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Abstract

Quantum systems are often correlated in classically inaccessible ways and hence non-classical

correlations in a system are signatures of it being genuinely quantum. Quantum correlations

are precious resources for quantum information processing and need to be preserved. Hence

it’s useful to study their dynamics and evolution, and employ methods to protect them

from incoherence and decoherence during computational processes. Some of the commonly

studied quantum correlations include entanglement, contextuality, Leggett-Garg inequality,

quantum discord, etc. Quantum discord is a quantum correlation that measures the max-

imum quantum mutual information that can be extracted from a system, by measuring

classical mutual information in two di↵erent ways, one without measurement and the other

via measurement.

Grover’s algorithm or the quantum search algorithm introduced by Lou Grover in 1996

[14], executes a search in an unstructured database to find solution elements that satisfy

particular conditions. It provides a quadratic speed up over all its classical counterparts and

is widely used as a subroutine to speed up many classical algorithms, and in accordance with

phase estimation, forms the basis for Quantum Counting.

Dynamical Decoupling (DD) is a technique used to reduce decoherences generated during

quantum information processing tasks. It performs a series of rapid flips on the system to

decouple it from the environment and refocuses their interactions. DD can be integrated into

quantum gates and operations using optimal control techniques to make them more robust.

It is advantageous compared to other fault tolerant schemes and decoherence free subspaces

in that they don’t need separate ancilla qubits or separate manual splicing of gates[25].

In this project, the evolution of quantum discord in Grover’s algorithm for a two qubit

system has been studied. Then, a dephasing noise is introduced into the system to realisti-

cally observe the evolution of discord during various stages of the algorithm. DD is integrated

into the gate operations of the Grover’s algorithm, and the evolution of discord for di↵erent

DD schemes based on ⇡ and non-⇡ pulses are simulated. Realistic pulses are seldom perfect,

so this is taken into account by simulating the evolution of discord with DD in the presence

of radiofequency field inhomogeneties (RFI).

It was experimentally found that some DD sequences based on ⇡/2 pulses performed
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as well as, if not, better than DD based on ⇡ pulses [1]. DD sequences based on di↵erent

non-⇡ pulse angles were tested for their performance in decoherence suppression in Grover’s

algorithm through simulations. Unlike the conventional notion that dynamical decoupling is

achieved only by ⇡ pulses, we show by numerical analysis that if properly incorporated into

control sequences, even non-⇡ pulses can bring about e�cient dynamical decoupling, for low

noise amplitudes.
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Chapter 1

Introduction

1.1 Quantum Correlations

1.1.1 Relevance

In information processing, certain processors that displayed genuinely quantum behaviour

were faster and more e�cient than their classical counterparts. The relevance of quantum

correlations in current day quantum information processing emerges from the quest to un-

derstand this feature. There was no definitive way to identify and categorize a system as

”quantum”, especially for instances like composite systems, and the correlations in their

subsystems.

The concept of superpositions previously existed in major classical theories like waves

and electromagnetism, and was insu�cient to be considered as an exclusive characteristic of

a system exhibiting quantum mechanical behaviour. Consequently, in the early development

of quantum information processing, entanglement was viewed as the feature that gave the

distinct “quantum” advantage for some processors over classical ones. This had several

implications. Separable states, for instance, that have no entanglement, would be of no use

in quantum information processing.

However, Knill and Laflamme in 1998 proposed the DQC1 algorithm [8]. It could estimate

the trace of a unitary matrix quicker than any classical algorithm known as of then. It
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did not invoke the necessity of entanglement, and provided an exponential improvement in

the e�ciency compared to a classical computer. These results spurred debates about the

necessity of entanglement as a critical and indispensable resource for quantum information

processing. Furthermore, NMR quantum information processing was found to be an e�cient

test bed for quantum algorithms [10], despite the purity of typically used spin systems being

too low to show su�cient entanglement.

The resolution to the question of entanglement being the source for all quantum en-

hancement, came from the proposal of another kind of quantum correlation named quantum

discord [4] [5] [6]. It showed that there were non-classical correlations not accounted for by

entanglement, and that even separable states could contain non-classical correlations. The

comprehensive and mathematical explanation was given by Datta [26]. They calculated the

entanglement for the DQC1 algorithm and showed it was vanishingly small, and it decayed

further as we increase the number of qubits. The discord also consistently scaled with the

e�ciency displayed by the algorithm. This conclusively proved that it was discord rather

than entanglement that attributed to the quantum speed up of the algorithm [3].

This led to the application of quantum discord to various di↵erent algorithms and prob-

lems in quantum computation, and set about the search for non-classical correlations other

than entanglement as a resource for quantum information processing. These non-classical

correlations are manifestations of the “quantumness” in systems, and can be measures that

attribute to the e�ciency of quantum processors over the classical ones. Hence, they are

regarded as very important resources for quantum information processing. Today, there are

various measures of quantum correlations that are extensively studied, like discord, con-

textuality, deficit, Leggett-Garg inequality, etc [7][12]. They are of interest in many major

directions of research like quantum information, quantum algorithms, quantum thermody-

namics, many-body physics and open system dynamics[7]. Their evolution during the flow

of quantum algorithms can help us understand how decoherence and inhomogeneities in the

environment can a↵ect the functioning of the algorithm. It can also serve as a test bed for

investigating the e↵ectiveness of di↵erent techniques employed to suppress the decoherences

and incoherence that deter the smooth and ideal functioning of quantum algorithms.
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1.1.2 Quantum correlations in a composite system

Pure states are usually uncorrelated if they are separable and entangled if not separable.

However, mixed states have several layers of correlations, both classical and non-classical.

They can be broadly classified as shown in Figure 1.1, and enable quantum information

processing on various levels. Among the quantum correlations, a fraction of the entangled

correlations are steerable - a steerable state can be manipulated indirectly, or ”steered” by

operating on a state it is entangled with. If ”steering” the two entangled states is possible

even when the states are far-away, then the correlations are said to be non-local.

Each of these non-classical correlations have a wide range of applications that can en-

able classically impossible tasks, like quantum cryptography, quantum teleportation, dense

coding, etc. [7][18]

Figure 1.1: The hierarchy of correlations in quantum systems. Source [7]

In a composite system, there exist observables that are not direct combinations of those

of their constituent subsystems. A system with M states that is represented by a Hermitian

matrix of order M , has M2 real parameters, and M2 � 1 linearly independent observables.

Consider two systems with M and N states that are combined to make a composite

system with MN states. Then the composite system has M2N2 � 1 linearly independent

observables and M2N2 parameters. But the total sum of linearly independent observables in

the constituent systems M and N are only (M2� 1)+ (N2� 1) = M2+N2� 2. This shows

that a composite system has numerous more non-trivial observables than the constituent

subsystems combined. This shows how a composite system involves more information than

the sum of its constituents [22].
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This excess information which is non-classical resides in the quantum correlations and

involves the phases of the states. In density matrices, they exist in the o↵-diagonal elements.

1.2 Quantum Computation and Quantum Algorithms

The inception of quantum computation was in early 1980s. Paul Bieno↵ and Richard Feyn-

man proposed that for quantum systems to be simulated accurately and e�ciently, it was

necessary to have quantum computers that were built with quantum mechanical parts gov-

erned by the laws of quantum mechanics [18]. One simple reason of many, could be attributed

to the exponential growth of quantum systems. Storing the encoded data and its exponen-

tially growing components would overwhelm classical computers. However, if they were to

be encoded in quantum computers that are built to exploit the unique, non-classical features

of the quantum mechanical constructs that they are governed by, then they might be capable

of processing large amounts of data in polynomial time.

The intentions to e�ciently simulate quantum systems might have commenced the need

to develop quantum computers, but the computational power they promised progressed their

study to greater heights. Quantum algorithms were developed for a multitude of uses in fields

like information theory, cryptography, mathematics and language theory.

One of the most fundamental and attractive features of using quantum algorithms is

Quantum Parallelism. Quantum Parallelism is the happy consequence of the capacity of

quantum states to exist in superpositions. This is highly advantangeous because it allows

simultaneous but independent processing of multiple states present in a superposition by

only acting on the single superposition state. This ability of a quantum register to simulta-

neously perform a task on multiple states at once, contributes significantly to the e�ciency

of quantum information processing, and is termed, quantum parallelism. However, the un-

happy consequence of this is that the processed states are also superposed, and the e�ciently

obtained information needs to be carefully extracted using measurements that do not destroy

it as the superposition collapses.

Quantum computation needs more than just quantum parallelism to be useful. One of

the earliest quantum algorithms to be proposed resolved this dilemma - The Deutsch-Jozsa

algorithm (1992) combines quantum parallelism with interference [8]. It also proved that
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it was possible to successfully use a quantum algorithm to solve a problem, and obtain the

result much faster than a classical computer could simulate it. The principles behind the

conception and working of this algorithm sowed the seeds for many other impressive quantum

algorithms.

There was a turning point to the relevance of quantum algorithms when Peter Shor

gave e�cient algorithms to solve prime factorization of integers and discrete logarithms

[11]. Both these problems were thought to be computationally hard and hence formed the

basis of many cryptographic techniques and cybersecurity measures. But Shor’s algorithm

provided a solution that gave an exponential increase in speed over the fastest known classical

algorithms. This raised the stakes of developing a full-scale, reliable quantum computer, both

for the e�ciency it o↵ered and its implications on the field of cybersecurity [21].

But the study of quantum computation algorithms are motivated by reasons apart from

the speedy computation it o↵ers. Miniaturization has made current day processors in clas-

sical computers powerful. Their development has made them available in sizes of the order

of microns, where quantum properties start taking e↵ect. Chip-makers go to great lengths

to prevent and suppress these e↵ects, but it would be more beneficial to take advantage of

them instead. Quantum computation has shown potential to raise the power and limits of

modern day computation. Probing into its finer workings may also provide insight into the

finer workings of quantum mechanics.

Broadly classifying quantum algorithms, some of the significant ones are as listed below[18]:

• Quantum Search Algorithm

The quantum search algorithm[14] is a search algorithm implemented in an unstruc-

tured database. It provides a quadratic speed up over its classically known counter-

parts. The algorithm implements a search over an unordered set of N = 2n elements

to find solutions that satisfy certain conditions. This algorithm utilizes features of

quantum systems that demonstrate how the speed-up over classical computation can

be achieved, and hence serves as a good model for introduction to quantum algorithms.

The two major principles behind the steps of this algorithm involves the usage of quan-

tum parallelism and amplitude amplification. This topic is discussed in further detail

in Section 2.2.
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• Quantum Fourier Transform and related algorithms

Quantum Fourier Transform is a crucial tool in the formulation of many quantum

algorithms like the Deutsch-Jozsa Algorithm and Shor’s Algorithm. It enables phase

estimation, which allows us to calculate the approximate eigenvalue of a given corre-

sponding eigenvector of a unitary operator. Problems with high classical complexity,

like the order-finding and factoring problem can be solved by being reduced to phase

estimation problems.

• Quantum Simulations

Quantum simulations try to simulate naturally occurring quantum systems so that

we may gain insight into their dynamics. The simulation of quantum systems is an

important problem in many fields. In quantum chemistry, computational constraints

caused by classical computers make it di�cult to accurately simulate the behaviour

of even moderately sized molecules, much less the larger ones that occur in biological

systems. Quantum simulation can also o↵er insight into the finer workings of quantum

algorithms.

Despite all these advantages, the usage of quantum computers is nowhere nearly as

widespread as classical computers are. The progress with physical implementations of quan-

tum computing is steady but slow, and the engineering of quantum computers is still in

its infancy. Engineers and architects have to tackle some formidable practical challenges

while making quantum computers - and foremost of them is to make the quantum comput-

ers resilient to noise and decoherence, that arise from interactions between the system and

its environment. Many techniques have been developed and actively employed to protect

quantum information from decoherence and incoherence, and they are discussed in further

detail in Section 1.3.

1.3 Errors and Decoherence

While quantum computation enables many advantageous and classically impossible tasks,

this section highlights some of the obstacles and challenges that have held back its imple-

mentation on a larger scale. One of the biggest advantages of quantum information is that

it can exist in superposition states. But this also lends to one of its biggest disadvantages -
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the fragility of quantum information. A qubit is potentially more valuable than a classical

bit, but it is also more vulnerable. This is because it can exist in states other than just 0

or 1, and can get a↵ected more non-trivially. Even simple environmental disturbances can

cause the superpositions to collapse to a classical state and this risks the loss of all precious

information stored. An accidental flip on one qubit may a↵ect all the states contained in

the superposition.

However, with the introduction of quantum error correction principles [9] and threshold

theorem [15] it was shown that reliable quantum information processing was indeed possible.

To physically implement an input into an output, an algorithm prescribes appropriate

steps to break the computation into suitable components that are carried out by available

hardware. The hardware is designed such that it optimizes e�ciency and precision in carrying

out these tasks. However, any real physical device will show some amount of deviation

from ideal behaviour, leading to a mismatch between the theoretically calculated results and

experimentally computed results. This is the case for both classical and quantum computers.

In the case of quantum computers, the input is encoded in exponentially many complex

amplitudes of the initial state. During a computation, they need to be steered along a specific

designated path in the Hilbert space. The dimension of the Hilbert space grows exponentially

with the number of qubits. The final state which is the result of the computation is stored

in the amplitudes and phases of the constituent states as continuous variables. Hence, it is

extremely important to make sure that these constituent components are phase coherent, to

perform a proper quantum computation.

There are di↵erent sources of errors that can a↵ect a quantum computational process,

and they need to be given due consideration. These sources dictate the kind of error and

how they disturb the states, which in turn helps us identify and develop the appropriate

method to correct them:

• The implementation of gate operations may not ideal due to hardware limitations and

other imperfections.

• Interactions between the environment and the quantum register may cause various

disturbances to the state - like relaxation (unwanted transitions) or decoherence (decay

of phase coherence, i.e., dephasing).
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• The quantum system being used while designing the computer, may not be the idealized

version in application. This can be in the form of coupling constants that are di↵erent

from the ideal values, or presence of quantum states that have not been included in

the computational Hilbert space.

Understanding and characterizing errors is key to figuring out how to correct them during

the course of a computational process. In addition, it is also necessary to measure how

the errors cause deviations to the quantum state, and quantitatively measure the di↵erence

between the idealized and actual evolution.Fidelity and related measures quantify the overlap

between the ideal and the actual states for various parameters [12][13][23].

Though it is important to minimize the errors, there is a limit to the precision that can

be achieved by error correcting schemes. Hence, it is just as important to prevent and lessen

the imperfections in processing, that cause these errors. This can be achieved by:

• Optimizing the classical apparatus controlling the quantum system to minimize errors

in the gate operations.

• Making gate operations robust by making it such that the errors in the parameters

correct themselves rather than amplify.

• Storing the information in the Hilbert space in areas where the interactions between

the system and the environment are a↵ected the least.

• Using error correcting schemes and codes.

• Using schemes to decouple the system and the environment, like dynamical decoupling.

Interference of quantum states is one of the most fundamental causes for the plethora of

quantum phenomena seen in quantum systems. For interference to be possible, the states

need to have a well defined phase relationship, i.e., they are coherent. If the coherence

between the states is destroyed by their interactions with the environment, then the states

have undergone decoherence. In case the decoherence is so rapid that it makes interference

impossible, then the behaviour of quantum systems will collapse to their classical limits.

If two states are a↵ected by the environment in di↵erent ways, they will decohere. But

if they are a↵ected in the same way, then in spite of being coupled to the environment, they
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can preserve their coherence. The rate at which decoherence occurs for a given quantum

system can determine its viability for being implemented in a quantum computer.

If the environment is also quantum mechanical in nature, the interactions between the

system and the environment manifests as correlations between their degrees of freedom. This

can lead to the two being highly entangled. If this occurs, then in general, the quantum state

is no longer pure but mixed. This mixing of the environmental degrees of freedom and the

quantum state hints at loss of information that can be measured. The change in entropy

of the density matrix of this product state can be given by von Nuemann entropy, which is

discussed in further detail in Section 2.1.

In a quantum computational process, the information is distributed over all the qubits

of a quantum register unlike in classical computation. Hence, the rate at which information

is lost is not determined by the rate of decoherence of a single qubit. The information is

a↵ected by decoherence acting on all constituent qubits, and decays equivalently faster.

The rate at which decoherence grows with the number of qubits is dependent on how it is

coupled to the environmental system; specifically how the system undergoes decoherence by

the environment. Decoherence free subspaces in some large quantum systems may contain

states that are relatively immune, and undergo decoherence due to environmental noise much

slower than the average quantum state.

In practical systems, there is a finite degree of correlations between qubits and the exter-

nal fields. Based on this, clusters of qubits that are more strongly correlated than the system

average can be identified. These clusters and their correlations allow for e↵ective encoding

of appropriate schemes to reduce information loss [24].

There are many kinds of errors that can cause decoherence in a quantum system during

a computational process. Some of them are stated below:

• Spin-flip errors

• Projection errors

• Continuous errors

• Qubit-related errors
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• Phase errors

• Projection errors

Of the above mentioned, phase errors are a topic of relevance for this project. Phase

errors are a form of continuous errors, and correspond to a random rotation about the z

axis. For a random angle ✓ in the range [0, 2⇡], the random rotation is given by

P (⌘) = ei⌘✓Z (1.1)

where ⌘ is the “strength parameter” which controls the mean phase spread by the operator

Z. Other kinds of errors, error correction mechanisms and error prevention schemes are

detailed in [23].
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Chapter 2

Theory

2.1 Quantum Discord

Quantum entanglement was thought to be the key resource that enabled enhanced processing

in systems that displayed non-classical behaviour (further detail in Section 1.1.1). However,

there were non-classical systems that displayed enhanced processing but had vanishingly

small entanglement. This led to the discovery of quantum discord, which was non-zero even

for systems with separable states (zero entanglement), and could account for the enhanced

processing power in instances when entanglement was absent. Since then, many new quan-

tum correlations with unique features that can be exploited in di↵erent ways have been

discovered and extensively studied.

Quantum discord is only one of the many quantum correlations that can measure the

non-classicality of a system. Two systems that contain more information together than

when they are taken separately, are correlated. Quantum discord is the di↵erence between

the correlations in a system measured in two classically equivalent ways.

If the system is purely classical, the information shared by the systems would be equal,

irrespective of how they are being measured. This is because classical information is locally

accessible and information can be obtained without perturbing the system. In other words,

it is possible to perform a measurement without altering the density matrix, and the classical

correlations can be recovered. However, if a system is not purely classical, there will be a
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mismatch in the information, because measurements are basis dependent and can change

the state of the system.

Classically, the amount of information contained in a random variable is given by the

Shannon entropy. It can be interpreted as either the uncertainty before measuring a random

variable or the information gained from measuring it. For a random variable X, the Shannon

entropy is given by:

H(X) = �
X

x

p
x

log2px (2.1)

where p
x

is the probability of the event X. H(X) = 0 implies that X is determinate,

and no new information obtained by measuring it.

Consider a bipartite system containing two subsystems A and B. Conditional entropy of

B quantifies the uncertainty in the measurement of B when A is known, and is represented

by H(B|A). If the information in the entire system is H(A,B) and H(A) is the information

contained in the subsystem A, then conditional probability of B can be written as:

H(B|A) = H(A,B)�H(A) (2.2)

An alternate, equivalent way of defining the conditional entropy would be

H(B|A) =
aX

i

H(B|a = i) (2.3)

where

H(B|a = i) = �
X

j

p(b
j

|a
i

)log2p(bj|ai) (2.4)

Given that event a
i

has occurred, the probability of the event b
j

occurring is the condi-

tional probability p(b
j

|a
i

). Unlike the previous case, this definition of the conditional entropy

requires measurement of one of the subsystems.
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We use von Neumann entropy as the quantum equivalent of Shannon entropy to define

the information contained in a density matrix ⇢:

H(⇢) = �
X

x

�
x

log2�x (2.5)

where �
x

are the eigenvalues of the density matrix ⇢.

The amount of information shared by the subsystems A and B of the bipartite system is

called mutual information. It is given by:

I(A : B) = H(A) +H(B)�H(A,B) (2.6)

This definition of mutual information is both symmetric and measurement independent,

i.e, I(A : B) = I(B : A).

Figure 2.1: Mutual information calculated in two di↵erent classically equivalent ways. Source
[12]

Another classically equivalent way of defining mutual information as shown in Figure 2.1

would be:

J(A : B) = H(B)�H(B|A) = H(B)�
X

i

paH(B|a = i) (2.7)
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but this is basis dependent. To obtain the maximum classical correlation possible from

this measure, we maximize it over all possible orthonormal measurement bases ⇧a

i

for A,

with ⇧a

i

satisfying the orthonormality conditions
P

i

⇧a

i

= I and ⇧a

i

⇧a

j

= �
ij

⇧a

i

Hence, the non-classical correlation extracted from the total system can be quantified as:

D(B|A) = I(A : B)�max(
aY

i

J(A : B)). (2.8)

This di↵erence was named discord by Olliver and Zurek [6]. Even for separable states

that have zero entanglement, discord may be non-zero. It can function as the resource that

provides quantum enhancement for quantum information processing, like in the case of the

DQC1 algorithm. Zero-discord states or “classical” states are hence states in which maximal

information about a subsystem can be obtained without any projective measurements that

can disturb the correlations in the rest of the system.

However, analytically evaluating the maximized correlation J(A : B) over every possible

orthonormalized basis state is non-trivial. The formula for discord has been described for

some special classes of states [16], but a closed analytical formula describing quantum discord

for a general state does not exist. The brute force method would be to consider as many

orthonormal bases as possible, while considering all the symmetries and constraints present

in the system.

In general, discord is not a symmetric quantity, i.e. D(B|A) and D(A|B) may di↵er.

Calculation of discord and other related measures have been reviewed in [13][16].

2.2 Quantum Search Algorithm

The quantum search algorithm, commonly known as Grover’s algorithm, is one of the earliest

proposed quantum algorithms. Along with Shor’s algorithm, it illustrated how quantum

algorithms can significantly speed up the solutions to computationally complex problems

for classical computers. It was proposed by Grover in 1996 [14] and conducts a search in

an unstructured database to find a set of solutions that may satisfy certain conditions. A

classical computer requires minimum N steps to find a particular element in a database

16



with N = 2n elements. Compared to that, the quantum search algorithm requires only
p
N

queries to execute the search, and o↵ers a quadratic speed up.

The algorithm accomplishes this in three major steps: preparation of the state, marking

out the solutions, and amplitude amplification. All elements in the unstructured database

are first put in a uniform superposition. Then the oracle operator marks out all the solution

states of the search by flipping their phase. Then the di↵usion operator flips the amplitude of

all the elements in the database about the mean, amplifying the amplitude of the solutions.

This cycle of the oracle and di↵usion operator continues to run the course of the algorithm

until it is successful, and repeats until the amplitudes of the solution states are amplified to

the extent that it can be measured to a desirably successful probability.

2.2.1 The oracle

We start the search with a quantum register of n qubits, where n is the minimum number

of qubits necessary to represent the database of elements. Without loss of generality, let

N = 2n, and contains M solutions, where 1  M  N . To initialize the algorithm, we use

the Hadamard Operator to put all the elements of the search in a uniform superposition.

Let us call this uniform superposition | i. | i is a superposition of both the solution

and non-solution states. Let the normalized superposition of the solution states be |�i and
that of the non-solution states |↵i. Then, | i can be written as:

| i =
r

N �M

N
|↵i+

r
M

N
|�i (2.9)

An oracle is a black box function which modifies the system into a required configuration.

The quantum oracle U
w

is a quantum black-box operator, which means it can observe and

operate on states conditionally without collapsing them to a classical state. This is possible

by making use of an oracle qubit, which can recognize solutions to the search problem. U
w

is a unitary, and it can be represented as

|xi Uw! (�1)f(x)|xi (2.10)
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The oracle operator marks the solution to the search by flipping their phase. It performs

a conditional phase shift of ⇡ on the solutions, which is equivalent to their amplitudes being

multiplied by a factor of -1. This changes the amplitude of the states without altering their

probability density. The oracle is a unitary operator, and this conditional phase shift can be

written as:

U
w

= I� 2(
M

N
)|�ih�| (2.11)

For anN item search problem withM solutions, the oracle needs to make onlyO(
p
N/M)

queries in order to mark out all the solutions in the database [18].

2.2.2 The Di↵usion Operator

The purpose of the di↵usion operator is amplitude amplification. It performs an inversion

on all the states about their mean. Following the oracle, the marked states in |�i have

a negative amplitude compared to all the other states. Hence, when amplified about the

mean, the amplitude of the solutions will be higher than those of the non-solution states.

This implies that the solutions can be measured with a higher probability density than the

non-solution states. The di↵usion operator given by U
d

can be written as

U
d

= 2| ih |� I (2.12)

2.2.3 The Grover Iterate

The oracle and di↵usion operator together form the Grover iterate, also known as the Grover

operator, denoted by G . The quantum search algorithm now consists of repeated iterations

of this quantum subroutine. It can be written as:

G = U
d

U
w

= [ 2| ih |� I ][ I� 2(
M

N
)|�ih�| ] (2.13)
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Let us consider a worked example for the three qubit case, with |011i as the marked state.

The superposition contains 8 basis states, and after initialization to a uniform superposition,

is as depicted in Figure 2.2:

Figure 2.2: Source [21]

Next, the oracle flips the phase of the marked state (Figure 2.3) . Following the oracle,

Figure 2.3: Source [21]

the di↵usion operator flips all the states about their mean (Figure 2.4) .

Figure 2.4: Source [21]

The grover iterate is repeated over and over until the marked solution states have amplified

upto a desired probability measure (Figure 2.5) .
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Figure 2.5: Source [21]

2.2.4 Geometric Picture

Figure 2.6: Geometric Representation of a Grover Iterate (Source [18])

The dynamics of the Grover Iterate in the basis formed by the normalized superposition

states of the solutions and non-solutions {|�i, |↵i} can be visualized to give a geometric

interpretation:
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| i =
r

N �M

N
|↵i+

r
M

N
|�i = cos ✓|↵i+ sin ✓|�i (2.14)

where cos ✓ =
q

N�M

N

) ✓ = arccos(
q

N�M

N

). The Grover operator G = U
d

U
w

rotates

the uniform superposition state | i in the {|�i, |↵i} basis, with each iteration rotating | i
closer to |�i. The oracle U

w

reflects | i about |�i. Then U
d

rotates U
w

| i about | i, and
rotating closer to |�i. The search is successful when the final state U

d

U
w

| i coincides with
the |�i axis.

Grover’s algorithm was one of the earliest developed quantum algorithms, and had a

significant role in making quantum algorithms relevant in quantum computation. It has

many applications. It is used as a subroutine in many classical problems to speed up the

algorithm. It is possible to estimate the number of solutions to any search problem, if

they exist, by using phase estimation in accordance with Grover’s algorithm. This is called

Quantum Counting. Quantum counting is used to speed-up the solutions to many NP-

complete problems.

The performance of the algorithm can be quantified by the number of Grover iterations

required to rotate | i to within an angle of ✓

2  ⇡

4 of |�i is given by

R =
arccos

p
(M
N

)

✓
(2.15)

However, this requires us to know the number of solutions to the problem beforehand.

In some cases, R is too high for the algorithm’s performance to be e�cient, as | i keeps

sweeping around in circles without converging to |�i. Though M can be evaluated separately

by quantum counting, needing to that alongside using Grover’s algorithm takes away its

advantage of quadratic speed up. In 2005, Grover developed the “fixed-point quantum

search” by making a few modifications to the original quantum search [20]. The convergence

of U
d

U
w

| i to |�i was ensured in this version, but with a compromise on the quadratic speed

up. However, using quantum control techniques to modify the algorithm, the fixed point

search can implement the search without losing the quadratic speed up, while also ensuring

the success of the search [17].
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2.3 Dynamical Decoupling

2.3.1 Robust operations and sequences

As discussed in Section 1.3, it is important to make quantum operations more robust, so

that errors that arise in the process are within the range in which they can be corrected. To

make operations more ‘robust’, the parameters controlling the experimental implementation

of the gates should be independent of the operation’s performance, or cause only negligible

deviations to it.

Threshold theorem shows that quantum algorithms and their corresponding gate opera-

tions can be as long as needed, given that the noise generated is below a given limit [19]. The

usage of pulses to correct errors was first done in NMR. Di↵erent rotations can be combined

to make the quantum states undergoing processing more resilient to environmental noise,

thereby eliminating decoherence.

The addition of the pulse sequences to generate extra rotations in the quantum sys-

tem during processing may increase the length of operations and the corresponding energy

deposited in the system. However, it can be used to increase the fidelity of the entire se-

quence, and not just the individual operators, making it worthwhile, if used with careful

consideration.

There are multiple types of errors that cause decoherence. To correct the deviant be-

haviour, pulses need to be designed accordingly to be e↵ective. Optimal control theory o↵ers

the necessary theoretical tools to design them.

2.3.2 Robust Dynamical Decoupling

Dynamical Decoupling (DD) is a technique that modulates the system and environmental

interactions to suppress decoherence and incoherence. It consists of a sequence of pulses that

are temporally spaced in scales much shorter than the environment’s evolution. These pulses

methodically modulate the environment interactions by performing a series of instantaneous

qubit flips. Unlike schemes based on error correcting codes or decoherence free subspaces,

DD requires lesser resources - like ancilla qubits.
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DD can been incorporated as a part of optimal control procedure [1], and has been

realized experimentally, in Grover’s Algorithm. It is advantageous to integrate DD pulses

into the gates, because there is no need to manually divide gates into segments, or correct

for pulse errors like radiofrequency field inhomogeneity (RFI) separately.

2.3.3 Dynamically protected gates

Consider the total Hamiltonian of the system that evolves with time H(t) with

H(t) = H
S

(t) +H
C

(t) +H
SE

(t) (2.16)

Where H
S

(t) refers to the system’s Hamiltonian, H
C

(t) refers to the Hamiltonian of the

control fields, and H
SE

(t) is the interaction Hamiltonian for the system and the environment.

Ideally, unitaries involved in the evolution of the system are realized in quantum opera-

tions as discrete segments in time, and need to be dependent only on H
S

(t) and H
C

(t). But

in realistic experimental scenarios, the system-environment Hamiltonian will also evolve the

system-environment state, causing decoherence that manifests in subsequent measurements.

However, by applying DD pulses, we can suppress the decoherence caused by H
SE

(t), by

interrupting the evolution of the system-environment state.

The propagators for the DD pulses are given by P
j

= e�i�I↵ , where � is the DD flip-angle,

and I
↵

can be I
x

or I
y

. Consider the total propagator U
T

for the protected sequence that

includes the DD pulses:

U
T

= U
N+1

NY

i=1

P
i

U
i

(2.17)

In the toggling-frame [25], the total propagator can be rewritten as:

U
T

= U
N+1

NY

i=1

Ũ
i

(2.18)

where Ũ
i

= V †
i

U
i

V
i

, and V
j

= P
i�1Pi�2....P2P1 and V1 = V

N+1 = I.
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Figure 2.7: Schematic of the protected quantum gate scheme (Source [1])

To implement a protected quantum gate scheme, we reserve certain segments for the full

amplitude DD pulses, and compensate for the DD pulse in the other segments, by optimizing

them to realize a target unitary that matches the ideal case (Figure 2.7).
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Chapter 3

Simulations

3.1 Evolution of Quantum Discord in a 2-Qubit NMR

system

To gain better understanding about the evolution of quantum discord for 2-qubit systems,

the results from [16] were simulated.

The system studied is a two qubit NMR system with spins I
a

and I
b

that evolve under

the Hamiltonian

H = H
z

+H
J

(3.1)

where H
z

= � h

2⇡ (!a

Ia
z

+ !
b

Ib
z

) is the Zeeman Hamiltonian, and H
J

= 2⇡JI
a

· I
b

is the

indirect spin-spin coupling Hamiltonian.

The system is initialized by preparing a pseudo-pure state corresponding to the pure

state |00i and the density matrix after di↵erent durations of free evolution (⌧) under H
J

can

be calculated as a function of the delay parameter ✓ (where ✓ = ⇡J⌧).

To calculate the discord for a given density matrix, we have to perform measurements

over extensive sets of orthonormal basis vectors, and then maximize the quantity J(A : B).

Since this is a two-qubit system, consider generalized orthonormal basis vectors,
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Figure 3.1: Evolution of quantum discord in a two qubit NMR system

|ui = cos↵|0i+ ei� sin↵|1i (3.2)

|vi = sin↵|0i � ei� cos↵|1i (3.3)

We vary ↵ 2 [0, ⇡] and � 2 [0, 2⇡] in small increments, and evaluate J(A : B) for

di↵erent ↵ and �. Then J(A : B) is maximized over all these states, and the discord for a

given density matrix is evaluated as discussed in Section 2.1.

The evolution of discord can be plotted as a function of the delay parameter ✓. The

results match with the simulations in [16].
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3.2 Evolution of Quantum Discord in Grover’s Algo-

rithm for a two qubit system

The quantum search algorithm for the two qubit case is special because the search is 100%

successful after just a single Grover iteration. In other words, the state vector of the search

rotates itself into alignment with the |�i axis after a single Grover iteration, indicating that

the search algorithm was successful in finding the solution state.

Figure 3.2: Evolution of quantum discord in Grover’s algorithm

Since this is a two qubit system, we consider the basis states |00i, |01i, |10i, |11i with |01i
as the marked state. The initial superposition state is | i = 1

2(|00i+ |01i+ |10i+ |11i), with
|�i = |01i.
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U
w

= I� 2|01ih01| (3.4)

U
d

= 2| ih |� I (3.5)

We start with the initial superposition state and evolve it under the Grover iterate G =

U
d

U
w

. We break each operator into a 2mn steps so that we can sample the intermediate

points for discord as the algorithm runs its course. At each point, we can evaluate the evolved

density matrix ⇢, and evaluate their corresponding discord. We then plot the evolution of

discord against the Grover iterate.

Figure 3.2 displays the evolution of quantum discord for Grover’s algorithm over 4 iter-

ations. The discord vanishes after the first iteration as it reaches the marked state, which is

classical. It also vanishes for uncorrelated states. The discord is maximum after the action

of the oracle, which flips the phase of the marked state by ⇡.

28



3.3 Evolution of Quantum Discord with the e↵ect of

noise

Quantum correlations are lost due to e↵ects like decoherence and incoherence. To realisti-

cally simulate the evolution of quantum discord, it is necessary to account for noise. For

studying the e↵ects of local noise on quantum discord, we apply a noise operator with a

given amplitude (n
amp

) generated randomly. We average the discord obtained from several

repetitions, to obtain the e↵ect of noise on discord. Figure 3.3 shows the e↵ect of a random

dephasing noise on the discord.

Figure 3.3: Evolution of quantum discord in Grover’s algorithm in the presence of a dephasing
noise of amplitude n

amp

= 0.004
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The randomly generated dephasing noise applied is of the form

U
N

= e�i⌘namp(Iaz+I

b
z) (3.6)

where ⌘ is random, n
amp

is the noise amplitude and Ia
z

and Ib
z

are the z-components of

the spin angular momentum operators. The noise unitary now acts on the constituent states

in unison with the oracle U
w

and the di↵usion operator U
d

.

Figure 3.3 represents the evolution of discord in Grover’s algorithm in the presence and

absence of noise. On gradually increasing the noise amplitude, we find that the evolution of

discord gets correspondingly aberrant (Figure 3.4).

Figure 3.4: The evolution of quantum discord in Grover’s algorithm for various noise ampli-
tudes (n

amp

)

We observe that the e↵ect of noise on the evolution of discord during the first half (U
w

)

of the Grover Iterate is much more than the second half (U
d

). This is illustrated in Figure

3.5.
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Figure 3.5: E↵ect of noise on U
w

vs U
d

for di↵erent noise amplitudes (n
amp

)

This can be explained by the fact that U
d

is more sensitive to noise than U
w

. The oracle

U
w

only acts on the solution states in the superposition, which it has to ”mark” by flipping

their phase. But, the di↵usion operator U
d

flips all the states about their mean, hence acting

on all the states in the superposition. As a result, the noise from U
d

disturbs the correlations

more, compared to the oracle U
w

.
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3.4 Evolution of quantum discord with the e↵ect of

noise with DD (⇡ pulse)

The e↵ect of noise on the evolution of discord was shown in the previous section. Now, we

apply DD to suppress decoherence, using the methods described in Section 2.7.

Figure 3.6: E↵ect of DD on the evolution of discord in Grover’s algorithm in the presence
of noise

We apply the unitary for DD
y

to the system as it evolves, which is of the form:

V = e�i�I↵ (3.7)

where � = ⇡ and I
↵

= I
y

. We divide the Grover iterate into 4mn segments each, for both

the oracle and the di↵usion. Suppose we apply DD after every nth segment, then the next n
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unitaries that come after the DD pulse are modified to adjust to hit the target unitary after

2n operations:

U
w

= { UU....
n times

....UU V U
p

U
p

....2n times

....U
p

U
p

V 0 UU....
n times

....UU }
m times

This is the protected gate scheme that integrates DD into the quantum gates. It decouples

the system-environment interactions to successfully suppress the randomly generated noise

and protects correlations during the evolution of Grover’s algorithm.

Figure 3.7: E↵ect of DD on the evolution of discord in Grover’s algorithm for various n
amp
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Figure 3.6 compares the evolution of quantum discord in Grover with noise n
a

mp =0.07

with and without DD and compares them with the ideal evolution with no noise. We observe

that the robust-DD scheme is quite successful in noise suppression.

Figure 3.7 shows that this scheme is pretty e↵ective at suppressing decoherence even

for higher amplitudes of noise, which exhibit extremely aberrant behaviour from the ideal

evolution (Figure 3.4).
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3.5 Evolution of quantum discord with the e↵ect of

DD based on di↵erent pulse angles (�)

It was experimentally shown that DD sequences based on ⇡/2 pulses performed just as well

as, if not better than ⇡ pulses in protecting the quantum discord in Grover’s algorithm [1].

Hence it is of interest to further explore the performance of DD sequences based on non-⇡

pulses to find out their potential in suppressing noise.

Figure 3.8: E↵ect of DD on the evolution of discord for di↵erent pulse angles (�)

Figure 3.8 shows the evolution of quantum discord in the presence of noise (n
amp

= 0.003),

for DD sequences based on various pulse angles (�). We observe that ⇡ pulse based DD

outperforms the DD based on other pulse angles. Their performances of di↵erent � can be

ranked as:

⇡ >
3⇡

4
>
⇡

2
>
⇡

3
>
⇡

4
>
⇡

6
> no DD

Though not as e↵ective as ⇡ pulse based DD, the DD sequences based on other pulse
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angles, still successfully suppress the noise in the system and correct the noise to some

extent. It is of interest to further explore upon this, and compare the simulated results with

experimental results from [1].
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3.6 Evolution of quantum discord with DD in the pres-

ence of RFI

An experimentally applied ⇡ pulse is imperfect, and not purely a ⇡ pulse but a distribution

of pulses [⇡ � �, ⇡ + �] whose probability peaks for the value ⇡. This can have a significant

e↵ect on the e↵ectiveness of DD in preserving the correlations and decoupling the system

from the environment.

Figure 3.9: E↵ect of RFI on evolution of quantum discord with ⇡-pulse based DD for n
amp

= 0.02

Consider a distribution of pulse angles about �

[0.9 �, 0.95 �, �, 1.05 �, 1.1 � ]

with the probability distribution (A)

[ 0.1, 0.25, 0.3, 0.25, 0.1 ]
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We obtain the discord for each of � values in the distribution and then obtain the weighted

means of the discord values with the probability from the distribution as the weight. We

then plot the time evolution of discord for a given pulse angle � with RFI for a particular

n
amp

.

Figure 3.10: Evolution of quantum discord with ⇡/2-pulse based DD for n
amp

= 0.005, in
the presence and absence of RFI

From Figure 3.9, we observe that RFI reduces the e↵ectiveness of DD for ⇡-pulse based

DD, but not significantly. This because ⇡-pulse based DD is seen to be e↵ective for even

high noise amplitudes, unlike non-⇡ pulse based DD.

However, it is observed that ⇡/2-pulse based DD may perform better in the presence of

RFI than when it is absent. In Figure 3.10, the evolution of discord with ⇡/2 based DD has

been plotted in the absence of RFI and the presence of RFI for three probability distributions

A, B and C. The imperfect pulse angle � constitutes the pulses [0.9 �, 0.95 �, �, 1.05 �, 1.1 � ],

where � = ⇡/2, and each pulse angle occurs as an impurity with a corresponding probability
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as given in one of the normalized probability distributions below:

Distribution A = [ 0.1, 0.25, 0.3, 0.25, 0.1 ]

Distribution B = [ 0.05, 0.1, 0.7, 0.1, 0.05 ]

Distribution C = [ 0.05, 0.1, 0.55, 0.2, 0.1 ]

The better performance of DD in the presence of RFI rather than its absence can be at-

tributed to the mixture of slightly higher pulse angles for an imperfect pulse. Since the

performance of DD increases with the increase in pulse angle �, the presence of RFI means

that the imperfect pulse may constitute some pulses that perform slightly better than a pure

⇡/2 pulse. This is illustrated by the performance of DD for an imperfect ⇡/2-pulse with

di↵erent probability distributions for the impurities. The distribution with more probability

for higher pulse angles perform better:

Distribution C > Distribution A > Distribution B

However, this feature of ⇡/2 pulse based DD, where it performs better in the presence of

RFI than its absence, does not take away from the fact that ⇡ pulse based DD is better at

noise suppression than the ⇡/2 pulse based DD. These results, in fact, further attest to the

better performance of DD for higher values of �.
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3.7 Evolution of quantum discord for various DD schemes

(DDx, DDy, DDxy) in the presence of RFI for dif-

ferent pulse angles (�)

Non-⇡-pulse based DD sequences are found to be weaker for higher levels of noise amplitudes.

We plot the evolution of discord for DD
x

, DD
y

and DD
xy

sequences for di↵erent pulse angles

� for a low n
amp

to compare their decoherence suppression capacity, in the presence of RFI.

Figure 3.11: Evolution of quantum discord for Grover’s algorithm with DD
x

in the presence
of RFI for di↵erent pulse angles (�) for n

amp

= 0.002

Figure 3.11 shows the evolution of quantum discord in Grover’s algorithm with DD
x

(I
↵

= I
x

) in the presence of RFI, for di↵erent pulse angles (�) at noise amplitude n
amp

=

0.002

Figure 3.12 shows the evolution of quantum discord in Grover’s algorithm with DD
y
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(I
↵

= I
y

) in the presence of RFI, for di↵erent pulse angles (�) at noise amplitude n
amp

=

0.002

Figure 3.13 shows the evolution of quantum discord in Grover’s algorithm with DD
xy

(which uses specific alternating pulses of X and Y [27]) in the presence of RFI, for di↵erent

pulse angles (�) at noise amplitude n
amp

= 0.003

Figure 3.12: Evolution of quantum discord for Grover’s algorithm with DD
y

in the presence
of RFI for di↵erent pulse angles (�) for n

amp

= 0.002

We observe that even in the presence of RFI, DD based on ⇡ pulses outperform all other

pulses. The order of performance in the presence of RFI still remains as:

⇡ > 3
⇡

4
>
⇡

2
>
⇡

3
>
⇡

4
>
⇡

6
> no DD

This order holds true for all the three DD sequences simuluated - DD
x

, DD
y

and DD
xy

for di↵erent pulse angles.
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Figure 3.13: Evolution of quantum discord for Grover’s algorithm with DD
xy

in the presence
of RFI for di↵erent pulse angles (�)for n

amp

= 0.003

But we also observe that even though non-⇡ pulses are not as e�cient at decoherence

suppression as ⇡ pulses, they can still significantly decouple the system and environment

interactions, especially at low noise amplitudes.

Hence, unlike the conventional notion that dynamical decoupling is achieved only by

⇡ pulses, we have shown by numerical analysis that if properly incorporated into control

sequences, even non-⇡ pulses can bring about e�cient dynamical decoupling.

Thus the current work supports the earlier experimental results regarding the e↵ectiveness

of ⇡/2-pulse based DD [1], displayed in Figure 3.14.
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Figure 3.14: Experimental results from [1] demonstrating di↵erent DD schemes for ⇡/2 pulses
and ⇡ pulses
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Chapter 4

Summary and Conclusions

• Quantum Correlations are precious resources in quantum information processing and

need to be preserved. It was found that not just entanglement but a broader class

of non-classical correlations, was the key to quantum mechanically enhancing classi-

cal tasks. Quantum entanglement, discord, contextuality, etc. are some of the well

studied quantum correlations today, that have applications in many areas including

teleportation, quantum cryptography, etc.

• Quantum algorithms are an essential part of quantum computing and information

processing. They comprehensively take advantage of the quantum features of systems

that make a quantum computer, to speed up processing (quantum parallelism) or

simulate naturally occurring quantum systems that are hard to describe using classical

means. The study of quantum algorithms garnered further interest when it was found

that they can o↵er exponential or quadratic speed ups to classically hard problems.

• Quantum discord is a measure of the di↵erence between mutual information measured

in two classically equivalent but quantum mechanically distinct ways.

• Grover’s algorithm or the quantum search algorithm runs a search on an unstructured

database to find solutions, and o↵ers a quadratic speed up over all its classical counter-

parts. A Grover iterate G is composed of two constituent operator steps - the oracle U
w

and the di↵usion operator U
d

. The oracle flips the solution states and marks them out

by inverting their phase, and the di↵usion operator amplifies the amplitude of these

marked states by inverting all the states about their mean. The search is successful
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when the amplitudes of the marked states can be measured with a high probability.

• In this project, we have studied the evolution of quantum discord in Grover’s algorithm

for a two qubit system. For the two qubit case of Grover’s algorithm, the search is

successful after just one iteration, when the system reaches the marked/solution state.

Since this is a classical state, the discord vanishes, as it is a quantum correlation. The

evolution of quantum discord in Grover’s algorithm is plotted in Figure 3.2.

• To take decoherence into account, noise is introduced into the system. The evolution of

quantum discord for Grover’s algorithm in the presence of a dephasing noise is plotted

in Figure 3.3 and Figure 3.4. It is observed that the di↵usion operator is more sensitive

to noise than the oracle (Figure 3.5)

• Dynamical Decoupling is a well known decoherence suppression scheme. It decouples

the interactions between the environment and system by performing a series of rapid

qubit flips. Integrating DD into quantum gate operations to make them more robust is

advantageous, as there is no need to separately account for pulse errors that come from

RFI. [1]. Figure 3.6 and Figure 3.7 show that the protected quantum gate schemes

with ⇡ pulse based DD are e↵ective in suppressing decoherence, even for higher values

of noise amplitudes.

• It was experimentally found that ⇡/2-pulse based DD sequences perform as well as,

if not outperform ⇡-pulse based DD schemes [1]. The e↵ect of DD for di↵erent pulse

angles (�) has been studied (Figure 3.8). It is observed that ⇡-pulse based DD out-

performs non-⇡ pulse based DD in the order:

⇡ > 3
⇡

4
>
⇡

2
>
⇡

3
>
⇡

4
>
⇡

6
> no DD

However, for low noise amplitudes, non-⇡ pulse based DD sequences can also suc-

cessfully suppress decoherence, even if they are not as e↵ective as the ⇡-pulse based

ones.

• Experimentally applied pulse sequences are not perfect. To account for pulse errors,

the e↵ect of RFI on DD is taken into account. We assume a spread of the pulse

angle about � as the mean, and a corresponding probability distribution that peaks at

�. We see that ⇡- pulse based DD is more e↵ective at suppressing decoherence than

non-⇡ pulse based DD. ⇡-pulse based DD is also e↵ective and stable at higher noise
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amplitudes, unlike ⇡/2-pulse based DD (Figure 3.9). However, non-⇡ pulse based DD

may sometimes perform better in the presence of RFI than its absence, due to the

mixture of higher pulse angles in the distribution of the imperfect pulse (Figure 3.10).

• The evolution of quantum discord for various DD schemes in the presence of RFI for

di↵erent pulse angles (�) is simulated. In general, it is observed that ⇡-pulse based DD

outperforms other non-⇡ pulse based DD, even in the presence of RFI (Figure 3.11,

Figure 3.12, Figure 3.13), in the order:

⇡ > 3
⇡

4
>
⇡

2
>
⇡

3
>
⇡

4
>
⇡

6
> no DD

However, for very low noise amplitudes, we see that even the non-⇡ pulse based DD

sequences are also pretty e�cient at suppressing decoherence, even if not as ideally as

⇡ pulse based DD. This is especially true for the pulse angles ⇡/2 and 3⇡/4.

• Contrary to the conventional notion that dynamical decoupling is achieved only by

⇡ pulses, we show by numerical analysis that if properly incorporated into control

sequences, even non-⇡ pulses can bring about e�cient dynamical decoupling. Thus

the current work supports earlier experimental demonstration of dynamical decoupling

with non-⇡ pulses [1].
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