

Predicting the depths of Amino Acids using Neural Networks

By: Tanayaa Bhagdikar (20151144)

Supervisor : ​Dr. M.S. Madhusudhan, Indian Institute of Science Education &

Research, Pune

Expert Advisor : ​Dr Pranay Goel, Indian Institute of Science Education & Research,

Pune

1

CERTIFICATE

This is to certify that this dissertation entitled “​Predicting the depths of Amino

Acids using Neural Networks​” towards the partial fulfilment of

the BS-MS dual degree programme at the Indian Institute of Science Education and

Research, Pune represents study/work carried out by​ Tanayaa Bhagdikar​ at

I.I.S.E.R. Pune​ under the supervision of ​Dr. M.S. Madhusudhan, Dept. of Biology

during the academic year ​2019-20

Signature of Student Signature of Supervisor

2

DECLARATION

I hereby declare that the matter embodied in the report entitled ​Predicting the

depths of Amino Acids using Neural Networks​ are the results of

the work carried out by me at the ​Department of Biology​, ​I.I.S.E.R. Pune​, under the

supervision of ​Dr. M.S. Madhusudhan​ and the same has not been submitted

elsewhere for any other degree.

Signature of Student Signature of Supervisor

3

LIST OF FIGURES

Figures Page Numbers

Fig 1: Amino Acid propensities 7

Fig 2: Computing residue depth 8

Fig 3: Depth distributions of amino acids 9-10

Fig 4: Schematic of a neuron 12

Fig 5: Gradient Descent schematic 13

Fig 6: Schematic of a Neural Network 14

Fig 7: Heatmaps of kd score vs. depth 17-20

4

LIST OF TABLES

Tables Page Numbers

Table 1: kd scores vs. depth correlation 21

Table 2: pKa and pKc values for the amino acids 22-23

Table 3: Molar masses of amino acids 23-24

Table 4: Results of training Dataset 1 with labelled features 26-27

Table 5: Results of training Dataset 1 with all features 28-29

Table 6: Results of training Dataset 2 with labelled features 30

Table 7: Results of training Dataset 2 with all features 31

5

ABSTRACT

The aim of our project was to predict the depths of all the amino acids in a given

query sequence. Residue depth is an important parameter to study various other

properties of the protein. To predict the same we used neural networks. We had

earlier tried statistical methods to predict residue depth but failed. We extracted all

information from the query sequence and used these as features for our neural

network. We subsequently trained several networks and tweaked the input features

to improve the accuracy. We also tried changing the number of nodes in every

hidden layer and the number of hidden layers. Our final model had negligible

accuracy. This was because the input features we could extract, only given the query

was far too weakly correlated to the final residue depth. Other constraints of energy

and structure would have probably led to a better prediction.

6

INTRODUCTION

Proteins are among the most abundant and vital molecules in any living system. The

function of any protein can be deduced by studying its 3 dimensional structure, which

depends on its amino acid sequence. Different amino acids have different

preferences as to where they are present in a protein [Figure 1]. Charged amino

acids such as Lysine and Arginine prefer to be present on the surface to interact

with the solvent, while uncharged amino acids are generally buried.

 Figure 1: Different amino acids prefer different environments

The environment an amino acid is present in can be quantified by a parameter called

residue depth. Residue depth is computed as the distance between the amino acid

and the bulk solvent[3]. Residue depth is useful in predicting small molecule binding

sites, cavities, pKa of amino acids and the effect of deleterious mutations in

proteins[1,2,4]. Hence, prediction of amino acid depths can help in determining the

structure of the protein and help in predicting the other properties as mentioned

above.

7

 ​ Figure 2: Computation of residue depth

Protein structure prediction is an important problem in Biology because there is a

huge disparity between the number of known sequences and the number of known

structures. The current version of UniProt contains 133507323 sequence entries,

yet the protein data bank has only 146266 protein structures[7]. Crucially, the

number of unique folds these structures can be classified into is only 1195. There

are several methods of protein structure prediction in use including homology

modelling, threading and ​ab initio​ prediction methods.

In this project, we will be using the method of Threading for protein structure

prediction and subsequent depth prediction. Threading works by sliding an

unknown query sequence through all known protein folds and scoring the models

so generated. The best scoring model is the predicted fold. Predicting the fold

correctly, hence, will directly allow us to infer the depths of the query sequence.

We first obtained the set of all known protein folds from HOMSTRAD [5]. Out of

2841 possible folds, we decided to use 1752 single-domain folds as our template

folds.

8

Initially we tried purely statistical methods to predict residue depth. We studied a

non-redundant set of 968 proteins to calculate the propensities of each amino acid

being at different depths. The structures of these proteins were obtained from the

RCSB database. A 30% redundant set was obtained using PISCES [6]. It was

also ensured that the structures obtained had no missing residues. Finally, we

used DEPTH to calculate the depths of each residue in a given protein structure–

and use these observations for scoring.

We computed the probability for each amino acid to occur at a particular depth,

using above data. The scores (probabilities) were computed by taking into

account the fluctuation in depths of an amino acid. Given one observation, we

assign scores to all the depths that residue can be at by multiplying the bin width

(i.e. 0.1) with the cumulative distribution function of the Gaussian at that

point.The scores for each bin are successively added up, accounting for all

depths a given residue is observed at.

We further normalized these scores such that given a certain depth interval, all the

individual scores of all amino acids summed up to 1. We observed that

hydrophobic amino acids such as Alanine, Valine and Proline had higher scores at

higher depths – indicative of the nature of their side chains while hydrophilic amino

acids like Serine, Asparagine and Glutamine had higher scores at lower depths [

Figure 3].

 Fig 3(a) : Normalized scores of 20 residues at 3Å

9

Fig 3(b): Normalized scores of 20 residues at 11Å

Figure 3: Histograms depicting the scores i.e. probabilities of the 20 amino

acids occurring at two different depths

The query sequence when threaded through different templates, was made to

inherit the depths of the template residues and scored using our computed

propensities, i.e. the probability that residue ‘X’ would be found at depth ‘d’, for a

threaded model. The highest scoring model was the predicted fold.

However, upon testing this method, by using known fold sequences as our queries;

we got very poor results. The predicted model was never the existing fold, in fact it

was usually one of the poorest scoring folds.

Next, we thought that models where the depth distribution of a residue was most

similar to its known distribution would be most favourable. So, now, for every

threaded model, we further did a spline fit (using inherited depths, and known

scores) to obtain the interpolated probability scores of each of the 20 amino acids

across all depths, and compare these with the known values. We now penalize

each model by computing the difference between interpolated values and known

values. It is thought that the more likely a template is, the closer the interpolated

values (for each residue) will be to its natural probability distribution – and such

models get very low penalties (added to the scores).

10

We again tested the above method by using a set of “template” sequences as our

query sequences. We found that the known model was never one of the top scoring

models. Its percentiles ranged from 94 - 9 , the average percentile being 62. In order

to check if the predicted model and the known model had any structural similarity, we

used a topology independent structural superimposition tool called CLICK[10]. The

structural overlap between the predicted and the actual model ranged between 16%

- 39%.

There was clearly poor overlap between predicted and known fold . We thought this

might be because we disregarded the effect of neighbours (and their depths) on the

residue itself. It also might be because we did not check if there was unbalanced

buried charge in any of these confirmations - such models should have been heavily

penalized.

To take into account the various factors we thought would influence residue depth

i.e. charge, environment around the residue etc, we decided to use Machine

Learning, specifically Neural Networks.

Neural Networks are a class of Supervised Machine Learning Algorithms. These

work by taking in as the input a set of “features” which are correlated to and

determine the “target variable”. We briefly introduce the common terminologies

associated with Neural Networks below:

(i) Neuron :​ A neuron is the most basic unit of a neural network. It takes in some

input(s), processes it, and generates some output. The incoming inputs are basically

multiplied by some “weights” and summed up. An “activation function” acts on this

value and the output is transmitted to the next neuron(s). Neural Networks are

essentially just layers of neurons, connected to one another, which finally predict the

desired variable.

11

(ii) Weights :​ ​ When the neuron receives an input, it multiplies that by a specific

weight. For ‘n’ different inputs to one neuron; there will be ‘n’ different weights; one

for every input. These weights are indicative of the importance of the input; i.e. an

input considered more important, will be multiplied by a higher weight. During

training a neural network, we initially assign random weights for all inputs - the

purpose of training is to find out the optimal weights for each input; in order to

produce the result. So, given an input x(i) to a node; it is transformed to W(i)*x(i);

where W(i) is its weight.

(iii) Bias:​ A linear component is applied to the inputs as well. This basically helps to

change the range of the quantity W(i)*x(i). The input x(i) is finally processed as

W(i)*x(i)+ B.

(iv) Activation Function:​ This is the part where non-linearity is added to the

network. Many real world prediction problems cannot be solved by classical

regression techniques because all these models are based on linear algorithms. The

activation function is a nonlinear function which acts on the processed quantity

W(i)*x(i)+B and this final result is transmitted to the next neuron.

(v)Input / Output / Hidden Layer :​ The input layer receives the input and is the first

layer of the network. It feeds this input to the first hidden layer. The hidden layer is

called such because it is not visible to us. These are the processing layers, they

12

perform specific tasks on the incoming data and pass on the output generated by

them to the next layer. The last hidden layer passes on its outputs to the Output

Layer; which predicts / classifies the target variable.

(vi) Cost Function: ​The aim of the network is to predict the output value as close as

possible to the known value. The Cost Function is a metric to measure the accuracy

of the neural network. It essentially penalizes the network for predicting values

deviating from the known values. During training, the network keeps trying to

minimize the cost function and increase accuracy.

(vii) Gradient Descent :​ Gradient descent is an optimization algorithm for

minimizing the cost. We start from a point x (which has some cost function J1), and

take little steps Δx, and compute the cost at x+Δx (say J2). If J2<J1; we keep

proceeding along this path to find a local minimum of the cost function.If J2>J1, we

change directions and proceed down the path where the cost function keeps

decreasing.

13

(viii) Learning Rate :​ The learning rate is the amount of minimization of the cost

function in each iteration. The rate at which we descend towards the local minima of

the cost function is the learning rate. The learning rate needs to be picked very

carefully; too large and the network being trained will miss out on the minima, too

slow and the network will take a very long time to converge.

(ix) Backpropagation :​ This is the crux of training a neural network. During training,

at each iteration, the cost function is computed and the error of the network can be

found. Backpropagation feeds back this error through the nodes along with the

gradient of the cost function, at every point updating the weights so as to reduce this

error. After every iteration, the weights get closer to their optimal values.

In this project, we will extract “features” or input variables from a given query

sequence and use a neural network to predict the target variable, residue depth.

14

We initially split this problem into training 20 different neural networks, one for each

of the 20 essential amino acids. Subsequently, we also tried using just one network

and training all the data in one go.

15

METHODS

There were 3 steps involved in this project:

(i)​ Obtaining relevant data

(ii)​ Feature selection and setting up (training) the neural networks, on the training

dataset

(iii)​ After achieving good accuracy, validate our models by making predictions, on

the testing dataset

(i) Obtaining relevant data

We first obtained a set of 2841 protein folds from HOMSTRAD, a database of protein

folds which classifies them by structural similarity. Out of these, we picked 1751

single-domain protein folds as our template folds, to be threaded through. We picked

these single-domain folds by assuming that any fold more than 250 residues long

was usually a multi-domain protein fold. Next, we used DEPTH to compute the

depths of all the residues along the protein fold.

Out of 1751 folds, we picked 1393 sequences to be our training data, and the

remaining to be our testing data

To be specific, we used 2 datasets to train our neural networks. One consisted of the

microenvironments of known fold sequences, their features and subsequent depths.

This dataset had 128204 rows, each referring to a specific residue present in one of

the 1752 single - domain template folds. In this dataset, there was no “threading”

taking place, all the rows represented “true” datapoints, known to occur in nature.

The other dataset consisted of 1.3 crore datapoints. These included “true” datapoints

as well as “threaded” datapoints. We threaded the 1393 “training queries” through all

1752 folds and obtained the features at every point in all the models generated.

16

(ii) Feature Selection

I. Microenvironment: ​The microenvironment of a residue consists of its 6 closest

neighbours, within 5Å of it (including sequential ones). These interact with the

central residue through Hydrogen bonds and other side-chain interactions. To study

the correlation between microenvironment and depths for all residues, we used a set

of 4379 proteins, with Sequence Identity<=35%. We wrote a script to find out all the

neighbours of a given residue within a distance cutoff of 5Å. After scanning the

output text files, we discarded microenvironments which had less than 6 neighbours,

for the purposes of our study. This we could do because these microenvironments,

with fewer than 6 neighbours were a very small proportion of the entire dataset.

For a given residue, we score all its microenvironments (from the above data) on

the basis of their chemical nature. We score each microenvironment as the mean

of the kd scale hydrophobicity values of the neighbours comprising it. Furthermore,

we plot heatmaps depicting the instances of that residue occuring in a

microenvironment having a certain kd score, to depict the probability of the central

residue, occurring in such an environment.

 Figure 7: Heatmaps depicting the incidences of residue depth vs. kd scores

of microenvironments for each of the 20 amino acids. Values scale up by 100

 Fig 7(a): Heatmap for ALA Fig 7(b): Heatmap for ARG

17

 ​ Fig 7(c): Heatmap for ASN Fig 7(d): Heatmap for ASP

 ​Fig 7(e): Heatmap for CYS ​ ​Fig 7(f): Heatmap for GLN

18

 ​Fig 7(i): Heatmap for HIS Fig 7(j): Heatmap for ILE

 Fig 7(k): Heatmap for LEU Fig 7(l): Heatmap for LYS

19

 ​Fig 7(o): Heatmap for PRO Fig 7(p): Heatmap for SER

 Fig 7(q): Heatmap for THR Fig 7(r): Heatmap for TRP

20

We then tried to find the relation between the mean kd score of the

microenvironment and its depth for all the 20 amino acids, using a simple

regression model (a polynomial fit, as a linear model would clearly not work) [

Table 1].

Residue Datapoints Coefficient of
Determination

ALA 107793 0.070

ARG 55011 0.013

ASP 65866 0.019

ASN 48561 0.022

CYS 13904 0.043

GLN 40534 0.018

GLU 75643 0.017

GLY 84285 0.057

HIS 26382 0.031

ILE 64477 0.084

LEU 102242 0.069

LYS 65316 0.021

MET 25377 0.070

PHE 45612 0.051

PRO 50605 0.017

SER 66411 0.033

THR 60893 0.031

TRP 15519 0.040

TYR 40309 0.034

VAL 79585 0.077

21

Analyzing the above results, we thought that we might have lost out information

while averaging out the scores of the 6 closest neighbours. So, we decided to try

setting up a neural network with only the 6 closest neighbours’ kd scores as the 6

input features to see if that gave better results.

We analyzed the results from running the above Neural Networks and concluded

that more features would be required in order to predict depth accurately. So we

extracted all the other features available from the query sequences.

II. pKa and pKc values (of the central residue) - ​This feature was a proxy for

residue charge. We assumed that charged amino acids would generally prefer to be

on the outside of a protein fold. If it occured in the interior, it would have to be

nullified by other residues in its neighbourhood; to ensure stability.

II. pKa and pKc values (of the sequential neighbours) - ​The closest neighbours

of a given residue are normally its sequential neighbours. Hence, their charge (or

lack of it) would impact the position (and depth) of the central residue.

We used the following standard pKa and pKc values of amino acids [Table 2].

Residue pKa pKc

ALA 2.34 9.69

ARG 2.17 9.04

ASP 1.88 9.60

ASN 2.02 8.80

CYS 1.96 8.18

GLN 2.17 9.13

GLU 2.19 9.67

22

GLY 2.34 9.60

HIS 1.82 9.17

ILE 2.36 9.60

LEU 2.36 9.60

LYS 2.18 8.95

MET 2.28 9.21

PHE 1.83 9.13

PRO 1.99 1.83

SER 2.21 9.15

THR 2.09 9.10

TRP 2.83 9.39

TYR 2.20 9.11

VAL 2.32 9.62

Table 2 :pKa and pKc values of the 20 amino acids

III. Molar Mass of central residue :​ This feature served as a proxy for residue size.

We are not sure how it would affect final residue depth. Following were the standard

values we used for residue masses.

Residue Molar mass (g/mol)

ALA 89.09

ARG 174.20

ASP 133.10

ASN 132.12

CYS 126.15

GLN 146.15

GLU 147.13

23

GLY 75.07

HIS 155.16

ILE 137.18

LEU 131.18

LYS 146.19

MET 149.21

PHE 165.19

PRO 115.13

SER 105.09

THR 119.12

TRP 204.23

TYR 181.19

VAL 117.15

Table 3 : Molar Masses of the 20 amino acids

IV. Number Density of central residue - ​We defined the number density as the

number of neighbours a residue had within 5​Å of it. This would range from six (

which was the minimal cutoff we imposed for selecting microenvironments) to as

high as 10.

Software - ​All the Neural Networks were run on Tensor Flow, version 1.1.5.0.

We used a dense, deep feed-forward neural network built using Keras. A ‘dense’

network is a network where every node in a given layer is connected to all the other

nodes in the next layer. We used a deep feed-forward network because our problem

was essentially a prediction, not a classification problem - with defined input

features.

The loss function we used was the standard Mean Squared Error (M.S.E.) metric.

24

M.S.E. is defined as the sum of squares of the error. The error here was the gap

between predicted residue depth and known residue depth.

The optimizer we used to train the network was Adam, with its default parameters.

25

RESULTS & DISCUSSION

We approached the problem in two ways. In the first method, we split our training

datasets into 20 different datasets, corresponding to each of the 20 amino acids. We

train 20 different neural networks. In the second method, we just use one neural

network to train the entire dataset (and predict depths of all 20 types of residues).

We first present the results for Dataset 1 - comprising strictly of those

microenvironments known to exist in nature, i.e. fold microenvironments.

(I)​ As our features for this neural network, we just used “labelled”

microenvironments. The input was a (1*20) vector specifying the neighbours of a

given central residue.

We trained 20 separate neural networks, each with 2 Hidden Layers. The input layer

had 20 nodes, the First Hidden Layer had 128 nodes, the Second Hidden Layer had

64 nodes, and the Output Layer had 1 neuron.

Residue Datpoints Accuracy

ALA 9929 1.0072e-04

ARG 6128 0

ASP 7074 0

ASN 5575 0

CYS 3113 0

GLN 4772 0

GLU 8387 0

GLY 9061 0

HIS 3126 0

ILE 7419 1.3479e-04

LEU 11232 0

26

LYS 8454 0

MET 2470 0

PHE 5080 0

PRO 5563 0

SER 7640 0

THR 7338 0

TRP 1732 0

TYR 4614 0

VAL 9506 0

All 128204 0

Table 4: Results of the training the Neural Networks, one for each amino acid,

using labelled microenvironments, on the True Dataset

We then changed the architecture to 3 Hidden layers, which had 256, 128 and 64

nodes respectively. The results remained unchanged. They remained the same even

when we further changed the network to a sparser one with 64, 64, 64 nodes in each

of the three hidden layers. We thought this was probably because here we made a

clear distinction between each of the 20 amino acids. But chemically amino acids like

Arginine and Lysine are fairly similar. It was quite likely that microenvironments

comprising 6 Arginines or 6 Lysines would be extremely similar chemically (given a

specific central residue) and lead to similar depths. However, in the above

implementation we treated them as entirely different.

(II)​ For the subsequent networks, we did not distinguish between amino acids, and

trained the neural network on the whole dataset. This was because, as we observed

above, there were very few representatives for rare amino acids. Also, as we saw

from the heatmaps in the ‘Methodology’ section; microenvironment by itself was not

27

a good indicator of residue depth. So we trained one neural network, and

implemented it with different combinations of all our input features.

We label the features as follows -

(a) 6 kd Values characterizing microenvironment

(b) 2 pKa values of sequential neighbours

(c) 2 pKc values of sequential neighbours

(d) pKa value of central residue

(e) pKc value of central residue

(f) Molar Mass of central residue

(g) Number density

The notation we will be using to describe the neural network architecture is

(#neurons HL1, #neurons HL2, …,1). So, (64, 64, 64) corresponds to a neural

network with 3 Hidden Layers and one neuron in the output layer. The number of

neurons in the input will depend on the features being used. If a different activation

function is used, it will be mentioned. Otherwise, we use ReLu activation.

Features Architecture Accuracy

All (64) 0.0035

All (128, 64) 0.0035

All (64, 64); sigmoid 0.0037

All (64, 64, 64) 0.0035

All (64, 64, 64); sigmoid 0.0034

All (512, 245, 128) 0.0034

All (64, 64, 64) 0.0034

(a) (64, 64, 64) 0.0019

(a) (64, 64) 0.0019

(a) (64) 2.34 * (10^-5)

28

(a), (g) (64, 64, 64) 0.0036

(a), (b), (c) , (d) (64, 64, 64) 0.0034

(a), (b), (c) , (d) (64, 64) 0.0035

(b), (c) (64) 2.34 * (10^-5)

(b) (64) 2.34 * (10^-5)

(c) (64) 2.34 * (10^-5)

(b) (64) 2.34 * (10^-5)

(c) (64) 2.34 * (10^-5)

Table 5: Results of the training the Neural Networks, on the entire True

Dataset, with different combinations of different features

All the above implementations yielded exceedingly poor results. Most basic neural

networks generally start with an accuracy of 30-40%. Here the accuracy barely

touched 1%. This implied one of the two things - either we had far too few data

points, considering the complexity of the prediction or that we simply had features

that were not strongly correlated to the target variable. If it was the second case

which was true, that would mean we could not; using only the features extracted

from a query sequence, predict residue depth.

In order to see if a larger amount of training data would give us better results we

used our second dataset, this time consisting of threaded microenvironments and

other features intrinsic to each amino acid. This dataset had approximately 1.3 crore

datapoints. Even splitting it into 20 different clusters would have sufficient

representatives for all amino acids.

(I)​ Trained 20 separate neural networks. The input feature used was just labelled

microenvironments i.e. a (1*20) vector characterizing the microenvironment.

29

Residue Datpoints Accuracy

ALA 87077 0

ARG 570841 0

ASP 531659 0

ASN 679841 0

CYS 403785 0

GLN 452907 0

GLU 825760 0

GLY 878505 0

HIS 275143 0

ILE 617536 0

LEU 924399 0

LYS 924399 0

MET 234345 0

PHE 435104 0

PRO 539700 0

SER 729031 0

THR 671281 0

TRP 159961 0

TYR 385832 0

VAL 809281 0

All 0

Table 6: Results of the training the Neural Networks, one for each amino acid,

using labelled microenvironments, on the Threaded Dataset

30

(II)​ We then trained a single neural network, using combinations of different features

and different architectures on the threaded dataset [Table 7]. The input features

correspond to the same labels as mentioned before.

Features Architecture Accuracy

All (64) 0

All (128, 64) 0

All (64, 64); sigmoid 0

All (64, 64, 64) 0

All (64, 64, 64); sigmoid 0

All (512, 245, 128) 0

All (64, 64, 64) 0

(a) (64, 64, 64) 0

(a) (64, 64) 0

(a) (64) 0

(a), (g) (64, 64, 64) 0

(a), (b), (c) , (d) (64, 64, 64) 0

(a), (b), (c) , (d) (64, 64) 0

(b), (c) (64) 0

(b) (64) 0

(c) (64) 0

(b) (64) 0

(c) (64) 0

Table 7: Results of the training the Neural Networks, on the entire Threaded

Dataset, with different combinations of different features

31

As we can see, the results for all the models that we trained, had zero (~ 10^(-3) -

10^(-5)) accuracy. This result implies that if we were to randomly assign a depth

value between 0-20 Å (binned at 0.5 Å), to each residue in the query sequence,

even that algorithm would work better than the current neural network. For a deep

feedforward neural network, predicting a continuous target variable, many thousands

of datapoints should have sufficed for training. Yet, whichever dataset we used, we

got extremely poor results.

The results of Dataset 2 could still be justified, by saying that there were a lot of

“false positives” in the dataset - a lot of microenvironments were possible for the

residue to exist in; but only few were found in nature, the others never occured in

nature and hence the neural network performed poorly (mismatch between input

features and target variable, depth). But even the results for Dataset 1 - which

consisted of only microenvironments known to exist, “true positives”, the results were

not any better.

The only explanation could be that the input features we used were very weakly

correlated to the final residue depths. Indeed, when we studied residue

microenvironment and depth correlation, the R² value were of the order 10^(-2) -

showing poor dependence of residue depth on its environment. We used a few other

features, which were inherent characteristics of that residue (molar mass, pKa, pKc

values) - yet these by themselves did not significantly impact depth, as proven in our

previous studies (where we had predicted depth using probabilities and background

depth profiles). The sequential neighbours and number density, also proved to be

irrelevant to predicting depth.

Throughout this exercise, we neglected two factors - the energy and structure

constraints of the resulting protein fold (being threaded into). We had no way of

finding these out, given only the query sequence. We hence conclude that, purely on

basis of query sequence alone, we cannot predict the residue depths of that

sequence and so deduce its protein fold. External energy constraints or structural

32

information would be required to do the same.

REFERENCES

1.​ Kuan Pern Tan, Thanh Binh Nguyen, Siddharth Patel, Raghavan Varadarajan and

M. S. Madhusudhan (July 2013). “Depth: a web server to compute depth, cavity

sizes, detect potential small-molecule ligand-binding cavities and predict the pKa of

ionizable residues in proteins”. ​Nucl. Acids Res.​ 41 (W1): W314-W321. doi:

10.1093/nar/gkt503

2.​ Kuan Pern Tan, Raghavan Varadarajan, M. S. Madhusudhan (2011). “DEPTH: a

web server to compute depth and predict small-molecule binding cavities in

proteins”. ​Nucleic Acids Research.​ doi: 10.1093/nar/gkr356

3.​ Suvobrata Chakravarty and Raghavan Varadarajan (1999). “Residue depth: a

novel parameter for the analysis of protein structure and stability”.​ Structure​. Vol 7,

Pages: 723-732.

4.​ Farheen N., Sen N., Nair S., Tan K.P., Madhusudhan M.S. (2017).“Depth

dependent amino acid substitution matrices and their use in predicting deleterious

mutations”.​ Prog Biophys Mol Biol. ​128:14-23., doi:

10.1016/j.pbiomolbio.2017.02.004.

33

5.​ Mizuguchi K., Deane C.M. Blundell, T.L. & Overington J.P., (1998).

“HOMSTRAD: a database of protein structure alignments for homologous families”.

Protein Science.​ 7, 2469-2471.

6.​ G. Wang and R. L. Dunbrack, Jr. (2003). “PISCES: a protein sequence culling

server”.​Bioinformatics.​ 19:1589-1591.

7.​ The UniProt Consortium (2017).“UniProt: the universal protein knowledgebase”.

Nucleic Acids Res​. 45: D158-D169

8​. Murzin A. G., Brenner S. E., Hubbard T., Chothia C. (1995). “SCOP: a structural

classification of proteins database for the investigation of sequences and structures”.

J. Mol. Biol.​ 247, 536-540

9.​ Kyte J., Doolittle R.F. (1982). “A simple method for displaying the hydropathic

character of a protein”. ​J. Mol. Bio.​157, 105-132

10​. Nguyen M.N., Tan K.P., Madhusudhan M.S. (2011) . “CLICK - Topology

independent comparison of biomolecular 3D structures”. ​Nucleic Acids Res​.,

doi:10.1093/nar/gkr393

34

APPENDIX

Script to compute the Euclidean distance b/w any 2 atoms in a

given PDB file

import os

import sys

from​ math import pow

Obtain the pdb file

fle=sys.argv[​1​]
print fle

residue_pos=[]

with​ ​open​(​'%s'​%fle) ​as​ f:
The following snippet extracts the relevant positions of amino

acids in the sequence (there is a lot more information in the pdb

apart from this)

 ​for​ ​line​ ​in​ f.readlines():
 ​if​ str(​line​[:​4​])==​"ATOM"​:
 pos=int(​line​[​23​:​26​].strip())
 ​if​ pos ​not​ ​in​ residue_pos:

 residue_pos.append(pos)

FOR loop iterates over all positions along the chain

for​ rno ​in​ range(​0​, ​len​(residue_pos)):

 central_pos=residue_pos[rno]

 print central_pos

 env=[]

 pos_chk=[]

 ​with​ ​open​(​'%s'​%fle) ​as​ f:
 ​lines​=f.readlines()
 f.​close​()
 ​for​ line1 ​in​ ​lines​:
 ​if​ ​"ATOM"​ ​in​ line1:
 ​if​ int(line1[​23​:​26​].strip()) == central_pos:
 ​# Extract central residue
 central_residue=line1[​17​:​20​]

 ​#Obtain its co-ordinates
 xcen=float(line1[​31​:​38​].strip())
 ycen=float(line1[​39​:​46​].strip())

35

 ​zcen=​float​(line1[​47​:​54​].​strip​())

 ​for​ line2 ​in​ lines:
 ​if​ ​"ATOM"​ ​in​ line2:
 # Extract other amino acids, excepting

central residue

 ngh_pos=​int​(line2[​23​:​26​].​strip​())
 # IF loop to avoid picking the central

residue itself (​"ATOM"​ lines have multiple entries ​for​ a single
residue)

 ​if​ central_pos != ngh_pos:
 # Extract neighbour coordinates

 xngh=​float​(line2[​31​:​38​].​strip​())
 yngh=​float​(line2[​39​:​46​].​strip​())
 zngh=​float​(line2[​47​:​54​].​strip​())

 # Compute distance netween central

residue and the other residue

dist=​float​(​pow​(​float​(​pow​((xcen-xngh),​2​)+​pow​((ycen-yngh),​2​)+​pow​((zc
en-zngh),​2​)),​0.5​))

 # Distance cutoff

 ​if​ dist<= ​float​(​5.00​):
 residue=line2[​17​:​20​].​strip​()
 # IF loop to prevent same

residue to feature ​in​ the microenvironment more than once
 ​if​ ngh_pos not ​in​ pos_chk:
 pos_chk.append(ngh_pos)

 ​env​.append(residue)

 # Write data to a new ​text​ ​file
 with open(​'%s.txt'​%fle[:​5​], ​"a"​) as o:
 o.write(​'%s\t'​%central_residue)
 o.write(​'%s\t'​%env)
 o.write(​'%s\n'​%pos_chk)

Script 1: To find out the neighbours of a residue within 5​Å

36

Script to find out the different types of microenvironments a

specific residue can occupy - and the depths associated with each

kind of microenvironment

Script for ALA

import​ sys
import​ re
import​ linecache
import​ numpy ​as​ np

fle=sys.argv[​1​]

Load dictionary of kD scale. Use this scale to determine the

chemical nature of the ALA microenvironment

kd_scale={​'ILE'​:​'4.5'​, ​'VAL'​:​'4.2'​, ​'LEU'​:​'3.8'​, ​'PHE'​:​'2.8'​,
'CYS'​:​'2.5'​, ​'MET'​:​'1.9'​, ​'ALA'​:​'1.8'​, ​'GLY'​:​'-0.4'​, ​'THR'​:​'-0.7'​,
'SER'​:​'-0.8'​, ​'TRP'​:​'-0.9'​, ​'TYR'​:​'-1.3'​, ​'PRO'​:​'-1.6'​,
'HIS'​:​'-3.2'​, ​'GLU'​:​'-3.5'​, ​'GLN'​:​'-3.5'​, ​'ASP'​:​'-3.5'​,
'ASN'​:​'-3.5'​, ​'LYS'​:​'-3.9'​, ​'ARG'​:​'-4.5'​}

print(fle)

pdb=fle[:​5​]
#print pdb

with​ open(​'ALA_env.txt'​, ​"a"​) ​as​ o:
 o.write(​'%s\n'​%pdb)

res=​'ALA'
l_no=​0
indices=[]

Purpose : Obtain indices of all lines that correspond to ALA

microenvironments. Need this list in order to avoid traversing the

entire file and eating up a lot of time

with​ open(​"%s"​%fle) ​as​ f:

 ​for​ line_no, line ​in​ enumerate(f):
 ​if​ ​'ALA'​ ​in​ line.partition(​'\t'​)[​0​].strip():
 indices.append(line_no)

List of which unique ALA microenvs are present

#​print​ ​track
#​print​ indices

37

i=​0
for​ i ​in​ range(​0​,len(indices)):

Determine ​file​ line

 line1=str(linecache.getline(​'%s'​%fle, ​int​(indices[i]+​1​)))

 pre1=line1.​partition​(​'\t'​)[​-1​].​partition​(​'\t'​)[​0​].​strip​()
 pre2=re.sub(​"'"​,​""​, pre1)
 microenv=pre2.​strip​(​']['​).split(​', '​)
 #​print​ microenv

 envscore=​0
 ​for​ j ​in​ range(​0​, len(microenv)):
 key=microenv[j]

 # ​print​ key
 envscore=envscore+​float​(kd_scale[key])

 finscore=envscore/len(microenv)

 with open(​"%s-residue.depth"​%fle[:​5​]) as o:
 lines=o.readlines()

 line2=lines[​int​(indices[i]+​1​)]
 mark=line2.​partition​(​'\t'​)[​0​].​partition​(​':'​)[​-1​].​strip​()
 central_res=str(res+​":"​+str(mark))
 depth=[]

 values=line2.split()

 all_atom=values[​2​].​strip​()
 main_chain=values[​4​].​strip​()
 side_chain=values[​6​].​strip​()
 depth.append(​float​(all_atom))
 depth.append(​float​(main_chain))
 depth.append(​float​(side_chain))

 #​print​ central_res, microenv, depth, finscore

 with ​open​('ALA_env.txt', ​"a"​) ​as​ o:
 o.​write​('​%s​\t'​%central​_res)
 o.​write​('​%s​\t'​%microenv​)
 o.​write​('​%s​\t'​%finscore​)
 o.​write​('​%s​\n'​%depth​)

Script 2: Extract individual microenvironment data for each residue

38

#Script ​to​ extract microenvironment ​and​ other features
import os

import sys

import numpy ​as​ np
import linecache

import csv

Get ​input​ query, compute its length
pre​=str(sys.​argv​[​1​])
fold​=sys.​argv​[​2​]
name = ​pre​.​split​(​'\t'​)[​0​].strip()
query = ​pre​.​split​(​'\t'​)[-​1​].strip()
print​(name, query)
l​=​len​(query)
scan={​'A'​:​'0'​, ​'R'​:​'1'​, ​'N'​:​'2'​, ​'D'​:​'3'​, ​'C'​:​'4'​, ​'E'​:​'5'​,
'Q'​:​'6'​, ​'G'​:​'7'​, ​'H'​:​'8'​, ​'I'​:​'9'​, ​'L'​:​'10'​, ​'K'​:​'11'​, ​'M'​:​'12'​,
'F'​:​'13'​, ​'P'​:​'14'​, ​'S'​:​'15'​, ​'T'​:​'16'​, ​'W'​:​'17'​, ​'Y'​:​'18'​,
'V'​:​'19'​}

Input data regarding kd ​values​ of AA
kd_scale={​'I'​:​'4.5'​, ​'V'​:​'4.2'​, ​'L'​:​'3.8'​, ​'F'​:​'2.8'​, ​'C'​:​'2.5'​,
'M'​:​'1.9'​, ​'A'​:​'1.8'​, ​'G'​:​'-0.4'​, ​'T'​:​'-0.7'​, ​'S'​:​'-0.8'​,
'W'​:​'-0.9'​, ​'Y'​:​'-1.3'​, ​'P'​:​'-1.6'​, ​'H'​:​'-3.2'​, ​'E'​:​'-3.5'​,
'Q'​:​'-3.5'​, ​'D'​:​'-3.5'​, ​'N'​:​'-3.5'​, ​'K'​:​'-3.9'​, ​'R'​:​'-4.5'​}

Input data regarding pKa (amino ​and​ carboxyl) ​values​ of AA
pKa_carboxyl={​'I'​:​'2.36'​, ​'V'​:​'2.32'​, ​'L'​:​'2.36'​, ​'F'​:​'1.83'​,
'C'​:​'1.96'​, ​'M'​:​'2.28'​, ​'A'​:​'2.34'​, ​'G'​:​'2.34'​, ​'T'​:​'2.09'​,
'S'​:​'2.21'​, ​'W'​:​'2.83'​, ​'Y'​:​'2.2'​, ​'P'​:​'1.99'​, ​'H'​:​'1.82'​,
'E'​:​'2.19'​, ​'Q'​:​'2.17'​, ​'D'​:​'1.88'​, ​'N'​:​'2.02'​, ​'K'​:​'2.18'​,
'R'​:​'2.17'​}

pKa_amino={​'I'​:​'9.6'​, ​'V'​:​'9.62'​, ​'L'​:​'9.6'​, ​'F'​:​'9.13'​,
'C'​:​'8.18'​, ​'M'​:​'9.21'​, ​'A'​:​'9.69'​, ​'G'​:​'9.6'​, ​'T'​:​'9.10'​,
'S'​:​'9.15'​, ​'W'​:​'9.39'​, ​'Y'​:​'9.11'​, ​'P'​:​'10.6'​, ​'H'​:​'9.17'​,
'E'​:​'9.67'​, ​'Q'​:​'9.13'​, ​'D'​:​'9.6'​, ​'N'​:​'8.8'​, ​'K'​:​'8.95'​,
'R'​:​'9.04'​}

Input data regarding molar mass of AA

Molar_Mass={​'I'​:​'137.18'​, ​'V'​:​'117.15'​, ​'L'​:​'131.18'​,
'F'​:​'165.19'​, ​'C'​:​'121.15'​, ​'M'​:​'149.21'​, ​'A'​:​'89.09'​,

39

'G'​:​'75.07'​, ​'T'​:​'119.12'​, ​'S'​:​'105.09'​, ​'W'​:​'204.23'​,
'Y'​:​'181.19'​, ​'P'​:​'115.13'​, ​'H'​:​'155.16'​, ​'E'​:​'147.13'​,
'Q'​:​'146.15'​, ​'D'​:​'133.10'​, ​'N'​:​'132.12'​, ​'K'​:​'146.19'​,
'R'​:​'174.20'​}

Start Threading through ​all​ single-domain templates.
Multiple models per template possible, ​if
len​(query)<​len​(template)

os.​chdir​(​'threads'​)
template=np.loadtxt(​'%sthread.txt'​%​fold​, delimiter=​','​)
os.​chdir​(​'..'​)
Obtain length of template

i=np.size(template,axis=​0​)
if​ ​int​(​l​) <= ​int​(i):
 os.​chdir​(​'neigh'​)

 with ​open​(​'%sfin.txt'​%​fold​) ​as​ ​f​:
 lines=​f​.readlines()
Read characters from ​input​ query, ​and​ thread them through ​all
possible positions in one ​go

 ​for​ char in ​range​(​1​,​l​-​1​):

 permissible_pos=i-char

 residue=query[char]

Variables ​a​,​b​ determine permissible positions occupied during
threading

 ​a​=​min​(​l​-char,permissible_pos)
 ​b​=​max​(​l​-char,permissible_pos)
 ​for​ ​line​ in ​line​s:

idx=​line​.partition(​'\t'​)[​0​].partition(​','​)[-​1​].partition(​','​)[-​1​]
 ​if​ ​int​(idx) in ​range​(​a​,​b​+​1​):
Obtain microenvironment

neighbours=​line​.partition(​'\t'​)[-​1​].partition(​'\t'​)[​0​].strip()
 env=neighbours.strip(​']['​).​split​(​', '​)

distances=​line​.partition(​'\t'​)[-​1​].partition(​'\t'​)[-​1​].strip(​']['​)
.​split​(​', '​)
 indices=sorted(​range​(​len​(distances)),
key=lambda ​k​: distances[​k​])

40

 fin_env1= ​list​(​map​(env.__getitem__, indices))
 fin_env2=[]

Below loop transforms template indices ​to​ corresponding query
indices

 ​for​ ele in fin_env1:
 ​if​ ​int​(ele) in
range​(​int​(​int​(idx)-​int​(​l​-char)+​1​),​int​(​int​(idx)+​int​(char)+​1​)):
 fin_env2.​append​(ele)
 no_density=​len​(fin_env2)
 ​fin​=[]
 ​for​ ​res​ in fin_env2:
 diff=​int​(​int​(​res​)-​int​(idx))
 ​res​= ​int​(char)-​int​(diff)
 ​fin​.​append​(​res​)

Determine ​6​ closest neighbours, obtain the other parameters.
Also generate labelled data, stored in array ​"matrix"
 ​if​ no_density>= ​6​:
 matrix=np.zeros(shape=(​1​,​20​))
 amino_acid1=query[​int​(​fin​[​0​])]
 kd1=kd_scale[amino_acid1]

matrix[​0​,​int​(scan[amino_acid1])]=matrix[​0​,​int​(scan[amino_acid1])]+
int​(​1​)
 amino_acid2=query[​int​(​fin​[​1​])]
 kd2=kd_scale[amino_acid2]

matrix[​0​,​int​(scan[amino_acid2])]=matrix[​0​,​int​(scan[amino_acid2])]+
int​(​1​)
 amino_acid3=query[​int​(​fin​[​2​])]
 kd3=kd_scale[amino_acid3]

matrix[​0​,​int​(scan[amino_acid3])]=matrix[​0​,​int​(scan[amino_acid3])]+
int​(​1​)
 amino_acid4=query[​int​(​fin​[​3​])]
 kd4=kd_scale[amino_acid4]

matrix[​0​,​int​(scan[amino_acid4])]=matrix[​0​,​int​(scan[amino_acid4])]+
int​(​1​)
 amino_acid5=query[​int​(​fin​[​4​])]
 kd5=kd_scale[amino_acid5]

41

matrix[​0​,​int​(scan[amino_acid5])]=matrix[​0​,​int​(scan[amino_acid5])]+
int​(​1​)
 amino_acid6=query[​int​(​fin​[​5​])]
 kd6=kd_scale[amino_acid6]

matrix[​0​,​int​(scan[amino_acid6])]=matrix[​0​,​int​(scan[amino_acid6])]+
int​(​1​)
 seq1=query[char-​1​]
 seq2=query[char+​1​]
 pK11=pKa_carboxyl[seq1]

 pK12=pKa_amino[seq1]

 pK21=pKa_carboxyl[seq2]

 pK22=pKa_amino[seq2]

 mm=Molar_Mass[residue]

 pK_c=pKa_carboxyl[residue]

 pK_a=pKa_amino[residue]

 depth_aa=​round​(template[​int​(idx)-​1​,​0​],​2​)
 depth_mc=​round​(template[​int​(idx)-​1​,​1​],​2​)

Obtain outputs, one ​file​ ​for​ labelled data, the other ​file​ ​for
all​ features
 with ​open​(​'input.csv'​, ​'a'​) ​as​ ​f​:
 writer = csv.writer(​f​)
 writer.writerow([name, ​fold​, char,
kd1, kd2, kd3, kd4, kd5, kd6, pK11, pK12, pK21, pK22, mm, pK_c,

pK_a, no_density, depth_aa, depth_mc])

 with ​open​(​'input_labelled.csv'​, ​'a'​) ​as​ ​o​:
 writer = csv.writer(​o​)
 writer.writerow([name, ​fold​, char,
matrix[​0​,​0​], matrix[​0​,​1​], matrix[​0​,​2​], matrix[​0​,​3​], matrix[​0​,​4​],
matrix[​0​,​5​], matrix[​0​,​6​], matrix[​0​,​7​], matrix[​0​,​8​], matrix[​0​,​9​],
matrix[​0​,​10​], matrix[​0​,​11​], matrix[​0​,​12​], matrix[​0​,​13​],
matrix[​0​,​14​], matrix[​0​,​15​], matrix[​0​,​16​], matrix[​0​,​17​],
matrix[​0​,​18​], matrix[​0​,​19​], mm, depth_aa, depth_mc])

os.​chdir​(​'..'​)

Script 3: Extract features by threading the query through folds

42

from google.colab import drive

drive.mount('/content/drive')

#​ The NN script
import tensorflow

from sklearn.preprocessing import MinMaxScaler

from matplotlib import pyplot as plt

import pandas as pd

import seaborn as sb

#​Read input data, split into features and target vectors
path='/content/drive/My Drive/Thesis_TB/input.csv'

training_data=pd.read_csv(path)

print(training_data.head())

#​Scale the features
#​scaler = MinMaxScaler(feature_range=(0, 1))
#​scaled_train = scaler.fit_transform(training_data)

#​multiplied_by = scaler.scale_[14]
#​added = scaler.min_[14]
#​scaled_train_df = pd.DataFrame(scaled_train,
columns=training_data.columns.values)

X_train=training_data.drop([training_data.columns[0],

training_data.columns[1],training_data.columns[2],

training_data.columns[16], training_data.columns[17]], axis=1)

print(X_train.head())

#​X1_train=training_data[[training_data.columns[0],
training_data.columns[1], training_data.columns[2],

training_data.columns[3], training_data.columns[4],

training_data.columns[5]]]

#​print​(X1_train.head())

#​Molar_Mass={​'I'​:​'137.18'​, ​'V'​:​'117.15'​, ​'L'​:​'131.18'​,
'F'​:​'165.19'​, ​'C'​:​'121.15'​,
#​ ​'M'​:​'149.21'​, ​'A'​:​'89.09'​, ​'G'​:​'75.07'​, ​'T'​:​'119.12'​,
'S'​:​'105.09'​,
#​ ​'W'​:​'204.23'​, ​'Y'​:​'181.19'​, ​'P'​:​'115.13'​,

43

'H'​:​'155.16'​, ​'E'​:​'147.13'​, ​'Q'​:​'146.15'​,
#​ ​'D'​:​'133.10'​, ​'N'​:​'132.12'​, ​'K'​:​'146.19'​,
'R'​:​'174.20'​}

#​RES​=training_data.loc[training_data[training_data.columns[​23​]] ==
146.19​]
#print(len(​RES​.index))

#​RES_train​=​RES​.drop([​RES​.columns[​0​], ​RES​.columns[​1​],
RES​.columns[​2​], ​RES​.columns[​23​], ​RES​.columns[​24​],
RES​.columns[​25​]], axis=​1​)
Y_train​=training_data[[training_data.columns[​16​]]]
print(​Y_train​.head())

from tensorflow.keras.models import ​Sequentia'l
from tensorflow.keras import optimizers

from tensorflow.keras.layers import ​Dense

model = ​Sequential​([
 ​Dense​(​128​, activation=​'relu'​, input_shape=(​14​,)),
 ​Dense​(​64​, activation=​'relu'​),
 ​Dense​(​1​, activation=​'linear'​),
])

model.compile(optimizer=​'adam'​, loss=​'mean_squared_error'​,
metrics=[​'accuracy'​])

hist=model.fit(​X_train​, ​Y_train​, epochs=​20​)

Script 4: The Neural Network Script

44

