process is repeated for each walker
in the series, completing one iteration.
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4.4 Implementing emcee

To implement emcee, we need to define our likelihood function, L (Section 4.4.1) and the
priors (Section 4.4.2). We use log likelihoods and log priors to get a posterior probability
distribution, P (✓ |y) up to a normalization.

lnP (✓ |y) ⇡ lnL+ ln p(✓) (4.3)

Then, we define functions which predict our model luminosity function (Section 4.4.3) and
return the observed X-ray luminosity function (Section 4.4.4), both of which are sensitive to
the cosmological parameters as described earlier. After that, we establish the initial positions
of the n random walkers in the 2-dimensional parameter space, where the position of the ith

walker is given by ✓

✓ =

 
⌦(i)

m

�
(i)
8

!
i = 1, . . . , n (4.4)

After establishing the initial positions of the random walkers and defining all the required
functions, we can run emcee using the emcee Ensembler in Python1 [11]. At each iteration,
the random walkers sample the parameter space within the constraints set by the priors.
From L and the priors, the poster probability distribution, P (✓ |y) is calculated. Based
on the algorithm described above, each new step is accepted or rejected, based on just the
previous step. Thus, the positions of the walkers form a Markov chain. These chains are
the samples from the parameter space, which can be used to create a posterior probability
distribution, which is shown in Chapter 5.

4.4.1 Likelihood

The log likelihood, lnL is given by a �
2 estimator (refer to Appendix C)

lnL (Lx,�data,�err) = �1

2

X✓
�data(Lx)� �model(Lx)

�err

◆2

(4.5)

where, �data(Lx) refers to the luminosity function from data and �model(Lx) refers to the
model luminosity function. �err is the measurement error on the luminosity function from
data and Lx is the mean luminosity of each bin of �(L), both of which we obtain from Table
1 of Allen et al. (2003) [30].

1refer to https://emcee.readthedocs.io/en/stable/user/install/
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4.4.2 Prior distribution

We use flat priors on the cosmological parameters, as given in Allen et al. (2003)

p (⌦m) =

8
<

:
1, 0.05  ⌦m < 1

0, otherwise
ln p (⌦m) =

8
<

:
0, 0.05  ⌦m < 1

�1, otherwise

p (�8) =

8
<

:
1, 0.2 < �8 < 1.5

0, otherwise
ln p (�8) =

8
<

:
0, 0.2 < �8 < 1.5

�1, otherwise

4.4.3 Model

In this section, we describe the model for the luminosity function we use while trying to
reproduce the MCMC results from Allen et al. (2003) [30]. We use the same mass function
as used by Allen et al. (2003), i.e., the mass function from Evrard et al. (2002) [32] to
marginalize over the mass-luminosity scaling relation and obtain the luminosity function.
The mass fraction in Evrard et al. (2002) is given by [32]

f(��1) = A exp[�| ln ��1 +B|✏] (4.6)

where, for ⌦m = 0.3 and z = 0, A = 0.22, B = 0.73, ✏ = 3.86. To obtain A, B, ✏ for other
values of ⌦m and z, we use simple interpolation provided by Evrard et al. (2002). As defined
earlier, the mass function is then given by dn

dM
= f(�) ⇢̄m

M2
d ln�

�1

d lnM
.

The mass-luminosity relation as given by Allen et al. (2003) is E(z)M = M0

h
L

E(z)

ip
or

log(E(z)M) = p log


L

E(z)

�
� 2 p log(7/5) + logM0 (4.7)

where, E(z) is the evolution factor as described in section 1.4. We have included the factor
of 2 p log(7/5) to account for the fact that we use di↵erent units of luminosity from Allen et
al. (2003), who use units of h�2

50 1044 erg/s. The values of the slope, p and intercept logM0

as obtained by Allen et al. by are

log


M0

h�1 M�

�
= 13.99+0.20

�0.23 p = 0.76+0.16
�0.13 (4.8)

Without accounting for the scatter in the mass-luminosity relation, we can directly obtain
a simplistic model of the luminosity function (in units of h5

70 Mpc�3 (1044erg/s)�1) from the
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mass function, as shown below

�(L) =
d n

dL
=

d n

dM

dM

dL

�(L) =
d n

dM

p M

L
(4.9)

Accounting for the scatter gives us a more refined model for luminosity function which we
have already shown in section 3.1, leading to (3.6).

4.4.4 Luminosity function from data

Allen et al. (2003) focus on low-redshift (z < 0.3) and highly luminous (Lx > 5 ⇥ 1044 h�2
70

erg/s) clusters from the REFLEX (ROSAT ESO Flux-limited Survey) and the extended
BCS (Brightest Cluster Sample) studies. The restriction to high luminosities is done to
reduce systematic uncertainties and also because that is the region where the mass-luminosity
relation is well-calibrated [30].

The BCS is the first truly X-ray selected cluster sample to emerge from the ROSAT All-
Sky Survey (RASS). The original sample has 203 clusters (Ebeling et al. 1998 [33]) in the
northern sky, covering an area of 4.14 sr. The extension (Ebeling et al. 2000 [9]) consists of
107 additional clusters within an area inside one-sixth of the original BCS area. The original
BCS clusters have fluxes > 4.4 ⇥ 10�15 W m�2 and the newer extended sample consists
of fluxes between 2.8 ⇥ 10�15 W m�2 and 4.4 ⇥ 10�15 W m�2. Their distribution in the
luminosity-redshift space is shown in fig. 4.1. We use the combined sample for our analysis.
The mean redshift of the combined sample is 0.21.

After obtaining the cluster counts for REFLEX and the combined BCS samples (results
shown in Chapter 5) while restricting to the redshift limit of 0.3, we proceed to obtain the
X-ray luminosity function from data. Since, REFLEX is a flux-limited survey with a flux-
limit of 3 ⇥ 10�15 W m�2, we obtain Vmax and then �(L) for REFLEX as shown earlier in
section 3.2.

The luminosities of the extended BCS clusters are reported in an Einstein de-Sitter
cosmology (⌦m = 1 and H0 = 50 km/s Mpc�1). So, we have to transform the luminosities
back to our flat ⇤CDM cosmology with ⌦m = 0.3 and H0 = 70 km/s Mpc�1 to have
consistent results. This dependence on cosmologies occur since the measurement of the
luminosity distance, dL(z) depends on ⌦m and L / d

2
L
(z) [2]. The luminosities in our

cosmology L⇤CDM is then given by
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Figure 4.1: The original BCS (black) and the extended BCS (blue) clusters shown in
luminosity-redshift space

L⇤CDM = LEinstein


d
⇤CDM
L

(z)

d
Einstein
L

(z)

�2
(4.10)

where, d⇤CDM
L

(z) and d
Einstein
L

(z) are the distances measured in the ⇤CDM and Einstein
de-Sitter cosmologies respectively.

After obtaining the transformed luminosities while restricting ourselves to the afore-
mentioned redshift cut zmax = 0.3, we obtain the cluster counts which are shown in Chap-
ter 5. Since, Ebeling et al. (2000) place a redshift cut, we use that cut to define a Ṽ =
⌦/3 d

3
c max(zmax), with ⌦ = 4.14 sr [9]. If our calculated Vmax from the flux-limit of the

extended BCS clusters (Fx lim = 2.8 ⇥ 10�15 W m�2) is greater than Ṽ , we use Ṽ as our
Vmax. Else, we use the Vmax calculated from Fx lim.

We use the REFLEX and BCS bins given in Allen et al. (2003) to obtain the weighted
histogram, as shown in section 3.2. Finally, we obtain the X-ray luminosity functions for
REFLEX and BCS datasets from the counts using (3.16).

44



4.5 Autocorrelation Analysis

One important question here is for how long should we run these chains to be confident
that the walkers have converged to the required posterior probability distribution? For this,
we need to find the autocorrelation time, which essentially tells us the number of iterations
required by series to “forget” where it started. But first, we must define the autocorrelation
function Ĉ(⌧) [34],

Ĉ(⌧) =
1

�
2
✓k
(N � ⌧)

N�⌧X

n=1

[✓k(n)� µ✓k
] [✓k(n+ ⌧)� µ✓k

] (4.11)

where, µ✓k
= 1

N

P
✓k(n) is the sample mean of the chains and N is the total number of

iterations. Here, the ‘chains’ ✓k(n) refer to the time series of the positions of the walkers in
the parameter space of each parameter indexed by k. The autocorrelation function tells us
about the correlation of the emcee chains at a current time with the itself at some previous
time, ⌧ . Here, ‘chains’ refers to the positions of the walkers in the parameter space at any
iteration. We expect Ĉ(⌧) to fall o↵ with ⌧ , as chains more separated in time are expected
to have lesser correlation. Heuristically, the autocorrelation time is the time at which the
Ĉ(⌧) falls to 1/e of its initial value, which is 1 because the correlation function defined above
is normalized.

The integrated autocorrelation time, ⌧✓k is then obtained by summing over the autocor-
relation function over all times [34].

⌧✓k =
1X

�1
Ĉ(⌧) ⇡ 1 + 2

NX

⌧=1

Ĉ(⌧) (4.12)

But this is not a very good idea as the summing all the way to N will give us a very noisy
estimate of ⌧✓k . Instead, we can sum upto some M << N . This results in a decreased
variance of the estimator with the cost of some added bias [34]. Thus, it is recommended to
run the chains for longer than 50 ⌧✓k for emcee to remove the bias2.

In practice, we run the emcee chains for a small number of iterations to estimate the
autocorrelation time. This is known as the ‘burn-in’ phase. After using the built-function of
emcee to estimate the autocorrelation time, ⌧✓k for each ✓k, we run the final emcee Ensem-
bler for more than 50 ⌧✓k for the largest ✓k. This ensures that our walkers have converged
reasonably well enough.

2refer to https://emcee.readthedocs.io/en/stable/tutorials/autocorr/

45

https://emcee.readthedocs.io/en/stable/tutorials/autocorr/


Chapter 5

Results and Discussion

We have shown in previous chapters the methods for obtaining the luminosity function from
data as well as the theoretical model of the luminosity function from the mass function. In
this chapter, we present our results and outline the prospects for future work.

In Chapter 3, we have shown how to obtain the X-ray luminosity function from REFLEX
data in the luminosity range of 1042 � 1046 h�2

70 erg/s. We obtained the luminosity function
for 40 logarithmically spaced bins in the given luminosity range with the Vmax obtained from
the flux-limit of 3 ⇥ 10�15 W m�2. We also obtain the theoretical model from the Tinker
et al. (2009) [24] mass function by integrating over the scatter �lnL in the mass luminosity
relation. Both the model and the observed luminosity function are constructed assuming a
flat ⇤CDM cosmology with ⌦m = 0.3, �8 = 0.8 and H0 = 70 km/s Mpc�3. The model of
the X-ray luminosity function and the one obtained from data is compared to that obtained
by Böhringer et al. (2001) [28] and Stanek et al. (2006) [7]. The errorbars on the observed
luminosity function are obtained by jackknife resampling as described earlier in section 3.3.
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Figure 5.1: The theoretical model and the observed X-ray luminosity function obtained from
REFLEX data in the luminsoity range 1042 � 1046 h�2

70 erg/s compared to the luminosity
functions obtained by Böhringer et al. (2001) [28] and Stanek et al. (2006) [7]

As we can from fig. 5.1 the model fits the data well when a flat ⇤CDM cosmology with
⌦m = 0.3, �8 = 0.8 is used.

To sample from the posterior probability distribution of the cosmological parameters, we
use the MCMC method called emcee [11]. Here, we try to reproduce the constraints obtained
by Allen et al. (2003) [30], who use data from both the REFLEX (Böhringer et al. (2002)
[25]) and the combined BCS (Ebeling et al. (1998) [33] and Ebeling et al. (2000) [9]) studies.

We use the bins as given in Table 1 of Allen et al. (2003). Limiting our cluster samples
to z < 0.3 and Lx > 5.1 ⇥ 1044 h�2

70 erg/s, we obtain the number of galaxy clusters in each
bin, shown in table 5.1. We observe that the counts in each bin closely match the counts
given in Allen et al. except for the last REFLEX bin. This can be due to the fact Allen
et al. use an older catalogue of the REFLEX clusters of galaxies (Böhringer et al. (2002)
[25]), whereas the data currently available is an updated catalogue (Böhringer et al. (2004)
[8]). In the updated catalogue 7 clusters have been removed [8], which is why our counts are
possibly lower than expected in the last REFLEX bin.

We also observe that the mean luminosities of the clusters of each bin are close to the
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mean luminosities obtain by Allen et al. According to Allen et al., the mean redshift of the
BCS clusters is z = 0.21, which we also confirm.

Table 5.1: The cluster counts of REFLEX and combined BCS clusters (Lx > 5 ⇥ 1044 h�2
70

erg/s). Column 2 shows the mean X-ray luminosity of each bin in units of h�2
50 1044 erg/s

and the error bars give the boundaries of bins. Column 3 shows the number of clusters in
each bin. Column 4 shosw the mean luminosities each bin as obtained by Allen et al. (2003),
with the error bars giving the bin boundaries. Column 5 gives the number of clusters in each
bin as given in Allen et al. (2003)

Lx n Lx Allen nAllen

BCS 11.77+1.62
�1.73 17 11.73+1.62

�1.73 17

15.66+2.20
�2.30 18 15.65+2.20

�2.30 17

25.19+28.8
�6.06 16 23.91+28.8

�6.06 17

REFLEX 11.41+2.19
�1.19 21 11.25+2.19

�1.19 20

15.58+4.61
�2.83 22 16.27+4.61

�2.83 20

31.18+76.2
�9.07 12 29.95+76.2

�9.07 20

After reproducing the counts of Allen et al. we obtain the model and observed luminosity
function as explained in section 4.4.4. Note, that the Vmax is calculated di↵erently for
the combined BCS and the REFLEX samples. To obtain the model, we directly use the
mass-luminosity relation to obtain �(L) directly from dn/dM , as shown in (4.9). This is a
simplistic model without accounting for the scatter in the mass-luminosity relation. It is used
to obtain preliminary constraints on the cosmological parameters. The observed luminosity
function is obtained as described in section 4.4.4. The model without the scatter and the
observed luminosity function are then plotted, along with the luminosity function given by
Allen et al., as shown in fig. 5.2. A flat ⇤CDM cosmology with ⌦m = 0.3, �8 = 0.7 and
H0 = 70 km/s/Mpc is assumed. As we can see the both our model without the scatter and
the observed luminosity function are within the error bars of the luminosity function given
by Allen et al.

This sets a clear starting point to run the MCMC chains. After defining functions for
the model without scatter, observable, likelihood and priors, we can run emcee in our two-
dimensional parameter space of ⌦m and �8 using the likelihood and priors described in
section 4.4.1 and 4.4.2 respectively. This returns the samples from the posterior probability
distributions of ⌦m and �8, as shown in fig. 5.3.

We obtain autocorrelation times, ⌧ of 34.19 and 33.88 for ⌦m and �8 respectively, as a
result of which we run the emcee chains for 50000 iterations which is much greater than
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Figure 5.2: The X-ray luminosity function. A simple model is used, obtained without
integrating over the scatter. The blue points with error bars represent the luminosity function
from Allen et al. (2003). Yellow points represent the luminosity function obtained from
REFLEX+BCS data

the required time of 50 ⌧ (Section 4.5). As we can see from fig. 5.4, the emcee chains have
reasonably converged.

Figure 5.4: MCMC chains for the parameters ⌦m and �8 for a run of 50000 iterations
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Figure 5.3: The 68 and 95 percent confidence contours in the posterior distribution of ⌦m

and �8 obtained from the combined BCS and REFLEX luminosity function (Section 4.4.4)
fitted with a model without taking the scatter in the mass-luminosity relation into account
(Section 4.4.3). A flat ⇤CDM cosmology is assumed.

In the MCMC analysis, we have used a simpler model without accounting for the scatter
in the mass-luminosity relation to fit the luminosity function obtained from REFLEX and

combined BCS data. We use an intercept log
⇣

M0
h�1 M�

⌘
= 13.99 and slope p = 0.76 in our

model, as given by Allen et al. (2003). When neglecting the e↵ects of scatter in the mass-
luminosity relation, a MCMC run in the parameter space of ⌦m and �8 returns their mean
values as ⌦m = 0.280+0.052

�0.046 and �8 = 0.721+0.030
�0.033. For a model without the scatter and

while ignoring the uncertainties in the slope and intercept of the mass-luminosity relation,
Allen et al. report ⌦m = 0.23 and �8 = 0.74 [30]. These values are within the error bars we
have obtained for the measurements of ⌦m and �8. The posterior probability contours of ⌦m

and �8 exhibit the well-known degeneracy between these parameters (fig. 5.3).

We ran our MCMC chains with our parameters only at ⌦m and �8. In principle, we
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should run the MCMC chains for 5 parameters, ⌦m, �8, the slope, intercept and scatter in
the mass-luminosity relation. In that case, we should not use the simple model without the
scatter (4.9) but then integrate over the scatter using (3.6)

�(L) =
1

L

Z
n(M, z) M P (lnL| lnM, z) d lnM

The attempts at using the model with scatter have failed as this model doesn’t match the
observed luminosity function and the luminosity function from Allen et al., as shown in
fig. 5.5. We believe the main reason for this is that the mass-observable relation quoted
in Allen et al. is the mean of the distribution P (lnM | lnL) instead of P (lnL| lnM) that
we need in our framework. In the absence of scatter, the two relations are straightforward
inverses of each other. But they di↵er in the case of a non-trivial scatter and are related
by the Bayes theorem. In the near future, we plan to modify our framework to use the
mass-observable relation as quantified by the mean of the P (lnM | lnL) as an additional
constraint and constrain cosmological parameters.

Figure 5.5: The X-ray luminosity function. The model is obtained by intergrating over the
scatter. The blue points represent the luminosity function from Allen et al. (2003). Yellow
points represent the luminosity function obtained from REFLEX+BCS data
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Chapter 6

Conclusion

In this thesis, we have shown how the matter power spectrum of density fluctuations is
sensitive to the cosmological parameters. The power spectrum, P (k) can be obtained from
the variance of the primordial density field, which relates it to the halo mass function (Section
2.3). The halo mass function is directly related to our observable, the X-ray luminosity
function, via a mass-luminosity scaling relation.

We have also used a theoretical model to predict the X-ray luminosity function of galaxy
clusters (Section 3.1). We have also shown the procedure for obtaining the luminosity func-
tion from the observations of luminosities and redshifts of galaxy clusters (Section 3.2). In
a flat ⇤CDM cosmology, the model matches the observed luminosity function obtained from
REFLEX data and also the luminosity function by Böhringer et al. (2002) and Stanek et al.
(2006) in the luminosity range of 1044 � 1046 h�2

70 erg/s. This preliminary analysis increases
our confidence in the model.

Using a simple model which does not marginalize over the scatter in the mass-luminosity
relation, we obtain ⌦m = 0.280+0.052

�0.046 and �8 = 0.721+0.030
�0.033, which lies within the errorbars

of similar results obtained by Allen et al. (2003) [30]. As seen in Fig. 5.3, the 68 and
95 per cent confidence contours of ⌦m and �8 show the familiar degeneracy between these
parameters.

We must note that the mean values of the parameters and confidence contours obtained
with MCMC are obtained for a simple model, without accounting for the scatter in the
mass-luminosity relation. For a more refined analysis, one must integrate over the scatter
to obtain the luminosity function from the mass function. We also ran our MCMC chains
for only two parameters, assuming the values of the slope and intercept given by Allen et
al. (2003). In principle, one should run MCMC for a 5-parameter model, ⌦m, �8, slope,
intercept and scatter in the mass-luminosity relation.
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In future, one can use weak lensing data by experiments like the Hyper-Suprime Cam
(HSC)1 of the Subaru telescope, to calibrate the mass-luminosity relationship for wider halo
mass range. Future surveys by telescopes like the Large Synoptic Survey Telescope (LSST)2

and eROSITA3, will play a crucial role in estimations of cosmological parameters. eROSITA
has a sensitivity which is about 30 times higher than ROSAT [35]. It can also survey up to
higher redshifts (> 1) and an energy band of 0.2-10 keV, covering a much broader energy
range than ROSAT [35]. Thus, it hopes to create the largest catalog of galaxy clusters with
its deep sky X-ray survey.

The LSST aims to conduct the deepest and widest survey of the southern sky ever done.
In addition to carrying out extensive surveys in multiple wavelengths for cluster catalogs,
LSST, with its weak lensing and photometric-redshift capabilities, promises to play a crucial
role in the estimation of cosmological parameters, particularly dark energy and its equation
of state [36].

1For more details, refer to https://www.subarutelescope.org/Observing/Instruments/HSC/index.html
2For more details, refer to https://www.lsst.org/
3For more details, refer to https://www.mpe.mpg.de/eROSITA
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Appendix A

Hydrostatic Equilibrium

The assumption of hydrostatic equilibrium helps in the measurement of masses of galaxies
and clusters, which can be used to characterize mass-luminosity scaling relations. Hydro-
static equilibrium states that the potential gradient r� is balanced by the pressure gra-
dient, rp(x) [22] assuming spherical symmetry and the equation of state of an ideal gas,
p = ⇢kT/µmp

1

⇢

dp

dr
= �GM

r2

kb

⇢µmp


d⇢

dr
T +

dT

dr
⇢

�
= �GM

r2

�r
2
kbT

Gµmp


d⇢

dr

1

⇢
+

dT

dr

1

T

�
= M

M(< r) = � rkbT

Gµmp


d ln⇢

d lnr
T +

d lnT

d lnr
⇢

�
(A.1)

Thus, M tells us about the cluster mass within a radius r. Note that, Eq. (A.1) is valid only
for collisional baryonic matter. Also, a cluster may not reach complete equilibrium due to
occurrence of mergers and continuous accretion [22].
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Appendix B

More Monte Carlo Methods

B.1 Importance sampling

Suppose we have random variable x with a probability distribution P (x) from which it is too
di�cult to sample from, due to higher dimensions or P (x) being too complicated a function.
To find the expectation value of a function X, we would use hxi =

P
xP (x). But since the

summation might contain a large number of terms due to large number of terms in the state
space of P (x), evaluating this might be extremely di�cult. Instead we can randomly sample
from P (x) and use that to approximate a mean

hxi ⇡ 1

N

NX

i=1

x(P )
i

where, the superscript indicates we are drawing the samples from P (x). As we saw earlier,
this might be very di�cult too since P (x) might be too complicated to sample from directly
(we might not hit the typical set). So, instead of sampling from P (x) we can sample from a
simpler distribution Q(x) which must be a close approximation of P (x). Now, we can reduce
N, the number of times which we sample. But how do get hxi from Q(x)?

hxi =
X

xP (x)

=
X

x
P (x)

Q(x)
Q(x)
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We can see this as calculating the expectation value of x P (x)
Q(x) with respect to Q(x) which

can be approximated as [10]

hxi ⇡ 1

N

NX

i=1

x
(Q)
i

P (xi)

Q(xi)

where x
(Q)
i

is being sampled from Q(x) now. This considerably simplifies our problem as
our sampling distribution has now changed from the complicated P (x) to the much simpler
Q(x).

In higher dimensions, obtaining samples that lie in the typical set of P may take a long
time unless Q is a good approximation of P . This is a major problem associated with
importance sampling.

B.2 Rejection sampling

Rejection sampling works very well if Q is a good approximation of P . It is assumed we
know a constant c such that cQ(x) > P (x), 8x. If this is the case, then we can proceed as
follows:

1. Generate a sample x0 from Q(x)

2. Generate another random number u such that u 2 [0, cQ(x0)]

3. If u > P (x0) then x0 is rejected, else it is accepted and added to our set of samples
{x}

Since cQ completely encompasses P , all accepted points lie inside P as can be seen from
the above procedure.

In higher dimensions, rejection sampling doesn’t work very well. We can see this if we
consider a pair of normalized Gaussians with the same mean as P and Q with �P < �Q in
N dimensions.

c =
P (0)

Q(0)
=

✓
2⇡�2

Q

2⇡�2
P

◆N/2

=

✓
�Q

�P

◆N

The acceptance rate is given by volume of curve under P by the volume under cQ. Since,

P and Q are both normalized, it is just 1/c, i.e., acceptance rate =
⇣

�Q

�P

⌘�N

, which can be

quite small for larger N .
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B.3 Metropolis-Hastings algorithm

In the Metropolis-Hastings algorithm, Q depends on the current state xt. This works better
now becauseQ(x) doesn’t have to be similar to P (x), unlike importance sampling or rejection
sampling. Q(x;xt) can be a simple function from which we can draw samples, where the
notation means that Q is a function of x centered on the current state xt.

This algorithm works in the following way. A new state x0 is generated from Q. Then
[10]

a =
P (x0)Q(xt;x0)

P (xt)Q(x0;xt)
(B.1)

is evaluated. In practice, the proposal distribution is often symmetric, i.e., Q(xt;x0) =
Q(x0;xt). Then, a = P (x0)

P (xt)
. If a � 1 then new state is accepted, else it is accepted with

probability a [10]. This means that a random number, r, should be sampled from a uniform
distribution such that 0 < r < 1. If r < a then accept the new state, else reject it. If
accepted xt+1 = x0, else xt+1 = xt. This forms a Markov chain.

Source:[10]

Figure B.1: Metropolis-Hastings algorithm in two dimensions, showing a proposal density,
Q(xt; x0) with a length scale ✏ and a target distribution unnormalized P

⇤(x) with a length
scale L

There are problems with the Metropolis-Hastings algorithm too. Consider the example
shown in fig.B.1. The random walker is at x(t) trying to sample from the 2D probability
distribution P

⇤(x). Due to the elongated unidirectional shape of P ⇤(x), if the step size is
too large, most of the states will be rejected. If the step size is too small, it will take a long
time to sample from the entire distribution.

If the no. of steps is T with step size ✏, it can be shown that random walks follow a
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Gaussian statistical distribution in the large T limit. Its mean displacement, L is then

L ⇡
p
T ✏

T ⇡
✓
L

✏

◆2

(B.2)

This applies to higher N -dimensional state spaces too. Let us consider the target distribution
as an N-dimensional Gaussian with �n as the standard deviation in the n

th direction and
the proposal distribution as a spherical Gaussian with standard deviation ✏. If we assume
✏ is small enough such that each new state is almost always accepted, then the random
walker can take step sizes of ✏. Then, T ⇡

�
�max

✏

�2
, since �max is the largest length scale

in the problem. Now, ✏ can be increased to �min to obtain an optimal no. of iterations as

T ⇡
⇣

�max
�min

⌘2
. ✏ can’t be larger than �min because the acceptance rate will fall sharply then.

At least this doesn’t have any catastrophic dependence on the dimension N , although it can
still be quite large due to a quadratic dependence on length scale ratios.

B.4 Gibbs sampling

In Gibbs sampling, we need at least a two dimensional distribution to work with. It is useful
if drawing from the conditional distribution P (xi|{xj}j 6=i) is easier than drawing from the

actual distribution P (x). We start with a point x(t) in the parameter space. Using P (x1|x(t)
2 )

we sample x1 along the line shown in fig.B.2 and then sample along x2 from P (x2|x1) which
gives us x(t+1). This completes one iteration and continuing this till t ! 1, will exactly
reproduce P (x) from the distribution of the samples.

There are problems with this method, which are similar to the problems faced in the
Metropolis-Hastings algorithm. If we have two strongly correlated variables x1 and x2, with
the length scales of the target and conditional distributions as L and ✏ respectively, then it
takes (L/✏)2 iterations to sample reliably from the target distribution.

58



Source:[10]

Figure B.2: Gibbs sampling
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Appendix C

�
2 Distribution

The �
2 distribution is obtained from the gamma distribution. It is given as [37],

f(x) =
1

�(p/2)2p/2
x
p/2�1

e
�x/2

, 0 < x < 1 (C.1)

The �2 distribution has an interesting property. Let X1, X2, ..., Xn be samples from a normal
distribution, n(µ, �2). Then [37],

S
2 =

X

i

(Xi � X̄)2

�2

has a �
2 distribution with n�1 degrees of freedom. A �

2 test is used to test how well a given
model fits our data. This is a method of hypothesis testing with the null hypothesis that
the model is true. Then, given the expected observations (from the model) and the actual
observations, we can calculate a �

2 value and compare it with a critical �2. If the calculated
�
2 is less than the critical one, then our hypothesis is true, otherwise its false. The �2 value

for a random variable, X is given by

�
2 =

X

i

✓
X

observed
i

�X
model
i

�X
observed
i

◆2

(C.2)

The critical chi-squared value, �2
c
is for a certain significance level, ↵ and a certain number

of degrees of freedom is given by

↵ =

Z 1

�2
c

f(x) d x (C.3)

�
2
c
is usually obtained from commonly available �

2 tables.
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[27] Thomas H. Reiprich and Hans Böhringer. The Mass Function of an X-Ray Flux-limited
Sample of Galaxy Clusters. ApJ, 567(2):716–740, March 2002.
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