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Supervisor: Prof. Édgar Roldán , Co-supervisor: Prof. Stefano Ruffo

c© Ashwin Gopal 2020

All rights reserved





Certificate

This is to certify that this dissertation entitled Stochastic energetics of non-linear oscillators

in active baths towards the partial fulfilment of the BS-MS dual degree programme at the

Indian Institute of Science Education and Research, Pune, represents study/work carried out

by Ashwin Gopal at the Abdus Salam International Centre for Theoretical Physics(ICTP),

Trieste and Scuola Internazionale Superiore di Studi Avanzati(SISSA),Trieste under the
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Abstract

Active matter are systems whose individual units continuously extract energy from the

environment to do produce some mechanical output. Examples ranges from bacterial propulsion,

Janus particles to flocks of birds. Non-equilibrium properties of active matter have been

recently utilized to produce useful work and design systems to rectify the activity of the

bath, yet little is known about the work extraction from an active medium. In this thesis, we

carefully study the statistics of thermodynamic quantities of a non-linear oscillator, called

Adler oscillator, kept in presence of an active bath(Eg. bacterial bath), in particular we

compute the power and work inputted into the system. In the process, we also look at

the case of thermal bath, which occurs as low-correlation time limit of the active bath and

elaborate the effects of correlation time(activity) τ .In the presence of active bath, the effect

of the correlation time has been explored for the overdamped system near the bifurcation

point. The main results of the thesis are : (i) In the case of a thermal bath, we exactly derive

analytical expressions for the average power and variance in work at large times inputted

into the system in the overdamped limit.(ii) In the underdamped limit, we found that the

system has very high relaxation time to reach a unique steady state in the bistable region,and

hence one can see signs of hysteresis effects in the presence of bath for long computation

times O(107).(iii) Numerical studies have been done to show that unified colored noise

approximation doesn’t capture the steady state properties, whereas Fox’s approximation

converges for small correlation times until there isn’t significant deviation from Gaussian

distribution in the angular velocity. (iv)Control of the activity of the bath can be used to

regulate the power statistics. (v) Increased activity of the bath can be used to enhance the

diffusive behavior at the bifurcation point, more than in the thermal bath case. We also

found that the variance in the work inputted at large times increases with the activity of

the bath at the bifurcation point.(vi)Numerical studies suggest that for values above the

bifurcation point, there exists a finite critical correlation time τc when the average power

inputted into the system is minimum, that can be below the deterministic case.
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Introduction

The goal of statistical mechanics is to explain the macroscopic changes in nature, in a

probabilistic nature, with reduced macroscopic parameters, without keeping track of individual

degrees of freedom. Equilibrium statistical mechanics provides a microscopic description

for the empirical laws of thermodynamics. But in nature, most of the systems are out of

equilibrium, either in the process of relaxation to equilibrium or others maintained out of

equilibrium with a constant flux of energy. Active matter systems are examples of the latter

case. There is also a rich phenomenology associated with non-linear system that are kept

out of equilibrium, like spatio-temporal pattern formation in BZ reaction[1], self-organized

criticality[2, 3] etc. In this thesis, we explore the role of fluctuations(both thermal and

active) in the statistics of the thermodynamic quantities of a non-linear oscillator in a non-

equilibrium steady state(NESS).

Figure 1: Micro-sized asymmetric rotor can be used to extract work from homogeneous
medium of bacterial solution. Taken from [4]

Active Matter, systems with the individual particles continuously extracting energy from

the different sources to produce some mechanical output, has recently attracted much of
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attention in developing models in understanding their unique phenomenology and experiments

to extract useful work. Examples of active matter range from biological systems to chemically

processing systems, from motile sperm cells[5], bacterial colonies[6] to Janus particles[7].

These systems are inherently out of equilibrium, as they don’t satisfy detailed balance, and

show phenomenology which cannot be explained using equilibrium statistical mechanics.

Some of the unique phenomenology includes motility-induced phase separation[8, 9, 10],

even in the absence of attractive interactions (sometimes even with repulsive interactions),

collective motion( flocking behaviour)[11], rectification phenomena[12, 4, 13] etc. Rectification

phenomena, rectifying the activity of the system to produce work, has been successfully

used to design micro-sized rotors to extract work from bacterial bath and also design spatial

structures(with broken spatial symmetry) to produce unidirectional transport. Recent advances

in optical tweezers, also led to the designing of highly efficient micro-sized heat engines in

bacterial baths[14].

Figure 2: (1): Oscillatory Motion of the tip of hair bundle cells of Bullfrog, taken from [15],

(2): Synchronization in cilia to help in cellular propulsion, taken from [16]

Non-linear dynamical systems are ubiquitous in nature and contribute to the complex

structural and dynamical behaviour in nature. The dynamic nature of these systems is

highly sensitive to the values of different parameters and initial conditions, which makes the

study of such systems extremely interesting. Non-uniform oscillators are examples of such

dynamical systems, where the instantaneous angular velocity is not constant. The dynamics
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of non-uniform oscillator, similar to dynamics in a tilted periodic potential[17], has wide

range applications in science and engineering. These are model systems used to study many

physical systems like phase locked loops, superconducting Josephson tunneling junctions,

motion of simple pendulum etc and biophysical processes like intra-cellular transport[18],

spontaneous oscillations in mechanosensory hair bundle cells[19, 20] etc. One of an important

application of such models is in understanding the phenomenon of synchronization[21],an

emergent behaviour in the system of many coupled oscillators. Kuramoto model[22] is the

”Ising model” of the analytical study of the dynamic transition of synchronization. Our

model in interest, Adler model, corresponds to the mean field limit of the Kuramoto model.

Stochastic thermodynamics/energetics is a recent theoretical development, which extends

the laws of macroscopic thermodynamics to mesoscopic scale, where fluctuations play an

important role. The major advances in this field is in establishing successful correspondence

of thermodynamic quantities to stochastic dynamics[23, 24, 25] and hence its application in

understanding far from equilibrium systems. In addition to reproducing the macroscopic laws

of thermodynamics, it extends these laws at the fluctuating level and one can deduce universal

inequalities called fluctuation relations[26], which can be used to estimate equilibrium properties

from a non-equilibrium protocols.

Figure 3: Stochastic Energetics/thermodynamics provides the missing link between

stochastic dynamics and thermodynamics. Taken from [23].
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The goal of this thesis was to understand the effect of fluctuations in the statistics of

thermodynamic quantities for a non-linear system, near the bifurcation point. Active bath

provides a great opportunity to study the role of non-equilibrium fluctuations in driving

the system out of equilibrium. Non-linear oscillators, which are driven systems, already

relaxes to non-equilibrium steady state in thermal bath. The role of active fluctuations in

determining the deviations in steady state is to be evaluated and stochastic thermodynamics

provides the tools needed to tackle the above questions.

In chapter 1, the preliminary theory and analytical tools developed in the thesis are

discussed. A brief introduction to non-linear dynamical systems and stochastic thermodynamics

is given. There is also section on the physics of active baths, where I review the literature on

different approximations and also elucidate the thermodynamic formalism for such systems.

In Chapter 2, I shift to our model of interest, the Adler oscillator. After a brief motivation for

the model and its behaviour in deterministic limit, I explain the different results obtained for

both overdamped and underdamped limit in the thermal bath. Finally, I explain the results

obtained for the active bath case and compare it with the thermal bath for the overdamped

case. In the last chapter, I briefly summarize the various results obtained through this study

and will I outline our future directions.
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Chapter 1

Preliminaries

This chapter will cover the basic analytical tools needed to understand the different results

in this thesis.

1.1 Non-linear dynamical systems

In this section, I will review some of the basic dynamical features of non-linear systems under

periodic boundary conditions in 1-D and 2-D[27]. In general, the n-dimensional equation of

motion for a non-linear dynamical system is given by

ẋi = fi(~x = {xi}, ~r = {rj}) (1.1)

where fi(x) can be non-linear function of instantaneous phase(~x)of the system and ~r is the

set of independent parameter such that i ∈ {1, 2.., n} and j ∈ {1, 2..,m} .

Usually one is interested in the asymptotic behaviour of the dynamical system, i.e.

dynamics as t → ∞. The different asymptotic invariant structures depend on the form

of fi({xi}, {rj}) and the dimension of the system. These invariant structures are given by

solving fi({xi}, {rj}) = 0 and the stability of the different solutions depends on {rj}. The

stability of these invariant sets can be understood by linearizing the dynamics around these

invariant solution(with a few exceptions)[27]. This method, called as linear stability analysis,
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involves studying the properties of the Jacobian matrix J(x), defined as,

J(~x) =
∂ ~f

∂~x
(1.2)

where ~f = ({fi}).
If the real part of all the eigenvalues of the J(~x∗) are negative, the invariant solution is

stable. For a 1-d system, the only possible invariant solutions are fixed points, whereas in 2-

d systems, in addition to fixed points, there are also limit cycles. The fixed points are further

classified into nodes, spirals and centers based on the dynamic approach to the fixed point.

Limit cycles are signatures of driven-dissipative physical systems(non-linear), are isolated

closed orbits (different from periodic orbits which are not isolated). Based on the stability,

the system either falls into or out of the limit cycle asymptotically. Stable limit cycles are

found in many examples in nature, where the system has self-sustained oscillations, like

rhythmic behaviour of heart beat, neuron firing, circadian rhythm. Small perturbation in

these systems doesn’t disrupt the properties of the oscillatory behaviour of such systems.

One defines bifurcation as a point in parameter space, where the stability of solutions

change as one locally change the parameter values. Let us define invariant solutions, x∗(~r)

as the solution of the equation fi({xi}, {ri}) = 0. One can then define bifurcation point(a

point in the parameter space), The key aspect of such points is that different set of non-

linear systems can categorized under the finite number of different bifurcations and, near the

bifurcation point, these different systems have universal behaviour.

In 1-d systems, there are mainly three different kinds of bifurcations : Saddle-node

bifurcation, Pitch-fork bifurcation(super- & sub-critical) and trans-critical bifurcation. Here,

I will mainly describe the properties of the saddle-node bifurcation. The normal form (local

behaviour near bifurcation point) for saddle-node bifurcation is given by

ẋ = r + x2 (1.3)

For such systems, for r < 0, it has both stable and unstable fixed point, which converges

to become a saddle fixed point at r = 0 to no-stable solutions for r > 0. The presence

of dynamical bottleneck is a signature of system near this bifurcation, and has square-root

scaling law for the time taken to cross the bottleneck.
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Tbottleneck ∼
∫ ∞
−∞

dx
1

r + x2
∝ 1√

r
(1.4)

The behaviour of a dynamical systems near bifurcation point have similarities to statistical

behaviour near phase transition. The dynamic systems also follows power law(scaling)

nature near bifurcation point as similar to the universal behaviour in phase transitions

and different dynamical systems within the same bifurcation behaves similarly close to

the bifurcation point. As explained above, near the saddle-node bifurcation, the system

experiences a bottleneck, which is similar to the critical slow down. The key difference

between phase transition in statistical physics and bifurcation in the dynamical system is

that bifurcations occur for finite- dimensional systems whereas phase transition is defined

at thermodynamic limit. But the bifurcation behaviour is related to the properties of

asymptotic invariant solutions, which can be related to the idea of thermodynamic limit. One

can also notice the similarities between the bifurcation diagram for super-critical pitchfork

bifurcation(Fig.1.1) and the critical phase transition for magnetic systems with temperature.

But the addition of bath(canonical ensemble) into a finite dimensional dynamical system,

destroys the bifurcation behavior as fluctuations help explore the entire phase space even

at the asymptotic limit, but effect of fluctuation near bifurcation point can have interesting

applications as it can induce the system to have noise induced effects like noise-induced

chaos, stochastic resonance wtc. as the system can explore topologically different solutions.

In 2d systems, in addition to the above mentioned bifurcations, one also has global

bifurcations of the cycles- Hopf bifurcation, saddle-node bifurcation of cycles, infinite period

bifurcation and homoclinic bifurcations. Hopf bifurcation is the most common among these

bifurcations, which occurs when periodic orbit/limit cycles appears around a fixed point as

one vary the parameter. Saddle-node bifurcation of cycles is similar to 1-D case, where stable

and unstable limit cycles converge to become a saddle limit cycle at the bifurcation point.

In infinite period bifurcation[See Fig.1.2(a)], nearby stable and unstable node converge to

become a limit cycle above the bifurcation point. Finally, homoclinic bifurcation occurs

when limit cycle whose size grows with parameter, gets destroyed when it meets a saddle

node, through a homoclinic orbit. All of these bifurcations are mainly different from each

other on the different scaling behaviour for time period and amplitude of oscillations with

the dimensionless distance from the bifurcation point µ[See Fig.1.2(b)].
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Figure 1.1: Examples of two kinds of bifurcations in 1-D dynamical system, where on the
left is the plot of ẋ vs x(flow diagram) and on the right is Bifurcation diagram plotting the
asymptotic solutions for different parameter values : (a): Saddle-Node(SN) Bifurcation with
Bistability between rl and ru, . (b): Supercritical Pitchfork(SP) Bifurcation. Adapted from
[28]

Figure 1.2: (a): Flow diagram for infinite period bifurcation for system where limit

cycle(stable solution for µ > 1) gets destroyed as we change µ, ẋ = x(1− x2); ẏ = µ− sin y.

(b): The scaling behaviour of different global bifurcations related to limit cycles.8



1.2 Stochastic Thermodynamics

The laws of thermodynamics are set of empirical laws which explain the macroscopic energy

changes, even for system out of equilibrium. Even though equilibrium statistical mechanics

provides a microscopic derivation for these laws, there exists no such universal theory to

capture for out of equilibrium systems. The key step taken in this direction, was through

linear irreversible thermodynamics, a semi-empirical theory combining the ideas of linear

response theory to thermodynamic fluxes, which describes systems close to equilibrium.

Stochastic thermodynamics, thermodynamic description for stochastic systems, extends even

to systems far from equilibrium. It has been successfully used to describe the thermodynamic

exchanges and expand the idea of irreversibility and dissipation for non-equilibrium systems

in mesoscopic scale.

Figure 1.3: Motion of a colloidal particle of mass M under the effect of collisions from solvent
molecules is well captured by Langevin dynamics. Taken from [29]

Langevin equation provides a coarse grained description of the motion of colloidal particle

in a solvent. Such a coarse graining works reliably for systems where there is separation of

time scales between the time-scale associated with motion of the colloidal particle and the
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solvent particle. Consider, a colloidal particle of mass M , moving in solvent assumed to

be a thermal bath of temperature,T , where the one-dimensional projection of the position

is given by x(t) at time t. Moreover, the motion of the colloidal particle is determined by

time dependent conservative potential φ(x, t), with an external time dependent protocol and

non-conservative force ,Fnc(x, t) driving the system out of equilibrium. The coarse grained

dynamics (Langevin dynamics) of the particles is given by

Mẍt + γẋt = Fnc(xt, t)− φ′(xt; t) + ηt (1.5)

where φ′(xt; t) = ∂φ(x;t)
∂x

∣∣∣
x=xt

is the instantaneous force due to conservative potential and

the effect of bath is captured in the two terms : −γẋ relating the friction forces associated

with the colloidal motion in the solvent and ηt is a random force term, the coarse grained

force of many collision with the colloidal particle. In most cases, where the solvent particles

are considered to be in equilibrium, the statistics of the random force are described by a

Gaussian white noise with zero mean and auto-correlation function given by

〈ηtηt′〉 = 2γkBTδ(t− t′) (1.6)

where we have used the fact these noise follow fluctuation dissipation relation, i.e. strength

of the noise σ2 = 〈η2
t 〉 is given by σ =

√
2γkBT , where T is the temperature of the bath.

The thermodynamic quantities, then can be defined at the fluctuating trajectory level,

following Sekimoto’s definitions.The work done on the system on time interval ,[t, t + dt],

due to the forces controlled by an external agent, is given by

δWt =
∂φ(xt; t)

∂t
dt+ Fnc(xt; t) ◦ dxt (1.7)

◦ corresponds to Stratonovich convention of stochastic calculus. Stratonovich convention is

used as usual rules of calculus is applicable and first law of thermodynamics can be written in

recognizable fashion[23].The infinitesimal heat inputted into the system is due to the forces

associated with the thermal bath,and hence given by

δQt = (−γẋt + ηt) ◦ dxt = d

[
Mẋ2

t

2

]
+ φ′eff(xt; t) ◦ dxt (1.8)

where φeff(x; t) = φ(x; t)−Fnc(x, t)x is the effective potential. The total energy of the system,
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given by the sum of kinetic and potential energy,is given by

U(xt, t) =
Mẋ2

t

2
+ φ(xt; t) (1.9)

Hence the total work done and heat inputted into the system until time t along a trajectory,

is given by,

Q(t) =

∫ xt

xo

(−γẋt′ + ηt′) ◦ dxt′ (1.10)

W (t) =

∫ t

0

∂φ(x′t; t
′)

∂t′
dt′ +

∫ xt

x0

Fnc(x
′
t; t
′) ◦ dxt′ (1.11)

One key observation is that both work and heat are not in general state function and

dependent on the particular trajectory.

By simple rearrangement, one finds that first law of thermodynamics is obtained at the

fluctuating trajectory level,

dUt = δQt + δWt (1.12)

The idea of entropy was extended to non-equilibrium system, by using Shanon’s definition

of information, given by

∆Ssys(t) = kB ln
P (xt, ẋt; t)

P (x0, ẋ0; 0)
(1.13)

where P (xt, ẋt; t) is the phase space probability density and ∆Ssys is a state function, i.e.

depends only on the initial and final states.

Now, assuming local detailed balance, one can define the entropy produced in the bath,

as the log ratio of the conditional path probability of forwards trajectory to the conditional

path probability of time reversed trajectory in a time reversed experiment, given as,

Sbath(t) = kB log
P [xt, ẋt|x0, ẋ0]

P̃ [x̃t, ˜̇xt|xt, ẋt]
(1.14)

where xt = {x(s)}s=ts=0, ẋt = {ẋ}s=ts=0 corresponds to the trajectory in the phase space for

the forward trajectory and x̃s = xt−s, ˜̇xs = −ẋt−s corresponds to time reversed point in

phase space. The above definition of irreversibility(entropy production) can be related to
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the dissipation in bath, by simple manipulations, as shown below,

P [xt, ẋt|x0, ẋ0]

P̃ [x̃t, ˜̇xt|xt, ẋt]
= exp

(
−Q(t)

kBT

)
(1.15)

Hence the total entropy production is given by, ∆Stot = δSbath + ∆Ssys.

Stot(t) = kB log
P [xt, ẋt]

P̃ [x̃t, ˜̇xt]
(1.16)

One observes that the above definition of total entropy production fulfills, integral fluctuation

relation, given by 〈
exp

[
−Stot

kB

]〉
= 1 (1.17)

from which we can use Jensen’s inequality to obtain back the macroscopic 2nd law of

thermodynamic, ∆Stot ≥ 0, which is satisfied only in average. In stochastic thermodynamics,

there can be trajectories where the total entropy production, but it can be shown that these

are exponentially less likely compared to the positive counterpart, which scales with size of

the system and hence, for a macroscopic system, ∆Stot ≥ 0.

With the above framework, now we can define the steady state averages for the average

power inputted into the system and average entropy production rate in the environment in

the absence of time independent protocols and constant non-conservative forces.

〈Ẇ 〉 =

∫
Ps(x, ẋ)ẋFncdx = lim

T →∞

1

T

∫ T
0

Fnc ◦ dxt (1.18)

〈σ〉 = −

〈
Q̇

T

〉
= lim
T →∞

1

T

(
M

2

[
ẋ2
t − ẋ2

0

]
+

∫ xT

x0

φ′eff(xt) ◦ dxt
)

(1.19)

where we have assumed ergodicity.

Recently, there has been growing interest in understanding the existence of fundamental

trade-off between the precision and cost to keep a system in a non-equilibrium steady state,

known as thermodynamic uncertainty relations (TURs). Currently there are many known

such relations[30, 31, 32], which has been proven for Markovian systems in the steady state.

Let Jt be the time-integrated current in the steady state till time t, then the finite time
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TUR, is given by
Var(Jt)

〈Jt〉2
≥ 2

〈∆Stot(t)〉
(1.20)

First passage properties have also been used to estimate the bounds for the entropy production

in the steady state. Edgar et.al[31] showed that the lower bound for the steady state entropy

production can be obtained using the mean first passage times for any suitable observable,

x. Let us define, T (A) ≡ inf{t ≥ 0/x(t) 6∈ [xst − A, xst + A]} where xst is obtained from

stationary distribution of the observable. The bound is given as,

〈 ˙Stot〉 =
D(A)

〈T (A)〉
(1.21)

where 〈T (A)〉 is the mean first passage time to be absorbed in the any of the symmetric

absorbing boundaries at ±A and D(A) is the function of probability to be absorbed in one

of the boundaries(error probability).

1.3 Physics of Active Bath

In this section, I will discuss the various analytical tools used to study the problem of

Langevin dynamics in active bath and thermodynamic approach to the problem[33, 34].

Here, I will describe the coarse grained equation of motion for a colloidal particle in an

active bath in the overdamped limit, i.e. time scale of observation is much more than the

momentum relaxation time, is given by

ẋt = f(xt) + ξt (1.22)

such that the stochastic force is of the form of Gaussian distribution with zero mean and

auto-correlation function given by

〈ξtξt′〉 =
D

τ
exp

(
−|t− t

′|
τ

)
︸ ︷︷ ︸

Γ(t−t′)

(1.23)

where D is the strength of the noise and τ is the correlation time associated with the activity

of the bath. This particular form is motivated by different experiments done on a colloidal

tracer in bacterial bath[35, 36]. Since this noise doesn’t satisfy fluctuation-dissipation
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relation, it has features of an out-of-equilibrium system. This represents an example of

non-Markovian Langevin equation of motion.Analytically, this problem is difficult to handle

exactly for most forms of driving force, due to the non-Markovian nature in the 1-dimensional

flow(Eqn(1.16)) or due to higher dimensional flow in Markovian regime (Eqn(1.26− 27)).

The master equation corresponding to the above non-Markovian Langevin equation can

be derived by using functional calculus methods. Solving the above SDE gives,

xt = x0 +

∫ t

0

ds [f(xs) + ξs] (1.24)

Now taking functional differentiation,

δxt
δξt′

= 1 +
∫ t
t′
ds [f ′(xs)]

δxs
δξt′

, for t > t′ (1.25)

∂
∂t

(
δxt
δξt′

)
= [f ′(xt)]

δxt
δξt′

(1.26)

Solving the above differential equation, with initial condition
δxt′
δξt′

= 1. we get,

δxt
δξt′

= exp

[∫ t

t′
dsf ′(xs)

]
(1.27)

One can map the above Langevin dynamics to a Master equation, to study the ensemble

properties of the system. Defining, P (x, t) = 〈δ(x − xt)〉, where the average is over the

realizations of noise and initial conditions. Using the properties of conservation of probability,

one can derive the exact Master equation for P (x, t)[37],

∂P (x, t)

∂t
= − ∂

∂x
[f(x)P (x, t)]− ∂

∂x
[〈ξtδ(xt − x)〉] (1.28)

Now the quantity which we need to evaluate and approximate is 〈ξtδ(xt − x)〉, for which

we will use Novikov’s theorem[Appendix A] and then using the properties of Dirac delta

function, we get

〈ξtδ(xt − x)〉 =

∫ t

0

dt′Γ(t, t′)

〈
δ[δ(xt − x)]

δξt′

〉
(1.29)

= −
∫ t

0

dt′
∂

∂x

[
δxt
δξt′

∣∣∣∣
xt=x

δ(xt − x)

]
Γ(t, t′) (1.30)
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Putting this back, we get,

∂P (x, t)

∂t
= − ∂

∂x
[f(x)P (x, t)] +

∂

∂x

[
∂

∂x

∫ t

0

dt′Γ(t, t′)

〈
δxt
δξt′

∣∣∣∣∣
xt=x

δ(xt − x)

〉]
(1.31)

We can see that for active bath case, the master equation doesn’t not converge to Fokker

Planck equation for general correlation time, τ . The non-Markovian behaviour is captured

in the second term, as it cannot be written as single term of some higher order derivative

of the instantaneous probability density. This term leads to infinite terms with higher order

derivatives of instantaneous probability density if expanded in power series of correlation

time.Below, we will show examples of some approximations which truncates the expansion

at first order of expansion.

In many physical systems where the time scale separation is not sharp, the fluctuations

in the equations of motion are modelled using ”colored” noise, which introduces the effect of

memory in the fluctuations, τ [34]. It is also commonly used to study the velocity dynamics

of an active particle, like the motion of E.Coli., where τ is the persistence time of particle[38].

Here, we will use the model of Active Ornstein-Uhlenbeck dynamics, as it provides reasonable

model for the motion of colloidal tracer in dense bacterial bath (not dense enough to give

collective phenomena[38]). So, the effective Markovian dynamics in the extended space

producing the above statistics is given by

ẋt = f(xt) + ξt (1.32)

ξ̇t = − ξt
τ

+
√

2D
τ
ηt (1.33)

where ηt is Gaussian white noise with zero mean and unit variance.

The corresponding Fokker-Planck equation for the extended (x, ξ) space can be easily

derived to be given by

∂P

∂t
(x, ξ, t) = − ∂

∂x
[(f(x) + ξ)P ] +

∂

∂ξ

[(
ξ

τ
+
D0

τ 2

∂

∂ξ

)
P

]
(1.34)

Therefore, to obtain the stationary marginal distribution, we integrate out ξ, to obtain,

ρ(x)[f(x) + ξ̄] = J0 (1.35)
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where ρ(x) =
∫
dξPs(x, ξ), ξ̄ = 1

ρ(x)

∫
ξPs(x, ξ)dξ and where J0 is the constant current in

the steady state. The difficulty of handling such a equation analytically, is in computing ξ̄,

which requires the knowledge of the full density,Ps(x, ξ).

Next, I will discuss some of the Markovian approximations used to convert the non-

Markovian Master equation(Eqn.1.30) as as ”Effective Fokker-Planck equation”.

1. Sancho’s approximation

This approximation[37] is a perturbation method based on truncation of the expansion of

second term of master equation (Eqn. 1.30), upto first order in τ .In the vicinity of t→ t′,

δxt
δξt′
∼ δxt
δξt′

∣∣∣∣∣
t=t′

+
d

dt′
δxt
δξt′

∣∣∣∣∣
t=t′

(t′ − t) +O((t′ − t)2) (1.36)

From Eqn. 1.26, we get,

δxt
δξt′

∣∣∣∣∣
t=t′

= 1,
d

dt′
δxt
δξt′

∣∣∣∣∣
t=t′

= −f ′(xt) (1.37)

Putting back everything together with correlation function defined by Eqn. (1.22), assuming

(t− t′) ∼ τ , we get,

∫ t

0

dt′Γ(t, t′)

〈
δxt
δξt′

∣∣∣∣∣
xt=x

δ(xt − x)

〉
=
∫ t

0
dt′ exp(−(t−t′)/τ)

τ
〈(1 + τf ′(x))δ(xt − x)〉

=
∫ t

0
dt′D exp(−(t−t′)/τ)

τ
(1 + τf ′(x))P (x, t)

= D {1 + τf ′(x)}P (x, t)(1− exp (−t/τ))

So, the effective Fokker Planck equation upto O(τ 2, exp (−t/τ)) is given by

∂P (x, t)

∂t
= − ∂

∂x
f(x)P (x, t) +

∂2

∂x2
DS(x)P (x, t) (1.38)

where DS(x) = D {1 + τf ′(x)}.

One must notice that such an approximation does not have uniform convergence in entire
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domain of x, i.e., the approximation fails to converge for values of x where 1 + τf ′(x) <

0(negative diffusion coefficient). One may derive the same equation from another method

developed by Bonilla et.al[39], which is described in the Appendix C, which extends to derive

higher order terms in a more systematic way.

2. Fox’s approximation

This approximation[40] is based on functional calculus methods and produces uniform convergence

in the the entire domain of x.The explicit derivation is given below. Substituting Eqn(1.26)

into the second term of Eqn(1.30), and making variable change θ ≡ (t− t′)/τ , we get,

I ≡ D

∫ t/τ

0

dθ exp (−θ)
〈
δ(xt − x) exp

[∫ t

t−τθ
dt′f(xt′)

]〉
Now taking the τ → 0 limit, we get,

I ' D

∫ ∞
0

dθ exp [−θ + τθf ′(x)] 〈δ(x− xt)〉 =
D

1− τf ′(x)
P (x, t)

Therefore, the effective Fokker-Planck equation is given by

∂P (x, t)

∂t
= − ∂

∂x
f(x)P (x, t) +

∂2

∂x2
Dfox(x)P (x, t) (1.39)

where Dfox(x) = D
(1−τf ′(x))

. One can easily show that the small τ expansion corresponds

to Sancho’s approximation. But this is a better approximation for well-behaved(convex)

potential,f(x) = −φ′(x), as it uniformly converges for the entire domain of x[41]. But again

for more complicated potentials, there is a constraint in τ , 1 − τf ′(x) > 0 until which the

approximation is valid(same range of validity as Sancho’s approximation) .

3. Masoliver et.al. approximation

This approximation[42] is based on projection approach to Fokker-Planck equations, valid

for small Dτ . The generalized Master equation upto O(Dτ) for Pt ≡ P (x, t|x0), where x
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from projector approach, is given by

∂Pt
∂t

= L0Pt +

∫ t

0

ds〈Lf (t) exp (Los)Lf (t− s) exp (−L0s)〉Pt[1 +O(Dτ)] (1.40)

such that the deterministic evolution operator is given by

L0(t) ≡ −∂f(x)

∂x
(1.41)

and the stochastic evolution operator is given by

Lf (t) ≡ −ξ(t)
∂

∂x
(1.42)

After some algebraic manipulations and using exponential identity for operators,exp(A)B exp(−A) =

B + [A,B] + 1
2!

[A, [A,B]] + ... we obtain,

∂P (x, t)

∂t
= − ∂

∂x
f(x)P (x, t) +

∂2

∂x2
DMasoliver(x, t)P (x, t) (1.43)

where D(x, t) =
∫ t

0
dsΓ(s)

∑∞
n=0

τn

n!
Fn(x) such that each Fn satisfies a recurrence relation

given by

Fn(x) = f ′(x)Fn−1 − f(x)F ′n−1(x) (1.44)

with F0(x) = 1. The key point in the approximation is to find a closed form solution of the

summation. The above method is also valid for any Gaussian noise statistics. For the case

of Gaussian colored noise, assuming that the time scale of observation is much larger than

τ , we obtain a closed form for the D(x, t) ∼ D(x), given by

DMasoliver(x) = D

[
1 +

τf(x)

1− τf ′(x)

d

dx

]−1(
1

1− τf ′(x)

)
(1.45)

From the above form for Diffusion coefficient, we can obtain the above approximation by

ignoring the first term, with inverse of the derivative. So, even for small Dτ , we see that the

space dependent diffusion has higher order derivatives of the potential and the probability

density, which deviates from the usual Fokker-Plank equation.
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4. Unified Colored Noise Approximation(UCNA)

This approximation[43] converts the non-Markovian dynamics to Markovian dynamics at the

trajectory level, using adiabatic approximation to eliminate momentum degrees of freedom.

Working in the phase space of (x, ẋ), one obtain the following Langevin equation with space

dependent friction, given by

ẍt + (τ−1 − f ′(xt))︸ ︷︷ ︸
γ(x,τ)

ẋt =
f(xt)

τ
+

√
2D

τ
ηt (1.46)

where the space dependent damping coefficient is given by (τ−1 − f ′(x)) and η(t) is white

noise with normal distribution.

Rescaling time, t̃ = tτ−1/2, we obtain,

ẍt + γeff(xt, τ)ẋt = f(xt) +

√
2D

τ 1/4
ηt (1.47)

where the new damping coefficient is given by

γeff(x, τ) = τ−1/2 + τ 1/2[−f ′(x)] (1.48)

Now, one may identify that the γeff(x, τ) small limit, when the correlation time, τ → 0 and

τ → ∞. This implies that one can do an adiabatic approximation to eliminate the inertia

term, thus giving,

ẋt =
f(xt)

γ(xt, τ)
+

[
(2Dτ−1/2)1/2

γ(xt, τ)

]
ηt (1.49)

The corresponding Fokker-Planck equation,in the original time scale, for the above Langevin

equation is given by

∂P (x, t)

∂t
= − ∂

∂x

[
f(x)P (x, t)

(1− τf ′(x))

]
+

∂

∂x

1

(1− τf ′(x))

∂

∂x

P (x, t)

(1− τf ′(x))
(1.50)

Even though, the above approximation has different Fokker Planck equation compared to

the Fox’s approximation, the equilibrium distribution f(x) = −φ′(x) is the same. But, we

will see that, its not the case when there is non-zero current in the steady state. Since,

this approximation works for both small τ as well as large τ limit, it should be a better

approximation for intermediate τ values.
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One of the important approximations that go into this system is that adiabatic approximation

works only when the damping coefficient is positive and large, i.e.γ(x, τ) � 0. Therefore,

one obtains a similar bound on the correlation time, τ dependent on the system. Similarly,

the approximation holds only on time scales when t > τ 1/2γ−1 and also the time scale should

be also that the drift forces are not varying appreciably over the characteristic length scale

associated with diffusion, i.e,

γ(x, τ)� D1/2

∣∣∣∣f ′(x)

f(x)

∣∣∣∣ (1.51)

5. Interpolation Approximation

This approximation[44] can be considered an extension of UCNA, as it tries to form an

interpolation between the two limits. τ → 0 and τ → ∞. Let us define an interpolation

”motility” function, θ[τf ′(x)], such that it satisfies the limits acquired in UCNA, i.e.,

lim
τ→0

θ[τf ′(x)] = 1 (1.52)

and

lim
τ→0

θ[τf ′(x)] = −[τf ′(x)]−1 (1.53)

Therefore the Interpolation Fokker-Planck equation will be given by

∂P (x, t)

∂t
= − ∂

∂x

[
f(x)P (x, t)

(1− τf ′(x))

]
+

∂

∂x

1

(1− τf ′(x))

∂

∂x

P (x, t)

(1− τf ′(x))
(1.54)

For the case of UCNA, interpolation function takes the form, θ[τf ′(x)] = [1 − τf ′(x)]−1.

So,this approximation opens up the possibilty to have better Markovian approximations

compared to UCNA, with a system dependent interpolation function. One such family of

function, which also includes UCNA is given by

θ[τf ′(X)] =
1− c[τf ′(x)]n−1

1 + c[τf ′(x)]n
(1.55)

where c and n are fitting parameters.

It can be also used to determine a better form of stationary distribution in the domain of

phase space where the damping is negative(accelerating), compared to UCNA where it fails.

This approximation has been successfully used to determine the stationary distribution for
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Langevin dynamics in symmetric double well potential driven by colored noise[44].

Stochastic thermodynamics in Active Baths

Considering the motion of a Brownian tracer in active bath in the overdamped limit, we

will define f(x) = 1
γ
(Fnc − φ′(x, t)), where Fnc corresponds to a constant non-conservative

force[45]. Following the Sekimoto’s definition, the work done on the system is given by

δWt =
∂φ

∂t
dt+ Fnc ◦ dxt (1.56)

Similar to the definition of heat in the thermal bath, one can consider active fluctuations to

be another source of fluctuations.Hence heat inputted into the system is given by

δQt = (−γẋt + ξt) ◦ dxt = (Fnc − φ′(x, t)) ◦ dxt (1.57)

The internal energy of the system is defined by U = φ(x, t) and hence one can easily obtain

First Law of thermodynamics at the trajectory level, given by

dU = δQ+ δW (1.58)

Probability P (x|x0) to observe a particular trajectory, x = {x(t′)}0<t′<T with initial condition

at x0 can be directly obtained by the extension of Onsager-Machlup path integral method

to non-Markovian Gaussian noise[46]. For a Gaussian colored noise,

˜P [ξ|ξ0] ∝ exp

[
−1

2

∫
dt

∫
dsξ(s)Γ−1(t− s)ξ(t)

]
where Γ−1 is the inverse of the auto-correlation function,Γ ,defined as,∫

dt′Γ−1(t− t′)Γ(t′ − s) = δ(t− s) (1.59)

For the colored noise, one obtains Γ−1(t− s) = δ(t−s)
2D

(
1− τ 2 d2

dt2

)
≡ δ(t− s)G−1(t), working

in the Fourier space and then inverting it back, which is local in time.

After changing variables one can obtain the path probability,P [x|x0], assuming that noise
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is already in the stationary distribution, to be given by

P [x|x0] ∝ exp

[
−1

2

∫
dt

∫
ds(ẋs − f(xs))Γ

−1(t− s)(ẋt − f(xt))−
f ′(xt)

2
− τ [ẋ0 − f(x0)]2

2D

]
(1.60)

After some manipulation, we obtain,

P [x|x0] ∝ exp

[
−
(∫

[(1 + τdt)(ẋt − f(xt))]
2

4D
− f ′(xt)

2
− τ [ẋ0 − f(x0)]2

2D

)]
(1.61)

We can see that Lagrangian-like function, depends on ẍ due to non-Markovian nature of the

bath. Now, to compute the amount of irreversiblity, we compute the path probability for

the time reversed trajectory,P [Θx|Θx0], after dropping the last two terms from Eqn(1.59),

as they either contribute to boundary terms or can ignored changing convention(Ito or

Stratonovich) of defining the path integral, is given by

P [Θx|Θx0] ∝ exp

[
1

2

∫
ds

∫
dt(−ẋs − f(xs))Γ

−1(t− s)(−ẋt − f(xt))

]
(1.62)

Here, we have implied that Γ−1 is even under time reversal transformation(TRT) ,Θ ◦ (t) =

◦(T − t), as the correlation matrix is even under TRT by definition.

Therefore, the entropy production of the environment,Sbath(T ), is given by

Sbath(T ) = log P [x|x0]
P [Θx|Θx0]

=
∫
dt
∫
ds [ẋtΓ

−1(t− s)f(xs) + f(xt)Γ
−1(t− s)ẋ(s)] (1.63)

where we have dropped the boundary terms,ẋΓ−1ẋ and fΓ−1f and defining f ∗ g(t) ≡∫∞
−∞ f(t − s)g(s)ds, as the convolution operator, we get a simplified form for the time

dependent entropy production rate,

σ(t) = ẋt
(
Γ−1 ∗ f(x)

)
(t) + f(xt)

(
Γ−1 ∗ ẋ

)
(t) (1.64)

=
1

Dγ

(
Fncẋt −

dφ

dt
(t)

)
+

τ 2

2Dγ

[
ẋ3φ′′′(t) +

d

dt
(ẍtφ

′(t))

]
(1.65)

The entropy production of the active bath cannot be easily mapped to the thermodynamic

quantities, due to the presence of memory, as in the case of the thermal bath. The first term

corresponds to the heat expelled by the system in the active bath. But, here we see that

there is also entropy production due to active nature of the bath.
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In the steady state, the entropy production rate can be obtained by averaging over the

stationary distribution, i.e. T → ∞, and assuming ergodicity, we get,

Sbath(T ) ∼ T 〈σ〉 = T
∫
dxPs(x)σ(T ) (1.66)

Interestingly, for ”equilibrium”(zero current) systems, it can shown that the contributions

of average entropy production occur at the lowest order τ 2, i.e. 〈σ〉 ∼ Tτ 2〈(φ′′′)2〉 for small

τ [47]. So the system is effectively ”equilibrium”(non-thermal) system for small correlation

times.

To compute the dissipation in the active bath, one may extend the definition of Sekimoto,

i.e. the imbalance of power injected by drag force and power dissipated through the viscous

force, given by

I = ẋΓ−1f(x) = −ẋΓ−1ẋ+ ẋΓ−1ξ (1.67)

=
ẋ(Fnc − φ′)

γ2D
+

τ 2

2Dγ2

[
ẋ
d2φ′

dt2
+ φ′

d2ẋ

dt2

]
(1.68)

For the ease of notation, I have dropped the time subscript and convolution operator. One

may also identify that the above dissipation can be related to entropy production via,

σ = I + Iadj (1.69)
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Chapter 2

Adler oscillator in an Active Bath

Let us consider the dynamics of a non-uniform oscillator in the presence of an active bath,

i.e. a large reservoir of active particles. The dynamics of the system can be captured by a

Langevin equation given below,

Iθ̈t + γθ̇t = f − k sin

(
2πθt
L

)
+ ξt (2.1)

〈ξt〉 = 0, 〈ξtξt′〉 = Γ(t− t′) =
2γkBTeff

τ
exp (−|t− t′|/τ) (2.2)

where θt is the phase of the oscillator with periodic boundary conditions, θt+L = θt such that

L is the periodicity of oscillator , I is the moment of inertia, γ is the friction coefficient , f

is the external driving torque(non-conservative), k is the strength of the non-linear potential

and Γ(t− t′) is the auto-correlation function of the noise.

The choice of this non-linear potential is motivated by many physical and biological

systems. For example, in the case of Josephson junctions, Kirchoff’s law of current and

voltage balance gives the above equation in the presence of a capacitor and resistor. Similarly,

one finds the same equation for a pendulum under the effect of an external torque f

in the presence of gravitational force. One of the other key application corresponds to

the phenomenon of synchronization, which has many application in physical systems like

power grids[48], where AC frequency of generator has to be matched with the entire grid

for least power loss and biological systems like synchronization between cilia for cellular

propulsion[49]. One of the pragmatic models used to study this phenomenon is Kuramoto
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model and Eqn. (2.1) corresponds to the mean field limit of the Kuramoto model in the

presence of inertia and noise. There are many other applications in biological systems like

intra-cellular transport (simplest model for Brownian motors), phase locking in hair bundles

in the hair cells to an external signal etc.[]

Some of the key assumptions that go into this model is that we would like to study the

system away from detailed balance, due to the presence of active bath. The above model

doesn’t satisfy fluctuation-dissipation theorem of second kind[50], Γ(t− t′) = kBTγ(|t− t′|),
which guarantees canonical distribution in bath with temperature T, as here we assume that

the viscosity kernel is a delta function, i.e., −
∫ t
−∞ γ(t− t′)θ̇t′dt′ → −γθ̇t.

We also assume that the effect of a thermal bath is negligible compared to the activity

of the active bath, which has been experimentally confirmed for some bacterial colonies in

pure water[35, 36]. The active collisions withe bacteria plays a stronger role in the dynamics

compared to the thermal collisions with the solvent.

We will consider the noise statistics due to the presence of active bath to be of Gaussian

distribution with the following form,

Γ(t− t′) =
C

2τ
exp(−|t− t′|/τ) (2.3)

where τ is the correlation/persistence time of the active particles on the passive tracer and

C = 2γkBTa is the strength of strength of active noise. We have defined the strength in this

particular form to make easier connection with the case of thermal bath, where fluctuation-

dissipation relation holds. We can also identify that the noise statistics corresponds to the

active dynamics typically studied using Run & Tumble dynamics, Active Ornstein-Uhlenbeck

dynamics etc.

2.1 Nonlinear deterministic driven oscillator

Let us first consider the case where we neglect the fluctuation produced by the bath, i.e.

when C = 0. In this case, the dynamics is well studied and known as the Adler dynamics, a

model used to study non-uniform oscillations.
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2.1.1 Overdamped Case:

Let us first case consider the simpler case of one dimensional flow with periodic boundary

conditions, i.e. neglecting the effect of inertia (Overdamped limit). This limit is usually

taken when the moment of inertia is very low or in a highly viscous, i.e. I/γ � 1 The

corresponding equation of motion in adimensional form is given by

θ̇ = a− sin (θ) (2.4)

such that a = f
k

and dimensionless time, t→ 2πf
Lγ
t and phase, θ → 2π

L
θ .

Linear stability analysis on this system gives that for a < 1 the system has both a stable

fixed point, θ∗ = arccos(
√

1− a2)and an unstable fixed point, θ∗ = arccos(−
√

1− a2) for

0 ≤ a ≤ 1, where the both stable and unstable fixed points converge to become a saddle point

at θ∗ = π/2. The dynamics asymptotically goes to a stable fixed point when 0 < a = f
k
< 1,

whereas when a > 1 the system just keeps on oscillating with non-uniform frequency based

on the phase of the oscillator, which we call the ”running state”. The system undergoes

saddle-node bifurcation at θ∗ = π/2, which is also the dynamical bottleneck.

Figure 2.1: 1 dimensional flow for the overdamped Adler dynamics representing Saddle node
bifurcation at θ∗ = π/2

Above the bifurcation point (i.e. f > k ), the system oscillates non-uniformly in the

phase space. The time period of the oscillator, time required to complete one oscillation,

27



can be computed as follows,

Tadler =

∫
dt =

∫ 2π

0

dt

dθ
dθ =

∫ 2π

0

1

a− sin θ
dθ (2.5)

=
2π√
a2 − 1

(2.6)

This implies in the usual dimension, the average frequency(averaged over a cycle) of the

system is given by

〈θ̇a〉 =

0 , f ≤ k,√(
f
k

)2 − 1 , f > k
(2.7)

(2.8)

One can easily identify that as f → k+, the time period of the system diverges, which is the

reason for the dynamical bottleneck, and there exist the average frequency is non-analytic

at f = k.

2.1.2 Underdamped Case:

Now let us consider the original dynamical problem, with inertia(underdamped limit). The

corresponding equation of motion after non-dimensionalizing is given by

θ̈t +Gθ̇t = a− sin θt (2.9)

where G = γ√
kI

, a = f
k

and to non-dimensionalize, we use t→
√

k
I

2π
L

, θ → θ 2π
L

.

We can therefore write the equation of motion as dynamics in 2 dimensional phase space

of (θ, z = θ̇), which corresponds to motion in a cylinder (due to periodic boundary conditions

on θ), given by

θ̇t = zt (2.10)

żt = a− sin θt −Gzt (2.11)

Using linear stability analysis, one can find that for a < 1, there exist both stable and

unstable fixed points. The stable fixed point is a stable node if G2 − 8π
L

√
1− a2 > 0, else
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the fixed point is a stable spiral. Again, we have saddle-node bifurcation of fixed points at

a = f
k

= 1, i.e. the stable and unstable fixed point coalesce to saddle point at the bifurcation

point.

When a > 1, it can be easily shown that the system asymptotically converges to unique

stable limit cycle. So, for large values of G, i.e. high damping limit, there exists an infinite

period bifurcation, similar to the one in over-damped limit, where the near the bifurcation

point the time period of the limit cycle diverges, resulting in the formation of stable and

unstable node. Moreover, this system also has a bistable region for small damping and a < 1,

i.e. the system has asymptotically two stable regions in the phase space associated with a

stable node and stable limit cycle (Interestingly, with different topological features). The last

bifurcation that the system has is the homoclinic bifurcation, where the limit cycle expands

as one gets closer to the bifurcation point, when it finally gets destroyed when it crosses

saddle point, through a homoclinic orbit. The differences between all these bifurcations are

on the different scaling relations on the time period and amplitudes of the oscillations as

discussed in Sec. 1. The resulting bifurcation diagram of the system is shown below,

Figure 2.2: Bifurcation Diagram for the underdamped Adler Dynamics.Taken from [27]

One of the interesting consequence of presence of bistability is the presence of hysteresis

effects when goes through bistability region from the different basin of attraction, at fixed

G = γ/
√
kI and f . Here, for example, for small damping cases, when one initially start from

the external torque from small values, the system is asymptotically found at the stable node.

When one changes adiabatically increase a, the system continues to be at the stable node

until it reaches the saddle node bifurcation point of fixed points at a = 1, after which the
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system suddenly jumps into the limit cycle solution and stays there with further increase of a.

Now, when one adiabatically decrease a, the system continues to stay in limit cycle solution

with decreasing frequency, even in the bistable region, until the homoclinic bifurcation point,

when it jumps back to stable node solution.

2.2 Nonlinear stochastic driven oscillator in a thermal

bath

In the limit of very small correlation time, i.e. τ � ∆t(observation time scale), the

system behaves as memory-less and one can identify that thermal(passive) bath is the zero

correlation time limit of the of the active bath, i.e.,

lim
τ→0

Γ(|t− t′|) = lim
τ→0

2γkBTeff

2τ
exp(−|t− t′|/τ) = 2γkBTδ(|t− t′|) (2.12)

where the effective temperature is the temperature of the bath itself.

Let us consider the above oscillator in the presence of the isothermal bath, i.e. a

large reservoir of solvent(passive) particles with temperature T .The corresponding Langevin

equations is given by

Iθ̈t + γθ̇t = f − k sin
(

2πθt
L

)
+ ηt (2.13)

〈ηt〉 = 0, 〈ηtηt′〉 = Γ(t− t′) = 2γkBTδ(|t− t′|) (2.14)

Figure 2.3: Adler Dynamics in a Thermal Bath
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The coarse grained effect of large number of collisions with the bath particles can be

captured by Gaussian white noise. The above system satisfies fluctuation-dissipation relation,

and hence Einstein relation, which relates the strength of the fluctuations to the coefficient

of viscosity. Hence, we can define diffusion coefficient which corresponds to the variance in

displacement in the absence of the potential, to be given by

D =
kBT

γ
. (2.15)

To compute the statistics of thermodynamic quantities, we use the formalism of stochastic

thermodynamics discussed in Sec. 1. Let us formally write the stochastic differential

equation(SDE) of the above model(underdamped) in the Stratonovich sense, given by

dθ =
p

I
dt , dp =

(
f − k sin

2πθ

L

)
dt− γ p

I
dt+

√
2γkBT ◦ dBt (2.16)

Even though the phase of the oscillator has periodic boundary conditions, for a proper

description of the thermodynamic quantities defined at the trajectory level, one has to work

with the real line extension of the phase variable, i.e. θ ∈ [0, 2π]→ x ∈ (−∞,∞). We have

to work in such variables, to make sure that heat and work are continuously defined when

the particle crosses the boundary. In the real line variables, the thermodynamic quantities

are given by

d′Wt ≡ f ◦ dxt (2.17)

d′QT ≡
(
−γ p

I
+ η(t)

)
◦ dxt (2.18)

Ut ≡
p2
t

2I
− kL

2π
cos

(
2πxt
L

)
(2.19)

which statisfy the first law at the trajectory level, i.e. dUt = d′Wt + d′Qt

2.2.1 Overdamped limt

In the limit when the momentum relaxation time, I/γ is very small compared to the

observational time scales, one can assume that the momentum to be relaxed to its stationary

distribution, and hence neglect the term, Iθ̈. The corresponding one-dimensional stochastic
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differential equation(SDE) is given by,

γdθt =

(
f − k sin

(
2πθ

L

))
dt+

√
2γkBT ◦ dBt (2.20)

Since the above stochastic differential equation is non-linear, it is usually easier to work at the

level of ensemble to compute the statistics of different thermodynamic quantities, because

Fokker-Planck equation is linear partial differential equation with non-linear coefficients.

The Fokker-Planck equation for the overdamped dynamics is given by

∂P

∂t
(θ, t) = −1

γ

∂

∂θ

[(
f − k sin

(
2πθ

L

))
P (θ, t)

]
+D

∂2P

∂θ2
(θ, t) . (2.21)

with boundary conditions P (θ, t) = P (θ+L, t) and the normalization condition
∫ L

0
P (θ, t)dθ =

1.

We are interested in computing the steady state properties of the above system. So from

now on, all the statistics of different quantities are computed with respect to steady state

distribution, given by ∂P
∂t

= 0 and the probability current,J(θ) is given by

J(θ) =

(
a− b sin

(
2πθ

L

))
P (θ)− ∂P

∂θ
= C1 (2.22)

J is constant and independent of phase in the steady state. We have also introduced new

notation for ease of calculations,

a ≡ f

γD
, b ≡ kL

2πγD
(2.23)

Since, the system is periodic in θ, we can impose periodic boundary condition along with

the normalization condition,

P (θ, t) = P (θ + L, t),

∫ L

0

P (θ)dθ = 1 (2.24)

A general solution for Eqn (2.21) with the above boundary conditions in the stationary state,

is given by

Ps(θ) = C1 exp

[
aθ + b cos

(
2πθ

L

)]∫ θ

C2

exp

[
−
(
aφ+ b cos

(
2πφ

L

))]
dφ (2.25)
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where C1 and C2 are the arbitrary constants.For satisfying the boundary conditions, we have

to take C2 =∞ or C2 = −∞. Here we will take former case,

Ps(θ + L) = C1 exp [La] exp

[
aθ + b cos

(
2πθ

L

)]∫ θ+L

∞
exp

[
−
(
aφ+ b cos

(
2πφ

L

))]
dφ

= C1 exp [La] exp

[
aθ + b cos

(
2πθ

L

)]∫ θ

∞
exp

[
−
(
a(φ′ + L) + b cos

(
2πφ′

L

))]
dφ′

= Ps(θ)

Now rearranging the above formula ,

Ps(θ) = C1 exp [La] exp

[
aθ + b cos

(
2πθ

L

)]∫ θ+L

∞
exp

[
−
(
aφ+ b cos

(
2πφ

L

))]
dφ (2.26)

= C1 exp [La] exp

[
aθ + b cos

(
2πθ

L

)] [ ∫ θ+L

θ

exp

[
−
(
aφ+ b cos

(
2πφ

L

))]
dφ

(2.27)

+

∫ θ

θ−L
exp

[
−
(
aφ+ b cos

(
2πφ

L

))]
+ ...

]
dφ (2.28)

=
1

N
exp

[
aθ + b cos

(
2πθ

L

)]∫ θ+L

θ

exp

[
−
(
aφ+ b cos

(
2πφ

L

))]
dφ (2.29)

(2.30)

where N is given by

N = −(1− exp [−La])

C1

(2.31)

Let us fix C1 by using the normalization condition,

N =

∫ L

0

dθ

∫ θ+L

θ

dφ exp

[
aθ + b cos

(
2πθ

L

)]
exp

[
−
(
aφ+ b cos

(
2πθ

L

))]
(2.32)
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Making a variable change ψ = φ− θ, we get,

N =

∫ L

0

dθ

∫ L

0

dψ exp

[
aθ + b cos

(
2πθ

L

)]
exp

[
−(a(ψ + θ) + b cos

(
2π(θ + φ)

L

)
)

]
=

∫ L

0

dθ

∫ L

0

dψ exp

[
−aψ + 2b sin

(
2π

L
ψ/2

)
sin

(
2π

L
(θ + ψ/2)

)]
=
L2

2π

∫ 2π

0

dψ′ exp[−a′ψ′]I0[2b sin(ψ′/2)]

The last integral only converges when L = 2nπ where n ∈ {1, 2, 3...} .Now making another

variable change y = 1/2 ∗ (π − ψ′) for 0 < ψ′ < π and y = 1/2(ψ − π) for π < ψ′ < 2π, and

a′ = 2π
L
a = Lf

2πγD

N =
2L2

π
exp [−La/2]

∫ π/2

0

dy cosh(2a′y)I0(2b cos(y)) (2.33)

We will use a result from Handbook of Ryzhik and Gradstein[51] (Eqn. 6.681.3 ), which

gives us,

N = L2 exp [−La/2] Iia′(b)I−ia′(b) (2.34)

where the Iia(b) is ath order modified Bessel function of first kind with imaginary order and

real argument, b.

We derived the exact form for the steady state probability current, given by

G =
D

N
(1− exp [−La]) =

2D

L2
sinh

(
Lf

2γD

) ∣∣∣I iLf
2πγD

( kL

2πγD

)∣∣∣−2

(2.35)

Now using the above results, we can also derive the exact form of average angular frequency

in steady state for L = 2nπ,

〈θ̇〉 =
〈f
γ
− k

γ
sin

(
2πθ

L

)〉
(2.36)

=

∫ 2π

0

dθ
[f
γ
− k

γ
sin

(
2πθ

L

)]
P (θ) (2.37)

=

∫ 2π

0

dθ
[
G(θ) +D

∂P

∂θ

]
= LG (2.38)

=
2D

L
sinh

(
Lf

2γD

) ∣∣∣I iLf
2πγD

( kL

2πγD

)∣∣∣−2

(2.39)
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From the previous definitions, we can derive an exact form for the average power inputted

into the system for L = 2nπ,given by

〈Ẇ 〉 = f〈θ̇〉 =
2Df

L
sinh

(
Lf

2γD

) ∣∣∣I iLf
2πγD

( kL

2πγD

)∣∣∣−2

(2.40)

where Iin(b) is nth order modified Bessel function of first kind with imaginary order and real

argument, b. This is the first main result of our work and below we have compared it with the

numerical simulations done for the SDE given in Eqn(2.40), and it shows an excellent overlap

with the analytical result. As shown in Fig 2.4, with increase in temperature, the average

power is always more than the deterministic case, even though the noise is symmetric. This

is due to the presence of the external torque which creates an asymmetry in the dynamics,

i.e. the fluctuations in the direction of the torque causes the particles to cross the barrier

much easier compared to when the fluctuation is in the opposite direction. So, the power

inputted into the system could be improved by either increasing the ”effective torque”, (f−k)
k

or decreasing the periodicity of the potential, L or increasing the strength of the noise, D.

In the limit of D → 0, the system approaches the deterministic limit thus we obtain the

non-analyticity at the bifurcation point for the average power. Using the properties of Bessel

function, one may obtain that the average power in D → 0 limit,

〈Ẇ 〉 =

0 , f ≤ k,

f

√(
f
k

)2 − 1 , f > k
(2.41)

For the limit, f → k and D → 0 (Specifically when , k
f
−1 ∼ 1

2

(
γD
f

)−2/3

), we can simplify

the Eqn.(2.40)[52],

y =
3

Lx

[
I2
−1/3(x3/2) + I2

−1/3(x3/2) + I−1/3(x3/2)I1/3(x3/2) + I2
1/3(x3/2)

]−1
(2.42)

where x =
(

fL
6πγD

) 2
3
(
k−f
f

)
and y =

(
fL

6πγD

) 1
3 〈Ẇ 〉γL

f2
.
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Figure 2.4: The steady state average power inputted into the system with the driving
torque for different temperatures(γ = 1). Here the curves correspond to Eqn.(2.40) and
the symbols correspond to numerical simulations. We find that the system has finite power
below bifurcation point which was 0 for the noiseless case.The inset shows the power law
scaling of the average power with the temperature at the critical point

Now, taking x = 0, i.e. f = k, we get,

y =
3

L
2−

2
3

[
Γ

(
2

3

)]2

(2.43)

〈Ẇ 〉 =
3

L
2−

2
3

[
Γ

(
2

3

)]2(
f 5

γ2

) 1
3

(3D)
1
3 (2.44)

where Γ(x) is the gamma function. From this, we find that the average power has a scaling

form, i.e. 〈Ẇ 〉 ∝ D
1
3 , at the bifurcation and also explains its non-analytic behaviour when
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D → 0. We have also compared the above result with the numerical calculations in Fig(2.4).

We believe that such a scaling form with D depends on the kind of bifurcation and also on

the form of the potential near the dynamical bottleneck explained in Section 1.1.

Similarly, one can easily show that in the limit of strong noise, i.e. D →∞, the equation

goes to the limit,

〈Ẇ 〉 =
f 2

γ
(2.45)

This means that in the presence of strong noise, the system can explore freely all the regions

of potential that effectively it doesn’t feel its presence and the effect of noise will be observed

only in its higher moments. It is also interesting that the average power is bounded from both

below and above when one increases the temperature of the bath from T = 0 to T →∞.

For the above system, Reimann et.al.[53], showed that the effective diffusion coefficient,i.e.,

D̃ = lim
t→∞

〈x2
t 〉 − 〈xt〉2

2t
(2.46)

where x is the real line extension of the phase. can be related to the moments of first passage

time and the final result, is given by

D̃ = D

∫ L
0

dx
L
I2

+(x)I−(x)

[
∫ L

0
dx
L
I+(x)]3

(2.47)

where,

I±(x) =

∫ L

0

dy

D
exp [(∓k cos θ ± k cos (θ ∓ θ′)− θf) /Dγ] (2.48)

We compared the above result for our model given by Eqn.(2.20)and we got an excellent

match with the numerical simulations shown below,
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Figure 2.5: Fig 1.Scaled Effective diffusion coefficient,D̃/D versus the external torque(f) for

the Adler system with L = 2π, k = 6, γ = 1 for different temperatures

We can see that there is enhanced effective diffusion at the bifurcation point and enhancement

is much more for smaller temperatures. The above effect is due to high instability in

the dynamics near the saddle point in the deterministic case and there is high variation

compared to the deterministic case for small temperatures w.r.t. higher temperatures. This

phenomenon has been called ”the giant acceleration” of free diffusion[18].

Now, we would also like to compute the variance in the work inputted into the system in

the steady state. Using the definition according to Eqn.(2.17), the variance is given by

Var[Wt] = f2(〈x2
t 〉 − 〈xt〉2) (2.49)

Using the result Eqn. (2.47), for the variance in the displacement, we can easily derive that
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for large times, t� 0, we get

Var[Wt�0] ∼ 2f2Dt

∫ L

0
dθ
L

I2
+(θ)I−(θ)[∫ L

0
dθ
L

I+(θ)
]3 (2.50)

Figure 2.6: Variance in the work inputted into the system at t=800 in the steady state

versus the external torque(f) for the Adler system with L = 2π, k = 6, γ = 1 for different

temperatures. The curves corresponds to the numerical integration of Eqn.(2.50) for different

temperatures

We can see that the above result has good convergence with the numerical simulations(Fig.

2.6). We must identify that the variance in the work inputted into the system, has a peak near

the bifurcation point for small temperatures. We also see that with increasing temperatures,

the variance also increases as expected. Reimann et.al.[53] also derived a scaling form for

the Diffusion coefficient for small temperatures. One can easily deduce that Var[Wt] also

has a similar scaling behaviour as average power, i.e. Var[Wt] ∼ D1/3, for small values

of D. Since, here we are working with fixed friction coefficient γ, small D corresponds to

small temperatures T . So energetically, for small temperatures, it is better to go above the
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bifurcation point to have maximum output.

To quantify the above we can use the measure called Fano-Factor for the work done till

time t, defined as the ration of variance to the mean, given by

FWt =
Var[Wt]

〈Wt〉
= 2D

∫ L
0

dθ
L
I2

+(θ)I−(θ)[∫ L
0

dθ
L
I+(θ)

]
(1− exp[−Lf/Dγ])

(2.51)

We have used the fact that the average work done in the system at time t, 〈Wt〉 = 〈Ẇ 〉t, since

the function is additive in time. We see that the system has highest degree of variation for

values below the bifurcation point, which goes towards bifurcation point as D → 0. Hence,

for precise input of work into the system, it is better to go far above the bifurcation point.

Figure 2.7: Fano factor for the work inputted into the system at t=800 in the steady

state versus the external torque(f) for the Adler system with L = 2π, k = 6, γ = 1 for

different temperatures. The curves corresponds to the numerical integration of Eqn. (2.51)

for different temperatures.
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2.2.2 Underdamped limit

The effect of inertia adds a new layer of complexity to the Adler system as discussed in Sec

1.1. The deterministic system is effectively a second order dynamical system with 3 different

bifurcations. The addition of thermal fluctuations adds another layer of complexity and

below I will discuss the effect on the energetics due to the fluctuations near the bifurcations.

The Langevin equation for the Adler dynamics in underdamped case is given by ,

Iθ̈t + γθ̇t = f − k sin
(

2πθt
L

)
+ η(t) (2.52)

where 〈ηtηt′〉 = 2γ2Dδ(t− t′).(Using Einstein relation, D = kBT/γ)

In this section, we will mainly focus on the Bi-stable region, where the phase space has

two stable regions, one for stable node and other for stable limit cycle. The key feature of

these two distinct stable solutions are that they are topologically distinct solutions. The

stable node solution is characterised by zero angular velocity whereas the stable limit cycle

solution is characterized by a finite angular velocity (can still be dependent on the phase).

I have below plotted the real line extension of the displacement(x) and angular velocity (v)

for a sample trajectory for the parameters in the bi-stable region,

Table 2.1: Left: Real line extension of θ(t), i.e. x(t) for f = 4.5, k = 6, D = 0.1(Bistable
region). Right: Angular velocity for same parameter for one of the trajectory(Green)

As you can see the thermal fluctuations help the system to get out of the stability basin

of both stable node and stable limit cycle, and hence the trajectories are a mix of the both

these trajectories. The key difference between the running state in the overdamped case and
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the limit cycle in the underdamped case, is in the stability of the solution from the dynamical

perspective. In the case of the overdamped case, the running state can suddenly shift to

the stable fixed point due to thermal fluctuations around the saddle-node bifurcation point.

Whereas in the underdamped case,the presence of bistability implies that one might need

bigger thermal fluctuations to move the system out of stability basin.

Stochastic thermodynamics is a tool to analyze the thermodynamic signatures of switching

in the trajectory level between the 2 stable solutions, in the thermodynamic quantities. We

looked at the average power inputted into the system at large times, to check the effect of

bistability, where the we could clearly see the signatures of the two solutions. Below I have

plotted the ”Hysteresis” plot of the average power with the driving torque. The ”Hysteresis”

protocol used was as follows: Let the system evolve according to the Langevin equation(Eqn.

2.52) for simulation time,Tsim for a value of external torque where the fixed point is the only

stable solution, then compute the ensemble average of power inputted into the system. We

then proceed to increase the external torque in the direction of bistable region and using the

final points as the initial conditions, we again compute the average after Tsim.We proceed

to use this protocol to increase the external torque(to beyond the saddle-node bifurcation)

and then decrease it to cover the entire bistable region. This protocol is the usual ’adiabatic

way’ to capture Hysteresis behaviour.

As one can notice the hysteresis behaviour still exists in the presence of weak thermal

noise, even after large simulation times. This means the system hasn’t relaxed to the unique

steady state for such large simulation times(limited by the run time). The two averages

corresponds to the averages in the stability basin of the two stable solutions. As one can

see, the area under the hysteresis curve decreases with increasing temperature.

We can rationalize the hysteresis curve with the Kramer’s escape rate from the stability

region of both the solutions.We computed the escape time to go from the stability basin of

the stable node to the limit cycle solution, using the result derived by Buttiker et.al.[54] and

Kramer[55], for the escape rate for the underdamped case. It was derived for our system in

the case of titled washboard potential(The effective potential when one also considers the

effect of non-conservative force) with L = 2π, given by

φeff = −f
γ
x− k

γ
cos (x). (2.53)
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Figure 2.8: Hysteresis curve for average power for the underdamped system at t = 105, k =
6, γ = 1 for different temperatures.The arrow correspond to the direction of the change of
driving force. We see that the area under the hysteresis curve decreases with increasing
temperatures

The mean Kramer’s escape time for extremely low damping (G = γ√
kI
� 1) derived by

Buttiker et.al. can be then computed as follows as,

〈τe〉 =
2π

ωA
exp

(
Eb
kBT

)
[1 + (4αDI/Ib)]

1/2 + 1

[1 + (4αDI/Ib)]
1/2 − 1

[
Ib
DI

]
(2.54)

where ωA = |ωb| =
(
k
I

)1/2
(1− f 2/k2)

1/4
is the frequency associated to motion of the particle

at the bottom/top of the well, Eb is the effective barrier height from well minimum, Ib is

the action at the barrier peak and α is a fitting parameter relating to particle current at

the barrier peak which is of order unity. Similarly, the Kramer’s escape time for moderate

damping (G ∼ O(1)) derived by Kramer in 1940, is given by

〈τe〉 =
2π|ωb|
ωA

exp

(
Eb
kBT

)
1[(

γ2

4I2
+ |ωb|2

)1/2

− γ
2I

] (2.55)
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In Fig. (2.9), we show log10(〈τe〉) as a function of driving torque in the bistable region. We

find that for the parameter values used for the simulations in Fig. (2.8), the escape time,

computed from the Kramer’s formula Eqn. (2.54), is very high (increasing with increasing

values of Eb, which goes from finite value < 2k to 0 with increasing value of f). Since such

a similar behaviour is seen when decreasing the driving torque from above, we expect the

Kramer’s escape time from limit cycle to stable node to be very high too.

Figure 2.9: log10(〈τe〉) vs Driving torque(f) in the bi-stable region for k = 6, I = 1, γ = 1.
High values of Kramer’s escape time corresponds to high stability of the potential well.

To utilize the effect of the meta-stability in the system, we also did numerical studies

on the above system with external periodic driving in addition to constant external torque.

The Langevin equation for the corresponding system is given by

Iθ̈t + γθ̇t = f0 + a sin

(
2πt

T0

)
︸ ︷︷ ︸

fper(t)

−k sin

(
2πθt
L

)
+ η(t) (2.56)
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where a and T0 is the amplitude and time period of the driving respectively. f0 and a is

chosen such that it covers the entire bistable region and T0 is such that it is lower than the

Kramer’s escape time from the well around f0.

Figure 2.10: Left: Periodic driving in the Adler dynamics for the underdamped case in the
bistable region. Right: Trajectories(10 samples) for system with time period,T0 = 800(up)
and T0 = 400(down) .Parameters values: I=1, γ=1, f0=4.5,k=6, kBT=0.1, a=2.5.

The trajectories for the above system has clear structure which depends on the value of

G = γ/
√
kI, f0 and a and it seems independent of the time period of driving, T0. Since,

we began the protocol with initial conditions for the system to be in the basin of attraction

of the stable node, the average power is almost 0, then suddenly spikes to the limit cycle

solution(corresponding to the saddle-node bifurcation), then increases due to further increase

of external torque.Now in the reverse protocol, the system stays in the limit cycle solution

even in the bistable region, until the homoclinic bifurcation.

We also computed the average work inputted into the system in a cycle(over a single

time period) and found a linear relationship with time period,T0(shown below). This means

the specific structure of the trajectories only gets rescaled with time period on average.
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Figure 2.11: Average work inputted into the system per cycle vs time period of the driving
for k = 6, f0 = 4.5, I = 1, γ = 1 for different values of D. It shows a linear relationship
between them, which implies the structure of the instantaneous power only gets rescaled
with time period.The lines corresponds to the linear fit with goodness of fit, R2=0.999

2.3 Nonlinear stochastic driven oscillator in an active

bath

How does the non-equilibrium properties of the activity affect the thermodynamic quantities

near the bifurcation behavior of non-linear system? To answer this question, we study the

non-linear oscillator, the Adler oscillator, in the presence of active bath. In this section we

will discuss only the overdamped limit of the dynamics and the corresponding equations of

motion is given by

θ̇t = f
γ
− k

γ
sin
(

2πθt
L

)
+ ξt (2.57)

〈ξt〉 = 0, 〈ξtξt′〉 = D
τ

exp
[
− |t−t

′|
τ

]
(2.58)
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where we will define D = kBT
γ

(effective diffusion coefficient due to the bath).So, effective

strength of the active fluctuations at finite correlation time i given by 〈ξ2
t 〉 = D

τ
. Hence with

correlation, one expects a cooling effect (decrease in the ”effective” temperature, Teff = γD
kBτ

)

with correlation time. But one must remember that the exponential correlation also plays

a key role, in controlling the different time scales in the system. As discussed in the above

section, increasing the correlation time τ from 0→∞, corresponds to go from thermal bath

limit to deterministic limit(i.e. infinitely correlated). Another interesting consequence of this

system is that steady state average power inputted into the system is equal to the average

heat dissipated in the active bath, i.e. 〈Ẇ 〉 = −〈Q̇〉. This is due the bounded nature of the

conservative potential,φ(θ) = −2πk
L

cos
(

2πθ
L

)
.

To tackle the statistics of this model given by Eqn. (2.57), a non-Markovian problem,

an effective Markovian problem can be constructed by adding extra degrees to capture the

non-Markovian behaviour. The same statistics of the active fluctuations can be captured by

modelling it as an Ornstein-Ulhenbeck process, given by

τ ξ̇t = −ξt +
√

2Dηt (2.59)

where ηt is white noise with zero mean and unit variance. Thus the Markovian representation

of the original problem is 2-dimensional Langevin equation.

Taking the derivative of Eqn. (2.57), we can also describe the above system as an effective

underdamped problem with space dependent friction,γ(x; τ) (See. Sec. 1.3.4), given by

θ̈t +

[
τ−1 +

2πk

γL
cos

(
2πθt
L

)]
θ̇t =

f − k sin
(

2πθt
L

)
γτ

+

√
2D

τ
ηt (2.60)

After rescaling time, t̃ = tτ−1/2, we obtain,

θ̈t +

[
τ−1/2 + τ 1/2 2πk

γL
cos

(
2πθt
L

)]
θ̇t =

f − k sin
(

2πθt
L

)
γ

+

√
2D

τ 1/4
ηt (2.61)

where the space dependent friction, γeff(θ, τ) = τ−1/2 + τ 1/2
(

2πk
γL

)
cos
(

2πθt
L

)
. One may

notice that as correlation time,τ increases (when τ > γL
2πk

, the friction is also negative(i.e.

accelerating) for some values of the phase space (θ ∈ [π/2, 3π/2] at τ → ∞). The negative

friction is essential for the spontaneous oscillations seen in hair bundle systems[56]
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Figure 2.12: Space dependent friction as function of θ for different correlation times.
Parameters: k=6,L = 2π,γ = 1. One can see that for larger correlation times the friction is
negative for a part of the phase space.

First I will discuss the two approximation schemes, Fox’s approximation and UCNA,

which has previously been successfully used to describe the equilibrium system for small

correlation time (i.e.
√
Dτ < l0, where l0 is the characteristic length of the system). We

would like to check the validity of these approximations to our driven non-linear system.

The Fokker-Plank equation for the Fox’s approximation for our model is given by

∂P (θ, t)

∂t
= −1

γ

∂

∂θ

[{
f − k sin

(
2πθ

L

)}
P (θ, t)

]
+D

∂2

∂θ2

P (θ, t)(
1 + 2πkτ

L
cos
(

2πθ
L

)) (2.62)

In the steady state, one finds that the distribution can be computed during similar manipulations

to Sec. 2.2 ,

P f
st(θ) =

1

Nfox

exp{−V (θ)}
∫ θ+L

θ

dθ′ exp{V (θ′)}
[
1 +

2πkτ

L
cos

(
2πθ′

L

)]
(2.63)
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where,

V (θ) ≡ 1

DL

[
−fLθ
γ

+
kL2

2πγ
cos

(
2πθ

L

)
− k2Lτ

4γ2
cos

(
4πθ

L

)
− fkLτ

γ2
sin

(
2πθ

L

)]
− log

[
1 +

2πkτ

γL
cos

(
2πθ

L

)]
.

The first term is equivalent to the potential of the system for the steady state problem in

the Markovian regime.Given the probability distribution, the average power inputted into

the system in the steady state can be computed similar to Sec. 2.2.1, given by

〈Ẇfox〉 =
fDL

Nfox

(1− exp [fL/γD]) (2.64)

Similarly, for UCNA, the Fokker-Planck equation is given by

∂P (θ, t)

∂t
= − ∂

∂θ


{
f − k sin

(
2πθ
L

)}
P (θ, t)

1 + 2πkτ
L

cos
(

2πθ
L

)
+D

∂

∂θ

1[
1 + 2πkτ

L
cos
(

2πθ
L

)] ∂
∂θ

P (θ, t)[
1 + 2πkτ

L
cos
(

2πθ
L

)]
(2.65)

The stationary distribution, is given by

PU
st (θ) =

1

NUCNA

exp{−V (θ)}
∫ θ+L

θ

dθ′ exp{V (θ′)}
[
1 +

2πkτ

L
cos

(
2πθ′

L

)]2

(2.66)

So the only difference between these two approximations in the steady state is the extra

factor,
[
1 + 2πkτ

L
cos
(

2πθ′

L

)]
(space dependent friction), which wouldn’t have mattered in the

equilibrium case. The average power inputted into the system in the steady state according

to UCNA, is given by

〈ẆUCNA〉 =
fDL

NUCNA

(1− exp [fL/γD]) (2.67)

The key quantity needed to evaluate the average steady state power is the normalization

constant, Nfox =
∫ L

0
dθP f

st(θ) and NUCNA =
∫ L

0
dθPU

st (θ). The above quantities are further

evaluated by numerical integration of the above normalization condition. It must noted that

both Nfox and NUCNA are dependent on all the system parameters.

Both these approximations are only valid in the entire phase space, only when the space

dependent diffusivity and friction are positive. This imposes another restriction on the

49



correlation time, 1 + 2πkτ
L

cos
(

2πθ
L

)
> 0 ,i.e., τ < γL

2πk
, in addition to the convergence

issues for large τ . We first compared both the distributions for correlation times when

these approximations are physical with the distribution obtained from the simulations.

One notices that there is significant deviation in the stationary distribution obtained from

Figure 2.13: Stationary distribution, Ps(θ) for f = 7, k = 6, D = 0.01 and γ = 1

UCNA compared to the simulations, whereas the ”Fox’s” approximation converges . UCNA

fails for this model due to the presence of driving torque, which drives the system out of

equilibrium(lack of detailed balance) independent of the noise. Whereas, Fox’s approximation

can be still derived independent of the detailed balance condition[57]. We will show below

that even Fox’s approximation’s validity is limited to parameter values where the velocity

distribution is close to Gaussian. So, for small correlation times, where the system soon

looses the memory of initial velocity and reaches a stationary distribution, which is close to

Gaussian. From the Chapman-Enskog calculation, we can show that the angular velocity

distribution takes the form of product of Gaussian and a polynomial in τ (See Appendix C).

This implies there is further deviation from the Gaussian as one increases the correlation

time and deviations are also dependent on parameter values of the problem. Below, we will

show an example of this non-Gaussian behaviour, where even for small correlation times,

the Fox’s approximation does not capture the stationary distribution very well and one can

relate the cause to the velocity distributions.
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Figure 2.14: Up: Stationary distribution for the phase, Ps(θ) for different values of τ , when
f = 12, k = 6, γ = 1, D = 1 from simulations along with Fox’s approximation. One can
see that for τ = 0.15, Fox’s approximation deviated a lot from the simulations. Down:
Stationary distribution for the velocity,Psθ̇ for the same parameter values. One can see that
for τ = 0.15, the velocity distribution deviates from the Gaussian.
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We then looked at the average power inputted into the system in the steady state for

different correlation times. Since the average power for the thermal bath case is always

more than the deterministic case, we expect the average power to decrease from the thermal

bath limit to the deterministic limit as one increases the activity,τ , from 0 → ∞. We have

also compared the results of the simulations with power computed from Fox’s approximation

(Eqn. (2.64)), for small correlation times, where the approximation is valid. But, numerically

Figure 2.15: Average power with driving torque(f) for D = 1, k = 6 for different correlation
times. Here the lines correspond to the average power(Eqn(!)) obtained from Fox’s
approximation( here only valid for τ < 1/6). We can see that with increasing τ corresponds
to going from thermal bath limit (τ = 0) to the deterministic case(τ =∞).

we observed that there is a distinction in the behaviour of average power inputted into the

system, for values of external driving torque, f , below and above the bifurcation point

(f = k). The average power below the bifurcation, behaves in the way we expect where
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increasing correlation, decreases the effective temperature of the bath, Teff = γD
kBτ

. We know

from the thermal bath case that decreasing temperature, decreases the average power and

finally converging to the deterministic case (〈Ẇ 〉 = 0). So below the bifurcation point, the

increasing the correlation time of the bath, corresponds to effective cooling of the system.

Whereas, above the bifurcation point, where the deterministic case has running state (See

Sec. 2.2.1), the correlation time has more interesting implications (See Fig. 2.16(b)).

Figure 2.16: Average power in the steady state vs correlation time(τ), when k = 6, D =
1, γ = 1,  L = 2π for values of external torque ,below the bifurcation point, f = 5,(Left) and
above the bifurcation point, f = 7 (Right). τc corresponds to correlation time when the
system has minimum power. Dashed Horizontal line corresponds to the deterministic case
and Dotted line corresponds to the Thermal bath case with same parameters.

As we can see, the average power inputted into the system has a non-monotonous

behaviour with correlation time,τ , above the bifurcation point(f = k). One key observation

is that the average power can go below the value in deterministic limit, which was not

possible for any finite temperature in the thermal bath limit. There also exists a critical

correlation time, τc, where the average power in minimum, i.e. the rate of dissipation of

heat into the bath at τc is minimum. So, for small activity of the bath (τ < τc), it has a

cooling effect on the system, whereas it has an heating for τ ≥ τc. We believe such a non-

monotonous behaviour above the bifurcation point, is a combination of effect of persistence

in the running state and also the cooling effect of the active bath, Deff = D
τ

.Even though,
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stationary distribution of phase doesn’t show any clear change with correlation time, we

find that the above behaviour is well captured in the stationary distribution of the angular

velocity(Fig. 2.17). We can see that the angular velocity where the first peak occurs shows

such a non-monotonous behaviour. The presence of second peak in the velocity distribution

with correlation time corresponds to the peak in the velocity distribution(averaged over phase

distribution) in the deterministic case, Pdet(θ̇ = v) ∝ 1

v
√
k2−(f−γv)2

, where the variation in

the velocity is minimum. One can observe that the velocity distributions are in general non-

Gaussian(Fig. 2.17), even at small correlation times, implying that even Fox’s approximation

wouldn’t be able to capture this non-monotonous behaviour. We predict such a behaviour

in any non-linear driven systems(1-dimensional) under the effect of active fluctuations.

Figure 2.17: Stationary distribution of angular velocity, θ̇ for different correlation times,
when f = 7, k = 6, D = 1, γ = 1, L = 2π

We also investigated the effect of increasing the period of the non-linear potential, L. We

expect that for very large L� 1, the system will behave similar to drift-diffusion problem.

We plot below the above plot of average power for different periods. We can see that average

power seems to become constant independent of correlation times,τ , for larger L. This is

due to the fact that for drift diffusion process, the average velocity, 〈θ̇〉 is independent of the

form of correlation function of the noise, Γ(t− t′).
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Figure 2.18: Average power with correlation time τ for D = 1, k = 6, f = 7, γ = 1 for
different periods of the potential.

First passage properties has been successfully used to produce lower bounds for the

estimation of entropy production in the system[31]. In the active bath case, the entropy

production has contributions from both the dissipation and non-equilibrium nature of the

bath, therefore the bounds cannot be directly related to the dissipation in the system. But

in the thermal bath case, one can find equalities relating moments of first passage and

moments of integrated current[53]. We found that one can use first passage properties to find

lower bounds for the average power inputted into the system. Let us define, 〈T (A)〉 as the

mean first passage time to be absorbed in any of the two symmetric absorbing boundaries

at, x = ±A, where x is the real line extension of the phase(θ = x mod (2π)) such that

T (A) ≡ inf{t ≥ 0/x(t) 6∈ [−A,A], x(0) = 0}. We can then define a lower bound for the

power inputted into the system, given by

〈Ẇ 〉 ≥ fA

〈T (A)〉
(2.68)

We see that the bound is sensitive to whether A = 2nπ or A = (2n + 1)π, with better

bounds achieved for A = 2nπ(where n is a positive integer). As expected, the bound is

55



Figure 2.19: Estimated average power with correlation time τ for D = 1, k = 6, f = 7, γ = 1
for different lengths for the boundary of the absorbing wall, A. The plot with no markers
correspond to the average power obtained from the simulations whereas the ones with marker
are the estimated power using Eqn. (2.68).

better for larger values of A, as there are fewer particles going against the external torque

and the mean first passage converges to the mean time period for the system.

We also looked at the variance in the work inputted into the system,σ2
Wt

at large times

in the steady state for different correlation times. In the thermal bath limit(τ → 0), the

variance in work had a peak at the bifurcation point. With the increase in correlation time,

we found out that the variance in work done is further enhanced at the bifurcation point,

whereas the peak as function of external torque around the bifurcation point, sharpens with

correlation time. For correlation time τ → ∞, we reach the deterministic limit, where the

variance is zero for all values of external torque, except the bifurcation point. The increase

in variance at the bifurcation point with correlation time can be explained through the effect

of persistence(even though the strength decreases with τ).At the bifurcation point, which

is highly unstable, the persistence for values of ξ > 0 plays a positive role in enhancing

the displacement in the running state whereas when the persistence for values of ξ < 0,

just falls into fixed point where variance is just governed by the strength of the noise(which
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vanishes with increasing τ). Since, the variance in work(at large times) is also related the

effective diffusion constant, as shown in Sec. 2.2.1, the diffusion can be further enhanced at

the bifurcation point with increasing correlation time.

Figure 2.20: Variance in work inputted into the system in steady state for different correlation
time τ with D = 0.01, k = 6, γ = 1 at t=400.
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Chapter 3

Conclusions & Outlook

In this thesis, we have studied the statistics of thermodynamic quantities for a non-linear

oscillator in the presence of different baths, thermal and active baths, at the non-equilibrium

steady state using the framework of stochastic thermodynamics.Noise induced effects on the

thermodynamic quantities near the bifurcation point and the effects of active fluctuations in

the system were explored.

In the presence of thermal bath, we have derived analytical expressions for the average

power and variance in the work inputted into the system in the overdamped limit. We found

out that the presence of a thermal bath enhances the power inputted into the system and it

also follows a scaling law with temperature of the bath, 〈Ẇ 〉 ∝ T 1/3 at the bifurcation point.

The variance of the work inputted into the system shows a peak at the bifurcation point

for low temperatures. So, for precise enhancement of power inputted into the system, one

must stay above the bifurcation point. Numerical studies on the underdamped limit in the

presence of thermal bath, suggests that the system takes significant time to relax to unique

steady state in the region of bistability. The signatures of metastability can be observed

in the thermodynamic quantities through hysteresis effects and the relaxation times to the

steady states has been estimated using Kramer’s escape rate analysis. One can also utilize

the metastability to design asymmetric input of power into the system, using symmetric

periodic driving the system, even in the presence of the bath.

In the presence of active bath, the system has much richer phenomenology due to the

non-equilibrium nature of the bath. An extensive study of two different approximations-
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Fox’s approximation and Unified color noise approximation (UCNA), used to study the

ensemble properties in the presence of active fluctuations was also conducted. We found

that UCNA doesn’t capture the steady state properties for any correlation time, whereas

Fox’s approximation is limited to correlation times until the velocity distributions are close

to Gaussian form. Controlling the correlation time(activity) of the bath, one finds that the

behaviour of the system goes from the one in presence of thermal bath to deterministic

case (absence of bath). Numerical studies of the average power in the steady state suggest

that above the bifurcation point, the activity has both cooling and heating effect on the

system and there is finite critical correlation time when the system dissipates the minimum.

The average power at the critical correlation time, τc, can also go below the deterministic

case, which is not possible for the thermal bath. The study on the different approximations

suggests that one must look at the higher order terms in correlation to capture the non-

monotonous behaviour in the power. The existence of minimum average power at finite

correlation time, is reminiscent of stalling forces in Brownian motors. We also found that the

diffusive behaviour can be much more enhanced at the bifurcation point for low temperatures

as compared to thermal bath case, by increasing the correlation time. The variance in the

work inputted also shows a peak at the bifurcation point which becomes sharper and higher

with correlation time.

The above study of effects of active fluctuations on driven non-linear systems opens

new theoretical avenues. Better Markovian approximations need to be developed for the

analytical study of the behaviour near critical correlation time, τc, to capture the higher

order currents. The above study also calls for experimental study for power regulation using

correlations in noise in Josephson junctions, power grids , hair bundles etc. Here, we have

looked only at the effect of active fluctuation for a single oscillator. It will also be really

interesting to study the influence of active fluctuations in coupled oscillators, particularly in

the phenomenon of synchronization.
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[15] Édgar Roldán, Jérémie Barral, Pascal Martin, Juan MR Parrondo, and Frank Jülicher.
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Agustın Pérez-Madrid. Giant acceleration of free diffusion by use of tilted periodic
potentials. Physical review letters, 87(1):010602, 2001.
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Appendix A

Functional Calculus

Consider a functional, F [ψ], which maps from a vector space,V usually of continuous functions,

ψ : Ω → R, to real values R. An important example of functional in physics is the action

S[q(t)], where the input is the trajectory(a function of time t, q(t)),

S[q(t)] =

∫ t

dt′L(q̇(t), q(t), t) (A.1)

Here I will discuss the simple calculus methods need for Functional analysis, mainly Functional

derivative. Consider a functional,F [ψ] which has values for ψ(t) and ψ(t) + δψ0(t) where

δψ0(t) 6= 0 within τ − δt ≤ t ≤ τ + δt, then the functional derivative is then defined as

δF [ψ]

δψ(τ)
= lim

δt→0

F [ψ + ψ0]− F [ψ]∫
δt
δψ0(t)dt

(A.2)

Simplified way of looking at the above limit occurs when one consider the functional as

a continuous limit of a multi-variable function. Assuming the analytic behaviour of the

function, let the variable, ψ(τ) is perturbed slightly such that δψ0(τ) = λδ(t− τ), then the

above limit,we can redefine the above limit as

δF [ψ(t)]

δψ(τ)
=
dF [ψ(t) + λδ(t− τ)]

dλ

∣∣∣∣∣
λ=0

(A.3)

67



Using the above definition, we can easily deduce the below results

(i) F [ψ] = f(ψ(t))→ δF [ψ(t)]

δψ(τ)
=
∂f

∂ψ
δ(t− τ) (A.4)

(ii) F [ψ] = f(g(ψ))→ δF [ψ(t)]

δψ(τ)
=
∂f

∂g

δg

δψ(τ)
(A.5)

(iii) F [ψ] =

∫
f(ψ, ψ̇)dt→ δF [ψ(t)]

δψ(τ)
=

∂f

∂ψ(τ)
− d

dτ

∂f

∂ψ̇
(A.6)

Now, we can also extend the Novikov theorem, for multi-variable Gaussian random variable,

to a functional,g[ξ] of continuous stochastic process,ξ(t) with i.i.d. Gaussian distribution,

with first moment〈ξ(t)〉 and second moment, C(t, t′) = 〈ξ(t)ξ(t′)〉 − 〈ξ(t)〉〈ξ(t′)〉 is given by

〈ξ(t)g[ξ]〉 = 〈ξ(t)〉〈g[ξ]〉+

∫ t

0

dt′C(t, t′)

〈
δg[ξ]

δξ(t′)

〉
(A.7)
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Appendix B

Numerical Recipe for stochastic

dynamics

Numerical simulations provide a desk top method to model different system dynamics and

stochastic differential equations describe the motion of particles under the effect of fluctuating

environment. The key difference between numerical integration of deterministic equation of

motion and SDE is that SDE requires different numerical schemes for better convergence

based on the convention used to define SDE(mainly Ito or Stratonovich). Let us consider

the SDE, given by

dxt = a(xt, t)dt+ b(xt, t) ∗ dWt (B.1)

where dWt is infinitesimal increment in Wiener process and ∗ is the notation for convention

used to define SDE(′.′ corresponds to Ito convention and ′◦′ corresponds to Stratonovich

convention). Usually, dWt is generated from psuedo-random generator for Gaussian distribution

with 0 mean and variance dt.

The most basic integration scheme is called Euler-Mayurama method, where the next

step is just dependent on the slope of the previous step. The scheme for the above SDE is

given by

xt+∆t = xt + a(xt, t)∆t+ b(xt, t) ∗∆W (B.2)

where ∆t is the time step and ∆W is the increment in the Wiener process obtained from

X ∼ N (0,
√

∆t) . This method has strong convergence for upto O(∆t1/2) converges well to

Ito convention for small ∆t.
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One can improve the above Euler’s method by improving the estimate of the slope at the

previous step for future prediction. The simplest improvement is called Heun’s method or

predictor-corrector method, where the slope for the next step is the average of slope at the

previous step and the predicted step, given by

x̃t+∆t = xt + a(xt, t)∆t+ b(xt, t)∆W (B.3)

xt+∆t = xt +
1

2
[(a(xt, t) + a(x̃t+∆t, t+ ∆t)∆t+ (b(xt, t) + b(x̃t+∆t, t+ ∆t)∆W ](B.4)

This method has stronger convergence to Stratonovich convention and hence to have higher

precision in the energetics(defined in the Stratonovich convention), one needs to use Heun’s

method or higher order Runge-Kutta method[58]

For a very few examples of SDE, one can find the exact solution to the differential equation

and then we can directly work with the solution for the evaluation of the trajectories. For

example, in the case of Ornstein-Ulhenbeck process, given by

dxt = −kxtdt+ σdWt (B.5)

where k and σ are constants.

In this case the exact updating formula[59] is given by

xt+∆t = xt exp (−k∆t) +
[ σ

2k
(1− exp(−2k∆t)

]1/2

n (B.6)

where n is taken from normal distribution, X ∼ N (0, 1) .
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Appendix C

Chapman-Enskog Method for active

bath

In this section, I will review a systematic expansion of the reduced equation for any driven

system in an active bath case in the overdamped limit, extending a calculation done by

Bonilla[39]. The method is based on perturbation method used to derive hydrodynamic

equations from Boltzmann equation. Let us consider a Langevin dynamics of a driven

particle in an active bath(OU process), where the equation of motion is given by

ẋt = f − φ′(xt) + ξt ; τ ξ̇t = −ξt +
√

2Dηt (C.1)

where f , is he constant external driving force,φ(x) is the conservative potential and ηt is

Gaussian white noise. Here we assumed the viscosity,γ, to be constant and taken to be

unity(without loss of generality).

The adimensional form of Kramer’s equation in the (x, v = ẋ) space with a constant

external driving,f , according to the units in Table 3.1, is given by

∂

∂v

[
v +

∂

∂v

]
P (x, v, t) = ε

[
∂P

∂t
+ v

∂P

∂θ
− φ′∂P

∂v
+ f

∂P

∂v
− εφ′′∂(vP )

∂v

]
(C.2)

where we have defined l to be the characteristic length of the system and the pertubative

expansion is done on the parameter(assumed to be small) ,ε =
√
Dτ
l
� 1.
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x v t φ f P

l
√

D
τ

l
√

τ
D

Dγ Dγ
l

√
τ
Dl2

Table C.1: Non-dimensionalizing units for Kramer’s equation[]

The method of Champan-Enskog will be used to derive the equation for the marginal

distribution, R(x, t; ε), for finite but small ε. Let us consider the full density to be written

as :

P (x, v, t; ε) =
exp(−v2/2)√

2π
R(x, t; ε) +

∞∑
j=1

εjP (j)(x, v;R) (C.3)

∂R

∂t
=
∞∑
j=1

εjF (j)(R) (C.4)

The last equation is imposed based on the structure of the non-Markovian Master equation,

which is the key ingredient of Chapman-Enskog method. Assuming the existence of solutions,

one can obtain the functional, F (j)(R), due to the structure of the adimensional Kramer’s

equation. One key observation, is that non-equilibrium steady state behaviour is not captured

in the adminesional units, but one will retain it once we go back to the original dimensions.

Integrating Eqn. (3.15) over v, we get

∂R

∂t
+
∂J

∂x
= 0, J(x, t; ε) =

∫
vP (x, v, t; ε)dv (C.5)

From the above structure, we can also get

F (j)(R) = −∂J
(j)

∂x
, J (j) =

∫
vP (j)(x, v;R)dv (C.6)

Putting Eqn.(3.16− 17) in Eqn. (3.15), we get a hierarchy of equations,

L P (1) ≡ ∂

∂v

(
v +

∂

∂v

)
P (1) = v

exp[−v2/2]√
2π

(
φ′R− fR +

∂R

∂x

)
(C.7)

L P (2) =
exp[−v2/2]√

2π
[F (1) + (v2 − 1)φ′′R] + v

∂P (1)

∂x
+ (f − φ′)∂P

(1)

∂v
(C.8)

L P (3) = v
∂P (2)

∂x
+ (f − φ′)∂P

(2)

∂v
− φ′′∂(vP (1))

∂v
+
δP (1)

δR
F (1)(R) (C.9)
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etc. The hierarchy of equations has similar structure to the one computed by Bonilla[].

Hence, the solutions of the equations also have same structure, product of polynomial in v

and Gaussian in v, given by

P (2j+ε)(x, v;R) =
exp[−v2/2]√

2π

j∑
i=0

A 2j+ε
2i+ε v

2i+ε (C.10)

where ε = 0, 1. As the contributions from higher order terms become dominant, one would

observe higher deviations from the Gaussian distribution in the velocity. One can easily

deduce that J (2j) = 0 and we have only odd orders of current. Solving the above hierarchy

of equations we get

J (1) = −DR = −
(
φ′ − f +

∂

∂x

)
R, J (3) =

∂

∂x
(φ′′R) (C.11)

and the higher order currents as derived in [39], contains terms with 5th order derivative of

the potential and the marginal distribution. But upto O(ε5),we have

∂R

∂t
= ε

∂

∂x

(
φ′R− fR +

∂

∂x
[(1− ε2)R]

)
+O(ε5) (C.12)

In the orginial units, upto O(τ 2), we get back the Sancho’s approximation, given by

∂R

∂t
= − ∂

∂x
[(f − φ′)R] +D

∂2

∂x2
[(1− τφ′′)]R. (C.13)
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