
Constructions of Covering Arrays

A Thesis

submitted to

Indian Institute of Science Education and Research Pune

in partial fulfillment of the requirements for the

BS-MS Dual Degree Programme

by

Reshma C Chandrasekharan

Indian Institute of Science Education and Research Pune

Dr. Homi Bhabha Road,

Pashan, Pune 411008, INDIA.

April, 2015

Supervisor: Dr. Soumen Maity

c© Reshma C Chandrasekharan 2015

All rights reserved









Amma, Achan, Kannan, Madhu and Soumen sir.









Acknowledgments

I take this opportunity to express my deepest gratitude to my guide Dr. Soumen

Maity for the constant guidance, inspiration and continuous support. It has been my

privilege to work with him and I am indebted to him for his patience and all that I

have learned being his student. I thank Dr. Rabeya Basu and Dr. Anupam Kumar

Singh for their exceptional care and concern towards us. I extend my gratitude to all

my teachers.

I would like to thank IISER Pune for giving us the opportunity to participate in

research at an early stage and for providing the necessary computational facilities.

Without the strong support and love from my parents and my brother, this project

would not have happened. I thank Madhu, Jithin, Sukruti and Vishnu for being with

me during the difficult times. Lastly, I thank all my friends and relatives for their

support.

ix



x



Abstract
A covering array of size n, strength t, degree k and order g is a k×n array on a set of

g symbols with the property that in each t×n subarray, every t×1 column appears at

least once. Covering arrays have been studied for their applications in the testing of

software, hardware, network etc. It is desirable in most applications to minimize the

size n of a covering array. In this thesis, we propose techniques for constructing good

covering arrays using group theory coupled with computer search. In 2004, Meagher

and Stevens developed group construction of covering arrays of strength two which

uses an array and a group action on the array. This method employs the action on

the symbols of a group of order g − 1 fixing one symbol. We extend this method so

that the number of fixed symbols is permitted to take any non-negative integer value.

A comparison of our method with heuristic tools like NIST IPOG-F shows that our

construction produces significantly smaller size covering arrays. We also propose a

technique for constructing covering arrays of strength three with budget constraints.
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Chapter 1

Introduction

Covering arrays are combinatorial objects that have been successfully applied in the

design of test suites for testing systems such as software [7, 8], circuits, networks

[14] and drug screening [32] where failures can be caused by the interaction between

their parameters. Checking every possible interaction between all the parameters for

errors is infeasible in many cases due to time and cost constraints. Thus, there is a

need to generate test suites that are substantially smaller than exhaustive test suite,

but highly effective in detecting faults. Pairwise testing (also called all-pairs testing

or 2-way testing) is known for its effectiveness in different types of software systems

[7, 17, 14]. Pair-wise testing requires that for a given numbers of input parameters to

the system, each possible combination of values for any pair of parameters is covered

by at least one test case. A system of 126 binary inputs with Pairwise testing would

require 10 test cases; exhaustive testing would require 2126 test cases [22]! Pairwise

testing is based on the observation that most faults are caused by interactions of at

most two parameters [26]. Pairwise-generated test suites cover all combinations of two

parameters, therefore, are much smaller than exhaustive ones yet still very effective

in finding defects. Pairwise-generated test suites ensure that software system cannot

fail due to an interaction of two parameters; however, software failures may be caused

by interactions of more than two parameters. A recent NIST study indicates that

failures can be triggered by interactions up to 6 parameters [16]. Here we consider

the problem of generating test cases for pairwise testing (2-way interaction testing)

and 3-way interaction testing. 3-way interaction testing requires that for a given

number of input parameters to the system, each possible combination of values of

any three parameters is covered by at least one test case. Covering arrays prove

1



2 CHAPTER 1. INTRODUCTION

useful in locating large percentage of errors in software systems[7, 36]. The test cases

are columns of a covering array. Constructions that can yield small test suites are of

both theoretical and practical interest [7, 8, 17, 21, 1].

1.1 Applications of interaction testing

Testing is an important but expensive part of the software and hardware development

process. It is known that more than 50% of the cost of developing a software goes to

software testing. NIST [4] studies show that US economy suffers a huge loss of $59.5

billion annually due to software bugs. Through out the history, we can find many

examples of faulty testing that led to disasters ranging from economic loss to even loss

of human lives. Some examples of incompetent testing that led to hazardous effects

are the following. In 1982, during the cold war, the CIA implemented a bug [34]

in the pressure control software that the Soviet Union purchased from Canada such

that it would pass the software testing that Soviet Union had then, which resulted

in the explosion of the Trans-Siberian gas pipeline. An example of a hardware bug

is the popular Pentium floating point division bug (1993) [11] causing errors in the

division of long floating point numbers. This happened due to a flaw in the look up

table employed in the division circuits and led to a loss of $475 for the Intel company.

Examples of faulty interaction testing in particular are many. In 1985, the radiation

therapy machine Therac-25 [18] killed three and caused severe injury to other three

patients by emitting lethal doses of radiation. This was the result of a software error

called race condition, where unintended events occur leading to multiple potential

inputs racing to affect the output. Another example of faulty interaction testing is

Europe’s Ariane-5 [19] satellite (1996) that exploded seconds after its maiden flight.

A register overflow happened in the processor computing the velocity passing the

control over to a backup processor, which crashed as it used the same algorithm. The

loss was around $500 million. The following are the main areas where pairwise testing

and 3-way interaction testing find applications.

1. Component based systems: Component based systems [2] allow components

to be developed separately which are later put together to interact to form a

functional system. Components are designed with a wider range of function-

ality so that it can either be used independently or in composition with other

components. This allows multiple implementations of components and supports
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reuse and updating the already developed components, resulting in an improved

threshold to changes. In the age of distributed applications, component based

systems play a key role as assembling can be done without specialised skills

in developing the components. Since initial cost of development and testing of

components are high, this helps in reducing the overall cost as components once

developed can be used as the building blocks.

As independent components are assembled to form the functional system, test-

ing the independent components is not enough [35]. Errors might occur due to

faulty interaction of various components. And therefore, there is a need to test

the interactions of different components.

2. Software testing: When a software is designed, it is expected to meet some

requirements. An effective method to validate a software at a feasible time

subjected to budget constraints is one of the main concerns in software testing

[25]. Since an exhaustive test suite is almost impractical, we resort to methods

which optimize the cost by maximizing the code coverage. Interaction testing

is found to be useful [7] in generating feasible test suites and is found to lower

the cost involved substantially.

3. Hardware testing: The main application of interaction testing is in generat-

ing effective test suites for testing logic circuits and networks [30]. With the

advancement in the technologies for improved VLSI systems in which thousands

of components interact, interaction testing became an unavoidable tool in the

realm of hardware testing. They also find applications in discrete device testing

[3], studying interaction of factors in mobile ad hoc networks [33], etc.

4. Design of experiments: Consider experiments [28] which studies the varia-

tion of output with multiple input combinations. In cases where a researcher

want to test that only a subset of the inputs affect the output, interaction testing

can suggest a substantially smaller set of test cases.

5. Multiple drug therapy and drug screening: In most cases multiple drugs

are simultaneously used in the treatments [15]. In such cases, the interactions

between drugs occur and the cumulative effect of the drugs have to be studied

before administering them. Another application of interaction testing is in drug

screening. Many addictive drugs are used in medical treatment but at the same
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time are abused by athletes [32]. Interaction testing helps in establishing rapid

and effective methods in drug screening.

1.2 Combinatorial designs and interaction testing

From the early 1930’s onwards statisticians have been using orthogonal arrays in

design of experiments [12]. During the mid 1980’s, Tang, Chen, and Woo [30, 31]

showed that similar combinatorial objects can be appropriately applied in generating

exhaustive test patterns for logic testing in circuits. In 1997, Cohen, Dalal, Freedman

and Patton [7] suggested that such combinatorial designs can be applied in construct-

ing test suites that tests all the pairwise or t-wise interactions of selected parameters

at a substantially lower cost and time. This paved way to a vast area of research on

interaction testing.

1.2.1 Orthogonal arrays

Orthogonal arrays were introduced by Rao [15] in 1946. They can be applied in de-

signing experiments that estimate the main effect of parameters and their interaction

effect.

Definition 1.2.1. Let g, t, k, 0 < t ≤ k be positive integers. An orthogonal array

on a set of g symbols, strength t, k factors and index λ denoted by OAλ(t, k, g) is a

k × λgt array over the symbols {0, ..., g − 1} such that every t× λgt array has all gt

possible t−tuples occurring exactly λ times.

Often the parameter λ is ignored if λ = 1. Orthogonal arrays are computationally

hard to find, but extremely useful. They have applications [15] in designing exper-

iments, in developing error correcting codes, in determining the shelf life of drugs,

in investigating the interaction of multiple drugs administered simultaneously, survey

sampling, manufacturing automobiles etc. In an experiment, the rows of an orthog-

onal array represent the different parameters that are possible and the symbols are

the multiple values that a parameter may assume. Note that the columns of an

orthogonal array are the test cases.

Example 1.2.1. The following is an example of an OA(2, 3, 2).
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 0 0 1 1

0 1 0 1

0 1 1 0


Here, we can see that any two rows of the array cover all the four possible 2−tuples

00, 01, 10 and 11 exactly once.

Given parameters t, k and v, an orthogonal array need not exist. However, there

might exist a two dimensional array with k rows such that any choice of t rows contain

all possible t−tuples at least λ times. Also, Cohen et al. [7] pointed out that in the

realm of software testing, it suffices to have an array that covers each t-way interaction

at least once. These arrays are called covering arrays of strength t. The following

section gives formal definition of a covering array.

1.3 Covering Arrays

Definition 1.3.1. A covering array t − CA(n, k, g), of size n, strength t, degree k,

and order g, is a k × n array on a set of g symbols with the property that in each

t× n subarray, every t× 1 column appears at least once.

For example, the following array is a covering array for t = 2, g = 2 and k = 4,

because if we look at this array, we notice that whichever two rows out of the four

rows are chosen, all possible pairs 00, 01, 10 and 11 come up at least once:

2− CA(5, 4, 2) =


0 0 1 1 1

0 1 0 1 1

0 1 1 0 1

0 1 1 1 0


The columns of a covering array with t = 2 provides a test suite for pair-wise testing.

These require a very small number of test cases compared to the total number of

possible test cases. For most applications t, k and g are given and it is desirable to

minimise n. The smallest possible size of a covering array for fixed parameters t, k,

and g will be denoted as

t− CAN(k, g) = minm∈N{m : there exists a t− CA(m, k, g)}.
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For a good up to date survey on covering arrays, see [9]. The following example

shows how the test cases are generated to test a software using a covering array.

Consider the testing of an internet site that must work correctly on two operating

systems, two browsers, two printers and two file formats as given below:

1. Operating systems: Windows/ Linux

2. Browsers: Internet Explorer(IE)/ Firefox

3. Printers: HP/ Epson

4. File formats: pdf/ DjVu

An exhaustive test suite consists of 2 × 2 × 2 × 2× = 16 test configurations.

However, only five test cases are enough to cover all the pair-wise interactions between

different parameters. These five test cases are obtained using a 2− CA(5, 4, 2).

OS Windows Windows Linux Linux Linux

Browser IE firefox IE firefox firefox

Printer HP Epson Epson HP Epson

File format pdf DjVu DjVu DjVu pdf

There is a vast array of literature [13, 6] on covering arrays, and the problem of

determining small covering arrays has been studied under many guises over the past

thirty years. In [13], Hartman and Raskin discussed several generalizations of the

problem of creating small covering arrays motivated by their applications in the realm

of software testing. One natural generalization is whether different parameters can

take different number of values. There are covering arrays in which different rows can

accommodate different number of symbols. These are called mixed covering arrays.

Now we consider one of the five natural generalizations of covering arrays listed in

[13].

A practical limitation in the realm of testing is budget. Given a fixed number

of test cases, we consider the problem of building a testing array A with maximum

possible coverage. The total number of t−tuples that needs to be covered for t−way

interactions is
(
k
t

)
gt. The coverage measure of a testing array A of strength t is defined

by

µt(A) =
Nt(A)(
k
t

)
gt
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where Nt(A) is the number of distinct t−tuples covered in the columns of A. Our

objective is to construct a testing array A of size at most n having largest possible

coverage measure, given fixed values of t, k, g and n. This problem is called covering

arrays with budget constrains.

1.3.1 Construction of covering arrays

Covering arrays are generally found through greedy algorithms, heuristic searches

and algebraic constructions assisted by algorithmic techniques. Exhaustive searches

can always give the smallest test suite but it is infeasible. In such cases, efficient

heuristic techniques help in obtaining results that are close to the optimum. The

most popular greedy algorithm is the Automatic Efficient Test Generator (AETG)

which was developed by Cohen et al [7].

There are three main algebraic methods that are used. The earliest is the method

of finite field construction [15] for orthogonal arrays which are covering arrays too.

Block recursive construction [29] develops a covering array 2−CA(n+m, rs, g) from

two covering arrays 2−CA(n, r, g) and 2−CA(m, s, g). The most recent technique is

the group construction method [24] which is an algebraic method assisted by computer

search.

1.4 Overview of the thesis

The aim of the thesis is to propose techniques for constructing good covering arrays

using group theory coupled with exhaustive and heuristic computer search. A key

advantage of these methods is that we search for a small vector that can be used

to construct a covering array, rather than searching for an entire array. Chapter

2 describes the group construction method developed by Meagher and Stevens [24]

for covering arrays of strength two and illustrates the method using an example.

This method employs the action on the symbols of a group of order g − 1 fixing one

symbol. In Chapter 3, we extend this method so that the number of fixed symbols

f is permitted to take any non-negative integer value and group of order g − f on

symbols is simply Zg−f , for constructing covering arrays of strength two. This method

produces covering arrays which are smaller in size compared to those which are found

by heuristic tools like NIST IPOG-F etc. In Chapter 4, we generalize this technique

for constructing covering arrays of strength 3 with budget constraints.
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Chapter 2

Group construction of covering

arrays

2.1 Introduction

In this chapter, we describe the group construction method developed by Meagher

and Stevens [24] for covering arrays of strength two. It is based on the algebraic

method developed by Chateauneuf, Colbourn and Kreher [6] for covering arrays of

strength three using graph factorization. For many values of k between g + 1 and

2g + 1, group construction produces covering arrays of size n = k(g− 1) + 1 which is

better than some of the best known upper bounds for covering arrays.

2.2 The Group construction

Group construction requires selecting an appropriate group G < Symg and a vector

v ∈ Zkg called a starter vector. The choice of a starter vector depends on the group G

and is selected through an algorithmic search. A circulant matrix M is created using

the vector v. If x ∈ G, then Mx is the k × k matrix where [i, j] entry is M [i, j]x, the

image of M [i, j] under x. The matrix obtained by developing M by G is the k× k|G|
matrix

MG = [Mx : x ∈ G].

A small array C is often added to complete the covering conditions.

9
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2.3 Selecting a starter vector

For a vector v to be a starter vector, any two rows in the matrix M must have at

least one element from each of the orbits of the group action of G on the pairs from

Zg. Starter vectors are found by exhaustive searches which look for the following

properties. Define for each 0 < i < k, the set

di={(vj, vj+i)|j = 0, 1, ..., k − 1},

where the subscripts are taken modulo k. A vector v ∈ Zkg is a starter vector if each

set di has representation from each orbit of the group action of G on the pairs from

Zg.
The following example illustrates the group construction method.

Example 2.3.1. In this example, we construct a 2−CA(11, 5, 3) by the group con-

struction method. Let G = {e, (12)} and consider the vector v = (01112) ∈ Z5
3 . The

sets di are as follows:

1. d1 = {(0, 1), (1, 1), (1, 2), (2, 0)}

2. d2 = {(0, 1), (1, 1), (1, 2), (1, 0), (2, 1)}

3. d3 = {(0, 1), (1, 2), (1, 0), (1, 1), (2, 1)}

4. d4 = {(0, 2), (1, 0), (1, 1), (1, 1), (2, 1)}

The orbits of the group action of G = {e, (12)} on the pairs from Z3 are :

1. O1 = (0, 0)

2. O2 = (0, 1), (0, 2)

3. O3 = (1, 0), (2, 0)

4. O4 = (1, 1), (2, 2)

5. O5 = (1, 2), (2, 1)
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Note that G acts on 1, 2 ∈ Z3 and fixes 0 ∈ Z3. We can verify that each di has

representation from every orbit except the orbit 1 and hence v is a starter vector.

Once a starter vector v is found, produce the circulant matrix M from v = (01112).

M =


0 2 1 1 1

1 0 2 1 1

1 1 0 2 1

1 1 1 0 2

2 1 1 1 0



The action of G on M produces M e and M (12) as follows:

M e =


0 2 1 1 1

1 0 2 1 1

1 1 0 2 1

1 1 1 0 2

2 1 1 1 0

 M (12) =


0 1 2 2 2

2 0 1 2 2

2 2 0 1 2

2 2 2 0 1

1 2 2 2 0

 .

The matrices C = (0, ..., 0)T , M e and M (12) are concatenated to build a covering

array 2− CA(11, 5, 3).
0 2 1 1 1 0 1 2 2 2 0

1 0 2 1 1 2 0 1 2 2 0

1 1 0 2 1 2 2 0 1 2 0

1 1 1 0 2 2 2 2 0 1 0

2 1 1 1 0 1 2 2 2 0 0


The group construction method coupled with computer search substantially im-

proved the upper bounds for strength two covering arrays in many cases. In cases

where a starter vector was not found, the method could suggest a good candidate

for a seed in heuristic search. Extension of the group construction method has also

been used to find strength three covering arrays with budget constraints [23]. The

advantage of group construction method over any previous algebraic construction is

that it suffices to look for a starter vector than for an entire array or a block of the

array. This made it a tool easy to be implemented in shorter time.

Over the years researchers have come up with variants of the group construction

method that improved the best known covering array numbers. The following two
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chapters discuss the method of fixing symbols in group construction for covering

arrays of strength two and three. It is derived from the method given by J. R Lobb

et. al. for covering arrays of strength two. Group construction method employs the

action on the symbols of a group of order g − 1 fixing one symbol. In Chapter 3, we

extend this method so that the number of fixed symbols f is permitted to take any

non-negative integer value.



Chapter 3

Covering arrays of strength two

3.1 Introduction

In this chapter, we propose a construction method for covering arrays of strength

two that combines an algebraic construction with a computer search. See also [5].

The construction given here follows the group construction method used by Meagher

and Stevens in [24] and Lobb et. al. in [20]. A key advantage of group construction

method is that it searches for a small vector that can be used to construct a covering

array rather than for an entire array.

The group construction method employs the group action of the symbols of a

group of order g − 1 fixing one symbol. Here we extend this method so that the

number of fixed symbols can take any non-negative integer value f . In the group

construction method, to construct a covering array on g symbols, we use a group of

size g − 1 and attach a constant column for the fixed symbol. When the number of

fixed symbols can take any non-negative integer value f , it suffices to use a group of

order g − f , thereby requiring only g − f matrices to be concatenated. However, we

have to add a small matrix of size n′ to complete the covering conditions. If n
′ ≤ f×k,

our method may lead to an improved covering array number. The proposed method

is found to produce covering arrays which are smaller in size compared to those which

are found by heuristic tools like NIST IPOG-F etc.

13
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3.2 The Fixed Symbols Construction

Let X be the set of g symbols on which we are to construct a 2−CA(n, k, g). Let G be

a group acting on the set X. The group G acts on |G| points and fixes the remaining

f = g − |G| points. Let F = {∞0,∞1, ...,∞f−1} be the set of fixed symbols. Then

X = {g1, g2, . . . , g|G|}∪{∞0,∞1, ...,∞f−1}. The number of fixed symbols can be any

nonnegative integer value. The action of G on pairs from X has six orbits. These six

orbits are determined by the pattern of the entries in their 2-tuples:

1. {(∞i,∞i)
T : ∞i ∈ F}

2. {(∞i,∞j)
T : ∞i,∞j ∈ F,∞i 6=∞j}

3. {(∞i, gj)
T : ∞i ∈ F, gj ∈ G}

4. {(gj,∞i)
T : ∞i ∈ F, gj ∈ G}

5. {(gi, gj)T : gi, gj ∈ G, gi 6= gj}

6. {(gi, gi)T : gi ∈ G}

Our construction requires selecting a vector v ∈ Xk, called a starter vector. We use

the vector v to form a k × k circulant matrix M . For v to be a starter vector, any

two rows in the matrix M must have at least one element from each of the orbits

3− 6. We will also need an array C to complete the covering conditions, where C is

2− CA(n′, k, f) with symbols from F . The group acting on the matrix M produces

several matrices that are concatenated with C to form a covering array. We give an

example to illustrate the method.

Example 3.2.1. Let k = 9 and g = 4. Let G = Z2 and v = ∞0∞00∞1011∞10.
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Here F = {∞0,∞1}. Create the following circulant matrix from v,

M =



∞0 0 ∞1 1 1 0 ∞1 0 ∞0

∞0 ∞0 0 ∞1 1 1 0 ∞1 0

0 ∞0 ∞0 0 ∞1 1 1 0 ∞1

∞1 0 ∞0 ∞0 0 ∞1 1 1 0

0 ∞1 0 ∞0 ∞0 0 ∞1 1 1

1 0 ∞1 0 ∞0 ∞0 0 ∞1 1

1 1 0 ∞1 0 ∞0 ∞0 0 ∞1

∞1 1 1 0 ∞1 0 ∞0 ∞0 0

0 ∞1 1 1 0 ∞1 0 ∞0 ∞0


The elements of Z2 = {0, 1} acting on M produce M0 = M and

M1 =



∞0 1 ∞1 0 0 1 ∞1 1 ∞0

∞0 ∞0 1 ∞1 0 0 1 ∞1 1

1 ∞0 ∞0 1 ∞1 0 0 1 ∞1

∞1 1 ∞0 ∞0 1 ∞1 0 0 1

1 ∞1 1 ∞0 ∞0 1 ∞1 0 0

0 1 ∞1 1 ∞0 ∞0 1 ∞1 0

0 0 1 ∞1 1 ∞0 ∞0 1 ∞1

∞1 0 0 1 ∞1 1 ∞0 ∞0 1

1 ∞1 0 0 1 ∞1 1 ∞0 ∞0


We also need to use C = 2 − CA(6, 9, 2), a covering array with entries from F =

{∞0,∞1} to ensure the coverage of all pairs of the types 1-2. By horizontally con-

catenating the matrices C, M0, and M1, we get a 2− CA(24, 9, 4).

3.2.1 Selecting a Starter Vector v

For v to be a starter vector, any two rows in the matrix M must have at least one

element from each of the orbits 3− 6. The idea is first to decide the positions of the

fixed symbols ∞i’s in v such that the array covers all the interactions of the types 3

and 4 and then fill in the remaining positions with the symbols from G so that the

array covers orbits of the types 5 and 6.

Proposition 3.2.1. Let the rows of an array be indexed by the additive group R = Zk.
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Let G = Zg−f and F = {∞0,∞1, ...,∞f−1}. If there exists a partition R0, R1, . . . , Rf−1, R̄

of R such that

R\{0} = {b− a|a ∈ Ri, b ∈ R̄} for all Ri

then there exists a k × k|G| array on g symbols G ∪ F so that for every two distinct

rows r1 and r2, and every two elements γ ∈ G, ∞ ∈ F , there exists a column c in

which the entry in cell [r1, c] is ∞ and that in cell [r2, c] is γ.

Proof: Suppose such a partition of R exists. Construct a vector v as follows: if

a ∈ Ri, 0 ≤ i < f , then place ∞i in the ath position and otherwise if a ∈ R̄, place

an element of G in the ath position. We use the vector to form a k × k circulant

matrix M . If x ∈ Zg−f , then Mx is the k × k matrix whose [i, j] entry is M [i, j]x,

the group action of x on M [i, j]. The matrix obtained by concatenating the g − f
matrices formed by the group action of G = Zg−f on M is the k × k|G| matrix

MG = [Mx : x ∈ G].

Given any two row indices r1, r2 ∈ R, there exist a ∈ Ri and b ∈ R̄ such that

r2 − r1 = b − a mod k. By the construction of vector v, the element in the ath

position of vector v is ∞i and that in the bth position is some γ′ ∈ G. For γ′ ∈ G,

there exists an element x ∈ Zg−f such that γ = γ′ + x (mod g − f). Consider the

matrix Mx produced by the group action of x on M . The first column of Mx has∞i

in row a and γ in row b. Now, by the construction of the circulant matrix, we can

always find a column c in the array Mx such that Mx(r1, c) =∞i and Mx(r2, c) = γ.

Hence the proposition follows.

Once the positions of the fixed symbols are determined in vector v, any interaction of

the form (γ,∞) and (∞, γ) are covered in C irrespective of which non-fixed element

occupy the position a for a ∈ R̄. Now we fill the remaining positions of v with entries

from G such that, any two rows in the matrix M must have at least one element from

the orbits 5− 6. Consider the sets Di

Di = {(vj, vj+i) | j = 0, 1, . . . , k − 1},

subscripts taken modulo k. For v to be a starter vector, fill the remaining positions

of v using entries from G such that each set Di, for i = 1, . . . , k − 1, must contain a
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representative from orbits 5 − 6. Some sample programs are given in the Appendix

Section A.

3.3 Results

Stater vectors v are found by computer search. Starter vectors exists for many values

of k and g. In the cases where the number of fixed symbols f could have more than

one value satisfying Proposition 3.2.1, we simply choose the one that gives us smaller

size covering array. Table 1 lists starter vectors for several values of k and g. A com-

parison of our fixed symbols construction with heuristic tools like NIST IPOG-F [10]

in Table 1 shows that the fixed symbols construction produces significantly smaller

size covering arrays.
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Table 3.1: A comparison of the number of test cases n generated by the Fixed Symbols
Construction and NIST IPOG-F [10].

g k f Starter vector Fixed Symbols NIST

Construction: n IPOG-F [10]

3 5 1 0∞0001 11 13

3 6 1 0∞00001 13 15

3 7 1 0∞000001 15 15

4 5 1 0∞0011 16 22

4 6 1 0∞00011 19 24

4 7 1 0∞000011 22 27

4 9 2 ∞0∞00∞1011∞10 24 29

4 10 2 0001∞00∞11∞0∞1 26 29

4 11 2 0∞10∞1000∞0∞010 29 31

5 10 2 0∞0100∞1∞120∞0 36 45

5 11 2 0∞10∞1011∞0∞011 40 46

5 12 2 000∞00∞0∞11012∞1 43 48

5 13 2 ∞100∞0∞0000101∞11 46 49

5 14 2 0000001∞00∞1∞11∞01 49 50

6 9 1 0∞00010231 46 52

6 10 1 0∞000103013 51 63

6 11 1 0∞0000010231 56 64

6 12 1 0∞00000010231 61 67

6 13 1 0∞000000010231 66 68

7 10 1 0∞000231023 61 NA

7 11 1 0∞0000103522 67 NA

7 12 1 0∞00000154304 73 NA

7 13 2 ∞101∞0∞0224210∞14 72 NA

7 14 2 001034154∞1∞13∞04 77 NA

7 15 2 0000∞1143∞123∞00∞03 82 NA

7 17 3 00∞21∞021∞12∞2∞0∞1∞20120 83 NA

8 11 1 0∞0001422410 78 NA

8 15 2 0010∞1241∞113∞00∞02 97 NA

8 16 2 ∞1∞10000253∞00545∞02 104 NA

8 18 3 00000134∞1∞2∞0∞1204∞03∞2 104 NA

8 19 3 00∞00000∞21∞2∞124042∞1∞01 107 NA



Chapter 4

Covering arrays of strength three

4.1 Introduction

In this chapter, we propose an algebraic technique for constructing covering arrays of

strength three with budget constraints.

In most software development environments, the time, computing and human

resources needed to perform the testing of a component is strictly limited [13]. Thus

an interesting and practical problem is that of finding a testing array or testing suite

with maximum coverage, given a fixed budget for executing a maximum of n test

cases (number of columns of the testing array).

The coverage measure µ3(A) of a testing array A is defined as the ratio between

the number of distinct 3−tuples contained in the column vector of A and the total

number of 3−tuples. That is,

µ3(A) =
N3(A)(
k
3

)
g3
,

where N3(A) is the number of distinct 3−tuples contained in the column vector of A.

The covering arrays with budget constraints problem is to construct a testing array A

of size at most n having largest possible coverage measure, given fixed values of t, k

and g. Here we consider t = 3. The construction given here is a generalization of the

algebraic method given by Meagher and Stevens [24].

In the following section, we summarize the results from group theory that we use.

19
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4.1.1 Simple Linear Group

GF (s) is the Galois field where s = pm for some prime p. Let H(s) be the set of all

functions of the form x 7→ ax + b, a 6= 0, where a, b ∈ GF (s). This set H(s) forms a

group under the operation of functional transformation called the simple linear group

[27] and the action of H(s) on the elements of GF (s) is 2−transitive. The order of

H(s) is s(s− 1).

4.2 The Fixed Symbol Construction

Given k, g and n, we present a method to construct a k × n testing array A on g

symbols with maximum possible coverage measure. Choose g such that g − 1 is a

prime or prime power. Let X = GF (g − 1) ∪ {∞} be the set of g symbols on which

we are to construct a testing array. We select a group G such that the action of G

on X = GF (g− 1)∪ {∞} is sharply 2−transitive. Here we choose G to be H(g− 1).

Under this group action, there are precisely g+11 orbits of 3−tuples. They are listed

below:

1. {(∞,∞,∞)T}

2. {(∞,∞, x)T : x ∈ GF (g − 1)}

3. {(∞, x,∞)T : x ∈ GF (g − 1)}

4. {(x,∞,∞)T : x ∈ GF (g − 1)}

5. {(∞, x, x)T : x ∈ GF (g − 1)}

6. {(x,∞, x)T : x ∈ GF (g − 1)}

7. {(x, x,∞)T : x ∈ GF (g − 1)}

8. {(∞, x, y)T : x, y ∈ GF (g − 1), x 6= y}

9. {(x,∞, y)T : x, y ∈ GF (g − 1), x 6= y}

10. {(x, y,∞)T : x, y ∈ GF (g − 1), x 6= y}

11. {(x, x, x)T : x ∈ GF (g − 1)}
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12. {(x, x, y)T : x, y ∈ GF (g − 1), x 6= y}

13. {(x, y, x)T : x, y ∈ GF (g − 1), x 6= y}

14. {(y, x, x)T : x, y ∈ GF (g − 1), x 6= y}

15. g − 3 orbits of patterns with 3 distinct entries from GF (g − 1).

{(x, y, z)T : x, y, z ∈ G, x 6= y 6= z}

Our construction involves selecting a vector v ∈ Xk. We use the vector v to form

a k × k circulant matrix M . If h ∈ H(g − 1), then Mh is the k × k matrix where

the [i, j] entry is M [i, j]h, the image of M [i, j] under h. The matrix obtained by

developing M by H(g − 1) is the k × k(g − 1)(g − 2) matrix

MH(g−1) = [Mh : h ∈ H(g − 1)]

Let C=(∞,∞, ...,∞)T . The goal is to choose a vector v so that the matrix [MH(g−1), C]

is a covering array or a testing array with high coverage measure. A vector v ∈ Xk

is said to be a starter vector if any 3× k subarray of the circulant matrix M has at

least one representative from each of the orbits 2− 15.

If a starter vector v is found, [MH(g−1), C] is a covering array 3−CA(k(g−1)(g−
2), k, g). If a starter vector is not found, we look for a vector that produces an array

[MH(g−1), C] with maximum possible coverage measure.

Example 4.2.1. Let g = 3, k = 21, and n = 45. Then X = GF (2) ∪ {∞} and
G = H(2). Let v = (0000∞0∞1101∞∞∞∞∞11∞010100∞111∞∞001). Build the
following circulant matrix M from v:
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M =



∞ ∞ 0 0 1 0 1 ∞ 0 ∞ 0 ∞ ∞ 1 1 ∞ ∞ 1 1 ∞ 0

0 ∞ ∞ 0 0 1 0 1 ∞ 0 ∞ 0 ∞ ∞ 1 1 ∞ ∞ 1 1 ∞
∞ 0 ∞ ∞ 0 0 1 0 1 ∞ 0 ∞ 0 ∞ ∞ 1 1 ∞ ∞ 1 1

1 ∞ 0 ∞ ∞ 0 0 1 0 1 ∞ 0 ∞ 0 ∞ ∞ 1 1 ∞ ∞ 1

1 1 ∞ 0 ∞ ∞ 0 0 1 0 1 ∞ 0 ∞ 0 ∞ ∞ 1 1 ∞ ∞
∞ 1 1 ∞ 0 ∞ ∞ 0 0 1 0 1 ∞ 0 ∞ 0 ∞ ∞ 1 1 ∞
∞ ∞ 1 1 ∞ 0 ∞ ∞ 0 0 1 0 1 ∞ 0 ∞ 0 ∞ ∞ 1 1

1 ∞ ∞ 1 1 ∞ 0 ∞ ∞ 0 0 1 0 1 ∞ 0 ∞ 0 ∞ ∞ 1

1 1 ∞ ∞ 1 1 ∞ 0 ∞ ∞ 0 0 1 0 1 ∞ 0 ∞ 0 ∞ ∞
∞ 1 1 ∞ ∞ 1 1 ∞ 0 ∞ ∞ 0 0 1 0 1 ∞ 0 ∞ 0 ∞
∞ ∞ 1 1 ∞ ∞ 1 1 ∞ 0 ∞ ∞ 0 0 1 0 1 ∞ 0 ∞ 0

0 ∞ ∞ 1 1 ∞ ∞ 1 1 ∞ 0 ∞ ∞ 0 0 1 0 1 ∞ 0 ∞
∞ 0 ∞ ∞ 1 1 ∞ ∞ 1 1 ∞ 0 ∞ ∞ 0 0 1 0 1 ∞ 0

0 ∞ 0 ∞ ∞ 1 1 ∞ ∞ 1 1 ∞ 0 ∞ ∞ 0 0 1 0 1 ∞
∞ 0 ∞ 0 ∞ ∞ 1 1 ∞ ∞ 1 1 ∞ 0 ∞ ∞ 0 0 1 0 1

1 ∞ 0 ∞ 0 ∞ ∞ 1 1 ∞ ∞ 1 1 ∞ 0 ∞ ∞ 0 0 1 0

0 1 ∞ 0 ∞ 0 ∞ ∞ 1 1 ∞ ∞ 1 1 ∞ 0 ∞ ∞ 0 0 1

1 0 1 ∞ 0 ∞ 0 ∞ ∞ 1 1 ∞ ∞ 1 1 ∞ 0 ∞ ∞ 0 0

0 1 0 1 ∞ 0 ∞ 0 ∞ ∞ 1 1 ∞ ∞ 1 1 ∞ 0 ∞ ∞ 0

0 0 1 0 1 ∞ 0 ∞ 0 ∞ ∞ 1 1 ∞ ∞ 1 1 ∞ 0 ∞ ∞
∞ 0 0 1 0 1 ∞ 0 ∞ 0 ∞ ∞ 1 1 ∞ ∞ 1 1 ∞ 0 ∞


The action of the group H(2) = {x, x + 1} produces the two matrices Mx = M and

Mx+1 which are concatenated to give the matrix MH(2). A small array C as shown

also needs to be attached to cover interaction in orbit 11 and orbit 1.

C =

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞


T

The matrix [MH(2), C] is a 21× 45 testing array with coverage measure 0.908772.

4.2.1 Selecting a starter vector

A vector v ∈ Xk is a starter vector if any three rows of the corresponding circulant

matrix M contains at least one representative from each of the orbits 2 − 15. M is

called starter matrix. First we fix the positions of the fixed symbol ∞ in v such that

any three rows of the matrix M cover at least one representative from each of the
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orbits 2−10 and then fill the remaining positions of v with symbols from GF (g−1) so

that any three rows of M contain at least one representative from the orbits 11− 15.

The following two propositions provide us criteria to decide the positions of the fixed

symbol ∞ in the vector v.

Proposition 4.2.1. Let the rows of a k × k starter matrix M be indexed by the

elements of the additive group R = Zk. If ∃ a partition R0, R̄ of R such that

R×R \ {(r, r), (0, r), (r, 0) : r ∈ R} = {(b− a, c− a)|a, b ∈ R0, c ∈ R̄},

then there exists a k × k|H(g − 1)| array A on g symbols X so that for any three

distinct rows r1, r2, r3 and every entry (∞,∞, x), there exists a column l such that

A[r1, l] =∞,A[r2, l] =∞ and A[r3, l] = x.

Proof: Suppose such a partition of R exists. Construct a vector v such that when

i ∈ R0, insert ∞ in the ith position and whenever i ∈ R̄ insert an element of y ∈
GF (g − 1) in the ith position. Produce the k × k circulant matrix (starter matrix)

M using the vector v. If x ∈ H(g− 1), then Mx is the k× k matrix whose [i, j] entry

is M [i, j]x, the group action of x on M [i, j]. The matrix obtained by concatenating

the (g − 1)(g − 2) matrices formed by the group action of H(g − 1) on M is the

k × k(g − 1)(g − 2) matrix MH(g−1) = [Mx : x ∈ H(g − 1)]. Let A = MH(g−1).

Given any three row indices r1, r2, r3, there exists a, b ∈ R0 and c ∈ R̄ such that

(b− a, c− a) = (r2 − r1, r3 − r1) where all arithmetics are taken modulo k. In vector

v, ∞ is placed in the ath and bth positions and an element y ∈ GF (g − 1) is placed

in the cth position. For x, y ∈ GF (g − 1) there exists an element z ∈ H(g − 1) such

that y · z = x. Look at the matrix M z obtained by the action of z ∈ H(g − 1) on

the matrix M . The first column of M z has ∞ in rows a and b and x in row c. As

M z is a circulant matrix, we can find a column l in M z such that M z[r1, l] = ∞,

M z[r2, l] =∞ and M z[r3, l] = x.

If a partition of R satisfying Proposition 1 is found, then any three rows of the matrix

A obtained from associated vector v cover all 3−tuples from orbits 2− 4.

Proposition 4.2.2. Let the rows of a k × k starter matrix M be indexed by the

elements of the additive group R = Zk. If ∃ a partition R0, R̄ of R such that

R×R \ {(r, r), (0, r), (r, 0) : r ∈ R} = {(b− a, c− a)|a ∈ R0, b, c ∈ R̄},
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then there exists a k × k|H(g − 1)| array A on g symbols X so that for any three

distinct rows r1, r2, r3 and every 3−tuple of the form (∞, x, y) or (∞, x, x), there

exists a column l such that A[r1, l] = ∞, A[r2, l] = x, A[r3, l] = y or A[r1, l] = ∞,

A[r2, l] = x, A[r3, l] = x.

Proof: The proof is similar to that of Proposition 1. Suppose such a partition of

R exists. Construct a vector v such that when i ∈ R0, insert ∞ in the ith position

and whenever i ∈ R̄ insert an element of ∈ GF (g − 1) in the ith position. Given

any three row indices r1, r2, r3 ∈ R, there exists a ∈ R0 and b, c ∈ R̄ such that

(b− a, c− a) = (r2− r1, r3− r1) mod k. In vector v, the entry at position a is ∞ and

the entries at positions b and c are x′ ∈ GF (g − 1) and y′ ∈ GF (g − 1) respectively.

Let A = MH(g−1).

Case 1: Let x′ 6= y′. As the action of H(g − 1) on GF (g − 1) is sharply 2-transitive,

there exist a unique element z ∈ H(g − 1) such that x′ · z = x and y′ · z = y. The

first column of the matrix M z has ∞ in row a and entries x and y in rows b and c

respectively. As M z is a circulant matrix, we can always find a column l in M z such

that M z[r1, l] =∞, M z[r2, l] = x and M z[r3, l] = y.

Case 2: Let x′ = y′. As the action of H(g− 1) on GF (g− 1) is transitive, there exist

an element z ∈ H(g− 1) such that x′ · z = x. The first column of the matrix M z has

∞ in row a and entry x in rows b and c. As M z is a circulant matrix, we can always

find a column l in M z such that M z[r1, l] =∞, M z[r2, l] = x and M z[r3, l] = x.

If a partition of R satisfying Proposition 2 is found, then any three rows of the matrix

A, obtained from vector v, covers all 3− tuples from orbits 5− 7 or 8− 10.

Let R0 and R̄ be a partition of R satisfying Proposition 1 and Proposition 2. A vector

v is constructed such that when i ∈ R0, insert ∞ in the ith position. Then any 3−
rows of the associated starter matrix M contains at least one 3−tuple from the orbits

2− 7 or orbits 2− 4 and 8− 10.

Once the positions of the fixed symbols are determined in the vector v, we fill

the remaining positions with entries from GF (g − 1) such that any three rows of M

contains at least one element from the orbits 12− 15. Consider the sets

d[x, y] = {(vi, vi+x, vi+x+y) : i = 0, 1, ..., k − 1}

For v to be a starter vector or a starter vector with good coverage, fill the remaining

positions of v using entries from GF (g − 1) such that each set d[x, y] contains a
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representative from orbits 12 − 15. We now give specific choices of x and y and the

number of disjoint d[x, y] sets.

4.2.2 Choice of d[x, y] classes

A covering array of strength 3 satisfies the property that for any three distinct rows

all possible 3-tuples of g symbols occur atleast once as a column. We can divide

the collection of
(
k
3

)
choices of three distinct rows from k rows into classes, putting

two choices (α, β, γ) and (α′, β′, γ′) in the same class if β − α = β′ − α′ mod k and

γ − β = γ′ − β′ mod k. We define the class [x, y] as follows:

[x, y] = {(i, i+ x, i+ x+ y) mod k | i = 0, 1, . . . , k − 1}.

Suppose there are ` classes in such a division. Since each of these classes contains

exactly k choices, k` =
(
k
3

)
and so ` =

(k
3)
k

giving

` =
(k − 1)(k − 2)

6
.

The number of classes ` = (k−1)(k−2)
6

is an integer when k is not a multiple of 3. It is

easy to see that when k is not a multiple of 3, the distinct classes are [x, y] where

x = 1, 2 · · ·
[
k − 1

3

]
and

y = x, x+ 1 · · · k − 1− 2x

The number of classes ` = (k−1)(k−2)
6

is never an integer when k ≡ 0 (mod 3). Thus,

the number of classes is ` = b (k−1)(k−2)
6

c + 1 when k is a multiple of 3. Here, along

with the classes [x, y] mentioned above, we also consider the class [k
3
, k
3
] which contains

only k
3

choices.

Example 4.2.2. Let k = 7. Then the number of classes ` = 5 and the classes are

[1, 1], [1, 2], [1, 3], [1, 4], and [2, 2], and each of these classes contains 7 choices. Thus

these five classes include all 5× 7 =
(
7
3

)
choices.

Example 4.2.3. Let k = 9. Then the number of classes ` = 10 and the classes are

[1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [2, 2], [2, 3], [2, 4], and [3, 3]. Note that [3, 3] =

{(0, 3, 6), (1, 4, 7), (2, 5, 8)} contains only three choices whereas the other classes con-
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tain nine choices each. Thus these ten classes altogether include all 9 × 9 + 3 =
(
9
3

)
choices.

The following algorithm generates the [x, y] classes for a given k.

Equivalence-Classes(k)

Input: k

Output: All [x, y] classes.

for x← 1 to k do

for y← x to k do

if x+ y ≤ k − 2 and ((k − y) + (k − x))%k > x or k%3 == 0 and x == k
3

and y == k
3

then

add [x, y]

end if

end for

end for

For sample programs, see Appendix Section B.

4.3 Results

For computational convenience, we rewrite the coverage measure in terms of classes

[x, y] and d[x, y] as follows:

µ3(A) =

∑
x,y

|[x, y]| × number of distinct 3-tuples covered by d[x, y, ](
k
3

)
g3

.

We use computer search to find vectors v with large coverage measure. Table 4.1 shows

R0, vectors with high coverage, the number of test cases generated by our method

and best known n with full coverage for g = 3. A comparison of our construction

with best known covering arrays shows that our construction provides smaller testing

arrays with good coverage measure.
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Table 4.1: A comparison of the number of test cases (n) produced by our construction
with high coverage measure and best known n for full coverage for strength three
covering arrays on 3 symbols.

k Vector v with good coverage Our Results Best

n (coverage measure) n [9]

16 0∞∞0∞∞1∞1110∞∞∞1 35 (0.79476) 51

17 0011∞∞101∞∞1∞∞∞1∞ 37 (0.82956) 58

18 0∞0∞∞∞10∞0∞∞10∞110 39 (0.870915) 59

19 ∞010∞∞0011∞1∞∞∞0∞10 41 (0.899782) 59

20 ∞0∞101110∞1∞∞0∞∞∞10∞ 43 (0.883041) 59

21 ∞∞00101∞0∞0∞∞11∞∞11∞0 45 (0.908772) 66

22 ∞0∞0∞∞10∞1∞∞∞0111∞0100 47 (0.930159) 66

23 0∞10010∞∞1∞0∞∞1∞∞111∞00 49 (0.949976) 69

24 000∞∞∞010∞1∞∞∞110011∞10∞ 51 (0.951691) 71

25 ∞0011∞∞1101∞10∞001∞0∞∞∞10 53 (0.973027) 72

26 0∞∞01011100∞1∞∞10∞1∞1∞01∞0 55 (0.975556) 72

27 0∞∞01011100∞1∞∞10∞1∞1∞01∞0 57 (0.975385) 75

28 0∞∞01011100∞1∞∞10∞1∞1∞01∞0 59 (0.98164) 75

29 0∞∞01011100∞1∞∞10∞1∞1∞01∞0 61 (0.983539) 81

30 0∞∞01011100∞1∞∞10∞1∞1∞01∞0 63 (0.985769) 81

31 00001∞∞0∞∞∞01∞0∞1∞∞1010∞11100∞0 65 (0.985696) 81

32 ∞∞0∞0∞0∞11∞0010∞0100∞∞01∞010111∞ 67 (0.989964) 81

33 ∞∞001100∞0100100∞1∞∞∞1∞10∞01∞∞111 69 (0.994624) 88

34 0000∞0∞1101∞∞∞∞∞11∞010100∞111∞∞001 71 (0.994108) 88

35 ∞0∞0∞000100111∞11∞∞1∞01∞1∞∞00∞∞1011 73 (0.992078) 89

36 ∞∞∞00000110001∞10∞∞1010∞10∞∞1∞0∞11∞1 75 (0.996265) 89

37 000000∞110100∞0∞∞∞00∞101∞∞1∞00∞1110∞∞ 77 (0.994709) 89

38 ∞∞00∞100∞∞100∞0∞111∞10101∞1000∞10110∞∞ 79 (0.99633) 89

39 0∞0010∞00∞1001∞11010∞∞0010111∞0∞∞11∞∞1∞ 81 (0.99431) 89

40 00010111∞1∞011∞∞∞∞∞100∞0∞∞0∞0011∞0011∞11 83 (0.995502) 89

41 ∞0∞00∞01∞101001∞∞∞1111000∞1100∞000∞10∞∞∞1 85 (0.998576) 93

42 ∞010010∞0∞1∞∞1∞∞1∞110010∞0∞01100011∞0∞000∞ 87 (0.999187) 93

43 0∞0∞1∞0101∞00∞∞1000∞0010100101∞∞0∞1111∞0∞∞0 89 (0.999742) 93

44 ∞∞∞0∞0∞∞00∞010000∞11110001∞∞011∞01101∞0∞010∞ 91 (0.999508) 93
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Chapter 5

Conclusions

We have proposed techniques for constructing good covering arrays of strength two

and three using group theory coupled with computer search. For t = 2, a compari-

son of our fixed symbols construction with heuristic tools like NIST IPOG-F shows

that our construction provides significantly smaller size covering arrays. For t = 3,

a comparison of our construction with best known covering arrays shows that our

construction provides smaller testing arrays with good coverage measure. It is an

interesting open problem to extend this algebraic construction to construct covering

arrays of strength up to 6.

29
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Appendix A

Sample programs for strength 2

A.1 Program for g=3, k=9, f=1

#include<iostream>

using namespace std ;

/∗ genera te s t r i n g s and check f o r the r ep r e s en t a t i on o f o r b i t s ∗/
int s t r ( int ∗V, int ∗S , int l , int k )

{
l ++;int r ;

for ( int i =0; i <2; i++)

{V[ l ]= i ;

i f ( l==k )

{ l ++;

int n=0;

for ( int p=0;p<9;p++)

{ i f ( ( p !=1))

{S [ p]=V[ n ] ;

n++;

}
}
int D[ 2 ] ;

int a1 , a2 ;

35
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int w=1;

for ( int p=1;p<8;p++)

{a1=0;a2=0;

for ( int q=0;q<8;q++)

{D[0]=S [ q ] ;D[1 ]=S [ ( q+p )%9] ;

i f ( (D[ 0 ] == 0 && D[1]==0) | | (D[ 0 ] == 1 && D[1]==1))

a1=1;

else

i f ( (D[ 0 ] == 0 && D[1]==1) | | (D[ 0 ] == 1 && D[1]==0))

a2=1;

}
i f ( a1==1 && a2 ==1)

w=1;

else

{w=0;break ;}
}

i f (w==1)

{cout<<” s t a r t e r : \ t\ t ” ;

for ( int p=0;p<9;p++)

cout<<S [ p ] ;

cout<<”\n” ;

}
}

i f ( l<k )

r=s t r (V, S , l , k ) ;

}
return ( 0 ) ;

}

int main ( )

{ int S [ 9 ] ; // s t a r t e r
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int ∗V;

V = new int [ 8 ] ;

for ( int i =0; i <8; i++)

V[ i ]=0;

for ( int i =0; i <9; i++)

i f ( i== 1)

S [ i ]=2;

else

S [ i ]=0;

int r ;

r=s t r (V, S ,−1 ,8) ;

delete [ ] V;

return ( 0 ) ;

}

A.2 Program for g=4, k=5, f=1

#include<iostream>

using namespace std ;

/∗ genera te v e c t o r s and check f o r r ep r e s en t a t i on o f o r b i t s ∗/
int s t r ( int ∗V, int ∗S , int l , int k )

{
l ++;int r ;

for ( int i =0; i <3; i++)

{V[ l ]= i ;

i f ( l==k )

{ l ++;

int n=0;

for ( int p=0;p<5;p++)
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{ i f ( p !=1)

{S [ p]=V[ n ] ;

n++;

}
}
int D[ 2 ] ;

int a1 , a2 , a3 ;

int w=1;

for ( int p=1;p<4;p++)

{a1=0;a2=0,a3=0;

for ( int q=0;q<5;q++)

{D[0]=S [ q ] ;D[1 ]=S [ ( q+p )%5] ;

i f ( (D[ 0 ] == 0 && D[1]==0) | | (D[ 0 ] == 1 && D[1]==1) | | (D[ 0 ] == 2 &&

D[1]==2) )

a1=1;

else

i f ( (D[ 0 ] == 0 && D[1]==1) | | (D[ 0 ] == 1 && D[ 1 ] = = 2 ) | | (D[ 0 ] == 2 &&

D[1]==0) )

a2=1;

else

i f ( (D[ 0 ] == 0 && D[1]==2) | | (D[ 0 ] == 1 && D[ 1 ] = = 0 ) | | (D[ 0 ] == 2 &&

D[1]==1) )

a3=1;

}
i f ( a1==1 && a2 ==1 && a3==1)

w=1;

else

{w=0;break ;}
}

i f (w==1)

{cout<<”\n\n” ;

for ( int p=0;p<5;p++)
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cout<<S [ p ] ;

cout<<”\n” ;

}
}

i f ( l<k )

r=s t r (V, S , l , k ) ;

}
return ( 0 ) ;

}

int main ( )

{ int S [ 5 ] ; // s t a r t e r

int V[ 4 ] ;

for ( int i =0; i <4; i++)

V[ i ]=0;

for ( int i =0; i <5; i++)

i f ( i== 1)

S [ i ]=3;

else

S [ i ]=0;

int r ;

r=s t r (V, S ,−1 ,4) ;

return ( 0 ) ;

}

A.3 Program for g=4, k=11, f=2

#include<iostream>

using namespace std ;

/∗ genera te v e c t o r s and check f o r r ep r e s en t a t i on o f o r b i t s ∗/
int s t r ( int ∗V, int ∗S , int l , int k )

{
l ++;int r ;
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for ( int i =0; i <2; i++)

{V[ l ]= i ;

i f ( l==k )

{ l ++;

int n=0;

for ( int p=0;p<11;p++)

{ i f ( ( p!=1 && p!=3) && (p!=8 && p!=7))

{S [ p]=V[ n ] ;

n++;

}
}
int D[ 2 ] ;

int a1 , a2 ;

int w=1;

for ( int p=1;p<10;p++)

{a1=0;a2=0;

for ( int q=0;q<11;q++)

{D[0]=S [ q ] ;D[1 ]=S [ ( q+p )%11] ;

i f ( (D[ 0 ] == 0 && D[1]==0) | | (D[ 0 ] == 1 && D[1]==1))

a1=1;

else

i f ( (D[ 0 ] == 0 && D[1]==1) | | (D[ 0 ] == 1 && D[1]==0))

a2=1;

}
i f ( a1==1 && a2 ==1)

w=1;

else

{w=0;break ;}
}

i f (w==1)

{ for ( int p=0;p<11;p++)
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cout<<S [ p ] ;

cout<<”\n” ;

}
}

i f ( l<k )

r=s t r (V, S , l , k ) ;

}
return ( 0 ) ;

}

int main ( )

{ int S [ 1 1 ] ; // s t a r t e r

int V[ 7 ] ;

for ( int i =0; i <7; i++)

V[ i ]=0;

for ( int i =0; i <11; i++)

i f ( i==1 | | i== 3)

S [ i ]=2;

else

i f ( i==8 | | i ==7)

S [ i ]=3;

else

S [ i ]=0;

int r ;

r=s t r (V, S ,−1 ,7) ;

return ( 0 ) ;

}

A.4 Program for g=5, k=9, f=2

#include<iostream>

using namespace std ;
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/∗ genera te v e c t o r s and check f o r r ep r e s en t a t i on o f o r b i t s ∗/
int s t r ( int ∗V, int ∗S , int l , int k )

{
l ++;int r ;

for ( int i =0; i <3; i++)

{V[ l ]= i ;

i f ( l==k )

{ l ++;

int n=0;

for ( int p=0;p<9;p++)

{ i f ( ( p!=0 && p!=1) && (p!=3 && p!=7))

{S [ p]=V[ n ] ;

n++;

}
}
for ( int p=0;p<9;p++)

cout<<S [ p ] ;

cout<<”\n” ;

int D[ 2 ] ;

int a1 , a2 , a3 ;

int w=1;

for ( int p=1;p<8;p++)

{a1=0;a2=0,a3=0;

for ( int q=0;q<9;q++)

{D[0]=S [ q ] ;D[1 ]=S [ ( q+p )%9] ;

i f ( (D[ 0 ] == 0 && D[1]==0) | | (D[ 0 ] == 1 && D[1]==1) | |
(D[ 0 ] == 2 && D[1]==2) )

a1=1;

else

i f ( (D[ 0 ] == 0 && D[1]==1) | | (D[ 0 ] == 1 && D[1 ]==2) | |
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(D[ 0 ] == 2 && D[1]==0) )

a2=1;

else

i f ( (D[ 0 ] == 0 && D[1]==2) | | (D[ 0 ] == 1 && D[1 ]==0) | |
(D[ 0 ] == 2 && D[1]==1) )

a3=1;

}
i f ( a1==1 && a2 ==1 && a3==1)

w=1;

else

{w=0;break ;}
}

i f (w==1)

{ for ( int p=0;p<9;p++)

cout<<S [ p ] ;

cout<<”\n” ;

}
}

i f ( l<k )

r=s t r (V, S , l , k ) ;

}
return ( 0 ) ;

}

int main ( )

{ int S [ 9 ] ; // s t a r t e r

int V[ 5 ] ;

for ( int i =0; i <5; i++)

V[ i ]=0;

for ( int i =0; i <9; i++)

i f ( i==0 | | i== 1)

S [ i ]=3;
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else

i f ( i==3 | | i ==7)

S [ i ]=4;

else

S [ i ]=0;

int r ;

r=s t r (V, S ,−1 ,5) ;

return ( 0 ) ;

}

A.5 Program for g=6, k=9, f=1

#include<iostream>

using namespace std ;

/∗ genera te v e c t o r s and check f o r r ep r e s en t a t i on o f o r b i t s ∗/
int s t r ( int ∗V, int ∗S , int l , int k )

{
l ++;int r ;

for ( int i =0; i <5; i++)

{V[ l ]= i ;

i f ( l==k )

{ l ++;

int n=0;

for ( int p=0;p<9;p++)

{ i f ( p !=1)

{S [ p]=V[ n ] ;

n++;

}
}
int D[ 2 ] ;

int a1 , a2 , a3 , a4 , a5 , a , b ;

int w=1;
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for ( int p=1;p<9;p++)

{a1=0;a2=0,a3=0;a4=0;a5=0;

for ( int q=0;q<9;q++)

{D[0]=S [ q ] ;D[1 ]=S [ ( q+p )%9] ;

i f (D[0]==5 | | D[1]==1)

{a1=1;a2=1,a3=1;a4=1,a5=1;

}
else

{ i f (D[ 0 ] > D[ 1 ] )

{a=(6−D[0 ] )+D[ 1 ] ; }
else

{a=D[1]−D[ 0 ] ; }
i f ( a%6==0)

a1=1;

else

i f ( a%6==1 )

a2=1;

else

i f ( a%6==2 )

a3=1;

else

i f ( a%6==3 )

a4=1;

else

i f ( a%6==4)

a5=1;

}
}

i f ( a1==1 && a2 ==1 && a3==1 && a4==1 && a5==1)

w=1;

else

{w=0;break ;}
}
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i f (w==1)

{cout<<”\n” ;

for ( int p=0;p<9;p++)

cout<<S [ p ] ;

cout<<”\n” ;

}
}

i f ( l<k )

r=s t r (V, S , l , k ) ;

}
return ( 0 ) ;

}

int main ( )

{ int S [ 9 ] ; // s t a r t e r

int V[ 8 ] ;

for ( int i =0; i <8; i++)

V[ i ]=0;

for ( int i =0; i <9; i++)

i f ( i== 1)

S [ i ]=5;

else

S [ i ]=0;

int r ;

r=s t r (V, S ,−1 ,8) ;

return ( 0 ) ;

}

A.6 Program for g=7, k=17, f=3

#include<iostream>

using namespace std ;
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/∗ genera te v e c t o r s and check f o r r ep r e s en t a t i on o f o r b i t s ∗/
int s t r ( int ∗V, int ∗S , int l , int k )

{
l ++;int r ;

for ( int i =0; i <4; i++)

{V[ l ]= i ;

i f ( l==k )

{ l ++;

int n=0;

for ( int p=0;p<17;p++)

{ i f ( ( p!=10 && p!=4) && (p!=11 && p!=7) && (p!=12 &&

p!=9 && p!=2))

{S [ p]=V[ n ] ;

n++;

}
}
int D[ 2 ] ;

int a1 , a2 , a3 , a4 , a ;

int w=1;

for ( int p=1;p<17;p++)

{a1=0;a2=0,a3=0;a4=0;

for ( int q=0;q<17;q++)

{D[0]=S [ q ] ;D[1 ]=S [ ( q+p )%17] ;

i f (D[0 ]==6 | | D[1]==6 | | D[0]==5 | | D[1]==5 | |
D[0]==4 | | D[1]==4)

{ ;}
else

{ i f (D[ 0 ] > D[ 1 ] )

{a=(4−D[0 ] )+D[ 1 ] ; }
else

{a=D[1]−D[ 0 ] ; }
i f ( a%4==0)
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a1=1;

else

i f ( a%4==1 )

a2=1;

else

i f ( a%4==2 )

a3=1;

else

i f ( a%4==3 )

a4=1;

}
}

i f ( a1==1 && a2 ==1 && a3==1 && a4==1)

w=1;

else

{w=0;break ;}
}

i f (w==1)

{cout<<”\n” ;

for ( int p=0;p<17;p++)

cout<<S [ p ] ;

cout<<”\n” ;

}
}

i f ( l<k )

r=s t r (V, S , l , k ) ;

}
return ( 0 ) ;

}

int main ( )

{ int S [ 1 7 ] ; // s t a r t e r

int V[ 1 0 ] ;
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for ( int i =0; i <10; i++)

V[ i ]=0;

for ( int i =0; i <17; i++)

i f ( i==10 | | i ==4)

S [ i ]=4;

else i f ( i==11 | | i ==7)

S [ i ]=5;

else i f ( i== 12 | | i==2 | | i ==9)

S [ i ]=6;

else

S [ i ]=0;

int r ;

r=s t r (V, S ,−1 ,10) ;

return ( 0 ) ;

}

A.7 Program for g=8, k=18, f=3

#include<iostream>

using namespace std ;

/∗ genera te v e c t o r s and check f o r r ep r e s en t a t i on o f o r b i t s ∗/
int s t r ( int ∗V, int ∗S , int l , int k )

{
l ++;int r ;

for ( int i =0; i <5; i++)

{V[ l ]= i ;

i f ( l==k )

{ l ++;

int n=0;

for ( int p=0;p<18;p++)

{ i f ( ( p!=10 && p!=15) && (p!=11 && p!=8) && (p!=17 && p!=9))

{S [ p]=V[ n ] ;
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n++;

}
}
int D[ 2 ] ;

int a1 , a2 , a3 , a4 , a5 , a ;

int w=1;

for ( int p=1;p<18;p++)

{a1=0;a2=0,a3=0;a4=0;a5=0;

for ( int q=0;q<18;q++)

{D[0]=S [ q ] ;D[1 ]=S [ ( q+p )%18] ;

i f (D[0 ]==6 | | D[1]==6 | | D[0]==5 | | D[1]==5 | | D[0]==7 | | D[1]==7)

{ ;}
else

{ i f (D[ 0 ] > D[ 1 ] )

{a=(5−D[0 ] )+D[ 1 ] ; }
else

{a=D[1]−D[ 0 ] ; }
i f ( a%5==0)

a1=1;

else

i f ( a%5==1 )

a2=1;

else

i f ( a%5==2 )

a3=1;

else

i f ( a%5==3 )

a4=1;

else

i f ( a%5==4)

a5=1;

}
}
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i f ( a1==1 && a2 ==1 && a3==1 && a4==1 && a5==1)

w=1;

else

{w=0;break ;}
}

i f (w==1)

{cout<<”\n” ;

for ( int p=0;p<18;p++)

cout<<S [ p ] ;

cout<<”\n” ;

}
}

i f ( l<k )

r=s t r (V, S , l , k ) ;

}
return ( 0 ) ;

}

int main ( )

{ int S [ 1 8 ] ; // s t a r t e r

int V[ 1 2 ] ;

for ( int i =0; i <12; i++)

V[ i ]=0;

for ( int i =0; i <18; i++)

i f ( i==10 | | i ==15)

S [ i ]=5;

else i f ( i==11 | | i ==8)

S [ i ]=6;

else i f ( i== 9 | | i ==17)

S [ i ]=7;
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else

S [ i ]=0;

int r ;

r=s t r (V, S ,−1 ,12) ;

return ( 0 ) ;

}



Appendix B

Sample programs for strength 3

B.1 Program for g=3, k=16, f=1

#include<iostream>

#include<math . h>

using namespace std ;

/∗ genera te v e c t o r s and check f o r r ep r e s en t a t i on o f o r b i t s ∗/
int s t r ( int ∗V, int ∗S , int ∗n , int ∗A, int l , int rk , int k , f loat &M)

{ i f (M==1)

return ( 0 ) ;

else

{ l ++;int r ;

for ( int i =0; i <2; i++)

{V[ l ]= i ;

i f ( l==rk )

{ l ++;

int nn=0;

for ( int p=0;p<k ; p++)

{ i f ( p==1 | | p==2 | | p==4 | | p==5 | | p==7 | | p==12||
p==13 | | p==14 )

{ ;}

53
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else

{S [ p]=V[ nn ] ;

nn++;

}
}
int D[ 3 ] ;

int w=1; int c ;

D[ 0 ] = 0 ;D[ 1 ] = 0 ;D[ 2 ] = 0 ;

f loat m=0.0; int cc ; cc =0;

for ( int x=1;x<k ; x++)

{ for ( int y=x ; y<k ; y++)

i f ( ( x+y)<=k−2 && ( ( k+(k−y)+(k−x))%k > x ) )

{
for ( int q=0;q<14;q++)

A[ q ]=0;

A[ 0 ] = 1 ;A[13 ]=1 ;

cc++;

for ( int q=0;q<k ; q++)

{D[0]=S [ q ] ;D[1 ]=S [ ( q+x)%k ] ;D[2 ]=S [ ( q+x+y)%k ] ;

i f ( (D[ 0 ] == 0 && D[1]==0 && D[2]==1 ) | | (D[ 0 ] == 1

&& D[1]==1 && D[2]==0) )

A[ 1 ] = 1 ;

else

i f ( (D[ 0 ] == 0 && D[1]==0 && D[2]==2 ) | | (D[ 0 ] == 1

&& D[1]==1 && D[2]==2) )

A[ 2 ] = 1 ;

else

i f ( (D[ 0 ] == 0 && D[1]==1 && D[2]==0 ) | | (D[ 0 ] == 1

&& D[1]==0 && D[2]==1) )

A[ 3 ] = 1 ;

else

i f ( (D[ 0 ] == 0 && D[1]==1 && D[2]==1 ) | | (D[ 0 ] == 1

&& D[1]==0 && D[2]==0) )

A[ 4 ] = 1 ;
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else

i f ( (D[ 0 ] == 0 && D[1]==1 && D[2]==2 ) | | (D[ 0 ] == 1

&& D[1]==0 && D[2]==2) )

A[ 5 ] = 1 ;

else

i f ( (D[ 0 ] == 0 && D[1]==2 && D[2]==0 ) | | (D[ 0 ] == 1

&& D[1]==2 && D[2]==1) )

A[ 6 ] = 1 ;

else

i f ( (D[ 0 ] == 0 && D[1]==2 && D[2]==1 ) | | (D[ 0 ] == 1

&& D[1]==2 && D[2]==0) )

A[ 7 ] = 1 ;

else

i f ( (D[ 0 ] == 0 && D[1]==2 && D[2]==2 ) | | (D[ 0 ] == 1

&& D[1]==2 && D[2]==2) )

A[ 8 ] = 1 ;

else

i f ( (D[ 0 ] == 2 && D[1]==0 && D[2]==0 ) | | (D[ 0 ] == 2

&& D[1]==1 && D[2]==1))

A[ 9 ] = 1 ;

else

i f ( (D[ 0 ] == 2 && D[1]==0 && D[2]==1 ) | | (D[ 0 ] == 2

&& D[1]==1 && D[2]==0) )

A[10 ]=1 ;

else

i f ( (D[ 0 ] == 2 && D[1]==0 && D[2]==2 ) | | (D[ 0 ] == 2

&& D[1]==1 && D[2]==2) )

A[11 ]=1 ;

else

i f ( (D[ 0 ] == 2 && D[1]==2 && D[2]==0 ) | | (D[ 0 ] == 2

&& D[1]==2 && D[2]==1) )

A[12 ]=1 ;

}
c=0;
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for ( int w=0;w<14;w++)

i f (A[w]==0)

c=c+n [w ] ;

m=m+16∗(pow(3 ,3)− c ) ;

}
}

m=m/15120 . 0 ;

i f (m>M)

{M=m;

cout<<”M=”<<M<<” ” ;

for ( int p=0;p<k ; p++)

cout<<S [ p ] ;

cout<<”\n”<<f l u s h ;

}
}

i f ( l<rk )

r=s t r (V, S , n ,A, l , rk , k ,M) ;

}}

}

f loat M;

int main ( )

{ int f , k ;

f =1;M=0.0;

k=16;

int S [ 1 6 ] ; // s t a r t e r

int V[ 8 ] ;
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int n [ 1 4 ] ;

int A[ 1 4 ] ;

for ( int i =0; i <13; i++)

n [ i ]=2;

n [ 13 ]=1 ;

for ( int i =0; i <8; i++)

V[ i ]=0;

for ( int i =0; i <16; i++)

S [ i ]=0;

for ( int p=0;p<16;p++)

i f ( p==1 | | p==2 | | p==4 | | p==5 | | p==7 | | p==12|| p==13 | | p==14 )

S [ p ]=2;

else

S [ p ]=0;

int r ;

r=s t r (V, S , n ,A,−1 ,8 ,16 ,M) ;

return ( 0 ) ;

}

B.2 Program for g=3, k=30, f=1

#include<iostream>

#include<math . h>

using namespace std ;

/∗ genera te v e c t o r s and check f o r r ep r e s en t a t i on o f o r b i t s ∗/
int s t r ( int ∗V, int ∗S , int ∗n , int ∗A, int l , int rk , int k , f loat &M)

{ i f (M==1)

return ( 0 ) ;

else
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{ l ++;int r ;

for ( int i =0; i <2; i++)

{V[ l ]= i ;

i f ( l==rk )

{ l ++;

int nn=0;

for ( int p=0;p<k ; p++)

{ i f (p==1 | | p==2 | | p==5|| p==12|| p==13|| p==19|| p==22 | | p==25

| | p==27 | | p==29 )

{ ;}
else

{S [ p]=V[ nn ] ;

nn++;

}
}
int D[ 3 ] ; int cc ; cc =0;

int w=1; int c ;

D[ 0 ] = 0 ;D[ 1 ] = 0 ;D[ 2 ] = 0 ;

f loat m=0.0;

for ( int x=1;x<k ; x++)

{ for ( int y=x ; y<k ; y++)

i f ( ( ( ( x+y)<=k−2) && ( ( k+(k−y)+(k−x))%k > x ) ) | | ( k%3==0 && x==k/3

&& y== k/3 && ( k+(k−y)+(k−x))%k==k /3))

{
for ( int q=0;q<14;q++)

A[ q ]=0;

A[ 0 ] = 1 ;A[13 ]=1 ;

cc++;

for ( int q=0;q<k ; q++)

{D[0]=S [ q ] ;D[1 ]=S [ ( q+x)%k ] ;D[2 ]=S [ ( q+x+y)%k ] ;

i f ( (D[ 0 ] == 0 && D[1]==0 && D[2]==1 ) | | (D[ 0 ] == 1 &&

D[1]==1 && D[2]==0) )
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A[ 1 ] = 1 ;

else

i f ( (D[ 0 ] == 0 && D[1]==0 && D[2]==2 ) | | (D[ 0 ] == 1 &&

D[1]==1 && D[2]==2) )

A[ 2 ] = 1 ;

else

i f ( (D[ 0 ] == 0 && D[1]==1 && D[2]==0 ) | | (D[ 0 ] == 1 &&

D[1]==0 && D[2]==1) )

A[ 3 ] = 1 ;

else

i f ( (D[ 0 ] == 0 && D[1]==1 && D[2]==1 ) | | (D[ 0 ] == 1 &&

D[1]==0 && D[2]==0) )

A[ 4 ] = 1 ;

else

i f ( (D[ 0 ] == 0 && D[1]==1 && D[2]==2 ) | | (D[ 0 ] == 1 &&

D[1]==0 && D[2]==2) )

A[ 5 ] = 1 ;

else

i f ( (D[ 0 ] == 0 && D[1]==2 && D[2]==0 ) | | (D[ 0 ] == 1

&& D[1]==2 && D[2]==1) )

A[ 6 ] = 1 ;

else

i f ( (D[ 0 ] == 0 && D[1]==2 && D[2]==1 ) | | (D[ 0 ] == 1

&& D[1]==2 && D[2]==0) )

A[ 7 ] = 1 ;

else

i f ( (D[ 0 ] == 0 && D[1]==2 && D[2]==2 ) | | (D[ 0 ] == 1

&& D[1]==2 && D[2]==2) )

A[ 8 ] = 1 ;

else

i f ( (D[ 0 ] == 2 && D[1]==0 && D[2]==0 ) | | (D[ 0 ] == 2

&& D[1]==1 && D[2]==1))

A[ 9 ] = 1 ;

else
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i f ( (D[ 0 ] == 2 && D[1]==0 && D[2]==1 ) | | (D[ 0 ] == 2

&& D[1]==1 && D[2]==0) )

A[10 ]=1 ;

else

i f ( (D[ 0 ] == 2 && D[1]==0 && D[2]==2 ) | | (D[ 0 ] == 2

&& D[1]==1 && D[2]==2) )

A[11 ]=1 ;

else

i f ( (D[ 0 ] == 2 && D[1]==2 && D[2]==0 ) | | (D[ 0 ] == 2

&& D[1]==2 && D[2]==1) )

A[12 ]=1 ;

}
c=0;

for ( int w=0;w<14;w++)

i f (A[w]==0)

c=c+n [w ] ;

i f ( k%3==0 && x==k/3 && y== k/3 && ( k+(k−y)+(k−x))%k==k/3)

m=m+(k /3)∗ (pow(3 ,3)− c ) ;

else

m=m+k∗(pow(3 ,3)− c ) ;

}
}

m=m/ ( ( ( k∗(k−1)∗(k−2 ) ) / 6 . 0 )∗2 7 . 0 ) ;

i f (m>M)

{M=m;

cout<<”M=”<<M<<” ” ;

for ( int p=0;p<k ; p++)

cout<<S [ p ] ;

cout<<”\n”<<f l u s h ;
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}
}

i f ( l<rk )

r=s t r (V, S , n ,A, l , rk , k ,M) ;

}}

}

f loat M;

int main ( )

{ int f , k ;

int n [ 1 4 ] ;

int A[ 1 4 ] ;

for ( int i =0; i <13; i++)

n [ i ]=2;

n [ 13 ]=1 ;

f =1;M=0.0;

k=30;

int S [ 3 0 ] ;

int V[ 2 0 ] ;

for ( int i =0; i <20; i++)

V[ i ]=0;

for ( int i =0; i <30; i++)

S [ i ]=0;

for ( int p=0;p<30;p++)

i f (p==1 | | p==2 | | p==5|| p==12|| p==13|| p==19|| p==22 | | p==25

| | p==27 | | p==29 )

S [ p ]=2;
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else

S [ p ]=0;

int r ;

r=s t r (V, S , n ,A,−1 ,20 ,30 ,M) ;

return ( 0 ) ;

}


