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Abstract
Natural upper limb motion is characterized by efficient coordination between the hand
and the arm. Based on underlying coordination patterns, high-density (HD) surface elec-
tromyographic (sEMG) signals from the upper limb can be used along with regular sEMG
signals to predict hand kinematics. Accurate predictions of hand kinematics from EMG
signals are integral for the development of high-performance robotic finger prostheses or
increasing the reliability of existing ones. To obtain a better understanding of the map-
ping between regular and HD-sEMG signals and the kinematics of the upper limb, we
created and optimized a novel experimental setup, using which, two pilot experiments
were performed on a healthy subject. In these experiments, we measured motion cap-
ture data as well as regular and HD-sEMG signals from the subject’s upper limb, during
directional point-to-point grasping of target blocks located in a fixed plane. We used the
Fourier-based Anechoic Demixing Algorithm (FADA) to identify and characterize the spa-
tiotemporal synergies present in the sEMG data. We found the 1:1 mapping between
the arm and hand synergies, and the synergies extracted from all the muscles combined.
The similarity between the hand synergies and the corresponding synergies from all the
muscles combined was much higher than that between the arm synergies and the latter.
3 spatiotemporal synergies were sufficient to successfully reconstruct the 9 directional
grasping movements.The reconstructions obtained explained more than 80 % of the vari-
ation in the data.
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Thesis Roadmap

This master’s thesis consists of 5 chapters:

• Chapter 1 - Introduction: Provides background information, lays out the objectives
of this project and illustrates the context in which the research question being
addressed has been established.

• Chapter 2 - The Fourier-Based Anechoic Demixing Algorithm (FADA): A significant
part of this project is based on the analysis of muscle synergies from EMG data.
This chapter explains in detail the main algorithm used to find these muscle
synergies.

• Chapter 3 - Materials and Methods: Provides a description of the materials and
methods used for the experiments conducted and for the offline analysis of the
data.

• Chapter 4 - Results: Contains a record of all the results obtained including graphs,
figures and tables.

• Chapter 5 - Discussion: Provides a brief summary and interpretation of the results,
and possible future analysis of the data.
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Chapter 1

Introduction

1.1 Synergy-based view of motor control

How does the musculoskeletal system generate the large number of muscular patterns
required to facilitate the different types of behaviours? Muscle pattern generation for dif-
ferent physical tasks can be considered as a very complex control problem, because it
involves the mapping of a potentially infinite number of muscle patterns onto a set of po-
tentially infinite physical tasks or behaviours (d’Avella et al., 2003). Previous research has
pointed to the existence of a limited set of generators that are used by the Central Ner-
vous System (CNS) for the generation of the different patterns required for the execution
of different motor tasks (Singh et al., 2018). Such an organization is advantageous to the
CNS because it reduces the dimensionality of the problem and allows for the sharing of
neural circuitry across the different tasks. These generators are called muscle synergies
or movement primitives (d’Avella et al., 2003, Flash et al., 2005, d’Avella et al., 2006,
Singh et al., 2018, Scano et al., 2019). According to motor control literature, the definition
of a muscle synergy or movement primitive is the coordinated recruitment of a particular
set of muscles which have specific activation wave-forms. Each muscle is assumed to be
acted upon by a number of synergies, and its net activation is the sum of the effects of
each of the synergies (Flash et al., 2005).

An important feature of this particular view of motor control is the ability to generate
multiple types of movements from a limited number of synergies by transforming and
operating on them appropriately. Each synergy produces a torque about a joint or a force
in a particular direction (Flash et al., 2005). The simple movements generated by the
synergies are in turn combined appropriately to form more complex actions or behaviours.

1
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An implicit assumption of this view is that since synergies are coded for at the level of
neurons, a unique set of synergies can be used to generate a variety of movements or, at
least, a specific set can explain the different movement variations corresponding to tasks
that require similar motor commands for their execution. Thus, according to this view, the
same set of synergies may underlie different variations of the same task (for example,
grasping movements in different directions), but different tasks associated with dissimilar
motor commands may require additional or different synergies (D’avella et al., 2003).

The representation of high-dimensional signals using limited muscle synergies has
attracted considerable interest in the field of robotics research. Using a small set of syn-
ergies to represent high-dimensional data can considerably reduce the complexity and
high-dimensionality which are commonly associated with robot control problems. Thus,
multiple robotics studies (Alessandro et al., 2013, Lunardini et al., 2016, Cimolato et
al., 2016) have attempted to thoroughly characterize muscle synergies and studied their
mathematical extraction and potential to be used in robotic imitations of human move-
ments.

1.2 Neural interfaces for upper-limb motor impairment

caused by stroke

Strokes are the second leading cause of death worldwide, and their incidence has more
than doubled in developing countries, such as India (Johnson et al., 2016). According
to the WHO, more than 15 million people are affected by strokes worldwide, annually. A
stroke is the sudden death of some brain cells as a result of lack of access to oxygen
caused by the blockage or rupture of an artery in the brain (Johnson et al., 2016). The
effects of a stroke are dependent on the location and extent of damage. One of the most
common consequences of a stroke is the hemiparesis of the contralateral upper limb
(Hatem et al., 2016). This means that the upper limb on the side of the body opposite
to the injured hemisphere of the brain exhibits weakness or impaired motor control, typ-
ically at the extremities. These impairments may affect the individual’s ability to perform
common activities such as reaching, grasping or picking up objects. Most affected mus-
cles can only produce weak or residual electromyographic (EMG activity), if any, which is
insufficient to elicit a proper motor response. The fact that every year, there are a large
number of people who suffer strokes and require biorobotic devices to facilitate lost up-
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per limb movement, makes a strong case for the establishment of concentrated research
efforts to better understand upper limb motor control.

Efficient coordination between the hand and the arm is essential for natural upper
limb motion (Legrande et al., 2018). A thorough understanding of underlying coordina-
tion patterns involved is required for the construction of efficient robotic devices such as
MI (myoelectric interface) controlled arm ortheses or exoskeletons. In patients who have
undergone a hand amputation, the remaining arm muscles may still generate weak EMG
signals. These signals can potentially be supplemented or strengthened by a myoelec-
tric interface (MI) that interprets them and sends control commands to a body actuator
(Sarasola-Sanz et al., 2015). Such a device, if attached to the impaired limb, can subse-
quently reproduce the decoded movement. An important requirement for the construction
of such devices is a thorough understanding of the mapping between the EMG signals
generated in the arm and the kinematics of the hand and fingers. Another important re-
quirement is the ability to predict hand and finger kinematics from the kinematics of the
arm. An intelligent hand orthesis could be designed to control hand movement based on
EMG input from the arm and lower hand muscles, in coordination with arm movement,
with the intention of the user encoded as an additional input.

1.3 Pillars of muscle synergy studies: EMG and Motion

Capture Data

To study the underlying coordination patterns of movements, two kinds of data are often
measured - electromyographic (EMG) data and motion capture data.

1.3.1 EMG data

Electrical signals are conducted by muscle tissues in a manner similar to that present in
axons. A motor neuron and all the skeletal muscle fibers that it innervates are collectively
called a motor unit (A. Winter, 1990). When a motor unit is recruited, the electrical signals
produced in the muscle fibers in response, constitute a motor unit action potential. A
surface electrode placed above a muscle records the algebraic sum of all the motor unit
action potentials being conducted along muscle fibers at that time (Rodriguez-Carreno et
al., 2012).
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Electromyography is a technique used to measure the response or electrical activity of
skeletal muscles that occurs as a consequence of their stimulation by nerves (Raez et al.,
2006). The instrument used to produce these readings is called an electromyograph, and
the data record obtained is termed as an electromyogram. An electromyograph measures
the change in potential caused by the activation of a muscle. A muscle tissue usually
shows no activity during periods of rest, and the magnitude of the EMG readings obtained
is directly proportional to the level of activation or force exerted by the muscle whose
activity is being recorded (Kuriki et al., 2012). The more forceful the muscle contraction,
the greater the number of muscle fibres activated, resulting in a higher net activation of
the muscle.

Motor units far away from the electrode site will cause a smaller motor unit action po-
tential than those of similar size near the electrode (Winter et al., 1994). When electrodes
detect and record signals produced by the muscle of interest as well as those produced
by other muscles, this is known as cross-talk. A commonly experienced issue when tak-
ing EMG readings across multiple trials is the non-stationarity of EMG signals across the
different trials (Nazmi et al., 2016).

There exist two types of EMG data - surface EMG (sEMG) data and intramuscular
EMG data (Jamal, 2012). To obtain intramuscular EMG recordings, narrow needles (elec-
trodes) are inserted through the skin directly into the muscle of interest and its activation
is directly measured. This method is advantageous over sEMG because the readings
obtained are more accurate. However, one drawback of this method is that due to its
invasive nature, it can only be performed on human subjects by licensed professionals.
Additionally, the data recorded lacks spatial information (Marateb et al., 2016). Thus, in
our experiments, we recorded sEMG signals from the arm muscles.

sEMG readings are obtained from muscles by measuring the changes in electrical po-
tential from a patch of skin directly above the muscle of interest (Chowdhury et al.,2013).
The assumption is that the readings measured from an area of skin are largely produced
by the activity of the muscle closest to it. However, a smaller part of the readings may be
made up of the action potentials of other more distal muscles, affecting their accuracy.

Another drawback regarding sEMG measurements is the fact that the signals pro-
duced by the muscles need to travel through layers of subcutaneous tissue before they
reach the surface of the skin and are measured. This results in attenuation and alteration
of signals before they are measured by surface electrodes, lowering the accuracy of the
readings obtained (Turker, 1993). Additionally, the features of sEMG signal are depen-
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dent on the internal structure specific to the subject being measured, such as the skin
formation of the individual, the velocity of blood flow near the area being measured, the
temperature of the skin at the site of measurement, the structure of the underlying tissue
and the particular site being measured.

High density-surface EMG (HD-sEMG) is also a non-invasive method used to mea-
sure the electrical activity of muscles, the difference from regular sEMG being the use
of numerous (more than two) electrodes in the form of densely packed arrays to mea-
sure signals from a small, well-defined region of the skin (Drost et al., 2006). Apart from
providing information regarding the temporal activity of the muscles being recorded, HD-
sEMG also allows for the recording of spatial EMG activity, increasing the scope of muscle
characteristics that can be recorded. This technology increases the feasibility of the eval-
uation of single motor unit (MU) features or the measurement of muscle fiber conduction
velocities (MFCV)(Drost et al., 2006).

1.3.2 Kinematics data

Motion capture is the process of recording the movements carried out by the human
or animal being studied (Filho, 2005). Using this technique, retroreflective markers are
placed on the body of the subject, and the movement is tracked and recorded by infrared
cameras. One drawback of this technique is the occlusion of markers by objects that may
hide them from the view of the cameras while the subject performs the action. Motion
capture systems help in understanding the dynamics of movements at the level of the
different joint segments, providing useful insights into the overall bio-mechanics of body
movement. Precise kinematics data is crucial for the advancement of prosthesis research
(Legrande et al., 2018). The light and non-invasive nature of the reflective markers makes
this a convenient method of recording the dynamics of movements.

1.4 Objectives

The aim of this master’s thesis project was to investigate the hand and arm synergies un-
derlying a task which involved grasping well-defined targets at fixed positions on a planar
frame. Investigating the nature of the muscle synergies involved in hand and arm coordi-
nation in this task was a step leading towards exploring the prediction of hand kinematics
from sEMG signals. This project was a part of a larger effort to build an intelligent non-
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invasive exoskeleton device to potentially rehabilitate and supplement lost movement in
patients suffering from partial or total paralysis of the arm.

The EMG data analyzed in this project were recorded during two pilot experiments.
These experiments were carried out in order to develop and optimize a controlled experi-
mental setup for recording regular and HD-sEMG signals from the hand and arm, as well
as motion capture signals. More specifically, the objectives of the two experiments were
the following:

1.4.1 Pilot Experiment 1

The chief purpose of this study was to obtain some preliminary EMG and motion capture
data to use as a basis for understanding the underlying data structure and the mapping
between them. This dataset was intended to be used for the development of a robust
data processing and analysis pipeline. The experiment was carried out as a pilot study
on a single subject in order to test our experimental setup and protocol, and the quality of
the data was assessed after some preliminary data processing. The aim was to modify
the experimental protocol appropriately for future experiments based on the data quality,
feedback from the subject and our experience conducting the experiment.

1.4.2 Pilot Experiment 2

The main aim of the second pilot experiment was to obtain better quality EMG and motion
capture recordings by modifying the experiment design based on our analysis of the data
previously obtained. Another goal was to obtain a more expansive dataset by incorporat-
ing two different experimental frame setups (vertical and horizontal), two different grasp
types (precision and power grip) and two different types of reaching movements (with
supination and without supination) to record six different grasp types, which are listed in
the Materials and Methods section.



Chapter 2

The Fourier-Based Anechoic Demixing
Algorithm (FADA) algorithm

The process of extracting a set of source signals from a mixture of signals without hav-
ing much information regarding the number of source signals or the process used to mix
them is known as blind source separation. It is often used in the digital processing of
signals, such as EMG signals, with the objective being to extract and separate the original
components of the signal from the mixed signal. The Fourier-based Anechoic Demixing
Algorithm (Chiovetto et al., 2016), which was used in this project to identify muscle syn-
ergies, is a unifying algorithm which performs source (synergy) separation by means of
anechoic demixing.

2.1 Spatiotemporal primitives generative model

This generative model is used to model EMG components that are both space and time
invariant. The model permits temporal shifts (delays) between the different synergies. The
following equation represents the spatiotemporal generative model, where xl(t) is repre-
sentative of the time-dependent column vector of the degree of freedom (EMG channel):

xl(t) =
P∑
p=1

clp ·wp(t− τ lp) + residuals (2.1)

While the synergies denoted by wp(t) are assumed to be invariant across trials, the mixing
weights clp and delays τ lp change across the different trials.

7
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2.2 Anechoic mixture model (Unifying model)

Models of this type are utilized in acoustics for modeling mixtures of sources in rooms
that are free of reverberation. In this model, U acoustic source functions fu(t) are linearly
superposed by time-shifting them with delays denoted by τru, along with the application
of appropriate mixing weights aru, to form a set of R recorded acoustic signals yr(t) . This
model also accounts for the fact that the signals produced by sources are received with
different time-delays and strengths (amplitudes), which are dependent upon the distance
between the receiver and the origins of the signals. The form of the generative model is
as denoted below:

yr(t) =
U∑
u=1

aru · fu(t− τru) + residuals (2.2)

The anechoic demixing problem that we were trying to solve was the over-determined
case, where the signals (one per channel) outnumbered the sources. This case of the
problem is extremely relevant for dimensionality reduction applications, but has not been
addressed as often as the under-determined case.

A considerable number of parameters have to be identified when standard algorithms
are used for blind source separation. Let T , M , U and L represent the total number of
time samples, degrees of freedom, sources and trials. Given the model represented by
Eq. (2.2), for the representation of all sources fu(t), T · U parameters must be identified.
For every trial L, M ·U weights and delays need to be identified. Taking the entire dataset
into consideration, this results in a total of (T + 2M · L) · U parameters which must be
identified, where T >> M,U, L.

The unifying algorithm, which can be used to identify the parameters in the uncon-
strained model represented by Eq. (2.2), makes use of the fact that biological signals in
motor control are typically smooth. This enables a significant reduction in the complex-
ity of the anechoic demixing problem and facilitates the development of a more robust
approach to the problem. Since EMG signals are very smooth, they can be well repre-
sented by smooth source signals. Smoothing priors are used to represent the source
signals, which increases the stability of the source separation problem. Another fea-
ture of the algorithm is the use of truncated Fourier expansions to represent the smooth
sources. K(<< T ) Fourier coefficients can be used to reasonably approximate each of
the sources. As a result, the number of parameters that need to be identified reduces
to (K + 2M · L) · U , significantly decreasing the computational costs associated with pa-
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rameter estimation and increasing the robustness of the algorithm. Another assumption
made is that the sources and the signals are band-limited, justifying their representation
by truncated Fourier expansions. They can be represented as follows:

yr(t) =
K∑

k=−K

crk e
2πikt
Ts

fu(t− τru) ∼=
K∑

k=−K

νuk e
−ikτru e

2πikt
Ts

(2.3)

The source decomposition algorithm ensures that the different source functions are not
correlated. Thus it is implied that E{fu(t) · fu′(t′)} = 0 for u 6= u′ and any pair t 6= t′. This
implies E{νuk ·νu′k′} = 0 for u 6= u′ and any pair k 6= k′ for the Fourier coefficients involved.
On combining equations Eq. (2.2) and Eq. (2.3) we get:

crk =
U∑
u=1

aru · νuk e−ikτru (2.4)

from this equation, with E{νuk · ν∗u′k′} = E{|νuk|2} · δuu′ follows:

|crk|2 =
U∑
u=1

|aru|2|νuk|2 (2.5)

The estimated parameters are randomly initialized, after which the steps listed below
are carried out until the solutions converge:

1. The absolute values of the coefficients denoted by crk are computed and used to
solve the following equation:

|crk|2 =
U∑
u=1

|aru|2|νuk|2 (2.6)

where r = 0, 1, 2, . . . , R and k = 0, 1, , . . . , K. Non-negative independent compo-
nent analysis (ICA) is used by the algorithm to solve the above equation. ICA is
a computational technique used to extract the additive subcomponents from a mul-
tivariate signal. The assumptions in this method are that the subcomponents are
statistically independent, non-Gaussian signals. Non-negative ICA imposes a non-
negative constraint on the sources.
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2. All the pairs are initialized and the following steps are carried out:

(a) The phases of the Fourier coefficients of the sources given by ϕµuk = angle(νuk) =

arctan(Im(νuk)/Re(νuk)) are updated by solving the following non-linear least
square problem:

minΦ||C− Z(Φ)||2F (2.7)

where (C)rk = crk, (Z)rk =
∑U

u=1 aru e
−ikτuk |νuk|eiϕνuk and represents the Frobe-

nius norm, which is the square root of the sum of the absolute squares of all
the elements of the matrix.

(b) The separated source functions fu(t) are kept constant, and for each signal
yr(t) by minimizing the following cost functions

arg minar,τr ||yr(t)− f(t, τr)
′ar||2F (2.8)

the delays τr and weights ar can be determined. Such optimization is feasible
since both the sources and the time delays are assumed to be independent.

The FADA algorithm can solve the source separation problem both with and without
constraints. Since the EMG signals were non-negative, we used the algorithm with the
application of non-negativity constraints on the source functions as well as on the mixing
coefficients

When non-negativity constraints are imposed on the source functions,the algorithm
works by directly determining the time-dependent values of fu(t) while taking into consid-
eration the constraint fu(t) ≥ 0 for the discretely sampled values. The scaling or mixing
coefficients denoted by aru can be constrained to be non-negative by the algorithm while
solving the least squares problem to estimate the scaling coefficients in Eq. (2.8). By
imposing the linear inequality constraint aru ≥ 0,∀r, u, the problem is converted into a
non-negative least squares problem to determine the weights aru.

2.3 Identification of spatiotemporal synergies using the

anechoic demixing algorithm

The anechoic demixing algorithm can be used to identify spatiotemporal synergies by
applying specific constraints on its parameters. By determining separate sets of basis
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functions for every EMG signal (corresponding to a single channel), grouping them into
vectors and setting the temporal delays and scaling factors as equal for the components
of each of the vectors, the unifying model can be transformed into the spatiotemporal syn-
ergy generative model. To identify spatiotemporal synergies, P sources fp are assigned
to each of the DOFs m in the data, thus resulting in M.P source functions for the entire
dataset. The three steps listed below are then carried out iteratively until the solutions
converge.

1. For every spatiotemporal primitive, its optimal delay given by τ lp is found for each of
the trials by using a matching pursuit procedure. In this method, the set of time-
shifted source functions that best explain the data are iteratively found. One source
function or primitive is taken at a time, and the scalar product of that time-shifted
primitive is computed with the original data using every possible delay between 0

and T − 1. The primitive and delay that produce the largest scalar product with the
original data are then selected and their contribution is removed from the original
data. This procedure is repeated for all of the primitives until all the optimal delays
have been found.

2. For each of the trials l, the difference between the original data and the reconstruc-
tion produced by the movement primitives is minimized to update the combination
coefficients clp. The reconstructions are produced using model (2.1) assuming that
the movement primitives fu and the delays τru are known.

3. Using the optimal weights and delays found in the previous steps, the source func-
tions fu which correspond to the spatiotemporal primitives wp(t) in model (2.1) are
updated, by estimating their Fourier coefficients in the same way as that used by the
unconstrained FADA algorithm. The primitives and weights can be constrained to
be non-negative as mentioned previously.

2.4 Variance explained measure for synergies

To quantify how closely the reconstruction patterns generated by combining the synergies
resemble the actual EMG data, “total variation” is used as a metric of the same by the
FADA algorithm. The original EMG series and the reconstructions are both multivariate
time-series, and therefore an appropriate measure of the goodness of reconstruction can
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be defined by taking a ratio of the two variances as shown in the equation below. Total
variation is simply the trace of the covariance of the activations of muscles, which is used
to define a multivariate measure R2 in the following manner:

R2 = 1−
∑L

l=1 ||Xl −Xl
rec||∑L

l=1 ||Xl − X̄l||
(2.9)

where Xl represents the data matrix, Xl
rec represents the reconstructed values produced

by mixing the synergies and where X̄ is the matrix of the mean values of the data. R2

is representative of the fraction of the total variance accounted for by the synergy-based
reconstruction.
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Materials and Methods

3.1 Pilot Experiment 1

3.1.1 Subject

One left-handed, male, healthy adult (age 39 years, mass 82 kg, height 178 cm) partici-
pated in the experiment. The participant, whose personal details are anonymized, did not
have any previous history of neuromuscular disease. He gave his informed written con-
sent to participate in the experiment. The experiment received approval from the ethical
committee at the University of Stuttgart, where the experiment was conducted.

3.1.2 Experiment design and apparatus

3.1.2.1 Setup for motor task

The experimental setup consisted of a large square (1 m x 1 m) vertical metallic aluminium
frame with 3 horizontal bars, at distances 25 cm, 50 cm and 75 cm from the bottom of
the frame respectively. On these bars the targets to be grasped were placed by fixing
them onto 2 cm cylindrical projections at fixed locations that were 25 cm apart, on the
horizontal bars, such that the 9 target blocks formed a 3 x 3 matrix. These targets were
rectangular wooden blocks of approximate dimensions 8 cm x 5 cm x 2 cm. The axis of
fixation of the blocks was parallel to their thickness (shortest dimension) and they were
were oriented such that the 5 cm sides were aligned with the horizontal. This was done
to enable the use of a power grip while grasping the blocks. The entire frame was painted
black to minimize reflection, which would otherwise have affected the quality of the motion

13
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capture readings. The vertical frame was supported by two solid, metallic base plates.
The setup was designed to facilitate sliding of both the blocks on the horizontal bars,
as well as the horizontal bars themselves, however, during the course of the experiment
their positions were not changed. The frame was elevated by propping it up between
two tables placed side by side such that each of the two base plates rested on a table.
This elevation enabled the subject to reach all the different target blocks without having to
make any major trunk movements to do so (reducing activation of muscles not required
for performing the grasping task).

Figure 3.1: Target numbering scheme followed. The grasping of the target blocks, repre-
sented by the different numbers, was carried out via directional grasping movements.

3.1.2.2 EMG

3.1.2.2.1 Equipment used:

• Quattrocento OT Bioelectronnica EMG Amplifier

• 3 HD-sEMG 2D arrays of 8 cm x 8 cm, with 64 channels each, from OT Bioelettronica

• 3 EMG pre-amplifiers

• CDE-B 24mm bipolar electrodes with banana connectors

• AUX cable for trigger signal from VICON

• 2 Electrodes used for grounding (at the medial epicondyle and acromion)
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3.1.2.2.2 Data Acquisition:

In order to prepare the skin for the measurement of EMG signals, Everi Skin Preparation
Gel (Spes Medica, Genova, Italy) was applied to the skin to decrease the epidermal
capacitance caused by the lipid content of dead tissue on the skin. It was removed by
rubbing alcohol (Kodan Tinktur forte, Schülke & Mayr, Norderstedt, Germany) on the skin.
Electro-conductive gel (AC CREAM250V-3, Spes Medica SRL, 16153 Genoa, Italy) was
used to increase the conductance of the skin and improve the signal-to-noise ratio of the
signals measured.

Muscle activity was recorded from 11 major arm muscles of the subject’s right arm
(used for the grasping task), using bipolar sEMG electrodes. The muscles whose activity
was measured were: 1) Biceps long head 2) Latissimus dorsi 3) Deltoid anterior 4) Deltoid
middle 5) Deltoid posterior 6) Trapezius lower 7) Trapezius middle 8) Pectoralis major 9)
Sterno cleido occipital mastoides 10) Triceps long head 11) Trapezius upper. The elec-
trodes were positioned appropriately on the muscles such that stretching or bending of
electrodes was minimized during movement, in accordance with SENIAM 8 placement
recommendations. The electrodes were oriented parallel to the muscle fibres and were
placed approximately 20 mm apart. They were fixed to the skin using surgical tape (Fixo-
mull Stretch, BSN Medical GmbH, Hamburg, Germany) and the cables were aligned to
form a central branch structure.

HD-EMG signals were recorded from the muscles of the hand (and wrist) by placing
the three HD-EMG arrays contiguously around the upper portion of the forearm to form
a band. HD-arrays 1, 2 and 3 were placed approximately above the flexor carpi radialis,
the flexor carpi ulnaris and the extensor carpi radialis muscles respectively. However, in
reality, due to the large number of electrodes and the large size of each HD-array, the
signals measured can be considered to be the resultant signal produced by the electrical
activity of multiple hand and wrist muscles in proximity to the array.

The EMG signals were sampled by the Quattrocento OT Bioelettronica system at 2048
Hz. The amplification gain for all the bioelectrical signal input channels was 150 V/V. The
signals were band-pass filtered (10 - 900 Hz) online. The graphical user interface used to
view and monitor the readings online was OTBioLab v 2.064.

3.1.2.3 Kinematics

3.1.2.3.1 Equipment used:
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Figure 3.2: Experiment setup: Metal framework with wooden blocks and motion capture
cameras are visible. EMG apparatus (purple) is next to the frame, on the right.

• 8 VICON infrared motion capture cameras

• 1 high-speed video camera

• 42 infrared reflector markers

3.1.2.3.2 Data acquisition:

The 8 VICON motion capture cameras were wall mounted on all four walls of the room,
facilitating the viewing of the kinematics from different angles. This 360 degree arrange-
ment of the cameras was advantageous because they reduced the probability of occlusion
of the markers. The cameras were used to record the three-dimensional trajectory of the
grasping motion with the help of the 42 markers, at a sampling rate of 120 Hz. The re-
flective markers were stuck on the forehead, the upper body, the right arm and the right
hand. Two reference markers were placed at the back of the targets 8 and 4. The marker
trajectories were viewed online and processed using VICON Nexus 2.8 software.
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Figure 3.3: Subject (anonymized) performing the grasping task with the EMG electrodes
and motion capture markers attached.

3.1.2.4 Motor Task

The subject was seated on a chair of adjustable height, in front of the frame, in between
the two reference markers placed on the frame (on the other side). The positioning was
such that the two reference markers and the subject formed an angle of approximately
60°. The designated task was to perform several different directional point-to-point reach-
ing and grasping tasks in the vertical plane. The starting position for the task was a power
grip of the central block (target 0) such that it was grasped along its upper and lower
edges with the thumb touching the lower edge and the four other fingers placed side by
side, curled over the upper edge. From this starting location, the subject then reached
and grasped one of the other 8 targets, thus performing a movement in a specific direc-
tion away from the centre. The velocity of the grasping movement was regulated by a
metronome set to 60bps. The subject grasped each block during the first beat of every
bar and then continued to grip it, until the 4 beats of the bar (4 s) had been completed.
He then performed the reverse movement, bringing his hand back to grasp the central
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target, again within the same 4 s timeframe. This was done until all the different target
blocks had been grasped, and the sequence of grasps was initiated as well as ended by
grasping the central block. The subject was instructed to reach forward using only his arm
and to reduce trunk movement as much as possible.

The protocol followed for recording the signals is described below. Between each of
the two steps, counting from 1 to 3 was carried out aloud in synchronization with the
metronome, and the next step was begun on the 4th beat of each bar, by issuing the
vocal command ‘start’.

• The metronome was started (60 bps setting).

• EMG recording was initiated.

• Motion capture recording was started.

• The motor task started.

• The motor task ended.

• Motion capture recording was stopped.

• EMG recording was stopped.

The motion capture system and the EMG amplifying system were synchronised by means
of a trigger signal generated by the motion capture system which was received by the
EMG amplifying system as an analog input signal.

Five trials of the experiment were conducted, in which the subject performed the mo-
tor task involving the power grip described above. Each trial included one centre-out
movement and one out-centre movement corresponding to each of the 8 target blocks,
resulting in a total of 8 different types of outward movements and the same number of
centre-reaching movements. The order of grasping the different targets was randomized
across trials to avoid motor learning of the sequence. The number of the target that was
to be grasped was said aloud in synchronization with the metronome, following which it
was grasped by the subject, and this was repeated for the entire sequence of numbers in
each trial. Only the different centre-out movements were used for further analysis.
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3.2 Additional data collected

Data were also collected for some modified tasks which are listed below:

• The earlier setup was slightly modified by rotating the target blocks to orient their
shorter sides parallel to the vertical axis. Three experiment trials of the centre-
out and out-centre movements corresponding to all the different target blocks were
conducted, with randomization across trials. The difference between this task and
the previous one was that the distance between the fingers and the thumb was
effectively reduced when the blocks were grasped.

• A single trial was conducted in which the central block was also used as a target,
making the total number of targets 9. These 9 targets were grasped in a random
order, without any centre-out or centre-in movements, with each grasping action
lasting twice as long (two bars of the metronome) as in the two previous motor
tasks.

• Another modification of the experiment was conducted, in which a twisting motion
was added to the grasping task. The blocks were oriented such that their longer
edges were parallel to the horizontal. The subject reached out, grasped each of
the blocks and rotated them clockwise by 90 degrees such that the shorter sides
were parallel to the horizontal. This was done in a random order. Following this,
the subject reached out and grasped each of the blocks including the central one,
again in a random order, and rotated them in the anti-clockwise direction to return
them to their original orientations. Thus, this motor task included a twisting motion
in addition to the grasping action.

These additional data were not intended to be used for understanding the underlying data
structure, as very few trials were conducted for each of the motor tasks. We aimed to
obtain some preliminary data that could provide insights into the viability of conducting
similar experiments on a larger scale in the future.

3.3 Observations

• The EMG activation waveform patterns corresponding to the same movements showed
poor repeatability across the different trials (explained in detail in the Results sec-
tion).
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• Lack of a T-pose static trial made calibration more challenging for the motion capture
data.

• The markers of the motion capture data exhibited considerable flickering.This was
possibly due to their occlusion by the motion capture cameras and the setup. This
data required extensive manual data cleaning, and the flickering also made it difficult
to accurately segment the different grasping tasks based on the raw data.

• When the longer sides of the wooden grasping blocks were aligned with the vertical,
the grip type executed by the subject was a power grip, based on the height of each
block. However, when the shorter sides were aligned vertically, the grasp type was
not truly a precision grip because the height of the block was not small enough.

Based on these observations, several changes were incorporated into the design and
protocol of the second pilot experiment to obtain better quality data.

3.4 Pilot Experiment 2

3.4.1 Subject

The healthy male subject who had participated in the first pilot experiment took part in this
experiment as well.

3.4.2 Experiment design and apparatus

3.4.2.1 Setup for motor task

The same metallic framework was placed in two different orientations - vertical and hori-
zontal - for this study. These two orientations of the frame facilitated the collection of data
for the grasping of the target blocks in a vertical plane as well as a horizontal plane. The
vertical setup was similar to the one used earlier. However, due to the poor quality of the
EMG data in the previous dataset, the grasping task was modified by changing the start-
ing position of the grasping hand (right hand) of the subject. This was done by clamping
a wooden slab on the table on the right side of the subject, such that his right hand could
comfortably be placed on it, palm downwards. Since the middle block (target 0) was no
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longer being used as the starting location, there were 9 total target blocks in this experi-
ment. To reduce the occlusion of the finger markers, 9 long (approximately 10 cm) metal
screws were fixed onto the frame, and the target blocks were affixed to these screws. The
distance between the blocks and the frame was increased to reduce the occlusion of the
blocks from view.

In the horizontal setup, the metal framework was placed horizontally, propped by the
two tables, such that the target blocks faced the ceiling. The blocks were not fixed onto
long screws in this setup. Due to the large dimensions of the frame, which was in front
of the subject, this resulted in the subject needing to bend forward to reach the farthest
target blocks, adding some trunk motion to the grasping movement.

Two different types of blocks were used in this experiment - square ones (approximate
dimensions: 8 cm x 8 cm x 2 cm) which were grasped with a power grip, and rectangular
ones (approximate dimensions: 8 cm x 2 cm x 2 cm) which were grasped with a precision
grip. The axis of fixation of the blocks was parallel to their thickness (shortest dimension).
The second set of blocks was aligned such that the smaller sides parallel to the vertical
axis. The position of the target blocks was kept fixed throughout the experiment, and the
numbering scheme was the same as earlier.

3.4.2.2 EMG

3.4.2.2.1 Equipment used:

• Quattrocento OT Bioelectronnica EMG Amplifier

• 3 HD-sEMG 2D arrays of 8 cm x 8 cm, with 64 channels each, from OT Bioelettronica

• 3 EMG pre-amplifiers

• 16 CDE-B 24mm bipolar electrodes with banana connectors

• 2 Electrodes used for grounding (at the medial epicondyle and acromion)

3.4.2.2.2 Data Acquisition:

The skin was prepared for electrode placement in the same manner as in the previous
experiment, using Everi Skin Preparation Gel, Kodan Tinktur Forte and AC CREAM250V-
3. Regular sEMG data was recorded from 15 major muscles and 1 hand muscle of the
subject’s right arm (used for the grasping task) using bipolar electrodes. The muscles
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Figure 3.4: Subject performing a grasp-
ing task using the vertical setup with
the target blocks fixed onto long metal
screws.

Figure 3.5: Subject performing a grasp-
ing task using the horizontal setup.

measured were: 1) Biceps long head 2) Adductor pollicis 3) Latissimus dorsi 4) Anterior
deltoid 5) Lateral deltoid 6) Posterior deltoid 7) Lower trapezius 8) Middle trapezius 9)
Pectoralis major I 10) Sternocleidomastoid clavicular head 11) Triceps brachii lateral head
12) Triceps brachii medial head 13) Upper trapezius 14) Teres major 15) Infraspinatus 16)
Pectoralis major II. Since the Pectoralis major is a large muscle, for this experiment, we
decided to make use of two bipolar electrodes to record the electrical activity from two
ends of the muscle. The reasoning was that different levels of cross talk would result in
different activation patterns across the length of the muscle. Thus, due to its size, this
muscle was effectively treated as two different muscles. The electrodes were positioned
on the muscles in accordance with SENIAM 8 placement recommendations and fixed
using surgical tape. The HD-sEMG signals were recorded in the same manner as in the
first experiment, with the three HD-arrays arranged near the the Flexor carpi radialis, the
Flexor carpi ulnaris and the Extensor carpi radialis muscles. In this experiment, one of the
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EMG bipolar electrodes was used to measure signals from the Adductor pollicis, a hand
muscle.

The EMG signals were sampled at 2048 Hz, with an amplification gain of 150 V/V. The
signals were band-pass filtered (10 - 900 Hz) online. The graphical user interface used to
view and monitor the readings online was OTBioLab v 2.064.

3.4.2.3 Kinematics

3.4.2.3.1 Equipment:

• 8 VICON infrared motion capture cameras

• 1 high-speed video camera

• 46 infrared reflector markers

• Two tripod stands

3.4.2.3.2 Data acquisition:

In an attempt to reduce the flickering of the markers in the kinematics data, the ar-
rangement of the VICON motion capture cameras was modified. Six cameras were wall-
mounted in the same positions as in the previous experiment, two were placed on tripod
stands and placed on the left and right sides of the subject. The camera positions were
adjusted to minimize flickering of the markers, especially those on the fingers of the right
hand based on the data visualized online in the VICON Nexus 2.8 software. The reflective
markers were stuck on the head, the upper body, the right arm and the right hand.

3.4.2.4 Motor task

The subject was seated on a chair of adjustable height in front of the centre of the metal
frame. As described previously, the starting position was the right hand placed palm
down on the wooden slab on the right of the subject. By having two orientations of the
frame (vertical and horizontal), two sizes of blocks facilitating two grip types (precision and
power grip) and two types of reaching movements (reaching with supination and reaching
without supination) towards the target blocks, we collected 6 different types of data, each
type corresponding to a particular combination of the frame orientation, grip type and
reaching movement type. The different types of grasping data collected are listed below:
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• Grasp 1: Power grip without supination, using a vertical frame.

• Grasp 2: Power grip with supination, using a vertical frame.

• Grasp 3: Power grip without supination, using a horizontal frame.

• Grasp 4: Precision grip without supination, using a horizontal frame.

• Grasp 5: Precision grip without supination, using a vertical frame.

• Grasp 6: Precision grip with supination, using a vertical frame.

In the horizontal frame setup, the grasping movements did not include supination be-
cause it made the movements unnatural and unlike those carried out in everyday life. The
protocol followed in the previous pilot experiment was repeated - the target blocks were
grasped in a random order, and the subject returned to the starting position after each
grasping movement. Movement velocity was regulated using a metronome set to 60 bps.

For each of the 6 types of data, the subject performed 5 experimental trials. In each
trial, he grasped all the target blocks in a randomized, orally dictated sequence. The
subject was instructed to minimize trunk movements.

The signals were recorded according to the protocol below. Every step was started on
the fourth beat of each bar of the metronome.

• The metronome was played aloud at 60 bps.

• EMG recording was started, and due to the synchronization of the two systems,
motion capture recording also started simultaneously.

• The motor task started.

• The motor task ended.

• EMG recording was stopped and motion capture recording ceased simultaneously.

The motion capture system and the EMG amplifying system were completely synchro-
nized such that recording from the EMG system automatically resulted in the activation of
the motion capture recording system.
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3.5 EMG signal processing and analysis

For EMG signals to be used to control biorobotic devices, they need to be extensively
processed to remove noise. While measuring any biopotential signal, including EMG,
noise may be introduced during the acquisition of analog signals. Thus, extensive digital
processing and filtering is a necessity after obtaining the raw data. A Windows 10 OS was
used for the offline analysis of the EMG signals. Programs used for signal processing and
analysis were written in MATLAB (versions R2016 and R2020a). Plots were generated in
MATLAB.

3.5.1 Digital band-pass filtering (20 - 450Hz)

A high-pass filter in series with a low-pass filter together constitute a band-pass filter.
Band-pass filtering is used to discard low and high frequency components of the signal,
since most of the information contained in the signal is captured by frequencies lying in
between the low and high frequency limits. Considering the particular grasping task that
we were investigating, we retained signals in the frequency range 20Hz - 450Hz, while
the rest were removed by the band-pass filter. A fourth-order butterworth filter (MATLAB
“butter” and “filtfilt” functions) was used to to band-pass filter the data.

3.5.2 Removal of Power-Line Interference (Band-stop filter, 50Hz)

One of the types of artifacts affecting EMG recordings is noise introduced due to power-
line interference caused by the surrounding electrical network. In Germany, where the
data were collected, the standard frequency of the power line is 50Hz. To remove power-
line interference, a band-stop filter was used. A band-stop or band rejection filter allows
most frequencies to pass without altering them, but selectively removes or attenuates
frequencies within a particular range to extremely low levels. Its action is opposite to
that of a band-pass filter. A second-order butterworth filter (MATLAB “butter” and “filtfilt”
functions) was used to stop the band between 49 and 51 Hz.

3.5.3 Rectification

Rectification is a step carried out prior to other processes, such as envelope extraction.
There are two kinds of rectification of digital signals - full-wave rectification and half-wave
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rectification. The computation of the absolute value of the raw signals is known as full-
wave rectification, whereas passing only the positive values of a signal while setting the
negative values to zero is known as half-wave rectification. Full-wave rectification passes
twice as many pulses as those allowed through upon half-wave rectification, thus, it is
usually considered more suitable for EMG signal processing, and was used by us.

The mean value of the original EMG signals is usually zero or near zero. Upon full-
wave rectification, however, the signal is completely positive and its average value fluctu-
ates in tune with the strength of the contraction of the muscle. The rectified signal is of
limited use on its own but is a useful input for subsequent processes carried out on the
signals. These signals can be used to semi-quantitatively assess the phasic activity and
functioning of various muscle groups, as a visual inspection of the changes in amplitude
of a signal provides a reasonable indication of the fluctuation in the level of contraction of
the muscle concerned.

3.5.4 Low-pass filter (envelope extraction)

A low-pass filter (cutoff 10 Hz) was used to extract the linear envelope. A second-order
butterworth filter (MATLAB “butter” and “filtfilt” functions) was used for this purpose. Fil-
tering rectified data with a low-pass filter yields what is known as the linear envelope of
the signal. It can be described as a moving average of the signal because it captures
the shape of the EMG signal and the trend of the muscle tension curve quite closely.
Strong correlations have been observed between the force of muscle contraction and the
envelope of the EMG signal during anisotonic isometric contractions.

3.5.5 Segmentation according to kinematics

For the data from the first pilot experiment, the EMG data were segmented such that start-
ing and ending time-points of each of the directional grasping movements (corresponding
to the different targets) were determined. 8 directional movements were obtained from
the first dataset and 9 directional movements were obtained from the second dataset.

Segmentation was done by hand by visually inspecting the motion capture data in the
VICON Nexus software (version 2.9.1). These data were viewed frame by frame and
segmented by inspecting the raw data, which were present in the form of the marker
trajectories visualized by the cameras. The data were observed from the view of one of
the cameras placed on the wall on the right side of the subject, since the hand markers
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were placed on the right hand, which was being observed to demarcate the start and
end points of the movement. The start point of the movement was denoted by the frame
in which the frontal marker on the wrist just started moving. The frame in which all the
markers became stationary upon completion of the grasping motion was considered to be
the stopping frame of the movement.

There were some issues with the raw kinematics data which could have compromised
the accuracy of the segmentation. Many of the markers kept temporarily disappearing,
possibly due to temporary occlusion from the view of the cameras. Since the data had
not been cleaned at the time of segmentation, the flickering markers made it difficult
to accurately determine the end point of the motion. To increase the accuracy of the
segmentation, for movements in which the end of the motion was difficult to determine
because of flickering, the trajectories were observed from both sides of the hand and the
stopping frame number was determined for each side. The higher number was taken to
be the stopping frame number for the particular movement being considered.

While recording the first dataset, the start points of the EMG recording and the motion
capture recording were not synchronized. The EMG apparatus began recording earlier
than the motion capture cameras. The period of synchronization of both types of record-
ings was stored in the form of an auxiliary signal, a square wave whose start and end
points denote the duration (in s) of the motion capture recording, and the corresponding
time values in EMG. Thus, the duration of the entire trial can be obtained by subtract-
ing the start point of the square wave from the end point. By obtaining the number of
frames in the same trial from VICON, we calculated the frame change rate. The observed
frame value was then divided by the frame change rate, which was determined on a trial
specific basis, in order to obtain the corresponding time value with respect to the EMG
data. The data were segmented and each of the different movements was appropriately
labelled according to the movement type (denoted by the target number) for further use.
No additional time windows were introduced before the start and end points.

During the second pilot experiment, the EMG and motion capture apparatus recorded
synchronously. The 0th second of the EMG recording matched the starting frame in
VICON. Thus, the frame change rate per trial was calculated by simply dividing the total
number of frames in VICON by the final time value of the EMG readings. To better capture
the activity of the muscles from their EMG signals, the time points 200 ms before and after
the calculated start and end points were used for the purpose of segmentation. This was
done to capture any muscle excitation that occurred prior to the movement as well as any
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residual muscle activity after the arm and hand had come to rest.

3.5.6 Time normalization

In order to be able to compare and average signals corresponding to the same movement
across the different trials, they were normalized to 90 timepoints using the "interp" function
in MATLAB.

3.5.7 Clustering HD-EMG to avoid overrepresentation

HD-sEMG arrays were used to record MEG signals from hand (and wrist) muscles. Three
HD arrays were used, each of which had 64 channels, resulting in the use of 192 HD
channels in total. The arrays were labelled with the names of the three hand muscles
present in close proximity to them - Flexor carpi radialis, Flexor carpi ulnaris and Extensor
carpi radialis - but in fact, the signals recorded were produced by a combination of many
muscles.

Figure 3.6: 64 correlated HD-sEMG spike trains measured by electrodes present on one
of the HD-sEMG arrays. The image displays the amplitude of activation (mV) on the y-axis
versus time (s) on the x-axis
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It was observed that the temporal activity patterns of signals recorded from a single
array were extremely correlated. This was as expected, because the distance between
the electrodes on the skin was small and probably not enough to create a large distinction
in terms of the particular muscles influencing each of the electrodes. However, having
such a large number of correlated channels effectively measuring the activity of the same
set of muscles would reduce the accuracy of the synergies extracted from the data. The
correlated HD channels, if left unaltered, would vastly outnumber the uncorrelated distinct
channels. Given that these channels would be weighted the same as the uncorrelated
channels, having so many correlated channels would bias the source separation algo-
rithm. Therefore, we decided to cluster the correlated channels in order to reduce their
number.

3.5.7.1 First dataset:

The channels corresponding to a single HD array were reorganised as four square blocks
containing 16 channels each. It was observed that there were not many uncorrelated
outlier channels within each HD array. The average values of the channels belonging
to each of the 4 sub-blocks within an HD array were computed, and the two channels
whose values differed most greatly from the mean were discarded. The remaining chan-
nels within each sub-block were averaged to produce a surrogate channel representing
the sub-block. This resulted in the 192 HD channels being represented by 12 surrogate
channels. While averaging, care was taken to strike a balance between having too many
channels (at the cost of robustness) and too few channels (loss of information). Using
12 surrogate channels seemed to offer a reasonable balance. However, the 4 channels
produced from each array were also fairly correlated.
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Figure 3.7: The correlated channels of the three HD-sEMG array were clustered by reor-
ganizing the 64 electrodes within each array into 4 equal sized spatial sub-blocks, elimi-
nating outliers and averaging signals within a sub-block (Diagram by Albert M.)

3.5.7.2 Second dataset:

The data were initially clustered using the K-means clustering algorithm. The algorithm is
used to divide the data into k clusters such that every data point is assigned to a cluster.
At every iteration, the mean of the cluster serves as its representative, and by repeatedly
assigning a data point to the cluster whose mean value is nearest to it, similar data points
are ultimately grouped together in the same cluster.

Silhouette plots were used to determine the optimal number of clusters per HD-array.
These plots provide a measure of the distance between each point present within a cluster
and points in the other clusters. If all the points in a cluster have large silhouette values,
it indicates that the cluster is well-separated from the others.

These plots confirmed the correlated nature of the channels from each array, and the
optimal number of clusters was found to be: 2 for HD-array 1, 1 for HD-array 2 (indicating
that all the channels were correlated) and 2 for HD-array 3. This method indicated that
the 192 HD channels could be represented by just 5 surrogate channels. However, based
on our observations of the data, following this method reduced the number of channels
representing the hand by a greater extent than seemed desirable.
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Figure 3.8: The channels of HD-array 1
separated into two clusters. The cluster
indices are shown on the y-axis and the
x-axis represents the silhouette values
of the individual channels.

Figure 3.9: The two clusters corre-
sponding to HD-array 2. The cluster in-
dices are shown on the y-axis and the
x-axis represents the silhouette values
of the individual channels.

Figure 3.10: The channels of HD-array 3 separated into two clusters. The cluster indices
are shown on the y-axis and the x-axis represents the silhouette values of the individual
channels.

As visible from the plots, the average silhouette values of the clusters in HD-arrays
1 and 3 are quite high, whereas the average silhouette value of cluster 2 from HD-array
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2 is low. This indicates that arrays 1 and 3 can be separated into two distinct clusters,
whereas the channels in array 2 cannot be divided into two well-separated clusters.

We therefore implemented the same spatial clustering procedure as used earlier. Prior
to the sub-block channels averaging step, a few channels which showed initial activity and
no subsequent activity were discarded from the data sub-blocks.

3.5.8 FADA based synergy extraction

Based on the plots of the EMG data, trial 2 was eliminated from the analysis because
it did not correspond well with the other trials. Channels 9 and 10 were also excluded
from the analysis because they did not show EMG activation waveforms for any of the
different directional movements (for all the six grasp types). The data corresponding to the
directional movements were horizontally concatenated and the data from the remaining
trials were averaged for synergy extraction. Using the FADA toolbox (Chiovetto et al.,
2016), spatiotemporal synergies were extracted from the data. 25 harmonics were used.
Based on the nature and preprocessing of the EMG data, non-negativity constraints were
applied to the synergies, mixing weights and delays. The data had previously been time-
normalized to 90 time points per directional movement. To determine the optimum number
of synergies to be extracted, the data were categorized into three groups:

• Group 1: All the regular sEMG channels

• Group 2: The surrogate channels from the HD-arrays

• Group 3: A combination of all the regular sEMG and surrogate HD-EMG channels

The first and second groups were considered to be approximately representative of the
arm muscles and the hand muscles respectively. Sets of 1, 2, 3, 4 and 5 synergies
were extracted from each of these groups. The third group represented all the channels
measured from the arm and hand muscles. From this group, sets of 1, 2, 3, 4, 5 and 6
synergies were extracted. To reduce the computational time, for the sets of 4, 5 and 6 syn-
ergies extracted from the combined channel data, three runs of the algorithm were used
for extraction. For the remaining synergy extractions, four runs of the synergy extraction
algorithm were implemented.

For each of the sets of synergies extracted, the algorithm yielded a value for the
amount of variance explained by the set of optimized output synergies. These values,
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represented by R2, were plotted against the number of synergies extracted for each of the
groups. Such plots usually resemble saturating curves that start to flatten as the increase
in the number of synergies results in a lower and lower improvement in the amount of
variance explained.

Based on these plots (shown in the Results section), the optimum number of synergies
to be extracted from each of the groups, to be used for further analysis, was chosen. Prior
to the extraction of these synergies, to obtain more accurate hand and arm synergies, data
from the regular EMG channel 2, which measured signals from an intrinsic hand muscle
(the adductor pollicis) were moved into group 2 to be analyzed along with the surrogate
channels from the extrinsic hand muscles. The synergies extracted from this data were
used for reconstruction and the synergy similarity analysis. The synergies extracted from
group 3, i.e. from a combination of all the EMG channels, will henceforth be referred to
as combined-channel synergies.

3.5.9 Data reconstruction from muscle synergies

The synergies extracted from the three groups of data were used to reconstruct the trial
averaged data (excluding trial 4) from the three groups. The optimal weights for recon-
struction of the data were determined using the "weightsDelayEstimation" function from
the FADA toolbox. Using these optimal weights and delays, along with the previously
obtained synergies, the trial averaged data of each of the three groups were recon-
structed from the corresponding synergies. The reconstruction of averaged trials was
favoured over single trial reconstruction because the individual trial data displayed undu-
lations, which would not be well represented by the smooth source functions obtained
from FADA. Averaging the trials resulted in smoother EMG waveforms for the different
directional movements, which could be better constructed from the synergies. Due to
the limited number of trials available for analysis, the same trial averages were used for
the extraction of the synergies as well as to test their data reconstruction ability. However,
given that we were trying to ascertain whether our high-dimensional data could be reason-
ably represented in a lower-dimensional space, this was justified, since it was from the
low-dimensional representation (synergies) of the data alone that the high-dimensional
data was being reconstructed.
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3.5.10 Synergy similarity analysis

We quantitatively analyzed the similarity between the arm synergies and the correspond-
ing channels in the combined-channel synergies, as well as between the hand synergies
and the corresponding channels in the combined-channel synergies. The two syner-
gies, w1 and w2, each had D rows corresponding to the number of EMG channels and
J columns corresponding to the number of timepoints. To obtain the similarity score, the
synergies were normalized using the "norm" function in MATLAB and each channel was
demeaned.

Following this, for all possible delays j ∈ (1 − J, J) applied to one of the synergies,
say w2, a vector of D × J elements vj1 was built by translating the other synergy w1 by j,
truncating each of its rows and finally rearranging the D rows of w1 into a single column
vector. The D rows of w2 were then rearranged to form a column vector v2. The similarity
score S is defined as the maximum of the scalar products of the two vectors

S = maxj∈(1−j,J)(vT2 · v
j
1) (3.1)

The value of the similarity score obtained from the above equation lies between 0 and 1.
The highest similarity value and the corresponding delay should ideally match the syner-
gies optimally according to their shapes and should provide a 1:1 mapping between the
sets of synergies being compared (the arm synergies and the arm channels of combined-
channel synergies as well as the hand synergies and the hand channels of combined-
channel synergies).

Exclusion of the demeaning step resulted in the optimal delays being found to be
nearly zero for all the pairs, indicating that the mean values of the synergies played a
strong role in the matching procedure rather than their shapes. Demeaning the entire
synergy instead of each of its channels proved to negatively affect the ability to obtain this
1:1 mapping using this scalar product maximization technique. Thus, the demeaning was
carried out on a channel-specific basis, which provided the required 1:1 mapping.

3.5.11 Reconstruction of combined channel data using 1 synergy at
a time

To attempt to determine which channels were better explained by each of the combined-
channel synergies, we used one of the three synergies at a time to reconstruct the data
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and analyzed the variance explained per channel. The reconstruction was carried out
in the same manner as before. We decided to identify channels for which the variance
explained was > 0.5 (i.e error was < 0.5).



Chapter 4

Results

4.1 EMG Data (Pilot Experiment 1)

The EMG data obtained were processed as described in the Materials and Methods sec-
tion. The data from the different channels were plotted for all the trials. A good quality
EMG recording typically has a well defined waveform for each muscle that is active during
a motor task. If the same task is repeated, the EMG waveforms of the same muscle ob-
tained from different trials should have a very similar shape, in a good dataset. However,
this was not observed. Without having similar waveforms for EMG signals across trials, it
is unlikely that accurate insights into the underlying data structure can be obtained.

To check the quality of the data quantitatively, we carried out a simple ANOVA-based
test. EMG data were stored in the form of a time-series, with 90 timepoints. The data
for each of the trials were divided into 10 time bins, each with 9 timepoints. The values
within a bin were averaged for each of the trials. Thus, each of the 10 time bins contained
5 average values, each pertaining to a different trial. These 5 values were considered as
the ‘population’ for each bin, and a one-way ANOVA test was performed on the means
of these populations. The underlying logic was that a defined waveform across trials
would produce different mean values in the different time bins, which would show up as
significantly different in the ANOVA results.

ANOVA results indicating that the means from the different time bins had been drawn
from populations that were not significantly different would point to a lack of a defined
EMG waveform across trials. Plots of the data had already indicated that this was the
case, and the ANOVA results also confirmed this, by yielding high p-values ( > 0.5) for
many of the channels for the 8 different directional grasping movements. The insignificant
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Figure 4.1: Plots of the 9 arm channels from the first set of EMG data,for a particular
directional movement (corresponding to target block 7) with each of the trials being rep-
resented by a different colour. The y-axis of the subplots represents the amplitude of the
signal and the x-axis represents time (normalized)

p-value for a particular channel and a specific grasping movement, could point to either
of two cases:

• The data waveform does not show much repeatability across trials, indicating a pos-
sibly low signal-to-noise ratio.

• The muscle being recorded by that channel does not contribute to that particular
movement, and thus the channel is inactive during the task.

Since not all muscles participate in each of the different types of movements, some of the
p-values are expected to be non-significant. However, observing this in all channels or in
a large majority of them is indicative of the first case. Since this was what we obtained
from our ANOVA analysis, we decided to record new, better quality data for the synergy
analysis. The ANOVA test was conducted first on all the five trials and subsequently on
the three trials which had better repeatability across channels. Even upon choosing the
better trials (trials 1, 3 and 5), a large number of the p-values remained non-significant.
The results of the analysis for each of the channels are tabulated below (goals 1 - 8 refer
to the different directional movements):
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Figure 4.2: ANOVA Data for all 5 trials. Red indicates 0 < p < 0.5, blue indicates 0.5 < p
< 0.8 and black indicates p > 0.8

Our data did not strictly satisfy two of the assumptions of the ANOVA statistical test.
The first assumption was that of the independence of the different populations being com-
pared, which is not satisfied by time series data. The second assumption was the assump-
tion of normality of the samples in the populations. However, for our purpose, which was
to simply get a quantitative confirmation of the lack of a defined EMG waveform across
trials, the use of an ANOVA test was appropriate. The results were checked by closely
inspecting the data for the few channels that had produced significant p-values. The raw
data corresponding to such channels were in agreement with the ANOVA results, as the
trials showed greater similarity and a well defined EMG waveform. This validated the use
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Figure 4.3: ANOVA Data for 3 selected trials. Red indicates 0 < p < 0.5, blue indicates
0.5 < p < 0.8 and black indicates p > 0.8

of the ANOVA test as a means of analyzing the quality of the data.

4.2 EMG data (Pilot experiment 2)

The EMG data obtained were processed according to the protocol described in the Mate-
rials and Methods section. However, one modification was introduced in the segmentation
step - a time window of 0.2 s was added before the start and after the end of each of the
directional grasping movements, before segmenting them. This was done in order to cap-
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ture any activation of the muscles occurring in preparation for the actual movement, as
well as any residual muscular excitation after the task had been completed. The data from
the different trials were plotted for each of the channels. In this dataset, the trials showed
better repeatability of the EMG waveforms for most of the channels as compared to the
previous dataset. Some sample plots of the processed EMG data are shown below:

Figure 4.4: Plots of the 16 arm channels from the second set of EMG data, for a particular
directional movement (corresponding to target block 4), with each of the trials represented
by a different colour. The y-axis of the subplots represents the amplitude of the signal and
the x-axis represents time (normalized)

For the purpose of this project, data from the first grasp type (power grip of blocks with
the vertical setup and no supination) were used for the synergy analysis. One trial (trial
4) was excluded from the further analysis because the data from this trial did not match
the other trials (for most of the channels).
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4.3 Plots of explained variance (R2) vs number of syner-

gies

Figure 4.5: Number of synergies versus
R2 for arm channel synergies

Figure 4.6: Number of synergies versus
R2 for hand channel synergies

Figure 4.7: Number of synergies versus R2 for combined-channel synergies
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4.4 Synergies extracted from the 3 groups of data

Based on the above plots, 3 was chosen as the optimum number of synergies to be
extracted from the different groups for further analysis.

4.4.1 Arm muscle synergies

Figure 4.8: Arm muscle synergies

The muscles showing higher levels of activation in each of the arm synergies were:

• Synergy 1: Lateral deltoid
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• Synergy 2: Biceps brachii long head, Anterior deltoid, Lateral deltoid, Posterior del-
toid, Triceps brachii medial head, Upper trapezius

• Synergy 3: Biceps brachii long head, Latissimus dorsi, Anterior deltoid, lateral del-
toid, Triceps brachii medial head, Upper trapezius, Infraspinatus

4.4.2 Hand muscle synergies

Figure 4.9: Hand muscle synergies
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4.4.3 Synergies extracted from the combined arm and hand muscle
data

Figure 4.10: Combined-channel synergies
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4.5 Data reconstruction from muscle synergies

4.5.1 Reconstruction of arm muscle data from arm synergies

Figure 4.11: Channel-wise reconstruction of the data from all the 9 directional movements
(horizontally concatenated) using the three arm synergies. The actual data are repre-
sented in blue, and the reconstructions are in red. The y-axis of the subplots represents
the amplitude of the signals and the x-axis represents time (normalized)
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4.5.2 Reconstruction of hand muscle data from hand synergies

Figure 4.12: Channel-wise reconstruction of the data from all the 9 directional movements
(horizontally concatenated) using the three hand synergies. The actual data are repre-
sented in blue, and the reconstructions are in red. The y-axis of the subplots represents
the amplitude of the signals and the x-axis represents time (normalized)
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4.5.3 Reconstruction of data from combined-channel synergies

Figure 4.13: Channel-wise reconstruction of the data from all the 9 directional movements
(horizontally concatenated) corresponding to the arm channels using the three combined-
channel synergies. The actual data are represented in blue, and the reconstructions are
in red. The y-axis of the subplots represents the amplitude of the signals and the x-axis
represents time (normalized)
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Figure 4.14: Channel-wise reconstruction of the data from all the 9 directional move-
ments (horizontally concatenated) corresponding to the hand channels using the three
combined-channel synergies. The actual data are represented in blue, and the recon-
structions are in red. The y-axis of the subplots represents the amplitude of the signals
and the x-axis represents time (normalized)

The sets of 3 synergies could reconstruct the 9 directional movements quite well,
successfully demonstrating that our higher-dimensional EMG data could be reasonably
encoded in a lower dimensional space. The R2 values for all the data reconstructions
were > 0.8. The R2 values of the arm, hand, and combined-channel reconstructions were
0.88, 0.89 and 0.82 respectively.
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4.6 Synergy similarity analysis results

Figure 4.15: The synergy similar-
ity values of the arm synergies and
corresponding channels the combined-
channel synergies.

Figure 4.16: The synergy similarity val-
ues of the hand synergies and the cor-
responding channels of the combined-
channel synergies.

Using our synergy similarity analysis method, we found 1:1 mappings between the
synergies of the arm and hand with the corresponding channels of the combined-channel
synergies. A stronger similarity was observed between the synergies of the hand and
the corresponding channels in the combined-channel synergies than between the arm
synergies and their corresponding channels.

4.7 Reconstruction of combined channel data using 1

synergy at a time

The following results were obtained:

• Reconstruction from synergy 1: Only two arm muscles (anterior deltoid and in-
fraspinatus) had R2 values > 0.5

• Reconstruction from synergy 2: Only two arm muscles (adductor pollicis and the
surrogate hand muscle constituting channel 20) had R2 values > 0.5.
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• Reconstruction from synergy 3: No muscle satisfied the reconstruction threshold
when this synergy was used.



Chapter 5

Discussion

With the help of the two pilot experiments, we designed and optimized an experiment de-
sign for regular sEMG, HD-sEMG and motion capture data collection. Based on a review
of existing motor control papers, we have also developed a robust analysis pipeline for
EMG data processing and decomposition. The pilot data obtained, which includes HD-
EMG and motion capture data for specific directional grasping tasks with planar targets,
can be used to provide valuable insights into the detailed mapping between the EMG ac-
tivity of the arm muscles and the kinematics of the hand. This mapping, which is crucial for
the development of an external exoskeleton device for the hand, is currently being stud-
ied by other members of the lab using a synergistic approach as well as an unsupervised
Bayesian machine learning approach, based on Gaussian Processes. The unsupervised
machine learning approach, which has already yielded some promising results, involves
learning the generative model to facilitate the generation of hand kinematics from the
EMG data as well as the arm kinematics. A detailed discussion of these approaches is
outside the scope of this thesis.

Based on analysis of our pilot data, we have been able to successfully construct the
activation patterns of multiple hand and arm muscles from a combination of a few discrete
elements. These elements, which are the spatiotemporal synergies obtained by using the
FADA algorithm, contain information regarding the underlying spatiotemporal organisation
of the muscle activation patterns. The synergies were appropriately scaled and shifted
in time to reconstruct the data. They are the common components shared among the
different patterns of activation of the muscles, each one representative of a specific level
of activation and time-course of the group of muscles being studied.

The representation of data from a high-dimensional space, corresponding to the 9
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different directional grasping actions, in a low-dimensional space, using just 3 synergies,
is particularly interesting. Based on the plots of explained variance versus the number
of synergies, the point at which the elbow curves began to flatten was selected as the
optimum number of synergies to be extracted. For all the three cases, 3 was chosen
as the optimum number of synergies for extraction. However when only 1 synergy was
extracted from the arm channel data, the variance explained value for that synergy from
FADA was > 0.75. A close look at the structure of the arm synergies led to the observation
that one of the synergies showed significant activation for only one of the muscles (Lateral
deltoid muscle). This indicated that the arm muscle data for the 9 directional movements
may have been satisfactorily represented by even fewer synergies.

Since the sets of 3 synergies extracted from all the groups were successfully able to
explain a large fraction of the variance of the data (> 80 %), this indicates that the data lie
in a low-dimensional space, reducing the complexity of the control problem significantly.
Research from d’Avella et al., 2003 has shown that there exist similarities between syn-
ergies of significantly different behaviours (such as jumping and swimming), weakening
the hypothesis that the ability to represent such data in a low dimensional space arises
from constraints specific to the task being studied. Consider a reaching movement in a
particular direction, corresponding to one of the target blocks in our experimental setup,
for example. Due to the redundancy of the musculoskeletal system, various movements
may be used to perform the same task, and those movements may be generated by dif-
ferent combinations of muscles. Therefore, a single parameter describing the task could
be associated with high-dimensionality due to the potentially large number of muscle pat-
terns associated with it. According to motor control literature, low-dimensionality may be
a specific feature of a controller that makes use of a few discrete elements to carry out
various different tasks.

Our data are in agreement with the well established line of belief in motor control
theory that states that the control of a large number of degrees of freedom is simplified by
the CNS with the help of discrete muscle synergies. For our analysis, we obtained muscle
synergies from EMG data from the hand and wrist muscles alone, arm muscles alone as
well as from the combined data from both hand and wrist muscles. Since there was a
difference in the average amplitudes of the regular channels and those from the HD-EMG
arrays, with the hand channels displaying higher amplitudes on an average, this possibly
resulted in an lower contribution of the Adductor pollicis muscle to the synergies derived
from the hand muscles.
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Using the similarity metric described previously, we obtained the 1:1 mapping between
the synergies from the hand muscles and the corresponding channels of the combined-
channel synergies, as well as that between the synergies from the arm muscles and the
corresponding channels of the combined-channel synergies. The hand synergies and the
combined-channel synergies had higher similarity values. This was possibly due to the
fact that despite our spatial clustering of the correlated hand channels, the 12 surrogate
channels remained quite correlated, as was inevitable for strongly correlated data such
as ours. One possible modification for future analysis could be to reduce the number
of surrogate channels from the HD-EMG data or lower the weights of each of the 12
surrogate channels. In our analysis, we opted for the spatial clustering over k-means
because it seemed to offer a balance between the loss of information due to dimensional
reduction and the bias of the synergy decomposition process because of the correlation
of the channels. Based on our results, future analysis of the data can include a further
reduction of the number of channels by spatial clustering or by using the few clusters
identified by the k-means algorithm.

Our attempt to reconstruct the combined-channel data using only one of the three syn-
ergies at a time yielded poor results. This may have been because each of the synergies
had the ability to reconstruct some channels better than others, when combined along
with the other synergies using appropriate mixing weights. However, when the synergy
was used on its own, the weights optimization algorithm may have tried to optimize the
weights applied to the synergy with respect to all the channels being constructed. This
may have resulted in sub-optimal weights being selected, such that the synergy’s recon-
struction performance improved for channels it was not reconstructing well when used in
combination with other synergies, but not to the extent that the reconstruction threshold
was crossed. Similarly, the channels that it was reconstructing well in combination with
other synergies, may not have been reconstructed well enough to cross the reconstruction
threshold. Overall, due to the sub-optimal weights, the synergy’s true channel encoding
ability may have been lost. One possible modification of this analysis which could be tried
in the future is to zero out multiple groups of randomly clustered muscles in the synergy,
calculate the optimal weights (without the influence of the zeroed channels) and recon-
struct the data from the synergy, using these weights. The challenging step would be to
find out which groups of channels would need to be removed for the estimation of optimal
weights.

Other interesting questions can be investigated in the future, using our data. For ex-
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ample, the synergies from each of the six grasp paradigms can be extracted and quanti-
tatively compared, to check whether there is an underlying similarity in the representation
of fairly different grasp actions. Future work could also try to determine whether there are
muscles which have common characteristics or belong to a specific group, which are in-
volved in synergistic coordination during grasping, which would involve modification of the
existing synergy analysis pipeline. In addition to this, the tonic activation of the muscles in-
volved in the grasping task could be subtracted from the data and the phasic components
alone could be analyzed. In future experiments conducted on a larger scale, additional
factors like the addition of different weights to be carried by the subject while grasping
could be incorporated.
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