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Abstract

This thesis presents the calibration and performance study of CMS High Granularity
Calorimeter (HGCAL) based on the data collected during the beam tests conducted in
2018. The muon run data was used to calibrate the silicon sensors of HGCAL which record
the energy deposits of the incoming high energy particles. The calibration values thus found
were then used to study the signal-to-noise ratio of these sensors. The pion run data was
later used to check the energy response and resolution of the detector. The simulation of
the passage of charged pions through HGCAL test-beam setup was used to understand the
leakage and absorbed energy profile. With multiple active layers available, the shower start
algorithm was used to predict the approximate location of the first hadronic interaction of
the pion with the detector material. In order to improve the pion energy resolution, a simple
machine learning regression model was considered which gave better results than the con-
ventional methods, suggesting the possibility for improvement with more complex machine

learning models.
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Chapter 1

Introduction

The Standard Model (SM) of particle physics is the theory describing three of the four known
fundamental forces, the electromagnetic, weak, and strong interactions as well as classifying
all known elementary particles. The last particle to be found was the Higgs boson which was
discovered in 2012 at the European Organization for Nuclear Research (CERN), the world’s

largest accelerator facility.

Large Hadron Collider (LHC) at CERN, the biggest particle collider in the world has
been successful in verifying most of the results predicted by the standard model. LHC is

capable of colliding two proton beams with the center of mass energy of 13TeV.

Despite experimental verification of SM, there are still many open questions like neutrino
oscillations, CP violation that SM has failed to explain. To continue to probe the nature and
look for signatures of newly proposed theories, the LHC will be upgraded to higher luminos-
ity from ~ 10**em=2s71 to ~ 10**em 257! around the year 2026. Higher luminosity implies
more intense beams and hence more chances of producing particles of interest - the processes
involving heavy masses or smaller cross-sections. The High Luminosity LHC (HL-LHC) will
integrate 10 times more luminosity than the LHC, posing significant challenges for radiation
tolerance and event pileup on detectors, especially for forward calorimetry, and hallmarks

the issue for future colliders.



1.1 HGCAL Detector: motivation

To cope with the high radiation environment and large pileup rates at the HL-LHC, the
CMS collaboration plans to upgrade the endcap side of the detector extending in the range
1.5 < |n| < 3. Currently, the CMS detector contains the following two types of calorimeters
to measure the energy of electromagnetic objects (electrons, photons) and the hadronic

objects (protons, neutrons, pions, kaons) respectively.

e Electromagnetic Calorimeter (ECAL): This homogenous calorimeter is made of
PbW Oy crystals. A particle passing through the crystals generates scintillating photons
which are then detected by photodetectors to obtain the raw signal.

e Hadronic Calorimeter (HCAL): This sampling calorimeter has alternating layers
of active and passive material. The active material consists of plastic scintillators and

passive material consists of brass and steel.

These calorimeters will be upgraded with a silicon and scintillator based technology to
provide high granularity for multi-dimensional shower reconstruction. This new detector
is known as the High Granularity Calorimeter (HGCAL). Figure 1.1 depicts the proposed
design of HGCAL.

1.2 HGCAL Beam tests

In order to validate the basic design of the HGCAL, a series of beam tests are currently
being performed on the proposed detector configuration. Beam tests are carried out to test
various components of the detector such as the electromagnetic and hadronic calorimeters,
scintillators and the readout electronics. In the current Beam tests electrons, muons and
pions of known energy were shot at the prototype of HGCAL. The electrons create electro-
magnetic showers, pions create hadronic showers and muons do not create any shower (Refer
to chapter 2 for details). This way, choosing this set of particles enables the study of the

detector’s response to different types of particle-matter interactions.
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Figure 1.1: Schematic diagram of HGCAL in the CMS end-cap region [1]
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Table 1.1: HGCAL Test-beam : beam energies

1.3 HGCAL test-beam setup

The analysis presented here made use of the experimental data acquired from the beam tests

conducted at CERN in October 2018. The HGCAL test

-beam setup consisted of the beam

Refer to Figure 1.2].

[

and HGCAL detector

Y

source, trigger system, DWC



control

Figure 1.2: Actual test-beam setup photo [2]
1.3.1 Beam source

The Super Proton Synchrotron (SPS) at CERN produces proton beams of energies upto
400 GeV. These proton beams then collide with Beryllium plates of different thicknesses
at site T2 to produce secondary beams of desired momenta and purity [3]. The secondary
beam mainly contains hadrons like protons, pions and kaons [4]. The secondary beam is
carried by the H2 beamline to the Experimental Hall North 1 (EHN1) area at CERN where
the prototype HGCAL detector is placed. Usually, there is 1 ps time gap between the
consecutive particle bunches. The test beam experiments were carried out with protons,
muons, electrons, and pions. These particles were generated from the initial proton beam

through the following physical processes.

e Pions: The proton beam collides with the fixed target to produced charged and neutral

hadrons as the scattered products.

e Electrons: The neutral hadrons produced in the above process decay immediately (half-

life ~ 107%2s)to two photons. These two photons give two electron-positron pairs. [4]

e Muons: The charged pions decay to give muon and neutrinos (~ 1078s)
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1.3.2 Trigger system

The readout electronics stores the information received from the HGCAL sensors only when it
receives an external trigger. In the case of HGCAL beam tests, two consecutive scintillators
were kept before the starting of the HGCAL setup. The trigger was set when both the
scintillators recorded a signal at the same time. The scintillators had dimensions of 2cm x 2cm
and 4cm x 4cm while a single hexaboard sensor was 15cm wide. The EE part of HGCAL had
only one hexaboard module per active layer passing through the beam axis. So the beam
particles entering both the scintillators thus ensured that the readings were taken only for

the events with the beam particles travelling close to the beam axis.

1.3.3 Delay Wire Chamber (DWCQC)

HGCAL will have a silicon tracker at CMS to predict the particle trajectories. In the case
of beam tests, four delay wire chambers were kept one after the other to mimic the tracker
and for trajectory reconstruction.

A delay wire chamber is made of wire mesh connected to a voltage source [Refer Figure 1.3].
A charged particle passing through it ionizes the gas around the wires. The electrons thus
created then travel to the anode, creating an avalanche that can be detected by the system
hardware. DWC is used for precision position measurements and comparatively lower cost.
The DWCs used for HGCAL testbeam had a position resolution of ~1mm.

1.4 HGCAL test beam - detector configuration

The HGCAL prototype had three main components namely EE, FH and AH which were
analogous to electromagnetic, hadronic calorimeter and scintillator parts of the proposed
HGCAL. The first two parts of the detector, ie, EE and FH sampling calorimeters, consisting
of a number of passive layers which were primarily meant to absorb incoming particle’s energy
and a number of active layers made of small silicon channels which detect the charged
particles passing through them. The relevant length scale for the hadronic shower is the
interaction length (\;,;); defined for a material as the depth till which % (~ 36%)fraction of

incoming pions will survive the detector without starting a hadronic shower. The detector’s
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Figure 1.3: Schematic diagram of a typical DWC [5]

thickness can hence be defined in terms of interaction length. Table 1.2 gives information
about the different components of the HGCAL detector.

Detector | Absorber material | No. of active layers | Depth (in \;,)
EE Lead 28 1.6
FH Steel 12 3.4
AH Steel 39 4.6

Table 1.2: HGCAL test-beam detector configuration

The active layers of EE ad FH were made of hexaboard modules each comprising of 128
small silicon sensors (also called channels) each capable of collecting charge in the event of
charged particle passing. All the 28 active layers of EE contained one hexaboard module
per layer, whereas the first 9 active layers of FH had 7 hexaboard modules per layer (Figure
1.4). The last 3 active layers of FH had 1 hexaboard module per layer.

10



Figure 1.4: Hexaboard modules in daisy structure
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Chapter 2

Calorimetry

Calorimetry involves measuring the energy of particles entering the detector. The high
energy particles (energy ~GeV) such as photons, electrons, protons, pions generate a large
number of secondary particles when they pass through the detector. This collection of newly
generated particles is called a particle shower. Therefore measuring the energy of incoming
particles requires the study of particle showers. The particle showers are broadly categorized
into the following two categories based on the physical processes involved in making the

shower.

2.1 Electromagnetic Showers

Electromagnetic showers are created by electrons and photons. These particles deposit their

energy in the detector via following different physical processes.

Photon

e Pair production : In the presence of detector material, the photon converts into

electron-positron pair. This requires a minimum of 1MeV amount of energy to create

13



an e+e- pair. The cross-section for this process is proportional to 22, where z is the

atomic number of the material

e Compton scattering: The photon scatters electron of the material. The cross-section

goes approximately as %

e Photo-electric effect: The photon knocks out an electron from the valence shell of
the material atoms. Some part of the energy is utilized to overcome the work function

of the material and the rest of the energy is transferred to the electron.

Electron

e Bremsstrahlung: The electron interacts with the nuclei in the nucleus and emits
a photon in the process. This process is dominant for high energies of the electron.
This process is the most dominant process until the electron’s energy reaches certain

threshold energy, called critical energy (e.).

e Ionization: The incoming electron ionizes electrons of the material, producing sec-
ondary electrons. This process dominates for lower energies, ie, below the critical

energy.

The secondary particles created through various processes as described above continue to

lose energy in the same fashion, thereby creating a large number of shower particles.

2.2 Hadronic Showers

Charged hadrons interact with the detector material and create a hadronic shower. A
hadronic shower has a purely hadronic component composed of secondary hadrons like

+ as well as an electromagnetic component which comes from the neutral pions which

prin,m
decay to two photons. The following are the processes involved in hadronic shower develop-

ment.

e Hard interaction : This is a fast process where the incoming hadron interacts with

nucleons of the material to produce secondary hadrons (7=, 7°). The secondary hadrons

14



are produced in the forward direction. The secondary hadrons production requires a

minimum of 280 MeV energy (~ 107%2s).

e Nuclear Evaporation: The hard interaction changes the baryonic configuration of
the material nuclei, making them unstable. These nuclei undergo radioactive decay,
producing new hadrons. This stage is called nuclear evaporation and lasts for a longer

period of time (~ 1071%5)

e v deexcitation: Neutrons which were converted to protons during the hadronic in-
teraction capture the electron from the closest orbit to get back the neutron; thereby

releasing energy in the form of photons.

e Fission: The unstable nuclei can also decay into lighter nuclei which then further

interact as they pass through the matter

2.3 Energy fluctuations

The charged particles created in the electromagnetic shower then generate a signal for the
calorimeter either by creating scintillating photons, by ionizing the gas molecules or by
creating electron-hole pair. The energy measured by the calorimeter depends on the number
of charged particles created in the shower as well as the amount of signal created by these
charged particles. Hence the intrinsic fluctuations in the signal arise from the following two

methods:

1. Signal quantum fluctuations: The incoming charged particles ionize the detector
atoms producing free electrons (or photons in case of scintillators) which are then
recorded as signal of the detector. The fluctuations in the number of these elec-
trons/photons produced in the event are called signal quantum fluctuations. The
recording of a signal is essentially a particle counting problem and follows a Poisson

distribution. Hence the relative energy resolution coming solely from the quantum

15



fluctuations can be given by:

A" .e A
n!
S An =V
CAn VA

p(n|A) =

) A VA

In general the reconstructed energy is proportional to the number of electron/photons

recorded. In such cases,

FExn = (F)xA\

CAE_An 1
(E)y  (n) VX
LaE 1
(E) (E)

where,
n = number of electrons/photons recorded
A = mean number of electrons/photons recorded

E = reconstructed energy.

In general, the average number of such electrons/photons produced by high energy
charged particles is of the order of 10%. For example, the number of electron-hole pairs
generated by a minimum ionizing particle in a 300um thick silicon semiconductor is
about 23,000 [6]. Therefore the relative energy fluctuation caused by quantum effects,
which goes as \/Lﬁ is about 0.6%, which is significantly lower than the other sources of

energy fluctuations as discussed in the later sections.

. Visible energy fluctuations: Visible energy corresponds to the energy of the particle
which is carried by the ionized electrons/ scintillating photons which are then detected
by the detector. In the case of hadronic showers, the incoming hadrons interact with
the nucleons in the detector material. Some energy of the hadron is used in overcoming

binding energy of the quarks in the nucleon whereas some energy is used in creating new

16



hadrons. This energy lost by the hadron cannot be detected by the detector in terms
of ionized electrons/scintillating photons and hence this energy is called invisible en-
ergy. The invisible energy contributes to over 30-40% of the total non-electromagnetic
component of the deposited energy.([7] Table 2.6) and the fluctuations in this energy
contribute to about 15 — 20% [7]

3. Shower fluctuations: The fluctuation in the number of secondary particles created
in a particle shower is called shower fluctuations. In the case of charged pion shower,
the secondary particles which carry most of the energy are charged and neutral pions.
The secondary charged pions interact with the detector material and contribute to the
hadronic shower whereas the neutral pion decays to two photons (half-life ~ 107'0s)
which in turn contribute to the electromagnetic component of the shower. The purely
hadronic component of the shower loses some of its energy in terms of the binding
energy as described in the previous point which further degrades the energy resolution.
Hence fluctuations in the amount of energy that goes to electromagnetic and hadronic
components are called shower fluctuations. These contribute significantly to net energy
fluctuation. For example, in the case of QFCAL (See appendix C for more information)
prototype scintillator, these contributed about 28% compared to the other sources

which gave around 33% resolution [§].

2.4 Parametrizing energy resolution

For a given particle and a given detector, the energy resolution as a function of beam energy

can be parametrized in the following way :

AF gEBLEBC
E E VE

with the coefficients a,b,c being parameters of the model. The three terms are added

quadratically assuming that they are not mutually correlated. The three coefficients repre-

sent the dominant sources of the fluctuations in the following manner.

e ¢ : This represents random energy fluctuations that come from the intrinsic noise in
the system. This includes thermal noise from the different electronic components of

the detector and the common mode noise in the system. Since these fluctuations are

17



independent of the incident energy of the particle, their relative energy fluctuations

have inverse beam energy dependance.

b : This represents stochastic fluctuations. In the case of both quantum fluctuations as
well as the shower fluctuations, the detector signal is the addition of energy depositions
from different individual quanta. For N particles each giving a signal z;, the signal

fluctuations can be given as:

E=k) z=kN({z) = (AE) =k (Ax;)> =k (02)N

i=1 =1

AE  ko,vN 1 1
: = X X
E  kN{(z) VN VE

In the case of quantum fluctuations, x; is the energy deposited by each ionized electron

while in case of shower fluctuations, x; is the total energy deposited by the shower

particle in the material.

¢ : This represents the instrumental effects such as lateral, longitudinal leakage and
albedo. For high energy hadrons in a sampling calorimeter, these effects produce an
energy independant relative energy resolution [9]. These effects dominate the high
beam energy region where the stochastic and noise terms become negligible due to

their inverse dependance on energy.
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Chapter 3
Signal to Noise Ratio Analysis

Electronic measuring instruments such as the silicon sensors used in HGCAL have inherent
noise coming from various sources such as thermal fluctuations, common-mode noise etc.
Hence it becomes very crucial to define the signal and noise of the measuring system and then
distinguish them. In the case of HGCAL sensors, the signal is meant to be the electric signal
given by the sensor when a mip-like particle passed through it whereas noise is meant to be
the electric signal given by the sensor when no particle passed through it. When measuring
the energy deposited by an incoming particle, it is important to reject the hits which get
recorded due to mere detector noise. These noisy hits can be rejected by defining an energy
threshold for the recorded hits. This threshold needs to be set so as to reject maximum noise
events and pass maximum signal events. Knowing the signal to noise ratio (SNR) helps to
set the scale for this energy threshold. For example, if the noise and SNR of the sensor are
N, SN R respectively, then the energy threshold can be set as high as N x SNR. For this
reason, finding SNR is important for HGCAL sensors. On the other hand, the stability of

SNR across the sensors is one indication that all the sensors are performing uniformly.

This section briefly describes the mechanism of silicon sensors, definitions of signal and
noise and SNR characteristics of HGCAL detector.

19



3.1 Silicon pixel detectors

Silicon sensors are used in the HGCAL detector as the active material in EE and the FH
parts. The signal and noise of a measuring instrument depend on the structure and mech-
anism of the instrument. Hence it is important to first study the overall structure and

principle of a general semiconductor detector.

A general semiconductor detector consists of a p-n junction with the voltage applied across
the junction in reverse biased mode (Fig. 3.1). The detector is kept at a fixed reverse-biased

voltage and the output of the detector is measured using the readout electronics in terms of

the charged collected.

preamplifier & _L \,
bias resismr\

metal
oxide

— coupling capacitor
p —implant

—+depletion zone

n=bulk

ohmic n-side contact

particle track ) )
back side bias

Figure 3.1: Silicon pad sensor- schematic diagram

A p-n junction, in general, has free electron-hole pairs that can move across the sensor.
When reverse biased, electrons, holes in the p-n junction get attracted towards the oppo-
sitely charged electrodes, creating a depletion region near the junction site which is void of
e-h pairs in equilibrium. The formation of the depletion region breaks the circuit and no
further current passes through the junction. In the event a charged particle passes through
this region, it ionizes atoms in the material, creating extra e-h pairs. These newly created
e-h pairs then travel to the oppositely charged electrodes and thus current is set in the sys-

tem. This way, a current is generated whenever a charged particle passes through the system.

20



To obtain maximum current in the event of charged particle passing, the depletion region is
increased as much as possible by applying more and more potential difference. The voltage
can be increased until the depletion region covers the entire pn junction. Increasing the
voltage further creates an avalanche of electrons that overcome the potential barrier in the

depletion region. This critical voltage is called the breakdown voltage.

In HGCAL silicon sensors, voltage is set below the breakdown voltage to avoid the break-
down while also making sure that the sensor is fully depleted. In the current HGCAL setup,
128 of such sensors collectively make one hexaboard module and one hexaboard module is

used as the smallest mechanical unit of the active layer components.

Half hexagon

Full hexagon

Merged cell 3
™S\/ \

12.5 cm@

Calibration Cells Outer calibration cell 4

?« i: , ) .Mousebite Merged mousebi
2 34 - T
Rt —@14‘: g AR

Figure 3.2: Hexaboard module

3.2 Readout electronics

The readout electronics attached to the sensor collects charge obtained from the sensor. This
analog signal is converted to a digital signal and is measured in terms of analog-to-digital

counts (ADC counts). The HGCAL readout system has the following main components:

1. Pre-amplifier : the actual current generated due to passage of charged particle is

extremely low (in nano amperes) and normal electronic components cannot detect

21



such small quantity hence a preamplifier is used to amplify the raw current to a level

which is detectable by the rest of the electronics

2. trigger : Trigger is an electronic signal given to the system which tells the system
to store the reading. In the case of beam tests, there are two scintillators kept before
the starting of HGCAL. The trigger is set when both the scintillators record signals
simultaneously. Such a triggering mechanism makes sure that a charged particle passed
through both of the scintillators which also implies that it would have entered the
HGCAL.

3. pulse shaper: The reading is recorded with different time stamps. Hence in the event
of particle passing, the detector receives the signal for different time stamps. The pulse
shaper fits a predefined function to this set of data and reports the ADC counts for

given event

4. Data Acquisition: The output of pulse shaper is then read by the data acquisition
system (DAQ) and is then sent out as the final output of the sensor.

>t
=>n

Figure 3.3: Generic Readout mechanism

A

3.3 Noise

In the case of HGCAL beam tests, the noise is thought of as the electric signal recorded by
the sensor which does not correspond to the energy deposited by passage of charged particle.

Depending on the nature of the noise, the noise can be divided into two categories.

1. Electronic noise: The silicon sensors used in the HGCAL are fully depleted reverse-

biased p-n junctions. The electric signal is generated in the sensor due to the creation of
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electron-hole pairs. Under the thermal equilibrium, electron-hole pairs are constantly
generated and annihilated at the same rate in a p-n junction; but when reverse biased,
the spontaneously created electron-holes pair are constantly removed from the junction
due to the presence of the electric field. These newly generated charge carriers then
travel through the oppositely charged electrodes and give rise to the inherent noise in
the system. Every silicon sensor of HGCAL setup independantly develops electronic

noise in this fashion.

2. Common-mode noise: Unlike the electronic noise which depends on the individual
silicon sensors and has no correlation between different sensors, there exists another
type of noise called common-mode noise which shows correlation in different sensors.
This type of noise originates from sources such as proximity of many electric wires

carrying current, contamination from visible light etc.

Apart from these two categories, it was seen that the mean ADC counts received in the
absence of the beam source was off from zero. To account for the offset, pedestal was
defined to be the mean ADC counts recorded in the absence of any beam source [17] and
was subtracted from the raw ADC counts for further analysis in order to make the mean of
the ADC distribution zero.

Hence in the event of charged particle passage, the total electric charge collected from
a sensor has a contribution from both the electric noise and the energy deposited by the
incoming charged particle. Therefore to measure the energy deposition by the charged par-
ticle, it is important to estimate the electric noise. In this analysis, the noise levels were

estimated in terms of the ADC counts.

3.3.1 Noise extraction

The HGCAL sensors recorded electronic signals in 13-time samples after receiving the trigger.
In order to record noise, bypassing the pre-selection criteria, the time sample with the highest
overall ADC counts was chosen for all the trigger events and the raw ADC counts received
in that particular time sample were considered for the analysis. In the analysis, the 12th

time sample was considered for this purpose. The ADC distribution thus obtained is then
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fitted with a gaussian and the standard deviation of the gaussian is reported as the noise of
the given channel. Figure 3.4 shows the noise fitting for one of the channels. Pedestals were
first subtracted from the ADC counts used for the noise analysis. For this reason, we can

see negative entries in the following graph.

Module=114 Chip=0 Channel=54
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Figure 3.4: Example of noise fitting (FH layer 7)

3.3.2 Noise Analysis

The electronic noise arises from the spontaneous creation of electron-hole pairs. A reverse-
biased p-n junction can be thought of as a charged capacitor with the distance between the
plates to be the depletion width. For a capacitor, the electronic noise increases with the
separation of the plates. In the case of FH modules, the voltage across the channels was set
such that their depletion width was around 300 microns. Hence even for the channels with a
different surface area, the noise levels were the same. Figure 3.5 Left shows the noise profile
of one of the FH modules.
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Figure 3.5: FH Noise distribution. Left: Noise distribution for all the available FH channels;
Right: Variation of noise within a module

3.4 Signal

3.4.1 Signal extraction

To calculate the signal for silicon sensors, the experimental data from 200 GeV muon runs
taken in October 2018 at the CERN test beam facility was used. For each muon passing
event, the silicon sensors recorded electric signals in 13 time steps. These 13 data points
were then fitted with a known pulse shape to get the final output of the sensor in terms
of Analog to Digital Converter (ADC) counts. The ADC counts were further filtered by
subtracting pedestal and correcting for common mode noise. For every muon-passing event,
for every channel, the pulse fitting was followed by pre-selection criteria which made sure
that the pulse fitting actually captured a signal the charged particle energy deposit. If S(t)
represents the signal received at time t, the pre-selection criteria were defined in the following

way.

S(tmaz) > S(tmaz + 3)
& S(tmaz +1) > S(tmaz + 3)
& S(tmaz) > 20
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where,

tmar = time at which the maximum signal was recorded.

The energy deposited by a charged particle through ionization in a thin layer of material
follows a Landau distribution [10]. Hence the signal for the sensor was defined to be the
most probable value (MPV) of the Landau fitted of over the ADC distribution. Considering
the intrinsic electric noise in the detector system and a possibility of two muons passing
simultaneously through the sensors, the following fit model was used to acquire MPV of the

Landau. Figure 3.6 shows signal extraction for a typical silicon sensor.

f(z [{mpv, Opoise, Ompw, bkg}) = nnoise.G(x |0, 0ppise)
+nlmip.L(x |mpv, opmpy) * G( 10, 0poise)
+ n2mip.L(x |2mpv, 0pmpy) * G(2 |0, 0poise)
+ nbkg

where,
nnoise, nlmip, n2mip, nbkg are the weights given to each of the cases.
* denotes convolution.

L,G are Landau and Gaussian functions give by:

L(z |p,0) = /000 e .cos [t(%) + %ln(f—:)] dt

(‘T B /‘L>2)

1
Vo T o

Since the x axis had a finite range, the individual probability distributions couldn’t integrate

Gz |p,0) =

out to unity in the given range. This caused fitting problems. The constant term nbkg was

added to overcome this problem.

The fit model defined above gave good results with a few exceptions (Figure 3.7 Left).
The signal fitting for these channels improved when the x-axis range chosen for fitting was
changed from (0,200) to (20,200). The pre-selection criteria defined in section 3.4.1 ignored
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Figure 3.6: Example of signal fitting (FH Layer 4)

the events where the maximum ADC counts received in a time sample were less than 20.

This motivated the change of fitting range.

3.4.2 Signal analysis

The MIP signal was calculated for all the central modules of HGCAL. But the analysis
presented here focusses only on the central modules from 12 layers of FH. The stability of

the signal was checked by looking into the overall distribution of the signal (Figure 3.8 Left).

There were two prominent peaks seen in the histograms making the signal distribution
spread wider. Further investigation of the smaller peak revealed that the maximum con-
tribution to the smaller peak came from the channels of layer 8,11 modules (Refer Fig.3.8
Right). The blue points represent the average signal recorded in the layer and the vertical

error bars represent the standard deviation of signal in the layer.
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Figure 3.7: Example Bad fits (FH Layer 3). Left: Default settings ; Right: Modified
settings. (More plots in the appendix A.1)
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Figure 3.8: FH Signal distribution. Left: Overall Signal distribution; Right: Layer-wise
signal variation (For 1-D signal distributions refer to A.3)

Within a single module, the electric charges from the silicon sensors are collected using
4 Skiroc2 CMS chips [11]. Each chip receives a signal from 32 silicon sensors. Any fault in
the chip can affect the readings of all the 32 corresponding channels. So it becomes crucial
to look at the signal variation across the chips for the given module. Figure 3.9 shows an

example of a signal profile for one module. All the modules considered show overall stable
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Figure 3.9: Variation of signal within a module

signals within a chip.

3.5 Signal to Noise Ratio

As discussed in section 3.4, the signal was defined to be the most probable value of the ADC
distribution obtained from MIP-like events. On the other hand, as discussed in the section
3.3, the noise was defined to be the standard deviation of the gaussian fitted over the ADC
distribution obtained for the events where no MIP-signal was expected. In this case, the
signal to noise ratio (SNR) was defined to be

SNR = Signal

Noise

SNR was calculated for all the available channels separately. The SNR variation was
checked per hexaboard module while differentiating between channels with different shapes.
Figure 3.10(Right) shows the SNR profile for one of the hexaboard modules. Full hexagonal
modules, which had the biggest surface area; showed minimum SNR (black points) while

for example, the half hexagons, which had half the area of full hexagon, showed higher SNR

29



(green points).
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Figure 3.10: FH SNR distribution. Left: SNR distribution for all the available FH channels;
Right: Variation of SNR within a module
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Chapter 4

Pion Shower Analysis

4.1 Energy reconstruction

The energy recorded by a single sensor is called as Reconstructed Hit Energy (rechit energy).
The rechit energy is measured in terms of MIPs. One MIP is the number of ADC counts that
the sensor records if a Minimum Ionizing Particle (MIP) passes through it. In an experiment
with a sampling calorimeter, the initial energy of the charged particle is reconstructed using
rechit energies of all the available sensors. This is generally done by applying conversion
factors to total rechit energy recorded in every active layer. The total rechit energy recorded

by the detector depends on the following factors:

1. Absorber material: Pion’s interaction with absorber depends on absorber’s physical
properties such as the atomic mass number and mass density. In a sampling calorime-
ter, most of the particle’s energy is deposited in the absorbers and only a fraction (~

5%) of energy is deposited in the active layers.

2. Number of active layers: More number of active layers means more frequent sam-

pling of the shower which means more total rechit energy.

3. Size of the detector: A charged pion creates a hadronic shower while passing through
the detector material. So maximum rechit energy is recorded only when the detector is

able to fully contain the hadronic shower. Failing to contain the hadronic shower results
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in secondary particles escaping the detector without depositing all of their energy. The

energy carried by these escaped particles is called leakage.

In the case of test-beam setup, EE, FH, and AH have different absorber materials, different
absorber thicknesses, different numbers of active layers and different geometrical dimensions.
Therefore while reconstructing pion’s initial energy, instead of applying a constant MIP-
to-GeV factor to total rechit energy in the whole HGCAL detector, the rechit energies
in EE, FH, AH are added by first applying constant weights to them and then applying
a common MIP-to-GeV conversion factor. The weights are supposed to take care of the

above-mentioned differences in the 3 detector components.

4.2 Weighted rechit energy sum

As described in the previous section, the pion energy was reconstructed by applying relative
weights to the total rechit energies in EE, FH, and AH respectively. The final form of the

reconstructed energy was as shown below:

Freco =7 |Epg + B(Erg + aEag)] ... for shower start in EE
Ereco =72 (Erg + aEap) ... for shower start in FH

Where 1,72, a, B were free parameters which were found using test-beam data. (Appendix
B)
and Egg, Erg, Eag were total rechit energies in EE, FH, AH respectively.

The relative weights applied in this fashion could have taken care of the material differ-
ences and the different sampling frequencies of the detector but it could not have accounted
for variable shower start locations. The pion can start hadronic shower at any point inside
the detector and is modeled using the interaction length as described in Section 4.4. If the
pion starts shower in FH, it acts as a MIP in EE, thereby depositing a very less amount of
energy in EE. As a result, in such cases, total rechit energy in EE could be ignored in energy
reconstruction. As can be seen from figure 4.1 (blue curve), the mean longitudinal leakage

increases for the late showering pions. (See sec. 4.5 for details of compartmentalization)
For all these reasons, the relative weights were calculated separately for events with
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Figure 4.1: 200 GeV Pion leakage profile w.r.t. different shower start locations
hadronic shower starting in EE, FH respectively.
The procedure of finding these weights, as described in Appendix B was followed for different

beam energies and therefore finally, the relative weights calculated were a function of both
the pion beam energy (20 GeV to 300 GeV) and pion shower start location (EE or FH)

4.3 HGCAL test-beam simulation

Figure 4.2: HGCAL testbeam setup (Simulation)

The beam tests on the pion beam can only provide information about energy deposits in
the active layers. In order to understand the pion energy deposition in detail, it is important

to know the amount of energy deposited in the passive layers and the energy leaked. An
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idealized trend of these values can be obtained by simulating the HGCAL testbeam setup

and passage of pions through them. HGCAL beam tests were simulated using the Geant4
simulation toolkit [12]. Figure 4.2 shows the simulation of HGCAL testbeam setup. In

addition to the rechit energy, the simulation provided the following information:

No. of events

HGCal simulation | 80 GeV Pion HGCal simulation | 200 GeV Pion
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Figure 4.3: Pion absorber and leakage profile (Rest of the plots in the appendix A.4)

e Energy in absorber: total energy deposited in EE, FH and AH. (3 variables for the

3 detector components respectively)

e Transverse leakage: Total energy leakage in the transverse direction. This was
calculated by inspecting the last recorded coordinates of the particles which escaped
the detector. The last recorded z-coordinate would determine whether the particle
escaped from EE or FH or AH.

e Longitudinal leakage: Leakage in the longitudinal direction. This was calculated
by summing energies of the particles that escaped the detector and had the last z-

coordinate more than that of the last active layer of AHCal.

Figure 4.3 shows these variables for 80 and 200 GeV pion samples. Note that summing

up absorber energy and leakage doesn’t exactly give back the initial energy of pion. This

18

because hadronic interactions always contain undetectable energies (eg. energy lost in

breaking the nuclei).
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4.4 Shower start location

The incoming pion may start hadronic shower at variable depths. For a given collection of
high energy pions, the number of pions reaching a depth of z inside the detector without
creating a hadronic shower varies as:
dN 1
e
where,
z=depth into the detector material
N=No. of hadrons which didn’t start hadronic shower till depth z
A= interaction length of the material.
If the depth into the detector is measured in terms of the interaction, length, (say t = %)

then the equation further simplifies to:

dN
— =_N
dt

.. N(t) = Noe_t

where Ny = N(0)

4.4.1 Shower start algorithm

The HGCAL detector in the Test-Beam geometry has a finite volume and hence its energy
reconstruction performance highly depends on where exactly does the pion starts showering.
Having multiple active layers in the detector, it is possible to estimate the location of the

shower start based on the energy deposits in the active layers (Appendix D).

A shower start algorithm has been developed which returns the location of the active layer
nearest to the shower start location. The algorithm checks for the total energy deposits in all
the active layers in a small area around the beam axis and then returns the layer for which
energy deposition increases twofold compared to its previous layer. The main logic behind
this is that the shower is started when the hard interaction of the incoming pion produces

two or more secondary hadrons which further give rise to new particles.
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4.4.2 Shower start distribution

One way to check the validity of the shower start algorithm will be to look at the distribution
of shower start locations. As described in the previous section, an exponentially decreasing
behavior is expected for this distribution. The shower start algorithm only predicts the active
layer nearest to the shower start location. This means the actual location of the shower start
could be anywhere between two consecutive layers. Hence the original differential equation

can be modified as:
AN N
At

where,
AN = number of showers starting at depth ¢
At = distance between consecutive active layers

Now substituting the closed solution form for N(t),
AN = N()Ate_t

Hence a histogram of shower start locations will be nothing but a graph of AN vs. ¢. If the
distance between consecutive active layers is (At) is constant for all layers, this histogram
is expected to show an exponential behavior. In the case of HGCAL, the active layers had
variable distances between them, so to retrieve the exponential behavior, the histogram was

further normalized by dividing each bin by the corresponding
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Figure 4.4: no. of shower starts per layer Left: AN vs shower start location, Right: % A6
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Compartment | Depth (in A\) | Detector | Layers | Thickness (in \)
1 0 to 0.35 EE 1to6 0.35
2 0.35 to 0.78 EE 7 to 14 0.43
3 0.78 to 1.12 EE 15 to 22 0.34
4 1.12 to 1.8 EE 23 to 28 0.68
5 1.8 to 2.7 FH 1to 3 0.9
6 2.7 and beyond FH 4 to 12 2.4

Table 4.1: HGCAL compartments

4.5 Compartmentalization of the detector

The active layers in the HGCAL Test beam setup were placed at varying depths in terms
of interaction lengths. The thicknesses of the absorbers were also different in EE and FH.
For these reasons, instead of analyzing each active layer separately, the active layers were
divided into compartments (Table 4.1). The compartments were made with the goal that
each compartment will have a comparable thickness in terms of interaction length while also
having a comparable number of shower start events in each compartment. Keeping in mind
the exponentially falling behavior of shower start events, the later compartments were made

longer to gather enough statistics.

For the rest of the analysis, pion showering events were classified based on in which com-

partment do the pions start showering.

4.6 Energy Resolution

The primary function of HGCAL is to estimate the energy of the incident particle. The
performance of HGCAL in energy reconstruction is measured based on its energy resolution.
The energy resolution is a measure of the sensitivity of the detector in measuring the en-
ergy of the incoming particle. It can be calculated experimentally by shooting particles of
known energy and measuring the energy recorded by the detector. Energy resolution can be

calculated in two ways:

1. Take reconstructed energy distribution, fit a Gaussian to it and calculate %
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RMS
Mean

2. Take reconstructed energy distribution and calculate

where, o, u are the mean and standard deviation of the Gaussian respectively. The two
ways described will give the same numbers if the reconstructed energy distribution closely
resembles a Gaussian. In other cases, these methods give different results and are reported

separately.

In this study, energy resolution was calculated for three variables:

1. Total absorbed energy (EE, FH, AH combined)

2. Total absorbed energy + total transverse leakage (EE, FH, AH combined)
3. The weighted sum of rechit energy

The weighted sum of rechit energy was calculated for both data and simulation and became
the basis to compare data-simulation. The other two variables were considered to check for
the effect of fluctuations of absorber and leakage on reconstructed energy resolution. The
energy resolution was calculated for showers starting in different compartments. So for one
beam energy, 6 energy distributions were obtained corresponding to shower starting in six
compartments. Figure 4.5 shows one such distribution where all the pions starting shower
in compartment 3 from 200Gev sample were considered. Each of these energy distributions
could have peaked at different energies but for visual comparison, the energies were scaled
by an appropriate factor so that all of their means coincide with the beam energy (Fig. 4.5
- right).

The raw energy distributions were then fitted with gaussian around their cores to extract

1, 0. Figure 4.6 shows compartment-wise energy resolution for 200 GeV pions.

It can be seen that the energy resolution changes according to the shower start location.
The EE part of HGCAL had only one silicon module per layer which covered approximately
7cm of distance in the radial direction (Figure 3.2). As the shower starts deeper in EE, the
shower maximum shifts deeper into FH where more energy can be recorded due to more
no. of modules per layer. This reduces statistical fluctuations on the rechits energy, so
energy resolution decreases. When shower starts in the last compartment of EE, statistical
fluctuation in EE rechits energy is considerable, so energy resolution increases. As the

shower starts deeper in FH, the shower cannot be fully contained in the detector (Lgs ~
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Figure 4.5: Energy distributions. Left: raw energy distribution, Right: energy distributions
with means scaled appropriately to match beam energy (Rest of the plots in the appendix
A.5 onwards)

11Aine)- So there is large longitudinal leakage. So resolution increases. The dependence of
transverse leakage on the energy resolution can be seen clearly from the green points. After
adding transverse leakage to the weighted rechit energy sum, the resultant energy resolution
improves and remains constant for all the compartments except the sixth compartment.
In the case of the shower starting in FH, the energy resolution degrades with a deeper
shower start location mainly because of the longitudinal leakage. This is also reflected in
the increasing energy resolution even after adding transverse leakage to the weighted rechit

energy sui.

To understand the general trend of energy resolution for given beam energy, energy
distributions inclusive of all the showering pions irrespective of their shower start location
was also considered (Fig. 4.6). The process was repeated for all the available energy samples.
Error on the energy resolution was propagated through the error on the fitting parameters

o, i in the following manner:
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Figure 4.6: Energy resolution for different compartments

4.7 Parametrizing energy resolution

The energy resolution of calorimeters is usually parameterised as : & = \/LE ® % & Xe

where F is the energy of the incoming particle and the parameters a, b, ¢ represent:

e a : Statistical fluctuations in measuring E.
e b : random noise in the system. (eg. thermal noise)

e c : constraints imposed by detector geometry. (eg. insufficient detector thickness,

which can cause leakage)

The three terms are added quadratically assuming they are pairwise uncorrelated and the
sum is represented by the symbol @. Figure 4.7 shows the trend of inclusive energy resolution
for different beam energies as well as the contribution of different fluctuations to the net

energy resolution.

At lower beam energies (eg. 20, 50 GeV), the shower is mostly contained in the detector
and hence the contribution coming from the leakage, which is included in the constant term
(c) is lower compared to the statistical fluctuations (Figure 4.8). For higher energies,(eg.
250,300 GeV) the statistical fluctuations (red points) reduce due to increase in the average
number of showering particles/ionized electrons produced and hence the statistical fluctua-

tions reduce but since the detector is not large enough to contain the full shower, the amount
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of longitudinal leakage increases and hence contributes the most to the energy fluctuations.

It can also be noted that the noise term (black points) is a few orders of magnitude lower
than the rest of the terms.

This can be attributed to the pre-selection criteria and the
pulse-shaping.
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With this parametrization, the pion energy resolution profile can be compared with other
relevant calorimeters. HGCAL will be replacing the current endcap calorimeters so it will
be important to compare its energy resolution with the current ones. Table 4.2 shows
comparison of pion energy resolution for three calorimeter prototypes. One should note
that the active layers in CMS ECal, HCal had scintillators in contrast to HGCAL EE and
FH which had silicon sensors. Furthermore, the energy resolution parametrization used for
CMS ECal, HCal had considered only the terms % = \/LE @ c while the term % was calulated
separately using pedestal estimation. With these differences, a common feature that can be
seen in all of them is that the stochastic term dominates the resolution except for high beam

energies around 300GeV.

Prototype a [GeV] b [GeVY?] ¢

HGCAL 0.05 1.38 0.09
CMS HCal 0.38 1.06 0.04
CMS ECal+HCal  0.38 1.18 0.04

Table 4.2: Pion energy resolution comparison of different calorimeters. CMS ECal and HCal
numbers were taken from the corresponding beam test results. [13]

In conclusion,

e the energy reconstructed using the weighted rechit energy sum shows a correlation with

the shower starting compartment.
e The simulation studies set a lower limit on the minimum achievable energy resolution.

e Energy resolution parametrization reveals that instrumental factors and stochastic fluc-

tuations dominate the energy resolution.
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Chapter 5

Machine Learning for energy

reconstruction

There are various methods of implementing machine learning. Artificial neural networks
were used in the analysis as a method of machine learning. A neural network takes an array
of numbers as input and applies mathematical operations to give an array as an output.
The most commonly used mathematical operation is sequential logistic regression. In this
method, logistic regression is applied multiple times to arrive at the final result. One instance
of logistic regression is called a layer which takes an input array and gives an output array
in the following manner.

X =0 (A

Xritxl—i_Bi )

mx1

Here, input array X is converted to output array X **! using matrices A%, B and by applying
an activation function o. The elements of A, B are free parameters of the model and are

found out during training.
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5.1 Introduction

5.1.1 Loss function

During training, a neural network tries to predict the right output by processing on the
given input. The model parameters are updated in every epoch in order to better predict
the output. The goodness of the prediction is quantified by a loss function. A loss function

is a function of predicted output and the true output. Following are the commonly used loss

function.
N
(Yi — y)? 9
F(x;,y) = 7 .
(3, 2) ; 2 X
1| X
=N Z(YQ —y;)? -+« Mean Squared Error (MSE)
i=1
N
= Z —Yiln(y:) + (1 = Yi)in(l — y;) .-+ Binary Cross Entropy (BCE)
i=1
Where,

x;,9; = the i input and output of the training dataset.
Y; = the output predicted by the neural network for the i’ training dataset.
0; = uncertainity on the true output.

N = total number of training data points.

5.1.2 Gradient Descent

In general, the loss functions used in machine learning are of the form:
1 n
F,X)=— 0, X;
(0, X) =~ g f(0. X))

Where,

0 is a vector of model parameters
X is a vector of data points

X, is the ¥ datapoint
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Gradient descent is a method to find out optimum model parameters iteratively. The algo-
rithm updates values of the model parameters using the gradient of the loss function in the

following manner:

0 =0—a.VF0,X)

where,
0’ is the updated model parameter vector

« is the learning rate; a parameter decided at the beginning of the program.

5.1.3 Stochastic gradient descent

Computing gradient of the loss function can turn out to be computationally inefficient for
large amount of data. The parameters can be estimated faster if the data is split into smaller
batches. This becomes the basis for the stochastic gradient descent algorithm. In stochastic
gradient descent, (SGD), the gradient of the whole loss function is approximated by a small

batch of data. Hence for every epoch, the parameters get updated multiple times.

Following is the pseudocode for stochastic gradient descent:

for i in (1,n_epoch)

for j in (1,n_batch)
theta = theta - LR*grad()
end

end

5.1.4 Adam Optimizer

Adam optimizer is an improvement on the stochastic gradient descent algorithm using higher-
order corrections [14]. This algorithm is used as the optimizer for all the machine learning

algorithms presented in this analysis.
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5.1.5 Parameter Initialization

While using Keras for training, the weights of each layer were initialized with a uniform

probability distribution defined in the following way

1
p(x)—Q—l - for x € [—1,]
=0 ... elsewhere

where,
_ [ e
l - nin+fLout
s = scaling. (free parameter.)
Nin, Nowt = N0. of input and output nodes for the layer
Example:

If a hidden layer has 3 inputs and 1 output, then with s =1
_ [61 \/§
S V3+1 V2

5.1.6 Activation function

In each of the hidden layer, The product of matrix multiplication and bias addition is further
modified using an activation function. Activation function is introduced to bring in non-
linearity to the network for better results. The main motivation for this came from the
biology analog of activation potential of neurons. The activation functions are essentially
used to choose a particular set of output nodes using a mathematical condition. For example
while using relu activation function, only those nodes will contribute to the next layer which
give a positive output. The negative outputs will be suppressed to zero and won’t contribute

to the further layers. Following are the commonly used activation functions:

o) :R—=>R
1
o(x) = T -+ - Sigmoid
= maz(0, ) -+ - Rectified Linear unit (ReLU)
— i e tanh
et +e "
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5.2 Linear regression using ML

The pion energy reconstruction was carried out using supervised learning. The simplest
ML regression model is the linear model with one hidden layer. In its basic form, the
machine learning framework accepted rechit energies recorded in the event in different parts
of the detector and gave the reconstructed energy as the output. The goodness of the
reconstruction was tested by comparing it with the true beam energy. The ML model was
tuned with different loss functions, activation functions, and input modes to arrive at the

best possible model.

The passage of high energy pions through the HGCAL test-beam setup was simulated
using the GEANT4 simulation toolkit. The input to the neural network was in the form
of total rechit energy recorded in EE, FH, AH. The pion beam energies considered were
20,50,80,100,120,200,250,300 GeV. Simulation samples were generated centrally by the HG-
CAL simulation group for each of the mentioned energies. At the time of analysis, the
ML model was trained separately for different energies. A portion of the dataset was used
for training and the remaining was used for testing. The additional details of the machine

learning model used are listed below.

e Machine learning framework: Python(v 3.6.9), tensorflow(v 1.14.0), Keras(v 2.2.5)
e Machine learning model: Egreco = W1 FEgg + WoEpy + W3FEag

e Training done for 75% of available events

e Testing done for remaining events (25%)

e Loss functions: x?, 249 G¢] Dey

e Activation function: Linear

e Number of iterations: 10,000

e Parameter estimation : using Adam optimizer
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5.2.1 Choosing the loss function

The ML model was trained separately using following loss functions and the results were

compared in terms of energy response and resolution (Figure 5.3).

1. Average Error : (Y — Yirue)?)

2. Modified x? : <w>

Ytrue

(y2)—(y)?
(v)

3. RMS/Mean :
The simplest possible loss function which will correspond to the deviation of reconstructed
energy from the beam energy is the average error; hence it was the first choice of the loss
function. To consider the deviation of reconstructed energy relative to the beam energy,
modified x? was considered. Since the end goal of the analysis was to reduce the energy
resolution and RMS/Mean being one of the measures of the energy resolution, it was con-
sidered to be the third choice.

Energy resolution was then calculated with loss function x? using following methods.

1. Gaussian is fitted around +1.5 std. dev. of mean of reconstructed energy distribution

with parameters o, u. Then energy resolution = %

2. Calculate std. dev, mean of the reconstructed energies. Then energy resolution =

Std. dev.
Mean

3. Calculate std. dev for region around mean which contains 90% of the data. Then

Mean

energy resolution =
The three methods were considered because the reconstructed energy distributions are

not always Gaussian and there is a possibility of fluctuations far away from the mean.

In the case of RMS/Mean as cost function, the reconstructed energies had good resolution
but the response was bad, as can be seen from the figure 5.3 upper left graph. Since there
was no involvement of beam energy in this cost function, the ML model didn’t care what

the response was. Hence to reduce RMS/Mean, it increased the mean irrespective of the
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Figure 5.1: Pion Energy resolution

beam energy. On the other hand, since the ML model was trained separately for different
energy samples, within a given energy sample, average error and the modified x? differed
only by a constant scale factor. As a result, there was no noticeable difference between the
corresponding in terms of response and resolution. Therefore the modified y? was considered
as the cost function for the rest of the analysis. (See appendix A.8 and A.9 for reconstructed

energy graphs)

5.2.2 Choosing Input nodes

The following two sets of inputs were considered for the machine learning analysis.
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1. Set 1 : 3 numbers representing total rechit energy recorded in EE, FH, AH.

2. Set 2 : 79 numbers representing total rechit energy recorded in all 79 active layers of
HGCAL respectively.

The entire machine learning analysis was done with the total rechit energy recorded by the
sub-detectors EE, FH, AH. Since the information of total rechit energy recorded by each
active layer in these sub-detectors was available, the second set of inputs, representing total
rechit energy recorded by each active layer of HGCAL was considered for the comparison
with the previous set. Since there were in total 79 active layers in HGCAL, the number of
model parameters for the second set was also 79. In general, the second set of inputs was

expected to give better energy response and resolution because of the finer sampling.
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Figure 5.2: Left: Energy response ; Right: Energy resolution

Refer to figure 5.2. The energy response for both input sets deviates on an average by
0.8% while the energy resolution deviates on an average by 14%. Considering the simplicity
of the model with input set 1 and no significant change in the behaviour for input set 2,
the first input set consisting of total rechit energies recorded by EE, FH, AH was used for

further analysis.
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Shower start location | EE rechits | FH rechits
EE > 100 no-cut
FH < 100 > 60
mip-like < 100 < 60

Table 5.1: Event classification

5.2.3 Event classification

The pion passing events were classified according to their shower start location. The shower
start algorithm discussed in section 4.4.1 was found to be inefficient for lower beam energies.

Hence a simplified criterion was used to estimate the shower start location.

The pion events were classified into three categories: shower starting in EE, shower
starting in FH and mip-like events. The classification was done based on the total rechit
energy recorded by EE and FH (Refer to Table 5.1). The rechit energy thresholds were set
by comparing muon and pion rechit energy distributions. MIP-like events were ignored in
the analysis and the neural network was trained separately for events starting shower in EE
and FH. Figure 5.3 shows the energy resolution for MLL models trained on different shower
starting locations. It can be seen that the resolution is the best for pions starting a shower
in FH. This was expected since there are seven modules per layer in FH and hence there
is less amount of transverse leakage through the detector and hence lesser fluctuations in
the deposited energy. The resolution improvement is the most significant for lower energies
because the lower energy pions require a lesser amount of material to fully contain their
energy. On the other hand, resolution for showers starting in EE is comparatively worse
because EE has only one module per layer and hence there is a greater chance of transverse
leakage.
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Figure 5.3: Pion Energy resolution
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5.3 Conclusion

Hadronic energy reconstruction is a challenging task because of the event-by-event fluctu-
ations in the electromagnetic fraction, uncertainty in neutral pion formation and the re-
quirement of the large length of the detector to fully contain the shower. To address these
problems, the analysis presented here included a very crude machine learning regression
model. Even with this model, the energy resolution was slightly better than the previously
formulated method of weighted rechit energy sum. The performance of machine learning

can be improved further by considering more complex ML models.
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Chapter 6

Results and Summary

The MIP calibration of the HGCAL silicon sensors was carried out using muon run data for
all the central modules of FH. The MIP signal for a sensor was then defined to be the most
probable value of the ADC counts. The fit model defined for this purpose considered the
cases with zero, one and two muon passing events. To calculate noise for the sensors, ADC
counts obtained in the 12th-time sample were used by bypassing the pre-selection criteria.
The noise was defined to be the standard deviation of the gaussian fitted over the ADC
distribution. The signal and noise defined in this manner were used to study signal to noise
ratio (SNR) of each individual silicon sensors. The SNR calculated for about 1100 silicon
sensors showed a stable behavior and is evident from a narrow peak in the histogram of SNR,
distribution (Figure 3.10).

The performance of pion inside HGCAL was evaluated using the energy response and
resolution. To arrive at the best possible energy resolution, the rechit energy recorded in
each of the subdetector of the HGCAL prototype was added by applying appropriate weights.
These weights were made available from the offline discussion with Mr. Shubham Pandey.
These weights were calculated separately for pions starting a shower in EE and FH. The
approximate location of the pion shower starting point was predicted by the shower start
algorithm (Appendix D). The accuracy of the algorithm was evident from the linearity
of the distribution of shower starting points (Figure 4.4.2). The first 40 active layers of
HGCAL which covered the subdetectors EE, FH were divided into 6 compartments such

that each compartment has a comparable thickness in terms of interaction lengths as well
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as comparable number of shower start events. Using this compartmentalization, pion energy
was reconstructed separately for pions starting shower in different compartments and was
compared to the transverse leakage and the energy deposited in the absorbers using GEANT4
simulation of HGCAL beam test (Figure 4.5). The energy resolution was calculated for
different pion beam energies by fitting Gaussian over the reconstructed energies as well as
by considering the mean and standard deviation of the whole energy distribution. The
contribution of different factors to energy resolution was predicted by parametrizing the
energy resolution (Figure 4.7). For the lower energy pions, statistical fluctuations dominated
the energy resolution whereas for the high energy pions the detector effects dominated (Figure
4.8).

To further improve the energy resolution, a simple regression using machine learning was
attempted. The analysis presented here concluded that with the total rechit energy recorded
in EE, FH, AH respectively as the input to the regression model the best possible energy
resolution is achieved for modified y? as the loss function and for the showers starting in FH

(Figure 5.3) as determined by the event selection criteria (Table 5.1).

Scope of improvement and future work

The shower start algorithm discussed in section 4.4.1 was a crude algorithm. One can use
machine learning approach to classify events with different shower start locations. With a
proper definition of shower start, the machine learning framework can be trained and tested

on simulation data.

A very primitive neural network with only three inputs and a single hidden layer was
used for energy reconstruction. The energy resolution thus obtained was comparable to
the method of weighted rechit energy sum. A more complex neural network with multiple
hidden layers and more number of input parameters can be used to further improve the
energy resolution. The number of input parameters can be increase by including rechit
energy per layer or channel-wise recorded rechit energy. Also the other known machine
learning approaches such as Convolutional Neural Network, parametrized machine learning

could give better results and that has to be tested.
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Figure A.1: HGCAL FH noise - bad fits Left: Default settings ; Right: Modified settings.
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Figure A.2: HGCAL FH noise - bad fits (continuation)
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Figure A.3: Signal variation per layer
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Figure A.4: Pion absorbed and leakage energy
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Figure A.5: Compartment-wise reconstructed energies (Pion Energies 20, 50, 80 GeV)
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Figure A.6: Compartment-wise reconstructed energies (Pion Energies 100, 120, 200 GeV)
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Figure A.8: Raw reco. energy distributions for different cost functions
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Figure A.9: rescaled reco. energy distributions for different cost functions
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Appendix B

Weighted rechit energy

B.1 Finding o

1. Use the shower start algorithm and consider events where shower started in FH
2. Choose some value for a.

3. Plot Ery + a E4y for these events

4. Fit gaussian to the histogram and extract the std. Dev.

5. Plot a graph of std.dev vs «

6. Choose that a for which you get minimum in the graph.

B.2 Finding

1. Use the shower start algorithm and consider events where shower started in EE
2. Choose some value for f3.

3. Plot Egg+ 0 (Erg + a Eag) for these events. (take A as calculated previously)
4. Fit gaussian to the histogram and extract the std. Dev.
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5. Plot a graph of std.dev vs 3

6. Choose that g for which you get minimum in the graph.

B.3 Finding v

~ is a conversion factor between MIP to GeV. Once «, 3 are evaluated, v can be obtained
by:
_ beam energy (in GeV)

Epe + B(Epa + aEan)

v
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Appendix C

QFCAL

QFCAL stands for Quartz Fibre Calorimeter. This is a scintillating detector currently used
in the forward region of CMS (3 < n < 5) (also known as Hadron Forward calorimeter)
designed especially for radiation hardness and good optical transparency. This detector is
essentially sensitive only to the electromagnetic showers with e/h~5 [15]. Hence in the case

of hadron showers, the energy is mainly measured from their electromagnetic component.

IP
Rotating , 1 il
Shield == = .
Castor Collar %AT = "‘ |
Forward CMS Region

Figure C.1: Forward CMS region - schematic diagram [15]
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Appendix D

Shower start algorithm

Aim: To predict index of layer closest to the shower start.
SSI = the layer closest to the shower start
FE5 = array that stores layerwise total energy deposit within radius of 2cm around the beam

axis
1. For every rechit, calculate dR between rechit and the intersection of beam axis and
the layer
2. If E5[1] > 20, SSI=1
3. Else if E[2] > 20 and also E5[2] > 2.E5[1] then SSI=2

4. Else SSI = L where L (in the range (3,40)) satisfies :

o E[L] > 20

o E5[L] > 2.Ey[L — 2]

5. Else pion will be considered MIP-like. (SSI=-1)
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Figure D.1: Flowchart: Shower-start algorithm. E2(i) represents total rechit energy of all
the rechits within 2cm radius of the beam axis in the 7" layer
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