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Abstract 

 

The movement toward large-scale screening studies aimed at understanding and predicting 

the behaviour of organocatalysts poses significant challenges in computational chemistry. 

The primary bottleneck in studying these systems using traditional techniques rooted in 

density functional theory is the effort required to locate the computationally expensive 

transition states (TS). As such, it would be ideal to establish a suitable theoretical model 

capable of quickly and accurately predicting this critically important data with a minimal 

computational cost. Historically, concepts based on Linear Scaling Relationships (LSRs), 

such as the Bell-Evans-Polanyi (BEP) principle that relates the activation barrier and enthalpy 

of analogous reactions, provided practical, simple to use guidelines for estimating transition 

states. Here, we seek to establish a quantitatively more accurate relationship beyond simple 

linear regressions and leverage machine learning to estimate the TS activation barriers. To 

accomplish this, we directly optimize geometries and establish the energies associated with 

key intermediates using a variety of inexpensive theoretical levels, such as semiempirical 

methods. The energies are then used to train machine learning (ML) models by applying a 

non-linear regression, which provides an approximation of the TS energies at the target DFT 

level directly from the energies of intermediates computed using the aforementioned 

methods. In essence, this procedure is an analogue to the BEP principle, which, rather than 

relying on LSRs, uses non-linear regression and machine learning to draw connections 

between the structures and energies of intermediates with the associated activation barriers. 

The energetic data obtained using this ML framework also extends beyond simple BEP type 

relationships and could be used to accurately predict targeted chemical properties (e.g., 

stereoselectivity) with minimal computation cost.
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1. Introduction 

           A significant portion of chemical reactions involved in industry and academia rely on 

catalysts in order to ensure better yield and selectivity of products. Several tools have been 

developed to improve on random search procedures, including combinatorial chemistry1-3, 

high-throughput screening4-6 and computational methods7-10 have recently been developed 

to accelerate the identification of efficient catalysts.  

 

Traditional approaches to computational-based catalyst screening generally involved 

generation of free energy profiles or, more recently, 

microkinetic reaction modelling using transition-state 

theory.11-12 In principle, all of the necessary 

information for such detailed modelling, including the 

energies of all catalytic cycle intermediates and 

transition states, can be obtained from density 

functional theory (DFT) calculations. Furthermore, 

computational quantum chemistry has seen 

considerable developments over the past and one can now obtain crucial mechanistic 

insights into a multitude of organocatalyzed reactions through applications of modern density 

functional theory (DFT) methods13-15. However, the rational design of organo-catalysts poses 

a significant challenge and potential catalyst design still relies extensively upon experimental 

screening techniques. Despite this, density functional theory (DFT) has been successfully 

applied to identify reactivity patterns for several catalytic reactions. The primary bottleneck 

that prevented its widespread use was the significant amount of time, effort and expertise 

needed to accurately compute the transition state structures using DFT. Thus, to date 

experimentally testing potential catalysts has proved to be the more efficient strategy over 

large scale computational screening. Following Moore’s law, which defines the exponential 

increase in computational processor speed over time16, in silico approaches have become 

increasingly popular and accessible and are now routinely employed in catalysis.  The 

rational design of organo-catalysts has subsequently emerged as an important area of 

research with the aim of identifying novel catalysts with minimal computational resources. A 

number of strategies such as Linear Scaling Relationships (LSRs) can aid in reducing the 

computational burden and bring about a paradigm change. These models assume linear 

correlations between two reaction properties such as activation energies, relative free 
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ΔH 

Ea 

energies, reaction rate, equilibrium constant and bond distance, including the Sabatier’s 

rule17, Bell-Evans-Polanyi (BEP) principle18a-d, and the Hammett equation19a-c.  

 

     

 

Figure 1. Schematic Representation highlighting the linear relationship for the BEP Principle 

(TS- Transition State, R- Reactant complex, P- Product complex) 

 

The BEP correlations were initially formulated by Brønsted, Bell, Evans and Polanyi based 

on experimental observations and theoretical studies in the context of homogeneous 

systems18a-d.  

(1) 

The BEP equation (Eqn.1) states that based on the particular type of catalytic reaction the 

change in activation energy of the reaction, Ea, can be expressed as a linear function of the 

corresponding change of reaction energy, ΔH, for different reaction intermediates (Fig. 1). 

The activation energy which is a kinetic parameter can be determined directly from the 

reaction energy, which is a thermodynamic parameter20-21. For several years, the primary use 

of these correlations was to compare the reactivities of molecules in a homologous series. It 

was not until much later with the work of Klein and co-workers22, among others, that these 

correlations were successfully applied in the kinetic modelling of homogeneous chemistries. 

Following this ground-breaking work, BEP type correlations were also extensively applied to 

model heterogeneous catalytic reactions20. The simple yet elegant concept of the BEP 

principle also extends to the qualitative understanding of Linear Free Energy Relationships 

(LFERs), volcano plots23, and Transition State Scaling (TSS)11 relations among others. Such 

tools have been widely applied to investigate catalytic activities across homogeneous 

systems. 
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1.1 Machine Learning in Catalysis 

In Chemistry, patterns are seen everywhere spanning from solid crystal structures to 

phospholipid chains or even complex combinations of functional groups24. These patterns 

largely govern the underlying properties of molecules and materials. Machine Learning (ML) 

has inevitably proven to be one of the most powerful strategies when it comes to big data 

analytics and data mining approaches across industry and academic research. Until a decade 

ago, hardly a few hundred studies on the applications of ML in Chemistry were reported. In 

the review by Cova and Pais et al.25 It has been reported that in 2018, about 8000 articles in 

the Web of Science database comprised of ML keywords, which implies an exponential 

increase of 35% within a decade26. The quality and quantity of data generated from 

experiments and simulations encompass a lot of unstructured information yet to be explored 

(Fig. 3). This has been the primary backbone of the new data-driven paradigm, developing a 

bridge between theory, experiment, computation, and simulation.  

 

Machine Learning broadly describes a set of algorithms that are committed to identify 

and learn patterns directly from data and are capable of making fast and accurate predictions 

without being given explicit instructions31,34. There are three different types of ML namely, 

supervised, unsupervised and reinforcement learning25. Supervised learning aims at 

identifying relations between the data and a target variable (e.g. chemical property) that we 

want to predict. In this algorithm, the model is constructed from ‘training’ molecules with 

known chemical properties that allow us to make predictions on an unseen dataset. The 

regression model is used in predicting continuous properties and establishes a relationship 

between a dependent variable (the target chemical property) and one or more independent 

variables (molecular descriptors)33. 

In the realm of homogeneous catalysis, the linear regression methods are widely used to 

establish a quantitative relation between the structural descriptors and catalytic activities and 

other properties27-31. Most often, a linear fitting model is characterized by a linear relationship 

between the descriptor and target properties (Fig. 2)33. For instance, multiple linear 

regression algorithms have been used in the prediction of catalytic activity of several 

analogues of pyridine metal complexes.  
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Figure 2. Denmark et. al. demonstrated the application of ML in predicting high-selectivity reactions from 

moderate- to low-selectivity reactions using an in silico library of catalysts27. 

 

There also have been studies on cross-coupling reactions. Lilenfield and Corminboeuf have 

predicted the energy of the oxidative addition step for organometallic complexes using kernel 

ridge regression algorithms32. Recently, Sunoj et al. accurately predicted the products from 

regioselective difluorination of alkenes using neural networks35. Sigman and co-workers have 

established a data-driven linear regression protocol in a set of enantioselective catalytic 

reactions36. 

Figure 3. The clustering heatmap depicts the relative counts of ML outcomes in each area of Chemistry 

(2008-2019). The colour scheme represents co-occurrences with 1(red) being the highest and 0(yellow) 

being the lowest relative contribution24. 

 

Despite the considerable amount of progress in applying ML models to chemical problems, 

the majority of the aforementioned contributions tackled issues surrounding homogeneous 

and heterogeneous catalysis, while ML applications to organocatalytic systems remain quite 

unexplored. 
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1.2 The Chemical System 

 

       The immense practical applicability of synthetic chiral molecules in single-enantiomer 

pharmaceutical compounds, optoelectronic devices, as polymeric components with novel 

properties and as probes to study biological systems, has made asymmetric catalysis a 

prominent area of investigation. It was generally accepted that transition metal complexes 

and enzymes were the two main classes of very efficient asymmetric catalysts. Synthetic 

chemists have rarely used small organic molecules as catalysts throughout the last century, 

even though some of the very first asymmetric catalysts synthesized were purely organic 

molecules14.  

 

A transition occurred during the last decade when several studies confirmed that relatively 

simple organic molecules can be highly efficient and remarkable enantioselective catalysts 

for diverse fundamentally important chemical transformations37. This rediscovery had 

subsequently led to an explosive scientific advancement in organo-catalysis. As the 

realization dawned that organic molecules not only have the flexibility of manipulation and a 

“green” advantage but also could be very efficient catalysts, asymmetric organo-catalysis 

began to parallel the enormous advancements of enantioselective transition metal catalysis. 

Additionally, catalytic asymmetric reactions play an integral role in modern organic synthesis. 

They allow efficient access to a variety of important enantiomerically rich molecules relevant 

to both industry and academia. This class of reactions can potentially yield large quantities of 

optically active products with a very high efficiency using meagre amounts of chiral catalysts. 

Consequently, this area of research has great economic potential and is becoming 

increasingly attractive.  

In the realm of organo-catalysis asymmetric allylations has received sufficient attention from 

the chemical community in recent decades, only limited attention had been paid to catalytic 

asymmetric propargylation compared to the tremendous advances in asymmetric catalysis. 

Optically active homopropargylic alcohols are crucial chiral building blocks in organic 

synthesis due to the versatility of the acetylene unit. The asymmetric propargylation of 

aldehydes provides direct access to this class of compounds. However, these reactions often 

encounter difficulties associated with low regioselectivity and/or reactivity40-41. 

Allenyltrichlorosilane is a potential candidate as a nucleophile partner in such reactions 

because of its mildness, regiospecificity and low toxicity. 
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Scheme 1. Catalytic Cycle for the Bipyridine N-Oxide Catalysed Propargylation of Aromatic Aldehydes39 

 

The asymmetric propargylation reaction here typically constitutes the conversion of an 

aromatic aldehyde (e.g. substituted benzaldehydes) to a chiral homopropargylic alcohol13,40. 

Several reports exist with experimental studies based on the use of axially chiral N, N’- 

dioxides in Lewis base promoted allylations, however, for propargylations it proves to be 

much more challenging.  It was only in 2013, that Takaneka and co-workers developed a 

helical bipyridine N-oxide catalyst that yields the alcohol with sufficient enantioselectivity 

(Scheme 1)38. There has been significant work illustrating the reaction mechanism and origin 

of stereoselectivity of these reactions39-41. When the reaction is carried out in solvents like 

dichloromethane (DCM), the stereo controlling step proceeds with a closed, chair-like 

transition state hexacoordinating a silicon (Si) centered intermediate13. 
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2. Objectives 

 

The purpose of this work is to demonstrate how ML models can be used to estimate the 

activation barriers of an organocatalytic reaction. The barrier heights are key to determining 

the product selectivity in a catalytic reaction. The database is usually inspired by experimental 

investigations and to this end, we selected the catalysts for the asymmetric propargylation 

reaction. Specifically, we trained and applied the Δ-ML approach59 using the relative 

electronic energy and molecular geometries associated with reactant and product side 

intermediates corresponding to each catalyst in the database. The structures and relative 

electronic energies (ΔE) of all the reactant and product intermediates were computed using 

various inexpensive theoretical methods. The activation barriers in terms of relative 

Enthalpies (ΔHǂ) and Free energies (ΔGǂ) were to be obtained from a pre-compiled database 

computed at the DFT level with a large basis set. The differences between the Input and 

Target energetic values were then fed into the Δ-ML algorithm59. The overall machine 

learning (ML) workflow is summarized in Scheme 2. Even though kinetic profiles are crucial 

to obtaining a complete understanding of catalytic performance, here we rely on a simplified 

thermodynamic picture coupled with the concept of Bell-Evans-Polanyi Principle. Precisely, 

the ultimate goal is to move to very inexpensive methods without a total loss of accuracy and 

identify the best-suited framework to accurately predict the targeted chemical properties. 

 

Scheme 2. The Machine Learning Workflow 
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3. Methods 

3.1 Database Construction 

 

Inspired from experimental results on asymmetric allylations, Wheeler and co-workers13 

established a computational screening method to the design asymmetric propargylation 

catalysts40-41.  

 

Scheme 3. Stereocontrolling step in the Asymmetric Propargylation of 

Benzaldehyde using Allenyltrichlorosilane 13 

  

 

          Figure 4. Set of Catalysts used for Constructing the Database13 



- 9 - 
 

 

An asymmetric propargylation reaction scheme was studied (Scheme 3), using a virtual 

library of 59 catalysts based on the bipyridine N, N’- dioxide scaffold (Fig.4) using 

allenyltrichlorosilane41. In this paper, using DFT based methods, enantiomeric excess (ee) 

values were predicted for all the 59 potential catalysts13. 

The six backbones represent catalysts based on different classes of bipyridine-N, N-dioxide 

derivatives. The parent scaffold (1), is the (S)-2,2’-bipyridine N, N’-dioxide with substituents 

(X) at 6,6’-positions. Catalysts 2 and 3 consist of Ph and tBu substituents at the 5,5-positions 

respectively. Scaffold 4 is an (S)-8,8’-disubstituted 2,2’-biquinoline N, N’ -dioxide, 5 is an (S)-

1,1’ -disubstituted 3,3’ -biisoquinoline N, N-dioxide and 6 is an (S)-3,3’ -disubstituted 1,1’ -

biisoquinoline N,N’ -dioxide. Most of these catalysts were predicted to be synthetically viable, 

however only certain catalysts based on backbones 1,4 and 6 had been previously used for 

asymmetric allylations and 4a for propargylation reactions in practice. Thus, it was an 

interesting case to look into the catalytic activity of these catalyst derivatives. 

 

 

Figure 5. The five ligand arrangements for C2-symmetric bidentate Lewis base catalyzed alkylation reactions 

(Nu is the alkyl nucleophile)13 

 

Subsequently, we shifted to computing intermediates directly as it is relatively much simpler 

and computationally less expensive. We constructed a final database spanning across 62 

catalysts based on the bipyridine N, N’-dioxide scaffold. The combination of 10 substituents 



- 10 - 
 

(Fig.4), 5 ligand configurations and enantiomers (Fig.5) gave a total of 576 structures to 

construct the entire database. The delta learning approach simplifies the training process and 

involves lower computational cost. So instead of just the absolute values, all the energies of 

TS and intermediates respectively (ΔE/ ΔHǂ/ ΔGǂ) were computed concerning those of the 

starting reactants (Scheme 3). The relative energies at both the baseline (DFT, semi-

empirical) and target level (DFT) were fed as inputs to the ML algorithm. 

 

3.2 Computational Details 

 

3.2.1 Computation of Target Properties 

 

The stereoselectivity of asymmetric reactions 

arises from the difference in relative rates of 

product formation, and the number of 

accessible TS structures is often huge. So, to 

aid in the construction and optimization of all 

TS geometries, we used AARON, which is an 

automated TS search procedure, developed 

by the Wheeler group42.       

                      

        Figure 6. Schematic representation of a  

         TS structure computed at B97D/3-2 

 

AARON (An Automated Reaction Optimizer for New catalysts), is a computational toolkit, 

that can locate multiple conformations and configurations of TS structures, and 

simultaneously screen potential catalysts and substrates for organocatalytic as well as 

organometallic systems42.   

AARON works on a text-based interface with Gaussian 0943, and performs a tiered series of 

constrained and unconstrained TS optimizations, based on a user-defined template (Scheme 

4). A representative TS structure computed at B97D/3-21G using AARON, is shown in Fig. 

6. 



- 11 - 
 

 

Scheme 4. The overall six-step AARON workflow 
 

 

The AARON toolkit extracts information from a text-based input file, which contains 

information about the location of the template library and keywords specifying the reaction 

conditions (temperature, solvent, etc.) as well as the level of theory. In the input file, specific 

ligands/ catalysts/ substrates may also be specified42. 

AARON constructs the initial structures corresponding to each catalyst/substrate combination 

and locates all possible TS structures. The overall protocol is summarized in Scheme 4. 

 

All TS computations were carried out at the B97D/ TZV (2p,2d) level of theory44-47 and density 

fitting techniques. The solvent included was dichloromethane (DCM) using the polarizable 

continuum model48 (PCM) and harmonic vibrational frequency analysis was performed to 

confirm the transition states. The enantiomeric excess (ee) values for each catalyst were 

computed using the Boltzmann weighted average of relative enthalpy barriers (ΔHǂ) and free 

energies (ΔGǂ) of thermodynamically accessible TS at 195 K temperature (Ei represents the 

relative energies of the R and S conformers respectively; R is the universal gas constant; T is 

the absolute temperature in Kelvin). 
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(2) 

 

 

(3) 

 

 

3.2.2 Computation of Baseline Properties 

 

Corresponding to each catalyst structure both the reactant and product side 

intermediate complexes were computed from the respective transition states by considering 

relative displacements along the C3-C15/16 bond between the attacking nucleophile and 

carbonyl centre of benzaldehyde.  

 

Figure 7. Schematic representation of reactant and product side intermediates computed at 

B97D/3-21G, characterized by a hexacoordinate and pentacoordinate Si centre respectively. 

 

All geometry optimizations and energy computations for the intermediates were done using 

the baseline theoretical methods at B97D/ 3-21G (DFT)44-47, HF-3c49 and PM6-D3 (semi 

empirical)50-51. The electronic energies of all 576 reactant/product intermediates were 

computed in the gas phase with respect to that of the separate reactants (ΔE). The DFT 

computations were performed in Gaussian43 program package, HF-3c and PM6-D3 were 

done in Orca52 and Mopac53 respectively. 
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3.3 Training Set Selection 

In order to ensure efficient training of the machine learning model, a representative 

subset of the database needs to be chosen to compute the target property. A widely used 

approach for selecting the training set is to perform farthest point sampling which ensures the 

selected data points are as diverse as possible. However, this method requires collective 

variables that are not straightforward to obtain especially when the dataset constitutes many 

different types of molecules. Also, farthest point sampling is a computationally demanding 

step. Screening 505 optimal molecules within 576 potential candidates typically would require 

576C505 = 1.27 x 1092 operations. 

Another small subset of the database has 

to be categorized as the test set, which was 

used to validate the trained learning 

models. So, we employed a more intuitive 

approach to select the training and test sets 

based on the specific target property. A 

total of 576 molecules in the database was 

divided into the training and test set. 

 

         Figure 8. Precomputed distribution of Relative 

Energies for selected Backbones among the Training Set 

 

Based on earlier results involving transition states, it was seen that including at least one 

conformer/stereoisomer corresponding to the 62 different catalyst/backbone combinations, 

for the training, the mean absolute error (MAE) on the test set was significantly reduced 

compared to those when the ML model is made to predict on a completely new set of species. 

The latter would be more like extrapolation for which regression models do not perform 

satisfactorily. Preferably, all substituents and possible conformers for each type of the 6 

catalyst backbones, should appear uniformly in the training set (Fig. 8). Also, stereoisomers 

corresponding to each TS conformer were accounted for while selecting the test set. These 
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principles were applied to selectively choose the training and test sets and subsequently 505 

molecules were used to train the machine learning models.  

 

Figure 9. Test set selected to validate the ML models towards the prediction of stereoselectivity (ee values). 

Eight possible substituent/backbone combinations were included. 

In order to validate the ML model towards the 

estimation of stereoselectivity, separate training, and 

test sets were chosen. A total of 71 structures spanning 

across 8 different catalyst/backbone/substituent 

conformations and well-distributed values of reported 

enantiomeric excess13 values (Fig. 10) were included 

in the Test set.                                               

          Figure 10.  Previously reported ee values  

             based on relative electronic energies13 

Here, the complete set of conformers were included for each catalyst (in contrast to the 

previous case) such that the ML model does not see a similarly structured catalyst in the 

training dataset. The Δ-learning was performed on the differences between computed 

reactant intermediates (Baseline: B97D/3-21G) and the transition states (Target: B97D/TZV). 

The enantiomeric excess (ee) values were calculated using Eqn.3, via the Boltzmann 

weighted average at T=195 K, based on the relative enthalpy and free energy barriers (ΔHǂ/ 

ΔGǂ) of thermodynamically accessible TS structures.  
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3.4 Theoretical Details 

 3.4.1 Kernel Ridge Regression (KRR) 

In many real situations, the 

correlation among constituting 

data points cannot be 

described by a linear function 

in the input space. Learning 

non-linear relationships 

between data points is a 

fundamental problem in 

machine learning.                                                         

 

                                                                                           Figure 11. A non-linear polynomial transformation         

                                                                                          yields the optimal separating hyperplane 

 

For such cases, a linear ridge regression model may lead to a poor prediction and a common 

approach is to map samples from this space to a higher dimensional space using a nonlinear 

transformation (Fig.11), and then learn the model in the higher dimensional space where the 

problem becomes linearly separable54. However, explicitly calculating each of the polynomial 

combinations in each space coordinate may incur a very high and impractical computation 

cost. The Kernel trick is a widely used state-of-the-art approach to conduct this learning 

procedure implicitly by defining a kernel function which represents the similarity of samples 

in the high dimensional space, through a scalar dot product54 (where, k(x, x’) is the kernel 

function, I is the identity matrix, λ is the regression term, α is the co-efficient matrix and ΔE is 

the relative energy difference, respectively). 

  

(4) 

(5) 

(6)                                            
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This method combined with normal ridge regression yields a simplified approach of finding 

an optimal separating hyperplane in the higher dimensional space, without any explicit 

calculation or even knowing anything about the actual transformation. 

  3.4.2 Molecular Representations 

To establish an effective machine learning framework to learn the energetic data from 

the structure of the molecular species, we numerically represent the relative energies (ΔE/ 

ΔHǂ / ΔGǂ) by vectors of constant size. These vector representations should in principle, 

encode the atomic composition and structural information of a given molecule. Herein, the 

machine learning models were trained using three different representations: Coulomb Matrix 

(CM)60, Bag of Bonds (BoB)57 and Bags of London and Axillrod-Teller-Muto potentials 

(SLATM)55. 

The Coulomb Matrix (CM) is one of the simplest molecular representations. First proposed 

in the seminal work60 by Von Lilienfeld et al., this representation includes information about 

the constituent atoms as well as their connectivity. This representation has been widely used 

in several QM/ML models56-58 for gas-phase molecules. The elements of this square atom-

by-atom matrix are computed using the following expression: 

                                            

(7) 

The CM is inspired by the fact that in principle, molecular properties can be estimated from 

the Schrödinger equation, taking the Hamiltonian operator as its input. The off-diagonal 

elements correspond to the Coulomb repulsion between each pair of atoms in a given 

molecule while the diagonal elements approximate the electronic potential energy of free 

atoms through a polynomial fit (ZI, ZJ are the nuclear charges; RI, RJ are the distance vectors). 

The molecular representation should be unique and the CM is invariant to rotation and 

translation but not atomic permutations. There are several different ways to sort the order of 

atoms in a coulomb matrix. One common way is by using the eigenvalue spectrum of the CM 

and permuting the matrix to compute the norm of each row and column and further reordering 

the matrix of eigenvalues in descending order.  
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The Bag of Bonds (BoB) representation was formulated by Hansen et al. in 201557. It 

originates from the “bag of words” featurization commonly used in natural language 

processing. Bag of bonds follows an approach by having “bags” that are grouped based on 

different types of bonds (e.g. Si-C, N-O, C-O, C-H, etc).  

The chemical bonds are uniquely represented by the atoms involved and the order of the 

bond (single, double, triple). Moreover, each “bag” is essentially a vector where each element 

is computed as  

                                                      (8)                                  

 

These bag vectors between molecules are constrained to have a fixed length by padding 

them with zeros. The entries in each bag vector are sorted in a descending order based on 

magnitudes to ensure a unique representation (Fig.12). Even though BoB accounts for the 

collective effects beyond pairwise potentials, important higher-order information (e.g. angular 

terms) is missing. 

 

 

Figure 12. BoB representation scheme (a) 3D structure of ethanol (CH3CH2OH) (b) nuclear charges for each 

CM entry. (c) Different CM elements grouped into bags and (d) BoB vector obtained by concatenating these 

bags 57 

 

For both the CM and BoB representations, the matrices were set to a fixed size of 89 x 89, 

corresponding to the largest number of atoms in the database. Zero-padding is generally 

employed to fill the matrices for molecules containing fewer atoms. The matrices were then 

linearized by joining their rows into a one-dimensional vector that was then used as input for 

the machine learning models. 
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A more sophisticated molecular representation includes all possible interactions between 

atoms through many-body potential terms multiplied by a normalized Gaussian distribution. 

The Spectrum of London and Axilrod-Teller-Muto potentials (SLATM) representation55,61 

has been found to outperform the Coulomb matrix60 and Bag of Bonds  

model for computing quantum mechanical properties of small organic molecules and 

thermodynamic properties of organometallic compounds. 

The one-body term simply consists of the nuclear charge (ZI). The two-body part is expressed 

as  

 

(9) 

 

where δ(.) is set to normalized Gaussian function and g(r) is a distance-dependent 

scaling function corresponding to the leading order term in the dissociative tail of London 

potential. The three-body part is represented by 

 

(10) 

 

 

where θ is the angle spanned by vector RIJ and RIK and h(.) is the three-body contribution 

chosen in the form to model the Axilrod-Teller-Muto vdW potential61. 

 

However, computation of these three-body interactions incurs a higher-order complexity as 

a function of the number of atoms in the molecules considered. Thus, the construction of this 

representation incurs a significantly higher computational cost compared to CM and BoB. 
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3.5 Machine Learning Models 

Construction of the representations for the compiled database as well as machine 

learning model optimization, training and predictions were performed using Python 3.7.1, 

using the Quantum Machine Learning (QML) package58,62 along with NumPy63a 

implementation of arrays. The SciPy implementation63b of Nelder-Mead optimization method 

was used for the hyperparameters and Matplotlib to visualize the results. 

 
We used Kernel Ridge Regression (KRR) for the machine learning framework to map the 

molecular geometries to their corresponding energy descriptors. For this work, we considered 

the Gaussian (Eqn.11) and Laplacian (Eqn.12) kernels as they have been widely used for 

applications of KRR in Chemistry. The Machine Learning protocol using KRR primarily 

consists of three main steps namely, parameter optimization, learning, and validation. 

The inputs for the models were chosen to be representations corresponding to the reactant 

intermediates at various inexpensive theoretical levels. The models were trained on the 

optimized molecular structures using the above baseline methods and corresponding 

predictions were performed using the optimized geometries from the same theoretical level. 

 

 

(11) 

 

 

(12) 

 

Based on the results obtained from similar studies in the past, we chose to use the Laplacian 

kernel function for the Coulomb matrix and BoB representations and the Gaussian kernel for 

SLATM representation32,57,60. Altogether 30 models have been trained and validated for the 

compiled database of 62 catalysts. For each resulting model, the two hyperparameters 

namely the width of the kernel function 𝜎 and the regression term λ, must be optimized to 

minimize the prediction error for the target property of the unseen dataset. In our case, this 

target property is the energetic data (ΔHǂ, ΔGǂ) of the TS structures obtained at a higher level 

of theory (B97D/ TZV). 
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Subsequently, ten-fold cross-validation has been incorporated into the model to assess the 

prediction accuracy. The Nelder-Mead optimization scheme was applied to find the set of 

hyperparameters that minimizes the average of the mean absolute error (Eqn.13) on ten 

iterations of the ten-fold cross-validation, starting from initial values of  

𝜎 = 0.1, 0.2, 0.5, 1 ,5, 10, 50, 100, 200, 500, 1k, 2k, 5k, 10k, 20k, 30k, 50k,100k 

λ = 10i, i = -10, -8, -6, -4 

 

Following the optimization of the hyperparameters, learning curves were obtained for each 

model by varying the size of the training set and computing the mean absolute errors (MAE) 

on the test set of 71 data points. The different sizes of the training data chosen were 10, 50, 

100, 350 and 500. Ten iterations were performed by a random selection of data points from 

the training set. 

 

Validation of each ML model was performed on the pre-selected test set of 71 data points, 

and training the model on the remaining dataset of 505 points. The predictions of the 

descriptor on this validation set were correlated to the actual known reference values. The 

standard error of estimation (σ) for each model was calculated based on the mean squared 

deviations from the actual expected linear fit, where N is the total number of data points in 

the validation set. (Eqn.14) 

 

 

(13) 

 

 

(14) 
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4. Results and Discussion 

4.1 Estimation of Activation Barriers 

        4.1.1 Machine Learning: Training 

Each of the machine learning models were tested with different molecular 

representations and kernel functions and varying the respective input parameters/ 

geometries. For each resulting model, the pair of hyperparameters (σ, λ) which yielded the 

lowest average mean absolute error (MAE), are tabulated (Table 1) 

Input 
Structure 

(B97D/ 
3-21G) 

Target 
Property 

(B97D/TZV) 

 
 CM  

 (Laplacian kernel) 

 
BoB  

(Laplacian kernel) 

 
SLATM  

(Gaussian kernel) 

  
σ λ σ λ σ λ 

Reactant 
(R) 

ΔHǂ 1.12E+05 9.01E-07 2.09E+04 1.02E-08 2.13E+04 1.02E-10 

 
ΔGǂ 1.10E+05 1.15E-10 5.09E+03 1.01E-08 1.99E+03 9.69E-09 

Product 
(P) 

ΔHǂ 1.01E+05 1.06E-08 2.19E+03 9.47E-11 4.82E+03 8.74E-11 

 
ΔGǂ 2.85E+04 1.10E-10 9.57E+02 1.06E-08 3.15E+04 1.05E-10 

(a) 

 

Input 
Structure 
(PM6-D3) 

Target 
Property 

(B97D/TZV) 

 
CM  

(Laplacian kernel) 

 
BoB  

(Laplacian kernel) 

 
SLATM  

(Gaussian kernel) 
  

σ λ σ λ σ λ 

Reactant 
(R) 

ΔHǂ 1.01E+05 1.03E-06 2.00E+04 1.05E-08 1.01E+03 1.01E-08 

 
ΔGǂ 5.37E+04 9.56E-11 1.95E+04 1.04E-08 5.03E+02 1.02E-10 

(b) 

 

Input 
Structure 
(HF-3c) 

Target 
Property 

(B97D/TZV) 

 
CM  

(Laplacian kernel) 

 
BoB  

(Laplacian kernel) 

 
SLATM  

(Gaussian kernel) 
  

σ λ σ λ σ λ 

Reactant 
(R) 

ΔHǂ 5.38E+04 9.04E-11 9.90E+04 1.01E-08 3.11E+04 1.07E-10 

 
ΔGǂ 2.10E+04 9.48E-09 1.90E+04 1.05E-10 5.24E+04 1.00E-10 

(c) 

 

Table 1. The pair of Hyperparameters (σ,λ) that yielded the smallest error for each model; 𝜎 represents the 

width of the Kernel Function and λ is the Regression term. The values correspond to three different theoretical 

methods (a,b,c) used to compute the Baseline Properties 
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The learning step is generally represented through plots of MAE on a test set as a function 

of the training set size. The resulting mean absolute error (MAE) on the estimation of the 

activation energies on the Test set showed a reduction with an increase in the size of the 

Training set. The decrease of MAE values as a function of the training set size validated 

successful learning for all the ML models. This is evident from the obtained saturation curves 

corresponding to each of the models. The learning curves are primarily constructed to 

demonstrate the efficiency of the ML models. (Fig.13) 

(a)                                                                  (b) 

(c)                                                                  (d) 

Figure 13. Saturation curves (MAE on a test set as a function of the number of training data) constructed for 

all representations considered, with Intermediates computed using B97D/3-21G. 

(a) Reactants/ΔHǂ  (b) Reactants/ΔGǂ  (c) Products/ΔHǂ  and (d) Products/ΔGǂ 
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In this work, we analyze two major aspects, one being the approximately accurate estimation 

of activation barriers (ΔHǂ, ΔGǂ ) directly from the intermediates and the other to identify the 

least expensive method to achieve comparable level of accuracy. For the intermediates 

computed at the baseline DFT level (B97D / 3-21G), learning the activation enthalpies (ΔHǂ) 

with reactant side intermediates was found to be most efficient (Fig.14). Overall, the SLATM 

representation yielded the best final test error for the Gaussian based KRR (Fig.14). The 

learning was found to be inefficient when the model was trained using SLATM for the 

Laplacian kernel, and this observation is consistent with previous studies on similar chemical 

systems. However, when estimating the free energy barriers (ΔGǂ) for small training data 

SLATM does not perform very well relative to the Coulomb matrix or Bag of Bonds 

representations with Laplacian kernels. This behaviour can be ascribed to the higher 

complexity of SLATM compared to CM and BoB, making learning more difficult with sparse 

training data, but resulting in a more powerful estimation when trained on a sufficiently large 

number of data points. Also, even though BoB and SLATM representations begin with a 

relatively high MAE for smaller training data, they saturate much faster than CM. The rate of 

saturation with an increasing number of training points is highest for SLATM compared to the 

other two representations.   

 

Figure 14.  Comparison of Learning trends among all three ML representations, Input structure types and 

Target properties. (CM, BoB: Laplacian kernel, SLATM: Gaussian kernel) 
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Compared to CM, BoB was seen to perform better, thereby highlighting the importance of 

‘bagging’ in this form of molecular representation. 

As for the product side intermediates, the reactant side intermediates led to a more efficient 

learning, as evident from the MAE values corresponding to all three representations (Fig.14). 

There can be several factors contributing to this difference, one being that the reactant 

intermediates supposedly resemble the TS structures more than that of the products (Fig.7). 

Secondly, the hexacoordinate reactant complex has a much more rigid molecular structure 

than the product complex. 

4.1.2 Machine Learning: Validation 

       The computing of the targeted energy values is crucial to validate the efficiency of the 

ML algorithm. In Fig.15, we depict the relationship between the relative electronic energies 

of intermediates computed at the baseline level (B97D / 3-21G) and the energetics of the 

transition states at the target DFT level (B97D / TZV) for the 71 data points in the validation 

set. All the relative energy values are normalized with respect to the mean value of each 

dataset in kcal/mol. The plot between the computed reactant intermediates and the reference 

TS barrier enthalpies (Fig.15) shows a correlation coefficient of R2 = 0.79 compared to a 

value of 0.45 corresponding to the free energy barriers (Fig.15).  

                        

                                       (a)                                                                                          (b) 

Figure 15. Relative energies (ΔE) of Reactant intermediates computed at B97D/3-21G (y-axis) versus 

Activation Barriers (x-axis), (a) ΔHǂ and (b) ΔGǂ respectively, computed at B97D/TZV (2p,2d) on a validation 

set of 71 datapoints. 
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There is not much-ordered correlation as expected, arising from the multiple parametric 

differences in the computation of the baseline and targeted properties (see Methods). 

 
Figure 16. ML predicted (y-axis) and actual (x-axis) values of the descriptor(ΔHǂ) for B97D/3-21G Reactant 

intermediates compared on a validation set of 71 points after training 505 data points. The identity line 

(y = x, in black), corresponds to perfect predictions of the descriptor value. 

 

On training the Δ-learning model on the selected training set data using the kernel ridge 

regression (KRR) algorithm followed by computing the enthalpy and free energy barriers for 

the test set, the corresponding correlations obtained are illustrated. We compare three 

different parameters for the validation namely the type of input structures (Reactant versus 

Product side intermediates), the type of activation barrier (ΔHǂ vs ΔGǂ) and the best molecular 

representation (CM, BoB or SLATM). From the saturation curves (Fig.14), we obtained an 

intuitive idea that the ML model proves to be more efficient in learning the reactant side 

intermediates compared to the products. We began our analysis by investigating the linear 

correlation plots between the estimated activation enthalpy barriers and the actual reference 

barriers. The kernel ridge regression model accounts for the non-linearity of data computed 

at the baseline level (B97D /3-21G) and using the Coulomb matrix (CM) representation 

corrects for the BEP correlation between energies of the intermediates and corresponding 

TS barriers. The correlation coefficient (R2) between the actual and estimated enthalpy 
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barriers for the 71 data points obtained by ML was 0.89 using the CM representation. As 

expected, the correlation improved significantly on subsequently training the KRR model 

using BoB (R2 = 0.94) and SLATM (R2 = 0.98) respectively (Fig.16). Also, the improvement 

over different representations have been quantified by the Standard Errors of Estimation (σ) 

from the actual ideal fit (y=x line). Considering the relative computational costs associated, 

BoB performs well in estimating the expensive DFT level energetic data, with a standard 

estimation error of 1.66 kcal/mol. 

Figure 17. ML predicted (y-axis) and actual (x-axis) values of the descriptor(ΔHǂ) for B97D/3-21G Product 

intermediates compared on a validation set of 71 points after training 505 data points. The identity line (y = x, 

in black), corresponds to perfect predictions of the descriptor value. 

 

We shifted our analysis to the learning of the free energy barriers (ΔGǂ) with reactant side 

intermediates as the input structures. The obtained correlation between the actual and 

estimated barriers is depicted in Fig.18, using the BoB and SLATM molecular representations 

respectively. Again, SLATM was observed to yield a better correlation with σ = 1.04 kcal/mol, 

R2 = 0.97. 
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Figure 18. ML predicted (y-axis) and actual (x-axis) values of the descriptor(ΔGǂ) for B97D/3-21G Reactant 

intermediates compared on a validation set of 71 points after training 505 data points. The identity line (y = x, 

in black), corresponds to perfect predictions of the descriptor value 

 

Training the Δ-learning models subsequently with the product side intermediates and relative 

enthalpy barriers as the reference did not produce improved correlations as compared to that 

of the reactants. The correlation coefficient for SLATM was found to be 0.79 compared to an 

R2 = 0.98 in the case of the reactants (Fig.17). The standard estimation errors also quantified 

the lack of accuracy of the ML model, which was previously evident from the respective 

learning trends. The reactant complex being structurally closer to the TS than the product 

complex, the ML model was able to estimate the energetic data much more accurately in the 

former case. Overall, for all the models trained with B97D/3-21G intermediates as a baseline 

and B97D/TZV (2p,2d) computed transition states as the target, SLATM depicted the best 

correlations among the three representations. 
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4.2 Machine Learning using other Baseline Methods: 

Motivated by the results using DFT as the baseline method, we further extended the ML 

framework to learn the activation barriers at the target level (B97D/TZV) from the reactant 

intermediates using computationally inexpensive semi-empirical methods (PM6-D3 and HF-

3c). These baseline methods have proven to work efficiently for several Δ-learning algorithms 

in the past.  

We represented the mean absolute errors of 

prediction on the Test set (Fig.19) by 

varying the size of the training set. The 

saturation curves show a final MAE of 2.84 

kcal/mol for HF-3c and 0.78 kcal/mol for 

PM6-D3. The SLATM representation 

worked best in both cases, compared to BoB 

and CM.  

 

 

       Figure 19. Learning trends from data computed 

                       using Semiempirical methods  

    (BoB: Laplacian kernel, SLATM: Gaussian kernel) 

 

The learning trends of the different models were also evident from the validation step where 

the input energies and geometries computed at PM6-D3 demonstrated a much-improved 

correlation compared to those at HF-3c (Fig.20). The correlation coefficient for HF-3c was 

found to be 0.81 (Fig.21), compared to R2 = 0.96 for PM6-D3 (as the baseline level). The 

definite reason behind this finding is still to be investigated and the outliers need to be 

analysed further. It could be hypothesized that the presence of ‘bad’ molecular geometries in 

the training set or the underlying potential energy surface might have contributed to such a 

trend in the learning approach. We computed the weighted root mean squared deviations 

(RMSD) of each of the geometries for the DFT computes structures. The molecules which 

depicted huge deviations were removed from the training set and the ML model was 

retrained. However, it yielded the same MAEs as before and no significant change was 

observed in the learning. Nevertheless, it would be interesting to look at how the ML framework 
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can be improved to take this into account and estimate the activation barriers directly from 

intermediates computed using other semiempirical methods. 

 

Figure 20. ML predicted (y-axis) and actual (x-axis) values of the descriptor(ΔHǂ) for PM6-D3 Reactant 

intermediates compared on a validation set of 71 points after training 505 data points. The identity line 

(y = x, in black), corresponds to perfect predictions of the descriptor value 

Figure 21. ML predicted (y-axis) and actual (x-axis) values of the descriptor(ΔHǂ) for HF-3c. Reactant 

intermediates compared on a validation set of 71 points after training 505 data points. The identity line 

(y = x, in black), corresponds to perfect predictions of the descriptor value. 
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4.3 Prediction of Stereoselectivities: 

The selectivity of products is a crucial issue, especially in pharmaceutical and drug 

discovery, that cannot be easily tuned. Here, we wanted to assess if learning BEP 

correlations could also be used to predict the enantio- or regioselectivity of catalytic 

processes from a quickly computable descriptor variable, namely energy of the intermediates. 

Naturally, the product selectivity depends upon the barrier height of the key step that 

determines the selectivity. Corresponding to the second set of 505 Training and 71 Test data 

points (Fig.9), the ML models were trained on all three molecular representations (CM, BoB 

and SLATM).  

The learning was more efficient for the 

activation enthalpies (ΔHǂ) as 

compared to the free energies (ΔGǂ) 

as can be seen from the reported 

MAE values in kcal/mol. Also, the 

absolute errors are relatively higher 

than that of the previous Training/test 

set.  

 

                                                                                 Figure 22. Learning trends for all three ML representations 

                                                                                 (CM, BoB: Laplacian kernel, SLATM: Gaussian kernel) 

These findings can be clearly attributed to an out of sample prediction that is in the latter case 

the ML model does not see similar chemistry in the Training set. Consequently, this makes 

learning more difficult (Fig. 22). The solid lines represent enthalpy barriers while the dashed 

ones correspond to relative free energy barriers. The saturation curves depicted analogous 

trends in learning as before. For a small amount of Training data (<50), SLATM is seen to be 

performing the worse than the other two representations. However, the MAE’s saturate faster 

for larger training data and decreases almost linearly for SLATM, yielding a final validation 

error of 1.78±0.01 kcal/mol on the completely unseen test set. The CM representation also 

seems to work pretty well and this is clearly an advantage, keeping in mind that it is the least 

complex and most economic of all the representations. 
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Moreover, the plot of learned versus computed activation energy values show a good 

correlation demonstrating the efficiency of the ML model. Following obtaining the correlations 

for computed activation barriers (ΔHǂ) with respect to the reference values (Fig. 23), the 

efficiency of the ML model was validated by computing the targeted chemical property.  

The chemical system under 

consideration being an asymmetric 

propargylation reaction, accurate 

estimation of enantiomeric excess values 

(ee) is of primary importance to quantify 

the stereoselectivity of the catalyst. We 

compared the ee values obtained from 

each of the machine learning models with 

those predicted at the target level (B97D/ 

TZV(2d,2p)). 

     Figure 23. Distribution of Estimated Enthalpy Barriers 

                       among the Test Set (71 data points) 

The enantiomeric excess values for all the 8 different scaffolds (Fig.9) in the test set have 

been computed based on relative enthalpies and free energies of the thermodynamically 

accessible TS structures (Appendix, Table S10). We limit our discussion to the activation 

enthalpies (ΔHǂ). As seen from the learning trends, the estimated stereoselectivities for 

SLATM are closest to the reference values (Fig.24). This ML model trained on SLATM 

predicted well for 6 of the 8 scaffolds as shown. 

Based on previous computational work on similar propargylation and allylation catalysts, the 

reference enantiomeric excess(ee) values were predicted to be within 10-20% of the 

experiment. However, considering that we focus on only the enantioselectivity without taking 

into account the overall mechanism of catalytic activity, the ML models are seen to yield 

satisfactory estimations. Also, a mere difference of even 0.5 kcal/mol in the relative TS 

energies can lead to a complete inversion in configuration for the products. Consequently, 

the absolute enantiomeric excess values are extremely sensitive to the models tested. 
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Figure 24: Histograms 

depicting the enantiomeric 

excess values. Positive ee 

values correspond to 

excess (R)-alcohol 

formation, while negative 

values represent excess 

(S)-alcohol. These ee 

values are based on relative 

enthalpy barriers.  

 

(Values based on other 

representations and relative free 

energy barriers are provided in 

Appendix S10, S11) 

 

Another significant trend is observed from the results, which is consistent with previously 

reported data. The catalysts build on scaffold 4 (Fig.4) specifically tend to be outliers and 

exhibit ee values quite different from those of the rest of the scaffolds even for the same 

substituent. This can be clearly seen from the fact that even using the SLATM representation, 

the ML model predicts an opposite stereoselectivity for the pair of catalysts based on scaffold 

4. This finding, however, is not unexpected given the different placement of the substituent X 

relative to the reaction centre on this scaffold when compared to the other backbones. As the 

ML model sees a consistent trend with the location of the substituents for a majority of the 

molecules in the training set, which is structurally different from that of this scaffold, it is 

unable to estimate the accurate stereoselectivity in this particular case. Even though we learn 

from previous reports that none of the catalysts build on backbone 4 has been predicted to 

yield high stereoselectivities, it would be an interesting case to investigate through 

subsequent improvements in the ML framework. This is mainly because to date only catalyst 

4a has been experimentally tested41 for reaction 1, with a reported ee of 52%. Also, 

considering that there are still several caveats on the exact mechanism, the present results 

demonstrate the feasibility of using machine learning approaches to estimate selectivity.  
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5. Conclusion 

We have trained and used machine learning models to accurately estimate the activation 

barriers of 62 promising organocatalysts for the asymmetric propargylation reaction. We 

sought to improve on the accuracy of BEP relationships by moving beyond standard linear 

relationships using ML. The models were based on the capability of the Bell-Evans-Polanyi 

principle to correlate the thermodynamics and kinetics 

of a catalytic reaction. Overall, we have studied a 

database of 576 complexes based on the bipyridine N, 

N’- dioxide scaffold. Our findings indicate that machine 

learning representations can be successfully applied 

on data computed at inexpensive semiempirical levels 

and ultimately used to predict the energetics at a 

higher level of theory, retaining a sufficient degree of 

accuracy. This work demonstrated the applicability of 

DFT coupled with machine learning models to quantitatively estimate characteristic chemical 

properties of a reaction, bypassing the detailed kinetic mechanism. 

The feasibility of the Δ-machine learning approach paves way for an appealing future 

improvement of the proposed ML framework further using semi-empirical methods (e.g. 

DFTB+, GFN2-xtb)64-65. However, such frameworks would require tuning certain theoretical 

parameters and further be optimized according to the selected database. Also, it would be 

imperative to modify the algorithm to estimate the transition state energies with respect to 

both reactant and products simultaneously, using an active learning approach. Such a 

framework effectively establishes a novel design paradigm in which the database can be 

extended to more potential organo-catalysts with experimentally testable predictions and 

ultimately lead to large scale screening of promising candidates using minimal computational 

resources.  
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Appendix 

1. Preliminary Results: Δ-ML on Activation Barriers 

We began our initial study by taking the previously 

computed database of 62 catalysts by Wheeler and 

co-workers, and then further expanded it by 

including more potential substrates. For each 

catalyst/substrate combination we optimized all 

possible TS structures which yielded a virtual library 

of 539 TS structures.  

 

Figure S1. The Library of Substrates included 

                 in the Initial Database 

 

We tested the KRR method using each of the three representations to validate the ML models 

on a test set of 40 datapoints. The input structures were computed at B97D / 3-21G and Δ-

ML was performed by learning the energy differences with respect to the target B97D / TZV 

(2p,2d) level. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S2.  Preliminary Saturation curves depicting the Test errors on 40 TS molecules using three different 

representations 
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2. Preliminary Results: Learning using DFT Baseline Method 

 

Table S3: Mean Absolute Errors (MAE) using KRR: Input Properties computed at B97D/3-21G; Target values 

computed at B97D/TZV (2p,2d). CM, BoB- Laplacian kernel, SLATM- Gaussian kernel 

 Training set size CM Std. dev. BoB Std. dev. SLATM Std. dev. 

  [kcal/mol] [kcal/mol] [kcal/mol] [kcal/mol] [kcal/mol] [kcal/mol] 

R/H 10 3.613 1.131 5.020 0.975 4.084 0.887 

 50 2.751 0.244 3.498 1.483 1.756 0.108 

 100 2.261 0.109 2.161 0.558 1.368 0.156 

 350 1.755 0.094 1.355 0.191 0.862 0.062 

 500 1.572 0.020 1.224 0.014 0.777 0.008 

        

R/G 10 3.860 0.516 5.568 2.231 5.857 3.884 

 50 3.004 0.169 3.117 0.474 2.055 0.293 

 100 2.671 0.109 2.380 0.690 1.580 0.152 

 350 1.967 0.114 1.675 0.208 0.937 0.041 

 500 1.744 0.009 1.675 0.028 0.847 0.007 

        

P/H 10 4.546 0.211 5.215 1.423 5.659 2.797 

 50 3.743 0.235 3.556 0.801 2.699 0.464 

 100 3.304 0.202 3.430 0.732 2.345 0.580 

 350 2.561 0.112 2.369 0.395 1.966 0.230 

 500 2.409 0.016 2.187 0.066 1.876 0.019 

        
P/G 10 5.298 0.559 5.520 5.520 5.585 1.670 

 50 4.002 0.159 3.861 3.861 2.947 0.693 

 100 3.446 0.187 3.132 3.132 2.276 0.246 

 350 2.672 0.116 2.543 2.543 1.625 0.096 

 500 2.442 0.024 2.168 2.168 1.538 0.010 

             R- Reactant intermediates  P- Product intermediates  H- Enthalpy barriers G- Free Energy barriers 

 

Figure S4. ML predicted (y-

axis) and actual (x-axis) 

values of the descriptor for 

B97D/3-21G Reactant 

intermediates compared on a 

validation set of 71 points 

after training 505 datapoints. 

The identity line (y = x, in 

black), corresponds to perfect 

predictions of the descriptor 

value. 
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3. Learning trends for semi-empirical baseline methods: 

 

(a)                                                                              (b) 

 

(c)                                                                              (d) 

Figure S5. Saturation curves (MAE on a test set as a function of the number of training data) constructed for 

all representations considered, with Reactant intermediates computed using 

 HF-3c targeting (a) ΔHǂ (b) ΔGǂ and PM6-D3 targeting (c) ΔHǂ (d) ΔGǂ, respectively 
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4. Learning using semi-empirical baseline methods:  

Table S6: Mean Absolute Errors (MAE) using KRR: Input Properties computed at PM6-D3; Target values 

computed at B97D/TZV (2p,2d). CM, BoB- Laplacian kernel, SLATM- Gaussian kernel 

 

R/H Training set size CM Std. dev. BoB Std. dev. SLATM Std. dev. 

  [kcal/mol] [kcal/mol] [kcal/mol] [kcal/mol] [kcal/mol] [kcal/mol] 

 10 5.026 0.429 4.951 0.820 6.178 1.480 

 50 3.599 0.130 3.570 0.300 3.979 0.518 

 100 3.230 0.213 2.894 0.209 2.555 0.306 

 350 2.340 0.077 1.440 0.064 1.346 0.082 

 500 2.016 0.014 1.197 0.014 1.091 0.011 
 

R/G Training set size CM Std. dev. BoB Std. dev. SLATM Std. dev. 

    [kcal/mol] [kcal/mol] [kcal/mol] [kcal/mol] [kcal/mol] [kcal/mol] 

  10 4.802 0.548 5.186 0.743 8.134 2.737 

  50 3.676 0.264 3.506 0.353 3.633 0.493 

  100 3.210 0.225 2.751 0.291 2.574 0.188 

  350 2.218 0.071 1.427 0.076 1.395 0.118 

  500 2.021 0.020 1.182 0.011 0.979 0.014 
 

Table S7: Mean Absolute Errors (MAE) using KRR: Input Properties computed at HF-3c; Target values 

computed at B97D/TZV (2p,2d). CM, BoB- Laplacian kernel, SLATM- Gaussian kernel 

 

R/H Training set size CM Std. dev. BoB Std. dev. SLATM Std. dev. 

   [kcal/mol] [kcal/mol] [kcal/mol] [kcal/mol] [kcal/mol] [kcal/mol] 

  10 6.304 0.602 7.569 1.771 11.348 5.458 

  50 5.380 0.353 5.269 0.350 4.970 0.933 

  100 4.737 0.399 4.382 0.460 4.169 0.583 

  350 3.780 0.185 3.205 0.160 3.045 0.175 

  500 3.585 0.039 2.848 0.040 2.843 0.050 
 

R/G Training set size CM Std. dev. BoB Std. dev. SLATM Std. dev. 

  [kcal/mol] [kcal/mol] [kcal/mol] [kcal/mol] [kcal/mol] [kcal/mol] 

 10 7.158 0.496 7.658 0.876 8.937 3.013 

 50 5.366 0.246 5.658 0.707 4.980 0.707 

 100 4.967 0.388 4.676 0.420 3.973 0.786 

 350 3.907 0.133 3.016 0.236 2.898 0.239 

 500 3.598 0.023 2.717 0.032 2.721 0.020 
 

R- Reactant intermediates  P- Product intermediates  H- Enthalpy barriers G- Free Energy barriers 
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5. Estimation of Stereoselectivities: 

 

Table S8: Computed pair of Hyperparameters for KRR 

Input 

Structure  Target Property 

 

CM  

(Laplacian kernel) 

BoB 

 (Laplacian kernel) 

SLATM  

(Gaussian kernel) 

B97D/3-21G   B97D/TZV  σ λ σ λ σ λ 

                 

reactant (R) enthalpies (H) 

 5.11E+0

4 
1.02E-10 9.64E+04 1.04E-10 2.85E+04 1.05E-10 

 free energies (G) 

 1.05E+0

5 
9.50E-11 1.05E+05 9.82E-11 1.00E+04 1.01E-10 

                 

 

Table S9: Mean Absolute Errors (MAE) using KRR: Input Properties computed at B97D/3-21G; Target values computed 

at B97D/TZV (2p,2d). CM, BoB- Laplacian kernel, SLATM- Gaussian kernel 

R/H Training set size CM Std. dev. BoB Std. dev. SLATM Std. dev. 

    [kcal/mol] [kcal/mol] [kcal/mol] [kcal/mol] [kcal/mol] [kcal/mol] 

  10 3.350 0.402 3.76 0.455 5.080 1.432 

  50 3.070 0.296 2.74 0.401 2.450 0.360 

  100 2.510 0.167 2.45 0.238 2.240 0.096 

  350 2.010 0.125 2.28 0.100 2.020 0.244 

  500 1.840 0.014 2.22 0.014 1.790 0.011 
 

R/G Training set size CM Std. dev. BoB Std. dev. SLATM Std. dev. 

    [kcal/mol] [kcal/mol] [kcal/mol] [kcal/mol] [kcal/mol] [kcal/mol] 

  10 4.623 0.939 4.354 1.102 4.115 1.133 

  50 2.981 0.328 3.443 0.736 3.699 0.716 

  100 2.674 0.214 2.967 0.477 3.401 0.521 

  350 2.391 0.106 2.596 0.220 2.515 0.369 

  500 2.281 0.030 2.284 0.021 2.350 0.052 
 

R- Reactant intermediates  P- Product intermediates  H- Enthalpy barriers G- Free Energy barriers 
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Table S10:  Enantiomeric Excess values (ee); Reference values computed using B97D/TZV (2p,2d) considering only 

thermodynamically accessible TS. 

  

Calculated ee values 

(Enthalpies) 

Reference ee 

values 

  

Calculated ee values 

(Free energies) 

Substituents 

(X) SLATM BoB CM in H in E in G SLATM 
 

CM BoB 

H 0.61 0.66 0.89 0.72 0.69 0.83 -0.91 0.11 0.97 

Cl 0.95 0.44 0.62 0.82 0.91 0.6 0.56 0.88 0.53 

CF3 0.99 0.99 0.99 0.99 0.99 0.97 0.99 0.79 0.71 

CN 0.99 0.35 0.99 0.98 0.99 0.84 0.99 -0.74 0.9 

H -0.32 -0.82 0.32 0.34 0.24 0.31 -0.94 -0.99 0.15 

Me 0.43 -0.79 0.55 -0.29 -0.45 0.08 -0.43 -0.72 0.99 

tBu 0.68 -0.62 -0.94 0.51 -0.47 0.51 -0.17 -0.58 -0.98 

Ph 0.99 0.98 0.95 0.83 0.88 0.63 0.99 0.99 0.12 

 

 

 

Figure S11: Histograms depicting the enantiomeric excess values. Positive ee values correspond to excess 

(R)-alcohol formation, while negative values represent excess (S)-alcohol. These ee values are based on 

relative enthalpy barriers.  

 

 


