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Abstract

The stock market is a fantastic example of a “complex system” that exhibits vibrant corre-

lation patterns and behaviours of the price (or return) time series. The direct impact of it

on the economic ecosystem of a country, as well as the abundant availability of structured

data, makes this system interesting for empirical studies. This thesis presents a general

and robust methodology to extract information about the “disorder” (or randomness) in the

market and its eigen modes, using the entropy measure “eigen-entropy” H, computed from

the eigen-centralities (ranks) of different stocks in the correlation-network. We have used

correlation matrix constructed using the log-return of adjusted closing price of two differ-

ent data sets containing stocks from United States of American S&P-500 index (USA) and

Japanese Nikkei-225 index (JPN), spanning across a sufficiently long period of 32 years, to

demonstrate its robustness. Further, the eigenvalue decomposition of the correlation ma-

trix into partial correlation - market, group and random modes, and the relative-entropy

measures computed from these eigen modes enabled us to construct a phase space, where

the different market events undergo phase-separation and display “order-disorder” transi-

tions. Our proposed methodology may help us to understand the market events and their

dynamics, as well as find the time-ordering and appearances of the bubbles and crashes,

separated by normal periods. We have studied the evolution of events around major crashes

and bubbles (from historical records in USA and JPN). Furthermore, the relative entropy

with respect to the market mode H − HM , displayed “universal scaling” behavior with re-

spect to the mean market correlation µ; a data-collapse was observed when plotted in a

linear-logarithmic scale, which suggested that the fluctuations and co-movements in price

returns for different financial assets and varying across countries are governed by the same

statistical law. In addition, our study may lead to a deeper and broader understanding of

scaling and universality phenomena in complex systems, in general.
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Chapter 1

Introduction

1.1 Financial market as a complex system

A financial market is truly a spectacular example of a complex system that is generally

composed of many constituents, which may be diverse in forms but largely interconnected,

such that their strong inter-dependencies and emergent behavior change with time. Thus,

it becomes almost impossible to describe the dynamics of the system through some simple

mathematical equations, and so new tools and interdisciplinary approaches are needed [1, 2].

Hence, there has been a surge of efforts in using ideas from complexity theory [3, 4, 5, 6, 7]

to explain and understand economic and financial markets. New insights and concepts, such

as networks, systemic risk, tipping points, contagion and resilience have surfaced in the

financial literature and may have the potential for better monitoring of the highly intercon-

nected macroeconomic and financial systems and thus, may help anticipate future economic

slowdowns or financial crises.

Financial markets have historically exhibited sharp and largely unpredictable drops at

a systemic scale, which are termed “market crashes” [8, 9]. Such rapid changes or phase

transitions (not in the strict thermodynamic sense of physics [10, 11]) may in some cases

have been triggered by unforeseen stochastic events or exogenous shocks, or more often, they

may have been driven by certain endogenous underlying processes [12, 13]. The recent global

economic downturn in 2007-08 brought us both predicament and hope! Predicament, since

the traditional theories in economics could not predict, nay even warn, the near complete
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A B C

Figure 1.1: Price, Return, and VaR time series. Three stocks are chosen in random
and their adjusted closed price, logarithmic returns and volatility (captured by VaR) are
ploted in (A), (B), and (C ) respectively for the time period of 32 years (1985-2017) of the
American market S&P-500.

breakdown of the global financial system. And we are yet to recover from its long-lasting

effects on the global economy. Hope, since one can now witness signs of change in economic

and financial thinking, including the very fact that there is deeper (and less understood) link

between macroeconomics and finance [14, 15], which certainly merits more attention.

1.2 Price return time series and correlation matrices

Looking at the time series of the asset prices that are in a financial market is the best way to

study the dynamics of this ever-evolving complex system. The efficient market hypothesis

says that it is impossible to beat the market consistently in the long term, which can be

interpreted as the asset prices will contain the entirety of the available information about

the market. Instead of using the price time series of each asset directly, we will be using the

logarithmic returns instead. This log-returns time series of an asset tells us the fractional

gain or loss of each day compared to the previous day, whereas the price time series; as the

name suggests, says the price of the asset at the end of each day. Log-return time series of

the ith (i = 1, 2, 3, ..., N where N is the total number of stocks) stock at time t, return ri(t)

can be calculated from the corresponding price time series pi(t) as

ri(t) = ln(pi(t))− ln(pi(t− 1)) (1.1)

The reason we are using returns ri(t) instead of prices is the stationarity of time series.
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It has been observed that the mean and variance of the pi(t) changes a lot even over a short

period, whereas the mean and variance of ri(t) somewhat remain constant over this time.

This “wider sense” of stationarity is a prerequisite of many of the statistical techniques that

we will be using in this study. These can be observed in the figure 1.1

1.2.1 Data description

For the empirical studies conducted in this thesis, we have used the adjusted closure price

time series from the Yahoo finance database [16], for two countries: United States of America

(USA) S&P-500 index and Japan (JPN) Nikkei-225 index, for the period 02-01-1985 to 30-

12-2016, and for the stocks as follows:

• USA — 02-01-1985 to 30-12-2016 (T = 8068 days); Number of stocks N = 194;

• JPN — 04-01-1985 to 30-12-2016 (T = 7998 days); Number of stocks N = 165;

where we have included the stocks which are present in the indices for the entire duration.

The sectoral abbreviations are as follows: CD–Consumer Discretionary; CS–Consumer Sta-

ples; EG–Energy; FN–Finance; HC–Health Care; ID–Industrials; IT–Information Tech-

nology; MT–Materials; TC–Telecommunication Services; and UT–Utilities.

The list of stocks (along with the sectors) for the two markets are given in the Table 4.3

and Table 4.4 in the appendix.

We have T = 7897 days of data for the Nikkei-225 index, whereas T = 7998 days of data

for stocks. To resolve this, we add zero return entries corresponding to the missing days in

the time series of JPN index for comparison.

Volatility index

We have used the daily closure volatility index (VIX) of the CBOE from Yahoo finance. It is

a popular measure of the stock market’s expectation of volatility implied by S&P- 500 index

options. It is calculated and disseminated on a real-time basis by the Chicago Board Options

Exchange (CBOE). We have data for the period 02-01-1990 to 30-12-2016, for T = 6805 days.
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For the JPN Nikkei-225 we use the Garch(1, 1) model to estimate the volatility index using

the market index returns data (1985-01-08 to 2016-12-30) from Yahoo finance.

1.2.2 Stylized facts

Some empirical findings remain consistent to the point that one has to accept them as truths

to which any theory should agree with. Such findings/patterns are referred to in economics

as “stylized facts”. They are mostly qualitative because of their generality [17, 18]. In case

of financial time series, which are a wide array of the log-returns of assets, there are some

statistical stylized facts observed [18, 6]. Let us look at some of them in the following section.

Absence of autocorrelations

Autocorrelation measures the similarity of the lagged versions of time series with the original

one. For asset return time series the autocorrelations are always insignificant. This observa-

tion is illustrated in figure 1.2. This lack of autocorrelation is indicative of the unpredictable

behaviour of the returns. The frequency of the data (daily, weekly, or even intra-day) does

not affect this observation.

Heavy/fat tails

Compared to a normal distribution, the probability of observing extreme events (large losses

and large gains) is higher in the case of financial time series. When plotting the probability

density function of the return values, the above feature manifests itself in the form of “fatter

tails”. For demonstrating this fact, the probability distribution of the log-return values of

three stocks, as well as the corresponding normal distributions, are plotted in the semi-log

scale in figure 1.3. In statistics, this degree of peakedness, relative to the tails of a distribution

is measured using the value of kurtosis. The kurtosis of the returns is larger (as shown in

figure 1.3) than 3, which is the kurtosis of a normal distribution [19, 20]. This existence of

fat/heavy tails implies that some rare extreme events cause much of the variance.

4
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Figure 1.2: Auto-correlation in financial time series. Three stocks are chosen (Apple
Inc.(A), Nike(B), The Walt Disney Company(C )) and their auto correlation in return time
series (blue), absolute value of return time series (green), and square of return time series
(red) are plotted.

Slow decay of autocorrelation in absolute returns

Unlike the return time series, the autocorrelation function of absolute value and the square

of the return time series is significant and positive [21, 17]. These autocorrelations decay

slowly with the increase in the time lag as a power law. Figure 1.2 illustrates this fact. This

observation was first made by Taylor [22].

1.2.3 Correlation matrices

Given two time series (ri and rj) one can measure their equal-time Pearson correlation

coefficient Cij to quantify the strength of the linear relationships in their relative movements

[23, 24] as follows:

Cij = (〈rirj〉 − 〈ri〉〈rj〉)/σiσj (1.2)

Here 〈...〉 represents the expectation value and σi, σj represents the standard deviations

of ri, rj. Cij’s values range from -1 to 1, where 1 corresponds to the maximum correlation,

-1 corresponds to the maximum anti-correlation and 0 corresponds to uncorrelation. One

can also look at Cij as the cosine of angle between the T dimension vectors corresponding

to the two time series, where T is the number of time steps.

If we generalize this to more than two time series, we can construct a matrix which has
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Figure 1.3: Histogram of log-returns. Three stocks are chosen (Apple Inc.(A), Nike(B),
The Walt Disney Company(C )) and their distributions of market returns is plotted in semi-
log scale coloured in blue. For comparison the PDF of a Gaussian distribution that has the
same average and variance is also plotted coloured in red.

Figure 1.4: Emperical correlation matrix. Correlation matrix calculated from the return
time series of 194 stocks of S&P-500 market for the period of 32 years (1985-2017). The stocks
are arranged sectorwise which is creating the visible block structure across the diagonals.
The complete list of stocks are given in the appendix B.
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Figure 1.5: Evolution of correlation coefficients’ distribution. Using rolling window
of size 40 days and shift 20 days over a time period of 32 years (1985-2017), the time series
of 194 stocks of S&P-500 are divided into 402 frames. For each frame the correlation matrix
and correlation coefficients are calculated. After creating fixed bins of width 0.02 between
-1 and 1, the number of correlation coefficients in each of these are stored as a column in the
194× 402 matrix. This matrix is coloured based on the values of the elements to represent
the temporal evolution of the distribution.

the pairwise Pearson correlations between all the stocks. Such a matrix is called a correlation

matrix. It helps in summarizing a large amount of data so that one can observe patterns in

the co-movements among the time series. Instead of working with the entirety of the time

series, we can divide it into shorter windows (epochs) of equal length. This will allows us to

monitor the evolution of the market as time progresses. If we consider windows of size M ,

which shifts by ∆ in each step, for a time series of total length T , we have nearest integer

greater than or equal to (T−W
∆

) number of frames.

1.3 Objectives and outline

Our aim is to monitor the empirical time series and detect patterns using different methods

borrowed from random matrix theory, information theory and complex networks, such that

the insight gained can be applied practically. It is known that markets (and thereby the

underlying network structures) behave very differently during “crashes and bubbles”, which

are extreme events. Detection of bubbles and crashes and prediction of these rare events

are a challenge. In the thesis, we would like to develop methods to study and characterise
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these market events and possibly detect precursors of such events. We would like to study

the continuously evolving network structures of stocks, and gain valuable insights so that we

can apply them for developing better investment strategies and framing economic policies.

The structure of the thesis is as follows.

Chapter 2: This chapter will act as a review of pre-existing work that deals with

correlation networks of price time series and its entropy measures. First, we will discuss

the random matrix theory (RMT) approach to characterize different eigen-modes of the

correlation matrix. Secondly, we will compare various approaches that give us a network

representation of a correlation matrix. And finally, we will look at ways in which people

have tried to define and calculate different kinds of entropy measures from the correlation

networks.

Chapter 3: In this chapter, we will study the financial market in the light of the entropy

measure that we are proposing. First, we will motivate and explain the methodology that we

are using to calculate this entropy measure. Then we will discuss the fascinating observations

that emerged in this analysis, such as the phase separation of market events. And finally, we

will check the effect of the variation of some parameters on the results, and its interpretation.

Chapter 4: This chapter will contain discussions and outlooks regarding the analysis

done in the previous chapter. After a brief review of the essential points discussed in the

previous chapter, this chapter will continue the discussion on a particular relative entropy

measure that shows a universal scaling behaviour and will explore its connection with market

risk and volatility.

The appendices contain the list of historical stock market events and the list of stocks

whose data we have used in this study.

A major part of the text and figures that I present in this thesis will have an overlap with

the manuscript that we have uploaded in the arXiv named “Phase separation and universal

scaling in markets: Fear and fragility” [25].

8



Chapter 2

Brief review of correlation-based

networks and entropy measures

2.1 Introduction

An interesting way to study the financial market has been in the form of a correlation-based

network [26, 27, 28, 29]. For a given epoch, from the correlation matrix Cij, one can infer

an underlying network of stocks/assets which can be interpreted to be manifesting as the

correlation patterns that we observe in the price movements. This allows us to obtain a

representation of the temporal cross-section of the evolving market structure [30, 31] upon

which various well-established tools of graph theory can be applied. This method has given

new and useful insights into the underlying mechanisms and patterns that drive the overall

behavior of this seemingly unpredictable complex system.

Along with obtaining the network representation, we will also be looking at two more

things. Before inferring a network representation of the correlation matrix, we can model

and characterize the correlation matrix using random matrix theory. The insights given

by the random matrix theory approach are valuable in interpreting the correlation patterns

and filtering unnecessary noise. Also, after obtaining the network representation, we will

be looking at entropy measures that can be calculated from these networks. These entropy

measures allow us to monitor the dynamics of the underlying network. In this chapter, we will

be looking at and reviewing the tools that enabled academic endeavours of this philosophy

9



and will be reviewing such previous works which have utilized these tools in interesting ways

[32, 33].

2.2 Random matrix theory (RMT) and applications

Eugene Wigner first proposed random matrix theory as an attempt to model the energy

levels of a nuclear system using the eigenvalue distribution of a random matrix [34, 35]. One

can consider the intricate interactions among nuclear constituents as random fluctuations in

the context of R-matrix scattering theory and look at its eigenvalues. These eigenvalues of

the random matrix could roughly estimate the energy levels of the nuclear system and the

spacings between the energy levels of nuclei could be modelled using the spacing of eigenval-

ues of the random matrix. Vasiliki Plerou introduced the application of RMT in analysing

financial correlation matrices in 1999 [36]. Since then it has found its home in econophysics.

Researchers are using this framework for various applications, such as characterizing the

random noise [37] and serving as a null model for community detection algorithms [38].

2.2.1 Eigenvalue decomposition of correlation matrices

RMT gives us a way to identify the portion of the correlation matrix from the eigenvalue

decomposition, which accounts for the spurious correlations occurring due to T and N not

being large enough. If one were to look at an empirical correlation matrix calculated from

the return time series of stocks, they would see that in its eigenspectrum along with the

eigenvalues of an analogous WOE (same T and N) there are some more existing beyond

λ+ (as seen in figure 2.1). These larger eigenvalues contain information about the group

structures in the correlation matrix. The largest one, however, corresponds to the market

mode, which represents the super-community comprising of the entire market. From this

framework, one can look at the correlation matrix as a sum of three modes, each of which

are constructed using the eigenvectors and eigenvalues that occupy different parts of the

eigenspectrum. The market mode CM corresponds to the largest eigenvalue; the group

mode CG corresponds to the eigenvalues that are greater than λ+ but less than λmax, and

finally, the random mode CR corresponds to the eigenvalues that are less than λ+ [39, 40].

10



Figure 2.1: Eigenvalue distribution of empirical correlation matrix. Correlation
matrix using the price return time series of 194 stocks of S&P-500 was calculated and the
distribution of its eigenvalues is plotted. Because the largest eigenvalue is significantly larger
than the rest it is excluded from the diagram, but its value is displayed for reference. The
inset figure corresponds to eigenvalues of just the random mode of the matrix, which has a
distribution similar to that of a Wishart orthogonal ensemble of comparable dimension.

If λi and vi are the eigenvalues and eigenvectors of our correlation matrix C, we can

reconstruct C as

C =
N∑
i=1

λieie
′
i (2.1)

For convenience, let us sort the eigenvalues in descending order so that as the subscript/index

i increases λi become smaller and smaller. Now we can defineNG as the number of eigenvalues

which falls in the range λ+ ≤ λi < λ1. Using these we can reconstruct the correlation matrix

using the three modes as:

C = CM + CG + CR = λ1e1e
′
1 +

NG∑
i=2

λieie
′
i +

N∑
i=NG+1

λieie
′
i (2.2)

The market mode has information about the super-community of all/most of the stocks

(in a way the market as a whole). It is highly related with the average market correlation.

The group mode contains information about the sectoral correlations (internal and external).

11



Figure 2.2: Eigen-decomposition of empirical correlation matrix. Using eigenvalues
and eigenvectors, the entire correlation matrix given in the figure 1.4 is decomposed into
market mode CM , group mode CG, and random mode CR. For computing the group mode,
NG = 20 was taken. These three matrices are visualized using a color-map.

And the random mode is attributed to the noise (recent studies have looked deeper into the

random mode and have found out that it is not that random after all, but it is out of the

scope of this thesis). The eigen modes of an emperical cross correlation matrix illustrating

this is given in figure 2.2.

2.2.2 Wishart orthogonal ensemble and its eigenspectrum

Let us consider an N dimensional B matrix which is constructed using N random time series

of length T . Each of these random time series is uncorrelated white noise, which is defined

to be having zero mean and a finite variance. From this, we can construct a Wishart matrix

[41] W as:

W =
1

T
BB′ (2.3)

An ensemble of such many Wishart matrices is called a Wishart orthogonal ensemble (WOE).

We can interpret W as a covariance matrix in the context of time series. As the name

suggests, W will not have any correlations on average. The spectrum of W ’s eigenvalues

follow Marchenko - Pastur distribution [42]. For very large N and T and Q = T/N the

probability density function of these eigenvalues is defined as:

ρ̄(λ) =
Q

2πσ2

√
(λmax − λ) (λ− λmin)

λ
(2.4)

12



Figure 2.3: Eigenvalue distribution of a Wishart matrix. On left, the eigenvalue
distribution of a single Wishart matrix computed from 1000 random time series of 10000
time steps is plotted. For comparison, the theoretical Marchenko - Pastur distribution cor-
responding to this system is also plotted in orange. If we repeat this process multiple times
and take an ensemble average of all of them, the histogram will get smoothed out to match
the theoretical one. On right the Wishart matrix is also shown.

Where σ is the variance of the coefficients of G while λmin and λmax are:

λmax
min = σ2

(
1± 1√

Q

)2

(2.5)

As shown in figure 2.3, one can verify these using computational methods. It is also

interesting to notice that when N > T the number of zero eigenvalues will be N − T + 1.

By giving a small distortion to the matrix, it is possible to break the degeneracy of zero

eigenvalues.

2.3 Network representations of correlations

We can approach the task of finding a network representation of the correlation structure in

two different ways. First is to consider the market as a complete graph with some weights

that represents the correlations between them. Based on the questions asked, one can choose

the transformation of the correlation matrix that they want to use as the weights of the edges

which will have different interpretations. And second is to impose some rule to determine

13



the existence of a link (edge) between a pair of stocks and construct a network with these un-

weighted edges. For the networks constructed like this, the evolution of topological properties

like degrees and clustering will reflect the market dynamics.

In his seminal work, Mantegna [43] introduced the ultrametric distance between return

time series, which allowed one to embed the stocks in a metric space where the pairwise

distances between the stocks reflect the magnitude of correlation or anti-correlation between

them.

dij =

√√√√ T∑
k=0

(
xik
|~xi|
− xjk
|~xj|

)2

(2.6)

Here ~xi is the normalized returns of the stocks and T is the length of the time window we

are using. This measure of distance can be simplified to a transformation of the correlation

matrix Cij. Where Cij and dij is related by the equation

dij =
√

2(1− Cij) (2.7)

These distances can serve as non negative edge weights in a complete graph of stocks

whose properties like eigenvector centrality and betweenness centrality has a robust physical

interpretation. Along with that having these distances allows one to apply techniques like

minimum spanning tree (MST) and threshold graphs to obtain a filtered network represen-

tation of the correlation structure.

2.3.1 Minimum spanning trees

One way of getting a network representation of the correlation structure is using the concept

of minimum spanning tree. Given an undirected and connected graph G(E, V ), it is possible

to define at least one subgraph H(E ′, V ) such that all the vertices of G are there in H and

the vertices of H (E ′), is a subset of the vertices of G (E). The subgraphs which satisfy

these conditions are called spanning trees. Out of these, the minimum spanning trees are

the ones that minimize the sum of the weights of the edges [44]. There can be more than

one MST for a graph. Considering the distance matrix (dij) computed from the correlation

matrix (cij) as a complete graph with dijs as edge weights, we can find an MST for the

market in every correlation frame [26]. This gives us a refined network representation of the

14



Figure 2.4: Network representation of correlation matrix. An MST, shown in left and
an asset graph shown in right corresponding to the end date January 1, 1998 taken from the
paper of Onnela, Chakraborti and Kaski [45].

correlation structure of the market.

Prim’s [46] method is an example of such an algorithm that lets you find the minimum

spanning tree from a given connected graph. Starting from a chosen vertex, it grows the

tree by adding the edges with the smallest weight that are connected to the nodes which

are already part of the tree. This is a greedy algorithm with a time complexity of O((V +

E)log(V )).

It has been observed that the topological properties of these minimum spanning trees

have a relation with the risk measures of the market. For example, the average length of the

edges of the MST is observed to be highly anti-correlated with the risk of the minimum risk

Markowitz portfolio [47].

2.3.2 Asset graphs

Another way to deduce an underlying network structure from the correlations is to use a

threshold on the correlation matrix or the distance matrix to obtain an adjacency matrix.

With the thresholds θ and θ′ on correlation matrix C and the distance matrix d respectively

15



Figure 2.5: The time evolution of distribution of distances. The time evolution of the
probability density of distances corresponding to the edges in the MSTs (left) and the asset
graphs (right) are plotted. The figure is taken from the work of Onnela et. al [45].

(where θ′ =
√

2(1− θ)), the relations between C, d and the adjacency matrix a can be

written as:

aij =

1, if Cij ≥ θ

0, if Cij < θ
(2.8)

or,

aij =

1, if dij ≤ θ′

0, if dij > θ′
(2.9)

In the network representation that is obtained this way, the parameter θ controls network

properties such as mean degree and mean clustering coefficient. Instead of fixing θ one can

also fix the number of edges chosen. This is analogous to choosing a fixed number of smallest

distances and drawing the graph using them as edges. The network representation of the

correlation structure obtained this way is called an asset graph.

An example of such an asset graph constructed using N − 1 edges (equal number of

edges as the MST) is given in figure 2.4. The evolution of the distributions of edge weights

in both MST and asset graph is depicted in figure 2.5. Asset graph’s distance distribution

is characterized by a sharp cut off whereas the MST’s distribution is more spread-out. A

drastic shift towards the smaller distance values in the distribution can be observed during

the financial crisis of 1987. An interesting observation we can make in figure 2.4 is that, in

both the MST and the asset graph of the stocks of S&P-500, similar sectors are appearing

together in close positions.
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Figure 2.6: Signatures of historical events in von Neumann entropy. von Neumann
entropy calculated for New York Stock Exchange data for the time period 1988 to 2011 and
is plotted in this figure which is taken from the paper of Filipi N Silva [49]. The important
historical events are marked on the timeline with a red shadow.

2.4 Entropy measures and application

The entropy is one of the fascinating quantities that one can define in the context of a

complex system. Philosophically there are ontological motivations like the proposal of John

Wheeler “to take information as the primitive component of reality from which other physical

properties are derived” [48], as well as the usual epistemological motivations that drive one

to define and measure the entropy of a complex system. The network representations of the

correlation matrices provide an excellent framework to define various entropy measures that

focus on different types of information flow in this system. In the case of financial markets,

this entropy measures can be used to monitor the evolving network structure.

2.4.1 Von Neumann entropy

In quantum mechanics, given a density matrix, one can calculate the entropy of the system

as defined by von Neumann [50], from its normalized eigenvalues. This definition of entropy

could be extended to networks by considering its normalized Laplacian matrix to be a density

matrix [51, 52, 53]. After constructing the adjacency matrix from the correlation matrix by

applying a threshold, this normalized Laplacian matrix can be calculated using the degrees

of the nodes dis as:
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Figure 2.7: Behaviour of von Neumann entropy during a financial crisis. This
diagram, taken from [49], depicts the evolution of the community structure in NYSE stocks
during a financial crisis. In this particular case the event in observation is 1987 Black Monday
crash.

L̃ij =


1, if i = j and di 6= 0

− 1√
didj

, if i 6= j and (i, j) ∈ E

0, otherwise

(2.10)

.

From its eigenvalues, the von Neumann entropy is calculated by applying Shannon’s

formula [49]. It is given as:

S◦ = −
n∑
i=1

λi
n

ln
λi
n

(2.11)

The evolution of von Neumann entropy calculated like this is depicted in figure 2.6.

During critical events in the market, one can observe that this entropy is decreasing. As

we have observed in previous instances, the entire market starts behaving like a singular

community during these events, which causes this behaviour. This dynamics is depicted in

figure 2.7 where we can see the evolution of community structure in the market through the
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Figure 2.8: Signatures of historical events in thermodynamic entropies. Thermody-
namic Entropy in NYSE (1987-2011) derived from Bose-Einstein and Fermi-Dirac statistics
taken from [54]. Critical financial events are marked with light blue shade.

crisis period of the 1987 Black Monday crash. The nodes of the correlation network collapsed

into a single community which in turn got captured by the entropy measure.

2.4.2 Thermodynamic entropy

If we take the normalized network Laplacian L as the Hamiltonian H, one can calculate

the energy levels of the network by looking at the eigenvalue of L. Assuming these energy

states are occupied by particles that follow quantum statistics, we can calculate an entropy

by writing its partition function [55].

Based on the two kinds of occupation statistics of particles, one can get two different

expressions for entropy. If one was to use Bose-Einstein statistics [56] which consider all the

particles as indistinguishable and allows infinite occupation of a particular state, you would

get the thermodynamic entropy S ′BE to be:

S ′BE = logZ − β∂ logZ

∂β

=
V∑
i=1

log
(
1− eβ(µ−εi)

)
− β

V∑
i=1

(µ− εi) eβ(µ−εi)

1− eβ(µ−εi)

(2.12)
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Figure 2.9: Behaviour of thermodynamic entropy during a financial crisis. During
1997 Asian financial crisis the evolution of von Neumann entropy is depicted in this figure
that is taken from [54]. The change in the network structure (especially the connected
components) across this critical event can be observed in the representations (A),(B),(C)
and (D).
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Here µ that is analogous to the chemical potential is a control parameter. But if you

put the additional constraint that the number of particles in the energy level should be

non-negative, the condition that µ ≤min εi.

On the other hand, if you assume that the particles are like indistinguishable fermions

which obeys Pauli’s exclusion principle and have Fermi-Dirac occupation statistics [57], the

expression for the thermodynamic entropy S ′FD, will be:

S ′FD = logZ − β∂ logZ

∂β

=
V∑
i=1

log
(
1 + eβ(µ−εi)

)
− β

V∑
i=1

(µ− εi) eβ(µ−εi)

1 + eβ(µ−εi)

(2.13)

Since only one particle can occupy a single energy state, the “chemical potential” is equal

to the nth energy level. That is µ = εn.

The historical evolution of this entropy in the stock market, as shown in figure 2.8 tells

us that during a market crisis or a critical event, the entropy measures S ′FD and S ′BE both

goes up. But as one can observe, the particular entropy which has higher values is different

in different periods. This interplay happens because of the difference in the range of eigen-

value spectrum that these two measures focus on. S ′BE concentrate on the lesser Laplacian

eigenvalues since the BE statistics favour placing more particles in smaller energy states,

whereas S ′FD looks at more number eigenvalues since the particles are forced to occupy the

higher ones due to Pauli’s exclusion principle. From a network perspective, this means that

the S ′BE reflects the overall network-structure by quantifying the extent of bi-partiality and

how many connected components are there [58]. And S ′FD capture smaller and subtler de-

viations inside the structure of the network [59]. Figure 2.9 exposes these dynamics and

characterizes it across a crisis period by tracking the evolution of the network structure as

well as the entropies.

2.4.3 Structural entropy

Structural entropy is a novel measure proposed by Almog et al. [60], which is calculated from

the community structure of the market. Similar to a diversity measure, the structural entropy
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Figure 2.10: Evolution of Structural Entropy during a financial crisis. Evolution
of volatility and structural entropy for FTSE-100 (A and B) and NIKKEI-225 (C and D)
around the 2008 Lehmann brother’s bankruptcy. The figure is taken from [60].
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Figure 2.11: Relation between S and VaR. Plot of the relation between volatility (X axis)
and structural entropy (Y axis) for FTSE-100 (A) and NIKKEI-225 (B). For reference we
also plotted the relation between volatility (X axis) and the number of detected communities
(Y axis) for FTSE-100 (C ) and NIKKEI-225 (D). The figure is taken from [60].
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compares the relative sizes of the communities which were found out using a community

detection algorithm from the correlation matrix.

S is defined in the context of a network. The methodology behind its computation is as

follows. Let G be a network with n number of nodes. We then determine the communities

of the network by applying any community detection algorithm on G. As a result, we obtain

an n-dimensional vector v = (v1, v2, ...., vn), where each vi, is the community to which node

i = 1, 2, 3...n is assigned. Let k be the total number of communities detected (which will be

max(v)). Probability of extracting a node from a particular community j is given as:

Pj = cj/n (2.14)

where cj is the size of community j. From this we compute S by applying Shannon entropy

formula to probabilities:

S ≡ H(P ) = −
k∑
j=1

Pj logPj (2.15)

A significant part of this method is the detection of communities in the correlation struc-

ture. One way to approach this step is to deduce an underlying network structure using a

threshold on the correlation or the distance matrix to obtain an adjacency matrix. Since the

value of the threshold has a huge effect on the resulting network structure, this method is

hence not much robust. Instead of the threshold method one can directly find the commu-

nity structure of the market from the correlation matrix C using the community detection

algorithm proposed by Garlaschelli [38]. This algorithm utilizes random matrix theory to

filter out noise and take out only the CG which has the information about the community

structure.

One of the intriguing outcomes of continuously monitoring the structural entropy was

its high negative correlation with the market volatility as shown in figure 2.11. This is

consistent with our prior understanding that the market volatility is positively correlated

with the average market correlation (µ). As µ increase, the market starts behaving more

like a singular community which decreases the diversity in the community structure and as a

result, decreases the structural entropy. This was best observed during the financial crisis of

2007-2008 (figure 2.10). S increased initially as the market approached the crisis, and during

the crisis, it decreased first and then increased analogous to the movement of the volatility
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which did the opposite.

2.5 Remarks

In this chapter, we have discussed the methods that people have used to obtain a network

representation and entropy measures of these networks. The motivation behind these mea-

sures is that by following them, one can get insights about the current structure of the

underlying correlation network of the financial market. But all of these entropy measures

suffer from a general problem. They are too much reliant on the process of obtaining the

network structure from the correlation matrix. And this process loses information no matter

what method you are using. As an example, let us consider the two methods that we have

discussed. If we are using minimum spanning trees as the filtration method, the network

representation we get will contain no loops. On the opposite, if we apply a threshold method,

the network representation that we obtain will contain loops, but the components will be

disconnected. One can attempt to combine these two methods by superimposing the two re-

sultant network representations on top of each other. Still, even this will have a dependency

or arbitrariness on the threshold that we are using.

We are proposing a new entropy measure that can be calculated directly using the en-

tire correlation matrix. This measure solves the problem of information loss due to the

filtration process that the other methods rely on, by considering the correlation matrix as

a complete graph with weighted edges. And also, our method allows us to incorporate our

understandings from the random matrix theory into this network representation by enabling

us to calculate the entropy of the partial correlation structures (market mode, group mode,

and random mode).
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Chapter 3

Phase separation using eigen-entropy

3.1 Introduction

Recently, Pharasi et. al [61, 62] used the tools of random matrix theory to determine market

states and confirmed that during a market crash all the stocks start behaving similarly and

the whole market begins to act like a single huge cluster or community. In contrast, during

a bubble period, a particular sector gets overpriced or over-performs, causing accentuation

of disparities among the various sectors or communities. The eigenvalue decomposition

of a correlation matrix into partial correlations; market, group and random modes [62],

enables identification of dominant stocks (influential leaders) and sectors (communities). The

correlation-based network of leaders and communities changes with time, especially during

market events like crashes, bubbles, etc. Thus, if one were able to monitor the evolution of

this network structure continuously [61, 60, 63], one would be able to acquire useful insights

that would help in developing better investment strategies, manage risk and stress-test the

global financial system.

Here, our aim is to extract information about the “disorder” (or randomness) in the

market and its eigenmodes, using the entropy measure – eigen-entropy [64], computed from

the eigen-centralities (ranks) [65, 31] of different stocks in the correlation-network. The

relative-entropy measures computed for these eigenmodes enable us to construct a phase

space, where the different market events undergo phase-separation (akin to many physical

or biophysical phenomena [66, 67, 68, 69, 70]) and display “order-disorder” transitions as in
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A B

D C

Figure 3.1: Schematic diagram for computation of eigen-entropy from market re-
turns. (A) Return time-series plots for three arbitrarily chosen stocks (out of a total N
stocks), with a chosen epoch (of size M days) ending on day τ for the computation of
Pearson correlation coefficients. (B) Four chosen cross-correlation matrices C(τ): anomaly
(06/01/1988), bubble (01/09/2000), crash (22/09/2011) and normal (28/02/1985) periods,
in the S&P-500 market; the stocks are arranged according to their sectors. The sectoral
abbreviations are: CD–Consumer Discretionary; CS–Consumer Staples; EG–Energy; FN–
Financial; HC–Health Care; ID–Industrials; IT–Information Technology; MT–Materials;
TC–Telecommunication Services; and UT–Utilities. We define A = |C|2 (matrix element-
wise) and use the characteristic equation |A−λ1| = 0 to compute the eigenvalues {λ1...λN};
we denote the maximum eigenvalue as λmax and the eigenvector corresponding to the maxi-
mum eigenvalue as p, such that A p = λmax p. The normalized eigenvector has components:
p = {pi}, that are known as eigen-centralities. (C) The ranked (sorted) eigen-centralities
{pi} of the normalized eigenvector corresponding to the maximum eigenvalue are plotted,
for the anomalous (green circles), type-1 (blue diamonds), crash (red triangles) and normal
(grey stars) periods of the financial market. (D) Eigen-entropy (H = −

∑N
i=1 pi ln pi), eval-

uated from the correlation matrices using a rolling epoch of M = 40 days and a shift of
∆ = 20 days, is plotted for the 32-year period 1985-2016.
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critical phenomena in physics [10, 11]. This type of behavior has never been recorded for

financial markets, and is distinct from the two-phase behavior in financial markets reported

earlier by Plerou et al. [71]. One of the relative entropy measures displays “universal scaling”

behavior with respect to the mean market correlation; there is a data collapse, which suggests

that the fluctuations in price returns for different financial assets, varying across countries,

economic sectors and market parameters, are governed by the same statistical law. This

apparent universal behavior may motivate us to do further research as to determine which

market forces are responsible for driving the market or are important for determining the

price co-movements and correlations. Further, a functional of the relative entropy measure

acts as a good market indicator, as it can gauge the market “fragility” (minimum risk

of the market portfolio) and the “market fear” (volatility index). This new and simple

methodology helps us to better understand market dynamics and characterize the events in

different phases as anomalies, bubbles, crashes, etc. that display intriguing phase separation

and universal scaling behavior. In addition, this may lead to a foundation for understanding

scaling and universality in a broader context, and providing us with altogether new concepts

not anticipated previously. This methodology may be generalized and used in other complex

systems to understand and foresee tipping points (similar to market crashes and bubbles)

and fluctuation patterns.

3.2 Monitoring eigen-entropy

3.2.1 Eigenvector centrality

Generally, for any given graph G := (N,E) with |N | nodes and |E| edges, let A = (ai,j) be the

adjacency matrix, such that ai,j = 1, if node i is linked to node j, and ai,j = 0 otherwise. The

relative centrality, pi, score of node i can be defined as: pi = 1
λ

∑
v∈M(i) pj = 1

λ

∑
j∈G ai,jpj,

where M(i) is a set of the neighbors of node i and λ is a constant. With a small mathematical

rearrangement, this can be written in vector notation as the eigenvector equation:

Ap = λp.
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In general, there can exist many different eigenvalues λ for which a non-zero eigenvector

solution exists. We use the characteristic equation:

|A− λ1| = 0

to compute the eigenvalues {λ1...λN}. However, the additional requirement that all the

entries in the eigenvector be non-negative (pi ≥ 0) implies (by the Perron–Frobenius theorem)

that only the maximum eigenvalue (λmax) results in the desired centrality measure. The ith

component of the related eigenvector then gives the relative eigen-centrality score of the

node i in the network. However, the eigenvector is only defined up to a common factor,

so only the ratios of the centralities of the nodes are well defined. To define an absolute

score one must normalise the eigenvector, such that the sum over all nodes N is unity, i.e.,∑N
i=1 pi = 1. Furthermore, this can be generalized so that the entries in A can be any matrix

with real numbers representing the connection strengths. For correlation matrices C(τ), in

order to enforce the Perron–Frobenius theorem, we work with A = |C|n, where n is any

positive integer (we have used n = 2 in this study).

Effect of changing the value of n is shown in figure 3.11. As observed the values of eigen-

entropy H differ with the variation of the power n of correlation matrices. The variation

is because, with the increase in power, the dissimilarities in the elements of the correlation

matrix are amplified, which will then, in turn, changes the centrality of the matrix. For very

high powers the transformed correlation matrices will act like an adjacency matrix with very

high values (close to 1s) and very low values (close to 0s). It is also interesting to note that,

depending on the problem, we can decide the range of correlations to focus on by adjusting

the power of the elements of the correlation matrix.

One may argue that the information about the anti-correlations is lost during this process.

But if we consider just the existence of a correlation (doesn’t matter weather its positive or

negative) as the edge between two time series, the squared values or the absolute values of

the correlations indicate the weights of that link.

3.2.2 Eigen-entropy using C, CM , and CGR

Following the tradition in information theory, we propose a new measure, the eigen-entropy

H = −
∑N

i=1 pi ln pi, since all the normalised eigen-centralities are non-negative (pi ≥ 0)
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and
∑N

i=1 pi = 1, as explained above. The eigen-entropy can be described as a measure of

disorder, or the degree of randomness in the matrix A = |C|2; higher the eigen-entropy,

higher is the disorder in the matrix; the highest being in the case of WOE, where H ∼ lnN .

The detailed schematic diagram of the methodology is given in figure 3.1 and the calculated

time series are plotted in the figure 3.3.

The eigen-entropies may be computed (see Methods) from the full correlation C, market

mode CM and group-random mode CGR. Figure 3.3 (A) and (C ) show the evolution of

market returns r(τ), mean market correlations µ(τ), and different eigen-entropies H(τ),

HM(τ), and HGR(τ) (shown in different colors; see legend), for S&P-500 and Nikkei-225

markets, respectively. The vertical dashed lines correspond to some indicative dates for

type-1 events (blue) and crashes (red) (see Table 4.2). These eigen-entropies can then be

used for the characterization of market events, such as bubbles and crashes.

We have used the eigenvalue decomposition of the correlation matrices into a market

mode CM , group mode CG and a random mode CR and a composite group and random

modes CGR. From such a decomposition, it is also possible to reconstruct the correlation

matrix as aggregates of the contributions of modes CM , CG, & CR or CM & CGR as we have

shown before. For empirical matrices (especially the ones using shorter window size), it is

very difficult to determine the exact value of λ+ and hence figure out NG, for which the

eigenvectors from 2 to NG would describe the sectoral dynamics. Here, we choose NG = 20

arbitrarily for the correlation decomposition (figure 3.2), corresponding to the 20 largest

eigenvalues after the largest one.

In order to avoid the arbitrariness, we prefer the following decomposition:

C = CM + CGR (3.1)

= λ1e1e
′
1 +

N∑
i=2

λieie
′
i. (3.2)

Figure 3.2 shows the eigenvalue decompositions of the correlation matrices, for (A) nor-

mal, (B) anomalous, (C) bubble, (D) crash periods of the financial market, corresponding

to the frames in figure 3.1, and in addition (E) shows the results for a random matrix taken

from a Wishart orthogonal ensemble (WOE), where we have denoted the different matrices

as: full correlation C, market mode CM , group mode CG, random mode CR, group-random
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A C CM CG CR CGR

B

C

D

E

Figure 3.2: Eigenvalue decomposition of the correlation matrices. For (A) normal,
(B) anomalous, (C) bubble, (D) crash periods of the financial market, as in figure 3.1,
and (E) random matrix taken from uncorrelated WOE. (Left to right) Plots showing the
correlation matrices: full C, market mode CM , group mode CG, random mode CR, group-
random mode CGR and the ranked eigen-centralities (pi) of the different correlation modes:
full (C in black curve), market mode (CM in turquoise curve) and group-random mode (CGR
in grey curve). Interestingly, for a normal period, the three curves are distinct and there
are hierarchies in ranks in all curves; for the market anomaly, all the three curves almost
coincide; for the bubble period, the curves corresponding to the full and the group-random
modes coincide while there is a strict hierarchy in the eigen-centralities of the market mode;
for crash period, the curves corresponding to the full and the market modes coincide while
there is a strict hierarchy in the eigen-centralities of the group-random mode; and for the
WOE, once again the curves corresponding to the full and the group-random modes coincide
while there is a strict hierarchy in the eigen-centralities of the market mode. This feature is
then exploited in characterizing the market events into anomalies, bubbles, crashes, normal
periods, etc. with the help of the corresponding entropy functions as in figure 3.3 and
figure 3.6.
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mode CGR and displayed the results in figure 3.2 (Left to Right). The last column shows

the results for the ranked eigen-centralities (pi) of the different correlation modes: full (C

in black curve), market mode (CM in turquoise curve) and group-random mode (CGR in

grey curve). Interestingly, for a normal period, the three curves are distinct and there are

hierarchies in ranks in all curves; for the market anomaly, all the three curves almost co-

incide; for the bubble period, the curves corresponding to the full and the group-random

modes coincide while there is a strict hierarchy in the eigen-centralities of the market mode;

for crash period, the curves corresponding to the full and the market modes coincide while

there is a strict hierarchy in the eigen-centralities of the group-random mode; and for the

WOE, once again the curves corresponding to the full and the group-random modes coincide

while there is a strict hierarchy in the eigen-centralities of the market mode. This feature

is then exploited in characterizing the anomalies, bubbles, crashes and normal periods in

the market, with the help of the corresponding entropy functions as explained below and

displayed in figure 3.3 and figure 3.6.

As a standard, we can use a Wishart orthogonal ensemble(WOE) to represent a corre-

lation matrix computed from a set of totally random time series. The eigen-entropy for a

WOE can be calculated from the ensemble average of the principal eigenvector components,

which intuitively will be equal to 1
N

because all the nodes will have equal importance in a

totally random market. So for a totally random case, the eigen-entropy will be H = log(N).

figure 3.4 (A) shows the plot of sorted eigen-centralities pi against rank, computed from the

normalized eigenvectors corresponding to the maximum eigenvalues for 1000 independent re-

alizations of a Wishart orthogonal ensemble (WOE). Filled black squares represent the mean

eigen-centralities computed from 1000 independent realizations of the WOE, that serves as

a reference (the maximum disorder or randomness) in the market correlation with N = 194.

figure 3.4 (B) shows the plot of the variation of eigen-entropy H as a function of system

size (correlation matrix size) N , where each point represents a mean computed from 1000

independent realizations of an uncorrelated WOE. The theoretical curve (red dash) shows

the variation ∼ lnN . figure 3.4 (C) shows the histograms of the eigen-centralities pi for

typical anomaly (06/01/1988) (green circles), Dot-com burst (01/09/2000) (blue diamonds),

crash (22/09/2011) (red triangles) and normal (28/02/1985) (grey stars) and WOE (black

squares). One can observe that unlike the ideal case there is an observable spread in the

centrality values. This is happening due to the process of sorting that is destroying the

information about the node that each of the values belong to. If it were not sorted and the

information about the nodes was preserved, all the values will average out to 1/n. It is still
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B

Figure 3.3: Evolution of market returns (r(τ)), mean market correlations (µ(τ)),
and eigen-entropies. The eigen-entropies are computed from the full correlation, market
mode and group-random mode (shown in different colors; see legend), for (A) S&P-500 and
(B) Nikkei-225 markets.
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Figure 3.4: Eigen-centralities (ranks) and eigen-entropy. (A) Plots of sorted eigen-
centralities pi against rank, computed from the normalized eigenvectors corresponding to
the maximum eigenvalues for 1000 independent realizations of a Wishart orthogonal ensem-
ble (WOE). Filled black squares represent the mean eigen-centralities computed from 1000
independent realizations of the WOE, that serves as a reference (the maximum disorder or
randomness) in the market correlation with N = 194. (B) Plot showing the variation of
eigen-entropy H as a function of system size (correlation matrix size) N , where each point
represents a mean computed from 1000 independent realizations of a WOE. The theoretical
curve (red dash) shows the variation ∼ lnN . (C) Histograms of the eigen-centralities pi for
typical anomalous (green circles), bubble (blue diamonds), crash (red triangles) and normal
(grey stars) and WOE (black squares).
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important to do the process of sorting because the deviation from the ideal value signifies

the spurious correlations which also will be present in the real correlation matrix.

3.3 Order-disorder transitions and phase separation.

Using the three entropies that we calculated, it is possible to construct a phase space through

which the market moves as it evolves with time. We can embed the frames (Each corre-

sponding to a period of time) in this phase space to characterize the regions that they are

occupying and to look for order-disorder transitions. We used a rolling mean and rolling

standard deviation (with a window size of 40 days), and computed the standardized val-

ues of eigen-entropies HStd, HStd
M and HStd

GR . The figures 3.8 and 3.9 show the 3D-plots

of the standardized values of eigen-entropy (HStd) corresponding to the full (along z-axis),

eigen-entropy (HStd
GR ) corresponding to the group-random (x-axis), and eigen-entropy (HStd

M )

corresponding to the market mode (along y-axis), for S&P-500 and Nikkei-225 markets, re-

spectively. The sequence of frames display the “order-disorder” transitions in case of the

events given in the table 4.2. Even though HGR is becoming very low in all of the observed

events, the dynamics of H and HM is different for different events. This can be seen in figure

3.7. This observation hints towards the underlying categorization of the events that I will

be discussing next.

We compute the relative-entropies H − HM , H − HGR, and HM − HGR, starting from

the eigen-entropies corresponding to the full correlation, market mode and group-random

mode, respectively. We then use these new variables to characterize and identify the different

market events as crashes, normal periods and three more different kinds of interesting events.

Of these interesting events specifically in type-1,2, many frames corresponds to periods in

which there are recorded calamity in the market like Burst of the Dot-com bubble or loss

due to Katrina-Rita hurricane. Anomalies on the other hand are interesting due to its

fascinating centrality distribution across the three modes. Figure 3.6 (B) and (D) show the

2D-plots of the phase space using relative-entropies H − HM , and H − HGR, for S&P-500

and Nikkei-225 markets, respectively. As evident, the epochs (event frames) clearly undergo

“phase separation” – segregate into different market events: anomalies (green), type-1 (light

blue), type-2 (blue), crashes (red) and normal (grey). The results can be compared to

the benchmarks of WOE (see figures 3.4 and 4.2) for both USA and JPN. For the first
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Figure 3.5: Evolution of relative-entropies. For (A) S&P-500 and (B) Nikkei-225 mar-
kets, the relative-entropies H − HM , H − HGR, & HM − HGR are evaluated from the full,
market and group-random mode to characterize and identify the different market events as
anomalies, type-1, type-2, crashes and normal periods.
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A B

Figure 3.6: Phase separation. The 2D-plots of the phase space using relative-entropies
H − HM and H − HGR, for (A) S&P-500, and (B) Nikkei-225 markets. The event frames
show “phase separation” – segregation of different market events: anomalies (green), type-1
(light blue), type-2 (blue), crashes (red) and normal (grey). The black stars correspond to
the benchmarks WOE in both USA and JPN.

A B

Figure 3.7: Order-disorder transitions around critical events. The 3D-plots of the
standardized values of eigen-entropy corresponding to the full correlation matrix HStd (along
z-axis), eigen-entropy corresponding to the group-random mode HStd

GR (x-axis), and eigen-
entropy corresponding to the market mode HStd

M (along y-axis), for (A) S&P-500, and (B)
Nikkei-225 markets. The sequence of seven frames display the “order-disorder” transitions
around the main events (in black filled circle) – in case of bubble bursts (Dot-com in USA
and JPN; shown in blue) and crashes (Lehman Brothers in USA and Fukushima in JPN;
shown in red).
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Figure 3.8: Evolution around the important events in USA market. Eigen-entropy
H calculated from the correlation matrices: (full) C, market mode CM and group-random
mode CGR for all the frames (epoch M = 40 days and shift ∆ = 20 days) over a period of
1985-2016 of USA (S&P-500). After standardizing the variables with moving average and
moving standard deviation, each frame (grey dot) is embedded in a 3-D space with axes Hstd,
Hstd
M and Hstd

GR. Eleven important events with seven frames around those events (three before
and three after the event) were taken from the history and shown in the plots. The critical
events are connected with red lines and the Dot-com bubble burst is connected with blue.
The frame containing the important event is marked with black circle for better visibility.
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Figure 3.9: Evolution around the important events in JPN market. Eigen-entropy
H calculated from the correlation matrices: (full) C, market mode CM and group-random
mode CGR for all the frames (epoch M = 40 days and shift ∆ = 20 days) over a period
of 1985-2016 of JPN (Nikkei-225). Three co-ordinates axes Hstd, Hstd

M and Hstd
GR are the

standardized variables, same as figure 3.8. Plots show thirteen important events from the
history. The critical events are connected with red lines and the Dot-com bubble burst is
connected with blue. The frame containing the important event is marked with black circle
for better visibility.
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time, we have been able to display such a phenomenon in the context of financial markets,

which can be extremely significant for characterization and prediction of market events. The

characterized events (corresponding to figure 3.6 (B) and (D)) are then indicated as vertical

lines in the time-evolution plots in figure 3.6 (A) and (C ). Interestingly, we find that many

anomalies occur just around the major crashes, and intriguing patterns appear around the

type-1 and type-2 events also.

3.4 Remarks

Effects of the variation of the epoch size M and shift ∆

The continuous monitoring of the market can be done by dividing the total time series data

into smaller epochs of size M . The corresponding correlation matrices generated from theses

smaller epochs are used for calculating the eigen-entropy H. In figure 3.10, we investigate

the effects of the variation of parameters, epoch size M and shift ∆.

We observe that either the increase in the epoch M or shift ∆ makes the time series plot

of H more smooth (less fluctuations), and vice versa. The choice of these parameters are

thus arbitrary to some extent, depending on the research questions and time scale we are

interested.

Effect of the variation in the powers of correlation matrices |C|n

Instead of taking the square of individual elements of the correlation matrix C, to make all

the elements non-negative, we can also use the even powers or the odd powers of absolute

values to accomplish the same. The effect of the same is shown in the figure 3.11. As observed

the values of eigen-entropy H differ with the variation of the power n of correlation matrices.

This is due to the fact that with the increase in power, the dissimilarities in the elements

of the correlation matrix are amplified which will then in turn changes the centrality of the

matrix. For very high powers the transformed correlation matrices will act like an adjacency

matrix with very high values (close to 1s) and very low values (close to 0s).
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Figure 3.10: Effects of epoch size M and shift ∆ on the time series of eigen-entropy
H. The evolution of eigen-entropy H is calculated from correlation matrices corresponding
to four different time epochs (A) M = 200, (B) M = 100, (C ) M = 40, and (D) M = 20
days and each with four different shifts (i) ∆ = 1 day, (ii) ∆ = 10 days, (iii) ∆ = 20 days, and
(iv) ∆ = 40 days over a period of 1985-2016. The fluctuations (local) of the eigen-entropy
H are smoothened (smaller) for bigger shifts ∆.

It is also interesting to note that, depending on the problem, we can decide the range of

correlations to focus on by adjusting the power of the elements of the correlation matrix.

3.4.1 Comparison with structural entropy

The structural entropy depends on the communities of the network and quantifies the ‘struc-

tural diversity’. One finds that the evolution of structural entropy may provide information

about extreme events in the financial market, e.g., crises, bubbles, etc.

Following the prescription given in Almog et al. [60], the structural entropy may be

calculated from the normalized sizes of the “communities” detected in the market after
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A B

Figure 3.11: Comparison of the variation of n for |C|n. The eigen-entropy H is cal-
culated for different powers n of correlation matrix C by raising the elements of C to even
powers or the absolute value of C to odd powers. (A) shows the time series of the eigen-
entropies H of the correlation matrices of epoch M = 40 days and ∆ = 20 days for five
different powers upto n = 5. The correlations among these five time series of eigen-entropy
H is shown in (B).

applying a community detection algorithm [38].

In figure 3.12, we compare the eigen-entropy H measure with the structural entropy S using

the community detection algorithm, where they obtain a modularity matrix directly from

a correlation matrix, by applying random matrix theory tools and separating out just the

group mode. The advantage of this method is that a modularity matrix can be supplied

directly to a community detection algorithm, without using any arbitrary threshold.

When one compares the two entropy measures, it is evident that the structural entropy

is very sensitive to the community detection algorithm (different algorithms yield different

community structures). Even the community detection algorithm, which involves identifying

the group mode from the correlation matrix is not easy because the boundary (determined

by the eigenvalues of the correlation matrix) between the random mode and the group

mode, is not distinct (and often arbitrary). In this way, our eigen-entropy measure has an

advantage that it is uniquely determined and non-arbitrary (and also has less computational

complexity). Also, during a market crash, the structural entropy S behaves differently from

the eigen-entropy H, as the market starts behaving like a single (huge) super-community.
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Figure 3.12: Comparison of eigen-entropy H and structural entropy S. Evolution
of (i) average correlation µ, (ii) eigen-entropy H, and (iii) structural entropy S: (A) and (B)
M = 40 days epoch and ∆ = 20 days shift for USA and JPN, respectively, and (C ) and (D)
M = 200 days epoch and ∆ = 20 days shift for USA and JPN, respectively.
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So, during a crash S (measure of diversity) decreases in contrast to H (measure of disorder

or randomness) that increases.
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Chapter 4

Discussions and outlook

Here, we developed a general and robust methodology to extract information about the

“disorder” (or randomness) in the market and its eigen modes, using the entropy mea-

sure – eigen-entropy, computed from the eigen-centralities (ranks) of different stocks in the

correlation-network. We have used two different data sets of the stock markets USA S&P-500

and JPN Nikkei-225, spanning across a sufficiently long period of 32 years, to demonstrate

its robustness.

We showed that the eigen-entropy is a simple yet robust prescription to quantify the

disorder in a financial market. The methodology does not have any arbitrary thresholds.

Further, the relative-entropy measures computed for these eigen modes enabled us to con-

struct a “phase space”, where the different market events undergo “phase-separation” and

display “order-disorder” transitions. The crashes occupy the region in the phase space, where

H −HM ' 0. During the crashes, the H and HM almost touch the maximum disorder, lnN

(corresponding to the random WOE). The events like “Dotcom bubble bursting” appear in

the H −HGR ' 0 axis. The events lying far away from the origin and axes are happening

during bubble formation periods. The events lying close to the origin are like anomalies

happening right before or right after major crashes. This type of phase-separation behavior

in financial markets is being reported for the first time. Thus, we have here laid a clear

prescription for characterizing the market events as anomalies, bubbles, crashes, etc. using

the relative entropy measures. It was not well-understood how and when bubbles form and

when they burst. Our proposed methodology may help us to understand the market events
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Figure 4.1: Scaling behavior of the relative entropy H −HM . Plot of H −HM versus
mean market correlation µ in linear-logarithmic scale for (A) S&P-500, and (B) Nikkei-225.
The events are seen to lie on a straight line and the market event frames segregate into
different portions: anomalies (green), type-1 (light blue), type-2 (blue), and crashes (red),
interspersed by the normal events (grey). In (C ), we see a data-collapse for both markets
(USA in pink; JPN in purple) on a single curve, indicating a “universal scaling” behavior.

and their dynamics, as well as find the time-ordering and appearances of the bubbles (for-

mations or bursts) and crashes, separated by normal periods. We have studied the evolution

of events around major crashes and bubbles (from historical records in USA and JPN; see

4.2). Of course, further studies are required.

We reiterate that our eigen-entropy measure has an advantage that it is uniquely deter-

mined and non-arbitrary (and also has less computational complexity). When one compared

(for details, see figure 3.12) our methodology with structural entropy [60], it is evident that

the structural entropy is very sensitive to the community detection algorithm (different algo-

rithms yield different community structures). Even the community detection algorithm [38],

which involves identifying the group mode from the correlation matrix is not easy because

the boundary (determined by the eigenvalues of the correlation matrix) between the random

mode and the group mode, is not distinct (and often arbitrary).

Also, we have observed from the evolution of the entropy measures (H, HM and HGR

that the market behavior changes radically after 2000 (USA) and 1990 (JPN) corroborating

to the findings of our earlier work [61], where we had found that the markets have “states”

with different mean market correlation and market volatility.

Furthermore, the relative entropy H − HM displayed “universal scaling” behavior with

respect to the mean market correlation µ; a data-collapse was observed when plotted in a

linear-logarithmic scale, which suggested that the fluctuations and co-movements in price
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Figure 4.2: Averaged distributions of the eigen-centralities, showing self-averaging
properties. Histograms of the eigen-centralities pi for anomalies (green circles), type-1
(light blue diamonds), type-2 (blue sqaures), crash (red triangles) and normal (grey stars)
and WOE (black squares), averaged over the respective ensembles for USA (top row) and for
JPN (bottom row). Histograms are evaluated using (A and D) full correlation matrices C
and decomposed correlation matrices of (B and E ) market mode CM , and (C and F ) group
and random mode CGR.

returns for different financial assets and varying across countries are governed by the same

statistical law. Also, the functional − ln(H − HM) acted as a good indicator, as it could

gauge market fragility (captured by the minimum risk of the market Markowitz portfolio)

and the market fear (captured by the empirical volatility index). This can be important for

managing risk and regulating the markets.

A “universal scaling” behavior is exhibited by the relative entropy H−HM . The relative

entropy H −HM versus mean market correlation µ is plotted in figure 4.1 (A) for S&P-500,

(B) for Nikkei-225; the events are seen to lie on a straight line in a linear-logarithmic scale

and the market event frames segregate into different portions: anomalies (green), type-1

(light blue), type-2 (blue), and crashes (red), interspersed by the normal events (grey). In

figure 4.1 (C ) the data for both markets collapse on a single curve, which indicates universal
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Table 4.1: Values in cross-correlogram of the entropy measures with market parameters

µ H HM HGR H −HM −ln(H −HM ) H −HGR V IX ρ
µ 1 0.361 0.892 -0.392 -0.804 0.987 0.463 0.471 0.619
H 0.361 1 0.313 0.151 0.043 0.387 0.031 0.091 0.164
HM 0.892 0.313 1 -0.283 -0.935 0.897 0.343 0.336 0.506
HGR -0.392 0.151 -0.283 1 0.354 -0.314 -0.983 -0.058 -0.41
H −HM -0.804 0.043 -0.935 0.354 1 -0.799 -0.35 -0.319 -0.471
−ln(H −HM ) 0.987 0.387 0.897 -0.314 -0.799 1 0.389 0.505 0.59
H −HGR 0.463 0.031 0.343 -0.983 -0.35 0.389 1 0.076 0.445
V IX 0.471 0.091 0.336 -0.058 -0.319 0.505 0.076 1 0.633
ρ 0.619 0.164 0.506 -0.41 -0.471 0.59 0.445 0.633 1

scaling behavior normally seen in many physical systems [72, 73]. This implies that the

co-movements in price returns for different financial assets and varying across countries, are

governed by the same statistical law.

Very interestingly, this functional −ln(H−HM) also acts as a good gauge for the market

fragility (minimum risk of the market portfolio) and the market fear (volatility index). figure

4.1 displays the cross-correlogram of the mean market correlation, functional −ln(H−HM),

the minimum risk (market fragility) and volatility index (market fear) and many other

indicators. In addition, we would like to extent this methodology to other complex systems

like brain, environment, etc., to investigate the existence of similar scaling laws and phase

separations that will lead to a deeper and broader understanding of complex systems.
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Appendix A

Table 4.2: List of major crashes and bubbles for USA and JPN markets and their charac-
terization [74, 75, 76, 77, 78]. All the events are plotted in figures 3.8 and 3.9.

Important Stock Market Events
Sl. No Major crashes and bubbles Period Date Region Affected
1 Black Monday 19-10-1987 USA,JPN
2 Friday the 13th Mini Crash 13-10-1989 USA
3 Early 90s Recession 1990 USA
5 Mini Crash Due To Asian Financial Crisis 27-10-1997 USA
6 Lost Decade 2001-2010 JPN
7 9/11 Financial Crisis 11-09-2001 USA,JPN
8 Stock Market Downturn Of 2002 09-10-2002 JPN,USA
9 US Housing Bubble 2005-2007 USA
10 Lehman Brothers Crash 16-09-2008 USA,JPN
11 DJ Flash Crash 06-05-2010 USA,JPN
12 Tsunami/Fukushima 11-03-2011 JPN
13 August 2011 Stock Markets Fall 08-08-2011 USA,JPN
14 Chinese Black Monday and 2015-2016 Sell Off 24-08-2015 USA
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Appendix B

Table 4.3: List of all stocks of USA market (S&P-500) considered for the analysis. The first
column has the serial number, the second column has the abbreviation, the third column
has the full name of the stock, and the fourth column specifies the sector as given in the
S&P-500.

S.No. Code Company Name Sector Abbrv
1 CMCSA Comcast Corp. Consumer Discretionary CD
2 DIS The Walt Disney Company Consumer Discretionary CD
3 F Ford Motor Consumer Discretionary CD
4 GPC Genuine Parts Consumer Discretionary CD
5 GPS Gap Inc. Consumer Discretionary CD
6 GT Goodyear Tire & Rubber Consumer Discretionary CD
7 HAS Hasbro Inc. Consumer Discretionary CD
8 HD Home Depot Consumer Discretionary CD
9 HRB Block H&R Consumer Discretionary CD
10 IPG Interpublic Group Consumer Discretionary CD
11 JCP J. C. Penney Company, Inc. Consumer Discretionary CD
12 JWN Nordstrom Consumer Discretionary CD
13 LEG Leggett & Platt Consumer Discretionary CD
14 LEN Lennar Corp. Consumer Discretionary CD
15 LOW Lowe’s Cos. Consumer Discretionary CD
16 MAT Mattel Inc. Consumer Discretionary CD
17 MCD McDonald’s Corp. Consumer Discretionary CD
18 NKE Nike Consumer Discretionary CD
19 SHW Sherwin-Williams Consumer Discretionary CD
20 TGT Target Corp. Consumer Discretionary CD
21 VFC V.F. Corp. Consumer Discretionary CD
22 WHR Whirlpool Corp. Consumer Discretionary CD
23 ADM Archer-Daniels-Midland Co Consumer Staples CS
24 AVP Avon Products, Inc. Consumer Staples CS
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25 CAG Conagra Brands Consumer Staples CS
26 CL Colgate-Palmolive Consumer Staples CS
27 CPB Campbell Soup Consumer Staples CS
28 CVS CVS Health Consumer Staples CS
29 GIS General Mills Consumer Staples CS
30 HRL Hormel Foods Corp. Consumer Staples CS
31 HSY The Hershey Company Consumer Staples CS
32 K Kellogg Co. Consumer Staples CS
33 KMB Kimberly-Clark Consumer Staples CS
34 KO Coca-Cola Company (The) Consumer Staples CS
35 KR Kroger Co. Consumer Staples CS
36 MKC McCormick & Co. Consumer Staples CS
37 MO Altria Group Inc Consumer Staples CS
38 SYY Sysco Corp. Consumer Staples CS
39 TAP Molson Coors Brewing Company Consumer Staples CS
40 TSN Tyson Foods Consumer Staples CS
41 WMT Wal-Mart Stores Consumer Staples CS
42 APA Apache Corporation Energy EG
43 COP ConocoPhillips Energy EG
44 CVX Chevron Corp. Energy EG
45 ESV Ensco plc Energy EG
46 HAL Halliburton Co. Energy EG
47 HES Hess Corporation Energy EG
48 HP Helmerich & Payne Energy EG
49 MRO Marathon Oil Corp. Energy EG
50 MUR Murphy Oil Corporation Energy EG
51 NBL Noble Energy Inc Energy EG
52 NBR Nabors Industries Ltd. Energy EG
53 SLB Schlumberger Ltd. Energy EG
54 TSO Tesoro Corp Energy EG
55 VLO Valero Energy Energy EG
56 WMB Williams Cos. Energy EG
57 XOM Exxon Mobil Corp. Energy EG
58 AFL AFLAC Inc Financials FN
59 AIG American International Group,

Inc.
Financials FN

60 AON Aon plc Financials FN
61 AXP American Express Co Financials FN
62 BAC Bank of America Corp Financials FN
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63 BBT BB&T Corporation Financials FN
64 BEN Franklin Resources Financials FN
65 BK The Bank of New York Mellon

Corp.
Financials FN

66 C Citigroup Inc. Financials FN
67 CB Chubb Limited Financials FN
68 CINF Cincinnati Financial Financials FN
69 CMA Comerica Inc. Financials FN
70 EFX Equifax Inc. Financials FN
71 FHN First Horizon National Corpora-

tion
Financials FN

72 HBAN Huntington Bancshares Financials FN
73 HCN Welltower Inc. Financials FN
74 HST Host Hotels & Resorts, Inc. Financials FN
75 JPM JPMorgan Chase & Co. Financials FN
76 L Loews Corp. Financials FN
77 LM Legg Mason, Inc. Financials FN
78 LNC Lincoln National Financials FN
79 LUK Leucadia National Corp. Financials FN
80 MMC Marsh & McLennan Financials FN
81 MTB M&T Bank Corp. Financials FN
82 PSA Public Storage Financials FN
83 SLM SLM Corporation Financials FN
84 TMK Torchmark Corp. Financials FN
85 TRV The Travelers Companies Inc. Financials FN
86 USB U.S. Bancorp Financials FN
87 VNO Vornado Realty Trust Financials FN
88 WFC Wells Fargo Financials FN
89 WY Weyerhaeuser Corp. Financials FN
90 ZION Zions Bancorp Financials FN
91 ABT Abbott Laboratories Health Care HC
92 AET Aetna Inc Health Care HC
93 AMGN Amgen Inc Health Care HC
94 BAX Baxter International Inc. Health Care HC
95 BCR Bard (C.R.) Inc. Health Care HC
96 BDX Becton Dickinson Health Care HC
97 BMY Bristol-Myers Squibb Health Care HC
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98 CAH Cardinal Health Inc. Health Care HC
99 CI CIGNA Corp. Health Care HC
100 HUM Humana Inc. Health Care HC
101 JNJ Johnson & Johnson Health Care HC
102 LLY Lilly (Eli) & Co. Health Care HC
103 MDT Medtronic plc Health Care HC
104 MRK Merck & Co. Health Care HC
105 MYL Mylan N.V. Health Care HC
106 SYK Stryker Corp. Health Care HC
107 THC Tenet Healthcare Corp Health Care HC
108 TMO Thermo Fisher Scientific Health Care HC
109 UNH United Health Group Inc. Health Care HC
110 VAR Varian Medical Systems Health Care HC
111 AVY Avery Dennison Corp Industrials ID
112 BA Boeing Company Industrials ID
113 CAT Caterpillar Inc. Industrials ID
114 CMI Cummins Inc. Industrials ID
115 CSX CSX Corp. Industrials ID
116 CTAS Cintas Corporation Industrials ID
117 DE Deere & Co. Industrials ID
118 DHR Danaher Corp. Industrials ID
119 DNB The Dun & Bradstreet Corpora-

tion
Industrials ID

120 DOV Dover Corp. Industrials ID
121 EMR Emerson Electric Company Industrials ID
122 ETN Eaton Corporation Industrials ID
123 EXPD Expeditors International Industrials ID
124 FDX FedEx Corporation Industrials ID
125 FLS Flowserve Corporation Industrials ID
126 GD General Dynamics Industrials ID
127 GE General Electric Industrials ID
128 GLW Corning Inc. Industrials ID
129 GWW Grainger (W.W.) Inc. Industrials ID
130 HON Honeywell Int’l Inc. Industrials ID
131 IR Ingersoll-Rand PLC Industrials ID
132 ITW Illinois Tool Works Industrials ID
133 JEC Jacobs Engineering Group Industrials ID
134 LMT Lockheed Martin Corp. Industrials ID
135 LUV Southwest Airlines Industrials ID
136 MAS Masco Corp. Industrials ID
137 MMM 3M Company Industrials ID
138 ROK Rockwell Automation Inc. Industrials ID
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139 RTN Raytheon Co. Industrials ID
140 TXT Textron Inc. Industrials ID
141 UNP Union Pacific Industrials ID
142 UTX United Technologies Industrials ID
143 AAPL Apple Inc. Information Technology IT
144 ADI Analog Devices, Inc. Information Technology IT
145 ADP Automatic Data Processing Information Technology IT
146 AMAT Applied Materials Inc Information Technology IT
147 AMD Advanced Micro Devices Inc Information Technology IT
148 CA CA, Inc. Information Technology IT
149 HPQ HP Inc. Information Technology IT
150 HRS Harris Corporation Information Technology IT
151 IBM International Business Machines Information Technology IT
152 INTC Intel Corp. Information Technology IT
153 KLAC KLA-Tencor Corp. Information Technology IT
154 LRCX Lam Research Information Technology IT
155 MSI Motorola Solutions Inc. Information Technology IT
156 MU Micron Technology Information Technology IT
157 TSS Total System Services, Inc. Information Technology IT
158 TXN Texas Instruments Information Technology IT
159 WDC Western Digital Information Technology IT
160 XRX Xerox Corp. Information Technology IT
161 AA Alcoa Corporation Materials MT
162 APD Air Products & Chemicals Inc Materials MT
163 BLL Ball Corp Materials MT
164 BMS Bemis Company, Inc. Materials MT
165 CLF Cleveland-Cliffs Inc. Materials MT
166 DD DuPont Materials MT
167 ECL Ecolab Inc. Materials MT
168 FMC FMC Corporation Materials MT
169 IFF Intl Flavors & Fragrances Materials MT
170 IP International Paper Materials MT
171 NEM Newmont Mining Corporation Materials MT
172 PPG PPG Industries Materials MT
173 VMC Vulcan Materials Materials MT
174 CTL CenturyLink Inc Telecommunication Ser-

vices
TC

175 FTR Frontier Communications Corpo-
ration

Telecommunication Ser-
vices

TC

176 S Sprint Nextel Corp. Telecommunication Ser-
vices

TC
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177 T AT&T Inc Telecommunication Ser-
vices

TC

178 VZ Verizon Communications Telecommunication Ser-
vices

TC

179 AEP American Electric Power Utilities UT
180 CMS CMS Energy Utilities UT
181 CNP CenterPoint Energy Utilities UT
182 D Dominion Energy Utilities UT
183 DTE DTE Energy Co. Utilities UT
184 ED Consolidated Edison Utilities UT
185 EIX Edison Int’l Utilities UT
186 EQT EQT Corporation Utilities UT
187 ETR Entergy Corp. Utilities UT
188 EXC Exelon Corp. Utilities UT
189 NEE NextEra Energy Utilities UT
190 NI NiSource Inc. Utilities UT
191 PNW Pinnacle West Capital Utilities UT
192 SO Southern Co. Utilities UT
193 WEC Wec Energy Group Inc Utilities UT
194 XEL Xcel Energy Inc Utilities UT
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Table 4.4: List of all stocks of Japan market (Nikkei-225) considered for the analysis. The
first column has the serial number, the second column has the abbreviation, the third column
has the full name of the stock, and the fourth column specifies the sector as given in the
Nikkei-225.

S.No. Code Company Name Sector Abbrv
1 S-8801 MITSUI FUDOSAN CO., LTD. Capital Goods CG
2 S-8802 MITSUBISHI ESTATE CO., LTD. Capital Goods CG
3 S-8804 TOKYO TATEMONO CO., LTD. Capital Goods CG
4 S-8830 SUMITOMO REALTY & DEVELOP-

MENT CO., LTD.
Capital Goods CG

5 S-7003 MITSUI ENG. & SHIPBUILD. CO.,
LTD.

Capital Goods CG

6 S-7012 KAWASAKI HEAVY IND., LTD. Capital Goods CG
7 S-9202 ANA HOLDINGS INC. Capital Goods CG
8 S-1801 TAISEI CORP. Capital Goods CG
9 S-1802 OBAYASHI CORP. Capital Goods CG
10 S-1803 SHIMIZU CORP. Capital Goods CG
11 S-1808 HASEKO CORP. Capital Goods CG
12 S-1812 KAJIMA CORP. Capital Goods CG
13 S-1925 DAIWA HOUSE IND. CO., LTD. Capital Goods CG
14 S-1928 SEKISUI HOUSE, LTD. Capital Goods CG
15 S-1963 JGC CORP. Capital Goods CG
16 S-5631 THE JAPAN STEEL WORKS, LTD. Capital Goods CG
17 S-6103 OKUMA CORP. Capital Goods CG
18 S-6113 AMADA HOLDINGS CO., LTD. Capital Goods CG
19 S-6301 KOMATSU LTD. Capital Goods CG
20 S-6302 SUMITOMO HEAVY IND., LTD. Capital Goods CG
21 S-6305 HITACHI CONST. MACH. CO., LTD. Capital Goods CG
22 S-6326 KUBOTA CORP. Capital Goods CG
23 S-6361 EBARA CORP. Capital Goods CG
24 S-6366 CHIYODA CORP. Capital Goods CG
25 S-6367 DAIKIN INDUSTRIES, LTD. Capital Goods CG
26 S-6471 NSK LTD. Capital Goods CG
27 S-6472 NTN CORP. Capital Goods CG
28 S-6473 JTEKT CORP. Capital Goods CG
29 S-7004 HITACHI ZOSEN CORP. Capital Goods CG
30 S-7011 MITSUBISHI HEAVY IND., LTD. Capital Goods CG
31 S-7013 IHI CORP. Capital Goods CG
32 S-7911 TOPPAN PRINTING CO., LTD. Capital Goods CG
33 S-7912 DAI NIPPON PRINTING CO., LTD. Capital Goods CG
34 S-7951 YAMAHA CORP. Capital Goods CG
35 S-1332 NIPPON SUISAN KAISHA, LTD. Consumer Goods CN
36 S-2002 NISSHIN SEIFUN GROUP INC. Consumer Goods CN
37 S-2282 NH FOODS LTD. Consumer Goods CN
38 S-2501 SAPPORO HOLDINGS LTD. Consumer Goods CN
39 S-2502 ASAHI GROUP HOLDINGS, LTD. Consumer Goods CN
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40 S-2503 KIRIN HOLDINGS CO., LTD. Consumer Goods CN
41 S-2531 TAKARA HOLDINGS INC. Consumer Goods CN
42 S-2801 KIKKOMAN CORP. Consumer Goods CN
43 S-2802 AJINOMOTO CO., INC. Consumer Goods CN
44 S-2871 NICHIREI CORP. Consumer Goods CN
45 S-8233 TAKASHIMAYA CO., LTD. Consumer Goods CN
46 S-8252 MARUI GROUP CO., LTD. Consumer Goods CN
47 S-8267 AEON CO., LTD. Consumer Goods CN
48 S-9602 TOHO CO., LTD Consumer Goods CN
49 S-9681 TOKYO DOME CORP. Consumer Goods CN
50 S-9735 SECOM CO., LTD. Consumer Goods CN
51 S-8331 THE CHIBA BANK, LTD. Financials FN
52 S-8355 THE SHIZUOKA BANK, LTD. Financials FN
53 S-8253 CREDIT SAISON CO., LTD. Financials FN
54 S-8601 DAIWA SECURITIES GROUP

INC.
Financials FN

55 S-8604 NOMURA HOLDINGS, INC. Financials FN
56 S-3405 KURARAY CO., LTD. Materials MT
57 S-3407 ASAHI KASEI CORP. Materials MT
58 S-4004 SHOWA DENKO K.K. Materials MT
59 S-4005 SUMITOMO CHEMICAL CO.,

LTD.
Materials MT

60 S-4021 NISSAN CHEMICAL IND.,
LTD.

Materials MT

61 S-4042 TOSOH CORP. Materials MT
62 S-4043 TOKUYAMA CORP. Materials MT
63 S-4061 DENKA CO., LTD. Materials MT
64 S-4063 SHIN-ETSU CHEMICAL CO.,

LTD.
Materials MT

65 S-4183 MITSUI CHEMICALS, INC. Materials MT
66 S-4208 UBE INDUSTRIES, LTD. Materials MT
67 S-4272 NIPPON KAYAKU CO., LTD. Materials MT
68 S-4452 KAO CORP. Materials MT
69 S-4901 FUJIFILM HOLDINGS CORP. Materials MT
70 S-4911 SHISEIDO CO., LTD. Materials MT
71 S-6988 NITTO DENKO CORP. Materials MT
72 S-5002 SHOWA SHELL SEKIYU K.K. Materials MT
73 S-5201 ASAHI GLASS CO., LTD. Materials MT
74 S-5202 NIPPON SHEET GLASS CO.,

LTD.
Materials MT

75 S-5214 NIPPON ELECTRIC GLASS
CO., LTD.

Materials MT
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76 S-5232 SUMITOMO OSAKA CEMENT
CO., LTD.

Materials MT

77 S-5233 TAIHEIYO CEMENT CORP. Materials MT
78 S-5301 TOKAI CARBON CO., LTD. Materials MT
79 S-5332 TOTO LTD. Materials MT
80 S-5333 NGK INSULATORS, LTD. Materials MT
81 S-5706 MITSUI MINING & SMELTING

CO.
Materials MT

82 S-5707 TOHO ZINC CO., LTD. Materials MT
83 S-5711 MITSUBISHI MATERIALS

CORP.
Materials MT

84 S-5713 SUMITOMO METAL MINING
CO., LTD.

Materials MT

85 S-5714 DOWA HOLDINGS CO., LTD. Materials MT
86 S-5715 FURUKAWA CO., LTD. Materials MT
87 S-5801 FURUKAWA ELECTRIC CO.,

LTD.
Materials MT

88 S-5802 SUMITOMO ELECTRIC IND.,
LTD.

Materials MT

89 S-5803 FUJIKURA LTD. Materials MT
90 S-5901 TOYO SEIKAN GROUP HOLD-

INGS, LTD.
Materials MT

91 S-3865 HOKUETSU KISHU PAPER
CO., LTD.

Materials MT

92 S-3861 OJI HOLDINGS CORP. Materials MT
93 S-5101 THE YOKOHAMA RUBBER

CO., LTD.
Materials MT

94 S-5108 BRIDGESTONE CORP. Materials MT
95 S-5401 NIPPON STEEL & SUMITOMO

METAL CORP.
Materials MT

96 S-5406 KOBE STEEL, LTD. Materials MT
97 S-5541 PACIFIC METALS CO., LTD. Materials MT
98 S-3101 TOYOBO CO., LTD. Materials MT
99 S-3103 UNITIKA, LTD. Materials MT
100 S-3401 TEIJIN LTD. Materials MT
101 S-3402 TORAY INDUSTRIES, INC. Materials MT
102 S-8001 ITOCHU CORP. Materials MT
103 S-8002 MARUBENI CORP. Materials MT
104 S-8015 TOYOTA TSUSHO CORP. Materials MT
105 S-8031 MITSUI & CO., LTD. Materials MT
106 S-8053 SUMITOMO CORP. Materials MT
107 S-8058 MITSUBISHI CORP. Materials MT
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108 S-4151 KYOWA HAKKO KIRIN CO., LTD. Pharmaceuticals PH
109 S-4503 ASTELLAS PHARMA INC. Pharmaceuticals PH
110 S-4506 SUMITOMO DAINIPPON PHARMA

CO., LTD.
Pharmaceuticals PH

111 S-4507 SHIONOGI & CO., LTD. Pharmaceuticals PH
112 S-4519 CHUGAI PHARMACEUTICAL CO.,

LTD.
Pharmaceuticals PH

113 S-4523 EISAI CO., LTD. Pharmaceuticals PH
114 S-7201 NISSAN MOTOR CO., LTD. Information Technology IT
115 S-7202 ISUZU MOTORS LTD. Information Technology IT
116 S-7205 HINO MOTORS, LTD. Information Technology IT
117 S-7261 MAZDA MOTOR CORP. Information Technology IT
118 S-7267 HONDA MOTOR CO., LTD. Information Technology IT
119 S-7270 SUBARU CORP. Information Technology IT
120 S-7272 YAMAHA MOTOR CO., LTD. Information Technology IT
121 S-3105 NISSHINBO HOLDINGS INC. Information Technology IT
122 S-6479 MINEBEA MITSUMI INC. Information Technology IT
123 S-6501 HITACHI, LTD. Information Technology IT
124 S-6502 TOSHIBA CORP. Information Technology IT
125 S-6503 MITSUBISHI ELECTRIC CORP. Information Technology IT
126 S-6504 FUJI ELECTRIC CO., LTD. Information Technology IT
127 S-6506 YASKAWA ELECTRIC CORP. Information Technology IT
128 S-6508 MEIDENSHA CORP. Information Technology IT
129 S-6701 NEC CORP. Information Technology IT
130 S-6702 FUJITSU LTD. Information Technology IT
131 S-6703 OKI ELECTRIC IND. CO., LTD. Information Technology IT
132 S-6752 PANASONIC CORP. Information Technology IT
133 S-6758 SONY CORP. Information Technology IT
134 S-6762 TDK CORP. Information Technology IT
135 S-6770 ALPS ELECTRIC CO., LTD. Information Technology IT
136 S-6773 PIONEER CORP. Information Technology IT
137 S-6841 YOKOGAWA ELECTRIC CORP. Information Technology IT
138 S-6902 DENSO CORP. Information Technology IT
139 S-6952 CASIO COMPUTER CO., LTD. Information Technology IT
140 S-6954 FANUC CORP. Information Technology IT
141 S-6971 KYOCERA CORP. Information Technology IT
142 S-6976 TAIYO YUDEN CO., LTD. Information Technology IT
143 S-7752 RICOH CO., LTD. Information Technology IT
144 S-8035 TOKYO ELECTRON LTD. Information Technology IT
145 S-4543 TERUMO CORP. Information Technology IT
146 S-4902 KONICA MINOLTA, INC. Information Technology IT
147 S-7731 NIKON CORP. Information Technology IT
148 S-7733 OLYMPUS CORP. Information Technology IT
149 S-7762 CITIZEN WATCH CO., LTD. Information Technology IT
150 S-9501 TOKYO ELECTRIC POWER COM-

PANY HOLDINGS, I
Transportation & Utilities TU
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151 S-9502 CHUBU ELECTRIC POWER CO.,
INC.

Transportation & Utilities TU

152 S-9503 THE KANSAI ELECTRIC POWER
CO., INC.

Transportation & Utilities TU

153 S-9531 TOKYO GAS CO., LTD. Transportation & Utilities TU
154 S-9532 OSAKA GAS CO., LTD. Transportation & Utilities TU
155 S-9062 NIPPON EXPRESS CO., LTD. Transportation & Utilities TU
156 S-9064 YAMATO HOLDINGS CO., LTD. Transportation & Utilities TU
157 S-9101 NIPPON YUSEN K.K. Transportation & Utilities TU
158 S-9104 MITSUI O.S.K.LINES, LTD. Transportation & Utilities TU
159 S-9107 KAWASAKI KISEN KAISHA, LTD. Transportation & Utilities TU
160 S-9001 TOBU RAILWAY CO., LTD. Transportation & Utilities TU
161 S-9005 TOKYU CORP. Transportation & Utilities TU
162 S-9007 ODAKYU ELECTRIC RAILWAY

CO., LTD.
Transportation & Utilities TU

163 S-9008 KEIO CORP. Transportation & Utilities TU
164 S-9009 KEISEI ELECTRIC RAILWAY CO.,

LTD.
Transportation & Utilities TU

165 S-9301 MITSUBISHI LOGISTICS CORP. Transportation & Utilities TU
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