
Function Field Sieve

Recent advances in the index-calculus attack on

the discrete logarithm problem

A Thesis

submitted to

Indian Institute of Science Education and Research Pune

in partial fulfillment of the requirements for the

BS-MS Dual Degree Programme

by

K Hariram

Indian Institute of Science Education and Research Pune

Dr. Homi Bhabha Road,

Pashan, Pune 411008, INDIA.

March, 2015

Supervisor: Dr. Ayan Mahalanobis

c© K Hariram 2015

All rights reserved

This is to certify that this dissertation entitled Function Field Sieve: Recent

advances in the index-calculus attack on the discrete logarithm problem submitted

towards the partial fulfilment of the BS-MS dual degree programme at the Indian

Institute of Science Education and Research Pune represents research carried out by

K Hariram at IISER Pune under the supervision of Dr. Ayan Mahalanobis,

Assisstant Professor, Department of Mathematics during the academic year

2014-2015.

Dr. Ayan Mahalanobis

Committee:

Dr. Ayan Mahalanobis

Dr. Bhaskar Balasubramanyam

Dedicated to my mother

Declaration

I hereby declare that the matter embodied in the report entitled Function Field

Sieve: Recent advances in the index-calculus attack on the discrete logarithm

problem are the results of the investigations carried out by me at the Department of

Mathematics, IISER Pune under the supervision of Dr. Ayan Mahalanobis and the

same has not been submitted elsewhere for any other degree.

K Hariram

Acknowledgments

I would like to thank my supervisor supervisor. He has guided me throughout the

project and helped me with my shortcomings. He also organised talk sessions among

students in his group to discuss work done by each member. This helped my reinforce

my understanding through feedback from other members.

ix

x

Abstract
In this paper we look into the discrete log problem over finite fields. The relative

hardness of this problem defines the integrity of many cryptographic systems. There-

fore the ease of solvalbility of this problem has been important to cryptographer for a

long time. We study the index calculus method. In prticular we focus on the function

field sieve. This algorithm works well to find discrete log in the multiplicative group

of finite fields Fqn with a medium or small sized subfield Fq. It has sub-exponential

time complexity. We investigate various recent improvements done to this algorithm

by Antoine Joux.

xi

xii

Contents

Abstract xi

1 Introduction 1

2 How does the function field sieve work 3
2.1 Index calculus method . 3
2.2 The function field sieve . 5
2.3 Complexity of the sieving step . 6

3 Recent advances 9
3.1 Pinpointing . 9
3.2 Two sided pinpointing on Kummer extensions 10
3.3 Using the Frobenius map . 10
3.4 Homographies . 11
3.5 A faster individual logarithm step . 11

xiii

xiv CONTENTS

Chapter 1

Introduction

In this thesis we look into one of the methods used to solve the discrete log problem.

Some cryptographic systems rely on the fact that this problem is relatively hard to

solve.

For a finite group generated by a single element we can define the discrete log of

any element. Let G be a group generated by an element g. Any element h in this

group can be expressed as h = gx. Then we can say logg h = x. For certain groups

the calculation of the discrete log is very easy. For example in the group (Z/nZ,+)

generated by the element 1, any element h has discrete log also as h. For other groups

this can be much harder. Such groups include multiplicative groups of finite fields

and the group of points on an elliptic curve over finite fields. For discrete log problem

in multiplicative groups of finite fields there is a subexponential algorithm. However

no such algorithm is known for the discrete log problem in elliptic curves.

Some early cryptographic systems which use the hardness of the discrete log prob-

lem are the Diffie-Hellman key exchange protocol and the ElGamal cryptosystem

[4].

ElGamal cryptosystem Suppose Bob wants to transmit a message to Alice. Alice

publically announces an element A = ga and the group G generated by g. She keeps

a as secret. The value of A is called the public key for Alice. Under this cryptosystem

anyone who knows A can safely send a message to Alice with out the fear of it being

intercepted. Let us see how Bob can send his meesage. His message is an element of

1

2 CHAPTER 1. INTRODUCTION

the group G say m called the plain text. He now creates the cipher text as mAb and

gb and announces them. The value of b is chosen randomly and is not announced at

all. Then Alice can calculate Ab = (gb)a as she know a. She can then proceed to find

plain text m by multiplying mAb with A−b.

The above cryptosystem is an example of a public key cryptosystem. In such a

system all communications can be done over public channels. This is better than

priveate key cryptosystems which require sharing of cryptographic schemes or keys

privately which may not be be always feasible. Instead the public key cryptosystems

maintains the integrity of the messages by hardness of solving a problem. In the

ElGamal cryptosystem, if anyone else was able to find a = logg A, then they can also

read the message.

A brute force method to solve the discrete log problem would find all powers of the

generator g till we are able to find the one equal to given element. The average search

time for such an attack would be of the order of size of the group. There are several

generic agorithm like Pollard-ρ method and Pohlig-Hellman. These algorithms take

time of the order of
√
|G|. However in case of multiplicative groups of finite fields we

have the index calculus method which can solve it much quicker.

Chapter 2

How does the function field sieve

work

2.1 Index calculus method

The index calculus method is a sub exponential time algorithm to solve the discrete

log problem over finite fields. The ideas for this method were formulated by Kraitchik

[8] even before the advent of computing and cryptography. This method can be broken

down into the following steps:

1. Choose a subset B of the given field. This set is called the smoothness basis.

Now we try to create multiplicative relationships among the elements of B and

with elements whose discrete log is known. We will call this the sieving step.

2. When these multiplicative relationships are rewritten in terms of log of elements

from B, they become linear equations. If we have as many independent linear

equations as the number of elements then we can solve them to get value of log

of each element in B. We will call this the linear algebra step.

3. Now we want to find the log of a given element. We try to establish a multi-

plicative relationship between that given element and elements from B. Using

this relation we can calculate the log of the given element. We will call this the

individual log step.

I will now illustrate all these steps on the group Z/pZ∗ with a simple method for

each of the step. We want to find x such that gx ≡ h mod p. In the sieving step, for

3

4 CHAPTER 2. HOW DOES THE FUNCTION FIELD SIEVE WORK

some k > 0 we choose our smoothness basis as

B = {2 ≤ P ≤ k| P is prime in Z}.

Here k is called the smoothness bound. Next we take elements of the form Ai ≡ gi

mod p that have all its prime factors in the set B. Such numbers are called B-smooth

numbers. For each smooth number we get a multiplicative relationship of the form

Ai = 2a2,i3a3,i . . . P aP,i

This search for smooth numbers can be done by trial division of each candidate with

primes from B.

The above relationship can be rewritten as (with respect to log base g)

i = a2,i log(2) + a3,i log(3) + . . .+ aP,i log(P) +

This is a linear equation with variables as log(P), P ∈ B. If we have as many linealy

independent equations as variables, then the set of linear equations can be solved

using Gaussian elimination to get value of each individual log(Q).

Now to find the discrete log of an element h, we check for an element of the form

hgu which is B-smooth. Once we get one such value of u for which this happens, we

have hgu = 2b23b3 . . . P bP . . ., we get

log(h) = u+ b2 log(2) + b3 log(3) + . . .+ bP log(P) + . . .

The algorithm described above still has some considerations yet to be discussed.

First we need to choose an optimum value for the smoothness bound k. If we select

a small value for it, we may not find enough smooth values of Ai. On the other hand

choosing too large value will encumber the linear algebra step as we need to find as

many relations to solve the system of equations. This will also gretly increase the time

taken for this step. Next we can improve the sieveing step by performing a sieving

instead of trial division. Finally in the linear algebra step one can observe that the

matrix of co-efficients for the linear equations has mostly zeroes. Such a matrix is

called sparse matrix. Thus this step can be performed much faster by sparse matrix

elimination [10] rather than simple Gaussian elimination.

2.2. THE FUNCTION FIELD SIEVE 5

2.2 The function field sieve

The index calculus method was improved for the charecterstic 2 case in the Copper-

smith algorithm [3]. Later Adleman improved this algorithm for the general charecter-

stic into what is now called the function field sieve[1].

The function field sieve works well when we are working with the multiplicative

group of a field which has a medium or small sub-field. Thus we are trying to find

the discrete log of any element in the field Fqn . This has a subfield Fq. Note that

this subfield itself may or may not be a prime field. In order to represent elements in

this field we shall use a defining polynomial. If F (x) is an irreducible polynomial of

degree n with co-efficients in Fq then Fq[x]/F (x) ∼= Fqn .

We first construct two bi-variate polynomials with co-efficients in Fq.

f1(x, y) = x− g1(y), f2(x, y) = y + g2(x)

Let the degree of these polynomials be d1 and d2 respectively. Later we shall look

into how to optimally select these degrees. We want to select the two polynomials

such that y+g2(g1(y)) has an irreducible factor of degree exactly n. Let this factor be

F (y). We shall use this as our defining polynomial for Fqn over Fq. Let α be a root of

multiplicity 1 of the polynomial F (y). This allows us to represent elements in Fqn as

polynomials in α of degree at most n−1. Set β = g1(α). Then we can see that the pair

(β, α) satisfies both the polynomials f1 and f2. Note that we are currently assuming

that we will be able to find the polynomials g1(y) and g2(x) satisfying the desired

conditions. We won’t be discussing how to find them (by brute force or otherwise)

and whetherthey exist at all.

The sieving step Our elements are from the field Fq[y]/F (y). They can be rep-

resented in the form a0 + a1α + a2α
2 + . . . + an−1α

n−1. We shall let the smoothness

basis contain all elements which have degree in either α or β less than or equal to

a parameter D. The algorithm is most simple when D = 1. Next we shall sieve

elements of the form A(α)β+B(α) where A and B are polynomials of degree at most

D. Using f1 and f2 we get that

A(α)g1(α) +B(α) = A(g2(β))β +B(g2(β)). (2.1)

6 CHAPTER 2. HOW DOES THE FUNCTION FIELD SIEVE WORK

We shall call one such equation for a particular value of A and B as a relation. Here

the left hand side has degree d1 +D and the right hand side has degree d2D+ 1. We

would like to sieve both the sides into terms of degree at most D. The probability

of a element to be smooth decreases with increase in its degree. Hence the minimum

possible degree for both the sides is attained when d1 =
√
nD and d2 =

√
n/D. For

the D = 1 case, this requirement becomes d1 = d2 or d1 + 1 = d2 and d1d2 is slightly

greater than or equal to n.

When we are completely able to factorise both sides for a relation, it can be written

as ∏
Ci(α) = E

∏
Dj(β).

Here Ci(α) and Dj(β) are elements from the smoothness basis. We can take log on

this relation to get a linear relation between the log of elements of the smoothness

basis. If we take the log base as α (or any other element from the smoothness basis)

the system of equations in non-homogeneous. From here we need to just continue

with the other two steps of the index calculus. We just need to find a relationship

between α and g as well in the end as we would be knowing only logα of elements.

2.3 Complexity of the sieving step

The main advantage we gain in the function field sieve is that we are sieving poly-

nomials of degree around
√
n. In the simpler index calculus method discussed in the

previous section we would be trying to split a arbitrary polynomial into linear (or

degree D) terms. An arbitrary polynomial is usually of degree n − 1. We ask what

is the probability that a polynomial splits into linears. There are qd polynomials of

degree d over the field Fq. On the other hand we can create a polynomial that splits

completely by just selecting its d roots from Fq. Since the order of selection doesn’t

matter, such polynomials are nearly qd/d! in number. Thus in the basic index calculus

we would need to go through about (n− 1)! relations before we get one relation that

works. In function field sieve however, this becomes (d
√
ne)!2 relations for each hit

(The squaring arises because we need to simultaneously get smooth terms on both

sides). Because the factorial function grows very rapidly, the function field sieve gives

a significant saving.

2.3. COMPLEXITY OF THE SIEVING STEP 7

We have 2q elements in the smoothness basis. This is also the number of smooth

relations we require to perform the linear algebra step. Hence we need to go through

C = 2q(d
√
ne)!2 relations to complete the sieving step when D = 1. We will have q3

choices for the polynomials A and B. This will be the number of available relations.

Thus we can sieve only when q3 > C i.e. q2 > 2(d
√
ne)!2. To calculate the asymptotic

complexity of this algorithm, we assume that for a given finite field FQ = Fpk , We are

freely able to choose q and n such that Q = qn. Under all these constraints we would

like to find the minimum value of C. Using approximation for the factorial for logC,

we get

logC = log(2q) + 2
√
n log(

√
n).

Minimizing the above equation under the constraint logQ = n log q, we get

n = (logQ)2/3(log logQ)−2/3

log q = (logQ)1/3(log logQ)2/3.

This yields us

logC = log 2 + (logQ)1/3(log logQ)2/3

+(logQ)1/3(log logQ)−1/3 log((logQ)2/3(log logQ)−2/3)

= log 2 + (logQ)1/3(log logQ)2/3(1 + (log logQ)−1/3) + smaller terms.

Giving us the asymptotic complexity of

C = e(2+o(1))(logQ)1/3(log logQ)2/3

= LQ(1/3, 2)

8 CHAPTER 2. HOW DOES THE FUNCTION FIELD SIEVE WORK

Chapter 3

Recent advances in the function

field sieve

Now we shall look into some improvements done by Antoine Joux in [7] and [5] to the

function field sieve. A prominent one is called pinpointing. This helps in efficiently

finding smooth relationships by allowing us to check for smoothness of only one side

of the equation at a time. We are also encouraged to look at these improvements from

the point of view of the number field sieve as well. Any corresponding improvement

in this other sieve can be of great benefit as it has use in integer factorization as well.

3.1 Pinpointing

From this section onwards we shall only focus on the simple D = 1 case of the function

field sieve. We will use the same setup as described in the previous chapter. However

we shall try to cleverly choose the the function g1. We just set it as g1(y) = yd1 .

Hence now we need to find an appropriate g2(x) such that y+ g2(y
d1) has irreducible

factor of degree n. Note that with this restriction it may not always be possible to

do so.

Next we can expand A(y) = y+ a and B(y) = by+ c. Then we can write equation

2.1 in the form

αd1+1 + aαd1 + bα + c = (g2(β) + a)β + bg2(β) + c

9

10 CHAPTER 3. RECENT ADVANCES

We modify the LHS by setting U = α/a, s = ba−d1 , t = ca−d1−1. Then it becomes

Ud1+1 + Ud1 + sU + t. Now we sieve over this space to find elements which factorize

to linears in U . Then we substitute back α giving us a factorization into linears

of a polynomial in α Note that this factorizability remains true for any value of a.

However each value of a gives a different RHS. Hence by finding one smooth element

in U we have found q relations which have the LHS smooth.

3.2 Two sided pinpointing on Kummer extensions

In the special case where we have an irreducible polynomial of the type F (y) = yn+γ,

such that all its root are distinct, it is possible to implement a two sided version of the

pinpointing technique discussed above. The extension defined by such a polynomial

is called a Kummer extension. In this setting we will choose the two polynomials as

g1(y) = yd1

g2(x) = xd2/γ

such that n = d1d2 + 1. This gives y + g2(g1(y)) = y + yn+1/γ. We get the desired

irreducible polynomial once we divide this by y/γ. Now the relations look like

αd1+1 + aαd1 + bα + c = βd1+1/γ + aβd1/γ + bβ + c

This can be modified by setting U = α/a, V = β/a, s = ba−d1 , t = ba−d2 , w = c/ab.

Ud1+1 + Ud1 + s(U + w) = (V d2+1 + V d2)/γ + t(V + w)

Now any such relation that is smooth on both sides gives us q different actual relations.

3.3 Using the Frobenius map

When the base field is not prime, we can reduce the size of our smoothness basis.

Suppose we are working with Fqn where q = pm. Consider the action of nth power of

the Frobenius map φn := x 7→ xp
n

on the smoothness basis. The element α is root of

degree n irreducible polynomial. This means φn fixes α. Then for a general element

from the smoothness basis, we have φn(α+u) = α+φn(u). This is just another element

3.4. HOMOGRAPHIES 11

in the smoothness basis. However we get a direct relation log(u) = pn log(φn(u)). We

can use this to reduce the number of variables for the linear algebra step. We can

repeatedly apply this map to get a string of related elements in the smoothness basis.

The size of this string can be as high as m when (m,n) = 1. Thus we can reduce the

number of variables by an order of m in certain cases.

3.4 Homographies

Using change of variable as illustrated in the pinpointing technique, it is possible

to get multiple relations by just sieving for smooth element once. We now consider

another map called a homography which looks like:

X 7→ aX + b

cX + d

In order to preserve the polynomials we modify it and define the following map:

Habcd : Fq[x]→ Fq[x]

Habcd(f(X)) = (cX + d)deg ff

(
aX + b

cX + d

)
If f(X) has the factorization into irreducibles as f(y) =

∏k
i=1 fi(X). We have a

corresponding factorization for Habcd(f(X)) as

Habcd(f(X)) =
k∏
i=1

(
(cX + d)deg fifi

(
aX + b

cX + d

))

However this may not be a factorization into irreducibles. Still this shows that degree

of the irreducble factors for Habcd(f(X)) will be smaller than the corresponding ones

in f(X). This implies that if f(X) is smooth, then so is Habcd(f(X)). When D ≥ 2,

this technique can be used to create several smooth relations from a single one.

3.5 A faster individual logarithm step

Finding the value of logα(h) can be speeded up by the following method called the

descent method. First we look at elements of the form αuhv. These arbitrary terms

12 CHAPTER 3. RECENT ADVANCES

are usually of degree n− 1. We would like to factor any one of these into irreducibles

of degree at most
√
n. Once we are able to find one such value of αuhv, let r be

one of its factors. Now we are left with finding the log of a few terms whose degree

is bounded. Now search elements of the form A(α)β + B(α) such that r divides its

representation as a polynomial in α i.e., r divides the LHS of equation 2.1

A(α)g1(α) +B(α) = A(g2(β))β +B(g2(β)).

Now we try to find one such relationship where the remaining LHS and the whole

RHS splits into factors of degree strictly less than that of r (preferably into linears).

We repeat the above step with all other non-linear factors till we are able to descend

to a point where we are able to form a multiplicative relationship with only linear

terms and our current r. Then we will know the log of that particular factor. After

this we can traceback all factors till we find the log of αuhv. From this we can get

the value of logα(h).

Bibliography

[1] L. M. Adleman. The function field sieve. In Algorithmic Number Theory, Pro-
ceedings of the ANTS-I conference, volume 877, pages 108–121, 1994.

[2] I. F. Blake, R. C. Mullin, and S. A. Vanstone. Computing logarithms in GF (2n).
Advances in Cryptology - CRYPTO’84, LNCS 196, 1985.

[3] Don Coppersmith. Fast evaluation of logarithms in fields of characteristic two.
IEEE Transactions on Information Theory, 30(4):587–594, 1984.

[4] Taher ElGamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. In Advances in Cryptology, pages 10–18. Springer, 1985.

[5] Antoine Joux. Faster index calculus for the medium prime case application to
1175-bit and 1425-bit finite fields. In Advances in Cryptology–EUROCRYPT
2013, pages 177–193. Springer, 2013.

[6] Antoine Joux. A new index calculus algorithm with complexity L(1/4 + o(1))
in small characteristic. In Selected Areas in Cryptography–SAC 2013, pages 355–
379. Springer, 2014.

[7] Antoine Joux and Reynald Lercier. The function field sieve in the medium prime
case. In Advances in Cryptology-EUROCRYPT 2006, pages 254–270. Springer,
2006.

[8] M. Kraitchik. Théorie des nombres. Gauthier–Villards, 1922.

[9] Oliver Schirokauer. The impact of the number field sieve on the discrete logarithm
problem in finite fields. In Proceedings of the 2002 Algorithmic Number Theory
workshop at MSRI, 2008.

[10] D. H. Wiedemann. Solving sparse linear equations over finite fields. IEEE Trans-
actions on Information Theory, 32:54–62, 1986.

13

