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Abstract

Due to the absence of conservation of energy in periodically driven systems with interactions they are
expected to heat up indefinitely. We have shown that this is not generally the case with the help of
three types of interactions in the kicked rotor model. We can achieve a transition between dynamical
localisation and delocalisation by varying some parameters in the system. These systems show similar
dynamics in momentum space on comparing it with impurity models in position space, this can be
explained via a map between coupled kicked rotors and impurity lattice model in momentum space.
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1 Introduction

Periodically driven systems are all around us and within us. For example, our ability to perceive sound
is due to a periodic perturbation of the sound wave, through which energy is transferred to our body and
activates a chain of processes which result is our ability to hear. Our body is a very big self-periodically
driven system, as the periodic contractions of our heart, controls our metabolism. Most of the classically
driven systems have an effect of heating, kinetic effects, but in the quantum regime, we observe non-
trivial effects which don’t have a classical counterpart [1].

Periodically driven systems are studied with the help of Floquet engineering [2], with the help of recent
theoretical and experimental efforts has lead to the observation of new quantum phases of matter. A few
examples are quantum wire made of cold atoms [3], superconductivity in cuprates [4], superfluidity [5]
and floquet insulators [6]. The periodically driven system which we are interested in is of a delta-kicked
quantum rotor, which is one of the well-known floquet systems in quantum chaos. The system is tunable
by a main free parameter known as the kick strength (K). For sufficiently large kick strengths this system
shows dynamical localisation in momentum space in the quantum regime but shows diffusive behaviour
in the corresponding counterpart in the classical regime. This behaviour makes it a very interesting
system to study as dynamical localisation arises due to the pure quantum nature of the system, might help
us understand the fundamentals of quantum mechanics itself. There are also other tunable parameters
in the system like effective planks constant of the system (h̄) and time period of kicking (T ). We can
obtain very interesting behaviour like quantum resonance and quantum anti-resonance in momentum
space with the help of these parameters.

In this work, we have carried out a study on the dynamics of kicked rotors in the presence of interaction
in configuration space, temporal space and momentum space separately. The main question we are
interested to answer is ”whether in the presence of interactions dynamical localisation is preserved or
lost to a thermal phase”. In general, due to the absence of energy conservation in the presence of
interactions, periodically driven systems are expected to heat up in time to a thermal state[7]. But this
is always not the case, for example in weakly driven many-body systems [8] and when the driving
frequency is very high the relaxation time scale is much larger than the driving time scale.

The motivation to this work is from the mapping introduced by Fishman et, al [9], which maps the dy-
namics of a time-dependent quantum kicked rotor to a time-independent 1d lattice model in momentum
space with quasi-random onsite potentials and short-ranged hopping terms, similar to an Anderson im-
purity model in 1d[9]. This mapping can be extended to kicked rotors with interactions in configuration
space[10], Temporal space[11] and momentum space[12]. This mapping gives us a rough idea on what
dynamics should be expected by comparing it with the existing impurity lattice models in position space
like the Anderson model, Aubry-Andre model, Lloyd model.

In this work, we have studied the dynamics coupled kicked rotors model by studying the floquet dy-
namics and also by analysing the spectral properties of the mapped lattice model in momentum space.
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We have observed the absence of thermalization even in the presence of interaction and there is also a
transition between energy saturation and unbound energy growth in all the three types of couplings.

The chapters of the thesis are organized as follows.

• In Chapter 1: A general introduction to classical and quantum chaos, along with Floquet formal-
ism and introduction to the Anderson impurity model is given.

• In Chapter 2: Dynamics of the kicked rotors model is explained in its classical and quantum
regime. The mapping of quantum kicked rotor to an Anderson type tight-binding model in 1d is
explained.

• In Chapter 3: The classical and quantum dynamics of two spatially coupled kicked rotors is dis-
cussed. The corresponding map to a two dimensional Anderson type tight-binding model is dis-
cussed along with the study of its spectral statistics.

• In Chapter 4: The classical and quantum dynamics of three spatially coupled kicked rotors is
discussed. The mapping to a three dimensional Anderson type tight-binding model is discussed
along with the study of spectral statistics in this model.

• In chapter 5: Quantum resonance in Quantum kicked rotor (primary resonance, secondary reso-
nance and anti-resonance) is discussed.

• In chapter 6: Quantum resonance in spatially coupled kicked rotors is studied.

• In chapter 7: Dynamics of Temporally coupled or Quasi-periodic kicked rotor is discussed, along
with mapping of the quasi-periodic kicked rotor with three incommensurate frequencies to a three-
dimensional impurity model is explained.

• In chapter 8: Kicked rotors coupled in momentum space is studied and its mapping to an interact-
ing Aubry-Andre type model is discussed.

• In the Conclusions, we summarize the results presented in the thesis and discuss possible direc-
tions which are left for future work.
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1.1 Classical Chaos

There are many systems in classical physics whose dynamics is called chaotic, for example, the double
pendulum [13], the Sinai’s billiard [14]. These systems are non-integrable systems and chaotic behaviour
arises due to the nonlinear form of interactions between more than two components of the system. These
chaotic systems are very sensitive to the initial conditions of evolution. In regular systems, smaller
uncertainties in the initial condition don’t really affect the final state of the systems, but in chaotic
systems, they get affected profoundly. In this sense, the evolution of a chaotic system is often considered
unpredictable, due to our inability to determine the initial state with infinite precision. This behaviour
can be seen with the help of classical billiards in figure 1.1 [15].

In classical chaotic systems, trajectories in phase space which are close to each other initially start to
diverge under time and the rate of divergence is determined by the parameters known as Lyapunov
exponent[16].

Let two trajectories in phase space with initial separation vector δX0 diverge at a rate given by

|δX(t)| ≈ eλ t |δX0| (1.1.1)

The rate of separation of trajectories can be different for different orientations of the initial separation
vector. Thus, there is a spectrum of Lyapunov exponents, equal in number to the dimensionality of the
phase space. The dynamics of the system is determined by Maximal Lyapunov exponent (MLE) which
is the largest one. If the MLE is positive then the dynamics is chaotic. If we consider an arbitrary initial
state separation vector and look at its components will typically contain some component in the direction
associated with the MLE, and because of the exponential growth rate, the effect of the other exponents
will be diminished at a long time.

(a) Rectangular Billiard(Regular Trajectory)

(b) Sinai Billiard(Chaotic Trajectory)

Figure 1.1: Trajectory of particles in billiards
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1.2 Quantum Chaos

Quantum chaos is the study of the dynamics of quantum systems whose classical counterparts are
chaotic. This name is misleading from distance, the paradox in this name is the source of interest it
has provoked. If we’re studying the long time behaviour of a classically chaotic system its small details
get amplified but this is completely different to what happens in the quantum regime. Quantum inter-
ference’s tend to, suppress classical chaos and this is what creates the paradox in the name itself. This
property of the system has made it a suitable example to examine the fundamentals of quantum me-
chanics. Because what quantum chaos means is directly related to the difference between classical and
quantum dynamics of a system. It’s in particular related to the question of how the classical dynamics
of a system emerge from the reality of quantum mechanics.

Figure 1.2: Dynamical localisation in kicked rotor
[17]

In the studies of the kicked rotor, it was discovered that the quantization of classically chaotic systems
can lead to the suppression of chaos. This is one of the most spectacular results in quantum chaos
research. The classical dynamics of the kicked rotor is described by the famous standard map, and it
has been known for some time that for sufficiently large kick strengths of the classical system show
diffusive behaviour. But for its quantum mechanical counterpart the diffusion is stopped after some time
by a process called dynamical localisation as shown in figure 1.2. Dynamical localisation of electrons
[18] and atoms[19] has also been experimentally realised.

The kicked rotor system belongs to floquet systems, Fishman et,al[9] found a relation between kicked
rotor systems and Anderson model, this mapping implies that dynamical localisation is a special case of
Anderson localisation.
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Time-periodic systems have discrete time-translation invariance and their dynamics are constrained by
conservation laws. The energy of time-dependent Hamiltonian systems are not conserved but the dynam-
ics of such systems are governed by the hermitian operator know as the floquet operator, its eigenvalues
the quasi-energies are conserved quantities [20].

1.3 Floquet Theory

For Hamiltonian’s periodic in time ,
H(t) = H0 +V (t) (1.3.1)

where V (t) is the time dependent potential with period T i,e.. V (t +T ) =V (t).

Using Floquet theory it is possible to describe the time evolution of quantum systems in terms of a
Floquet map that connects the state φ(t) at time t to the state φ(t+T ) at time t+T . The main advantage
for kicked rotor systems is that this floquet map can be constructed analytically, in most other cases it
has to be constructed numerically.

As Hamiltonian is periodic with time T, now we can use separation of variables to solve the correspond-
ing time-dependent Schrödinger equation.

ih̄
∂φ

∂ t
= H(t)φ (1.3.2)

Let discrete-time translation operator be AT .

[H,AT ] = 0 (1.3.3)

Now we can find solutions φn which are simultaneous eigenfunctions of Hamiltonian and Discrete-time
translation operator AT .

AT φn(x, t) = φn(x, t +T ) (1.3.4)

φn(x, t +T ) = βnφn(x, t) (1.3.5)

βn are pure phase factors for stationary solutions.

φn(x, t +T ) = e−iαnφn(x, t) (1.3.6)

φn(x, t) = e
−iωnt

h̄ χn(x, t) (1.3.7)
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where χn(x, t) = χn(x, t +T ) and ωn =
αnh̄
T , this is called floquet theorem, similar to Bloch’s theorem in

periodic lattices.

αn are called the floquet phases which are defined only up to integer multiples of 2π , therefore the
quasi-energies ωn are defined only up to integer multiples of 2π h̄

T .

The time evolution operator U(t) is defined as

φ(x, t) =U(t)φ(x,0) (1.3.8)

where φ(x, t) is a solution of the Schrodinger’s equation (1.3.2)

ih̄U̇ = HU (1.3.9)

U is unitary for hermitian Hamiltonian, it can be shown that as the Hamiltonian has discrete-time invari-
ance.

U(nT ) = [U(T )]n (1.3.10)

As U(T ) is unitary and it can be diagonalized with a unitary transformation, which yields the floquet
phases (αn) [1]

(UD)nn = e−ıαn (1.3.11)

These eigenphases of U turns out to be the floquet phases. So we just need to diagonalise the unitary
evolution operator to determine the dynamics of floquet systems.

1.4 Anderson Tight Binding Model

Anderson tight-binding model is a lattice model with nearest neighbour hopping and onsite potentials
randomly chosen from a uniform distribution. Here we review the properties Anderson impurity model
because the quantum kicked rotor model can be mapped to a tight-binding model in 1d with quasi-
random onsite impurities in momentum space (similar to Anderson model in position basis)[9] and this
mapping has been studied in detail.

Hamiltonian of the Anderson model in 1d is given by [21]:

H =
L

∑
n=0

wn|n〉〈n|+ t(|n〉〈n+1|+ |n+1〉〈n|) (1.4.1)

Where wn is the onsite potential which is randomly drawn from a distribution of [−W,W ], W is called
the disorder strength, t is the nearest neighbour hopping strength, in our calculation its taken to be 1 and
L is the size of the lattice in 1d. Similarly, 2d and 3d Anderson models can be constructed.

All the eigenstates in 1d Anderson model are localised for even very small values of disorder strength
(W ). Similarly, localisation is observed in 2d Anderson model but in two limits Weak localisation (for

6



small values of W ) and Strong localisation (for large values of W ). Something peculiar happens in case
of 3d lattice, there is a transition from delocalised states (Weak disorder strength) to localised states
(Large disorder strength) this is called as a Metal-Insulator transition.

0 200 400 600 800 1000
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0.000
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0.014

|
2 |

Disorder strength=1.0

(a) L=1000, W=1
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0.35

0.40

|
2 |

Disorder strength=10.0

(b) L=1000, W=10

Figure 1.3: Eigenstates in 1d Anderson Model

In the above figure 1.3 |ψ2(x)| is plotted for a randomly picked eigenstate ψ(x) in 1d Anderson model.
(a) Eigenstates are localised even for small value disorder strength (W = 1) and (b) Strongly Localised
for high disorder strength (W = 10).

1.5 Spectral Statistics

Its a study on the statistical quantities which can be obtained from the eigenvalues and eigenvectors of
the Hamiltonian of interest. These quantities give information about the general dynamics of the system
like whether it is localised or delocalised.

Inverse Participation Ratio

Inverse participation ratio is one of the quantities which can be computed when the eigenstates of the
system are known. Its basically the 2nd order moment of the distribution |ψ(x)|2, where ψ(x) is an
eigenstate of the system.

Inverse Participation Ratio (IPR) defined for each eigenstate is given by:

IPR = ∑
x
|ψ(x)|4 (1.5.1)

where ψ(x) is the eigenstate of the Hamiltonian in the position basis. Later in case of Kicked rotor, we
will be considering eigenstates in momentum basis, the same definition of IPR holds there as well.
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In these below calculations of the Anderson model, we will deal with Inverse IPR rather than IPR to
clearly show the scaling with systems linear size (L).

d-Dimensional Anderson model

If all the eigenstates are completely delocalised, then any eigenstate |ψ(x)|2 = 1
Ld for a system of linear

size (L).

The Inverse IPR for a particular eigenstate ψ(x) is given by:

1
∑x |ψ(x)|4

(1.5.2)

Instead of randomly picking up a eigenstate and calculating IPR we are going to average the Inverse IPR
over all the eigenstates to reduce the significance of any extreme cases.

For completely delocalised eigenstates, the Average of Inverse of IPR is given by:

1
Ld ∑

ψ

[
1

∑x |ψ(x)|4
] = Ld (1.5.3)

For perfectly localized states ψ(x) = δx,x0 , the Average Inverse IPR yields

1
Ld ∑

ψ

[
1

∑x |ψ(x)|4
] = 1 (1.5.4)

For a exponentially localized states ψ(x) = exp(−x
χ
) with localisation length χ , Average of Inverse IPR

behaves as
1

Ld ∑
ψ

[
1

∑x |ψ(x)|4
]≈ χ

d (1.5.5)
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1d Anderson model
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Figure 1.4: Average Inverse IPR vs System size (1d)

The above figure 1.4 shows how Average Inverse IPR depends on the system size, and we can conclude
that the eigenstates are localized as there is no scaling with system size seen. From equation (1.5.5) we
can say the localisation length ≈ 2 if the eigenstates are exponentially localised.

2d Anderson model
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(a) Weak localisation W = 3
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(b) Strong localisation W = 15

Figure 1.5: Average Inverse IPR vs System Size (2d)

In the above figure Average Inverse IPR is plotted versus systems size for a 2d Anderson model is weak
(a) and strong (b) disorder limits.

From the figure 1.5 (a) we can conclude that in weak localised limit of 2d Anderson model the dynamics
is diffusive ( Fit in the plot is a power-law fit with parameters α and β : Avg.Inverse.IPR =α Lβ ,scaling
parameter β ≈ 1.75). In case of strong localisation limit in 2d Anderson model from figure 1.5 (b),
Average Inverse IPR doesn’t scale with system size implying the localised nature of eigenstates.
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3d Anderson model
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Figure 1.6: Average Inverse IPR vs System Size (3d)

In the above figure 1.6 the Average Inverse IPR is plotted versus system linear size (L) for disorder
strengths W = 5 and W = 20. The average inverse IPR has a power law fit for the weak disorder case
(W = 5), Average Inverse IPR = α Lβ . We can see the scaling of average inverse IPR with system
size (L) goes as β ≈ 3 in the metallic regime (weak disorder W=5) and doesn’t show any scaling in the
insulator regime (Strong disorder W = 20). This is the metal-insulator transition in 3d Anderson model.

Average Level spacing ratio

The Average level spacing ratio is effective way to determine whether the dynamics is localised or
ergodic if all the eigenvalues of the system are known. The Average Level spacing ratio is defined as :

〈r〉= 1
Ld−2

Ld−2

∑
α=1

min{γα ,γα+1}
max{γα ,γα+1}

(1.5.6)

where, γα = ωα+1−ωα , ωα are the eigenvalues written in increasing order, L is the linear size of the
system and d is the dimension of the lattice.

The value of Average level spacing ratio (< r >) can be calculated with the help of probability distribu-
tion of level spacing ratios P(r)[22].

P(r) for Gaussian orthogonal ensemble (Ergodic system)

P(r) =C

(
r+ r2

)
(1+ r+ r2)5/2 (1.5.7)

and the average level spacing ratio calculated from this distribution is < r >≈ 0.530.
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P(r) for integrable system is given by :

P(r) =
1

(1+ r)2 (1.5.8)

and the average level spacing ratio calculated from this distribution is < r >≈ 0.386.

Average Level spacing ratios for Anderson impurity model
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Figure 1.7: Average Level spacing ratio vs Disorder strength (W)

In the above figure 1.7 average level spacing ratio is plotted vs disorder strength (W ) for 1d, 2d and 3d
Anderson models, the following results can be inferred from the plot :

In 1d Anderson model < r >≈ 0.386 for almost all values of disorder this, the corresponding level
spacing distribution will be Poisson. This explains the localised behaviour for all strengths of disorder
in 1d.

In 2d Anderson model for lower value of disorder strength the dynamics is weakly localised (< r >≈
0.44) and for higher value of W it attains strong localisation (< r >≈ 0.386) .

In 3d Anderson model, there is a metal to insulator transition around W = Wc ≈ 16 of the disorder
strength. The corresponding transition in terms of level spacing distribution is Wigner-Dyson to Poisson.
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2 Kicked Rotor Model

The kicked rotor is a very well studied model in classical and quantum chaos studies as the dynamics of
this system can be easily obtained even analytically in some cases. It’s a particle that is constrained to
move on a ring and besides, there is a delta-kicking introduced on the particle periodically.

The Hamiltonian of the system is:

H(t) =
L2

2I
+K cosθ ∑

n
δ (t−nT )

where L is the angular momentum, θ is the angular variable, I is the momenta of inertia, K is the kick
strength and T is the kicking period.

2.1 Classical kicked rotor

The kicked rotor belongs to the Hamiltonian systems. The equations of motion are obtained from the
canonical equations

θ̇ =
∂H
∂L

L̇ =−∂H
∂θ

(2.1.1)

θ̇ = L, L̇ = K sinθ ∑
n

δ (t−n) (2.1.2)

Here I and T have been normalized to one.

As L changes discontinuously, the equations of motion define a map for the dynamical variables θ , L.

This is chirikov’s map
θn+1 = θn +Ln+1 (2.1.3)

Ln+1 = Ln +K sinθn (2.1.4)

Using the chirikov’s map we have obtained the phase space in angular momentum (L) and angle variable
(θ ). We can also obtain the average energy of the classical kicked rotor <E(n)>= <L2(n)>

2 after n kicks.
The averaging is done over number of initial conditions.
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Classical phase space plots

(a) K=0 (b) K=0.9716

(c) K=1 (d) K=8

Figure 2.1: Phase space plots of kicked rotor.

In the above figure 2.1 the phase space of kicked rotor is plotted using the iteration map between L and
θ from equations (2.1.3) and (2.1.4) for varying kick strength (K).

For small values of K the classical dynamics of the rotor is regular, for most of the initial values of θ

and L. The motion in phase space proceeds on the so-called invariant tori, where L varies only a little,
while θ takes all values between 0 and 2π with about equal probability. On increasing kicking strength
(K) more and more tori breaks up, until above a critical value of K = Kc = 0.9716 .. the last invariant
torus will have been destroyed.

There are, however, still regular regions in the phase space. For K ≥ 5 finally, the major part of the phase
space has become chaotic.
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(a) K=1, Secondary Island (b) K=1, Tertiary Island

Figure 2.2: Islands in Kicked rotor

In the above figure 2.2 a secondary island (a) and a tertiary island (b) are shown from the phase space
of kicked rotor.

(a) K=1, Regular trajectory (b) K=1, Chaotic trajectory

Figure 2.3: Trajectories in Kicked rotor

For lower values of kicking (K =1) some parts of the KAM tori is destroyed but there are also some
regular regions. From the above figure 2.3 at K =1, (a) shows a regular trajectory and (b) is a chaotic
trajectory.
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Momentum distribution of classical kicked rotor
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Figure 2.4: Momentum distribution of classical kicked rotor

In figure 2.4 the distribution of classical momenta in different momentum values after 1000 kicks is
plotted for different values of kick strength along with a Gaussian fit, as the Gaussian distribution of
momentum is a indication of dynamics being diffusive in momentum space.

Gaussian distribution:

f (m) = Aexp

(
−(m−µ)2

2σ2

)

where m is the momentum space, µ is the centre of Gaussian distribution and σ is the standard deviation
of Gaussian distribution.

The momentum at a long time is bound by the regular structures of KAM tori for small values of kicking
(K ≤ 1). On increasing the kick strength (K) the spread in the classical momentum of the system
increases.

The central peak is present in the momentum distribution for kick strengths (1.5 ≤ K ≤ 5), due to the
presence of stable islands in the phase space. The central peak also disappears slowly and for K = 8 the
momentum distribution is almost a perfect Gaussian, a characteristic feature of chaotic diffusion.
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< L2 > vs time for classical kicked rotor
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(b) K=2
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(c) K=4
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Figure 2.5: < L2 > vs time for Classical kicked rotor.

In the above figure 2.5 the average of angular momentum square < L2 > is plotted versus time (no.of
kicks). Here average is done over 10 initial conditions.

For low values of kick strength, we observe classical trapping due to the presence of stable KAM tori.
On increasing the kick strength the KAM tori breaks leading to a diffusive behaviour of < L2 >.

Diffusion Constant for classical kicked rotor

The diffusion constant can be calculated as follows:

D =
1

2π

∫ 2π

0
(Ln+1−Ln)

2 dθn (2.1.5)

from equation (2.1.4)

D =
1

2π

∫ 2π

0
(K sinθn)

2 dθn =
K2

2
(2.1.6)
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In this calculation, we have assumed a uniform distribution for θ but this is not true, so there are also
higher-order terms in the diffusion constant expression.

D =
K2

2
[
1−2J2(K)+2J2(K)2] (2.1.7)

where J2 is the second order Bessel function of first kind.

For higher values of kicking (K = 8), the phase space is completely chaotic hence the approximation
used in the calculation of first-order diffusion constant in equation(2.1.6) holds good as the analytic data
fits the numerics well as seen from figure 2.5 (d). But for lower values of kicking (K = 4), the first-order
approximation doesn’t hold good due to the presence of some regular regions as seen from the figure 2.5
(c).

2.2 Quantum kicked rotor

We now study the quantum version of the same time-dependent system of periodically kicked rotors.
The general form of the Hamiltonian of a N kicked rotors with or without coupling is given by:

H = T0(
{

L̂i
}
)+V (

{
θ̂i
}
)

+∞

∑
n=−∞

δ (t−nT ) (2.2.1)

{
θ̂i
}
= (θ̂1, θ̂2, ...., θ̂N) and

{
L̂i
}
= (L̂1, L̂2, ...., L̂N) are the operators corresponding to angle and angular

momenta of the rotors.

L̂i ≡−ıh̄∂/∂θi, T0
({

L̂i
})

= ∑i L̂2
i /2Ii is the general form of the kinetic energy.

V (θi) is a periodic potential function, T is the kicking period.

In all our calculation we have taken T = 1 and I = 1. The Schrodinger equation of wave function in
angle representation is

ih̄
∂

∂ t
φ ({θi} , t) =

(
T0
({

L̂i
})

+V ({θi})
+∞

∑
n=−∞

δ (t−n)

)
φ ({θi} , t) (2.2.2)

Single Quantum kicked rotor

V ({θi}) =V (θ1), Unlike the classical case the quantum system needs two dimensionless parameters to
specify its motion. We take them to be

α :=
h̄T
I

β :=
K
h̄

(2.2.3)
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As mentioned above T = 1 and I = 1 so,

α := h̄ β :=
K
h̄

(2.2.4)

The time-dependent Schrodinger equation in these units will be

ı
∂

∂ t
φ(θ , t) =

(
−α

2
∂ 2

∂θ 2 +βV (θ)
+∞

∑
n=−∞

δ (t−n)

)
φ(θ , t) (2.2.5)

let the wave function in momentum basis be

φm := 〈m|φ〉

where |m〉= (
√

2π)−1eimθ , is eigenstate of angular momentum operator (L̂),

L̂|m〉= mh̄|m〉

The system is effectively a free rotor between kicks, and thus the time evolution of wave function in
momentum basis is trivial. We denote the wave function just before the tth kick as φ−(t) and just after
the tth kick as φ+(t). Between the kicks, the motion is free evolution with kinetic energy

φ
−
m (t +1) = e

−iT0(m)
h̄ φ

+
m (t) (2.2.6)

During the kick we consider strong kicks such that the kinetic energy is infinitesimal and can be ignored,
which leads to trivial evolution of wave function in position basis

φ
+(θ , t) = e

−iV (θ)
h̄ φ

−(θ , t) (2.2.7)

We can obtain wave function in momentum basis from wave function position basis or vice-versa
through Fourier transforms.

φm(t) =
1√
2π

∫ 2π

0
dθe−imθ

φ(θ , t) (2.2.8)

φ(θ , t) = ∑
m

eimθ
φm(t) (2.2.9)

Combing the above equations(2.2.6) and (2.2.7) gives us

φ
+
n (t +1) =

∞

∑
m=−∞

Jn−m exp
(
−ih̄m2/2

)
φ
+
m (t) (2.2.10)

where

Jn−m = (2π)−1
∫ 2π

0
dθe−i(m−n)θ e

−iV (θ)
h̄ (2.2.11)

So far in all the above steps we haven’t specified the functional form of V (θ). For a kicked rotor system
the potential of the form V (θ) = K cos(θ).

Jn−m(β ) = (2π)−1
∫ 2π

0
dθe−i(m−n)θ e−iβ cosθ (2.2.12)
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The above mentioned integral Jn−m(β ) in equation (2.2.12) can be related to the well known Bessel
function of the first kind (Jn−m(β )) .

Jn−m(β ) = (2π)−1
∫ 2π

0
dθe−i(m−n)θ e

−iK cosθ

h̄ = ın−mJn−m(β ) (2.2.13)

The floquet evolution operator from equation (2.2.10) is given by

Fmn = exp(−ıh̄m2/2)ın−mJn−m(β ) (2.2.14)

The evolution operator in equation (2.2.14) becomes effectively a banded matrix as the matrix element
Jn−m(β )→ 0 very rapidly as |m−n| becomes large.

Eigenvalues and eigenvectors of floquet operator

We use exact diagonalisation of the floquet evolution operator from equation (2.2.14) over one period.
The eigenstates and eigenvalues are obtained.
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Figure 2.6: Eigenvalues and eigenvectors of tight binding impurity model (1d)

In the above figure 2.6 (a) and (c) the absolute values of eigenvalues of floquet operator are plotted for a
given basis size, and in (b) and (d) a eigenvector of floquet operator is plotted in log scale.

As we see from the above plots the Eigenvectors ψ are exponentially localised. The floquet operator is
unitary, so the Eigenspectrum should lie on a unit circle (Absolute value of eigenvalues is one). But due
to truncation error, some of the eigenvalues lie inside the unit circle (Absolute value less than one). This
error increase in increasing K.

Dynamics of Quantum Kicked Rotor

We have used the split evolution technique to get the time evolved wave functions of Kicked rotor and
use exact diagonalisation to determine the spectral properties.

Split Evolution Technique

We have used first-order split evolution technique in our calculations, in which the operators in momen-
tum and position space are acted on the wavefunction in their respective basis. The steps are mentioned
below:

• Let’s start with an initial state wave function which is a Gaussian wavefunction in momentum
basis with a bandwidth W .

φm(t = 0) = Ae−
(m−m0)

2

2W (2.2.15)

where m0 is the center of the Gaussian and the W variance of the Gaussian, which is also called
the band width of the distribution and A is the normalisation constant.
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• We evolve this wave function using the Floquet operator defined for the Kicked rotor Hamiltonian:

F(t) = e
−iT0(L̂)

h̄ e
−iV (θ̂)

h̄ (2.2.16)

• The propagator is applied in two parts. First we start with wave function in the momentum space,

and apply the free particle propagator e
−ıT0(L̂)

h̄ to the wavefunction. This propagator is diagonal in
momentum basis, so its straight forward to perform evolution.

• Now we transform the wavefunction in momentum basis to angle basis using the Fast Fourier
Transform algorithm.

• Then the kick propagator e
−ıV(θ̂)

h̄ is applied . In angle basis this propagator is diagonal, making the
evolution trivial.

• Inverse Fast Fourier Transform (IFFT) is performed to transform the wavefunction back to mo-
mentum space. These above steps are repeated for every kick for t kicks.

• The wave function of the system after evolving for t kicks in momentum basis is φm(t) from φm(0).
The expectation value of angular momentum ,

< φm(t)|L̂2|φm(t)>≡< L2 > (2.2.17)

and the momentum density after t kicks is given by

|φm(t)2| (2.2.18)

Dynamical localisation in quantum kicked rotor
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(c) K=8, basis size = 2048, time = 1000
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Figure 2.7: Dynamics of Quantum kicked rotor

In the above figures 2.7 (a) and (c) < L2 > is plotted versus time and (b) and (d) the final momentum
density: |φm(t)2| is plotted in log scale versus momentum basis after t = 1000 kicks, for effective plank
constant of the system α = h̄ = 1. The exponential fit it the final momentum density plot is of the form:
aexp(−b|m|), m represents momentum space.

The < L2 > vs time plot shows localized behaviour for large time and the log(|φm(t)|2) vs momentum
basis plot also implies exponential localisation of evolved wavefunction in momentum space, this be-
haviour is called dynamical localisation. On increasing the kick strength the localisation length increases
in momentum space.
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2.3 Varying effective h̄ of the system
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(b) K=8, h̄=0.5, time = 1000
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(c) K=8, h̄=0.1, time= 1000
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Figure 2.8: Dynamics of QKR with smaller effective h̄

In the above figures 2.8 (a) and (c) < L2 > is plotted versus time for effective planks constant h̄ = 0.5
and h̄ = 0.1. The final momentum density after 1000 kicks is plotted in log scale (log |φ(t)|2) versus
momentum basis for h̄ = 0.5 in (b) and for h̄ = 0.1 in (d) respectively. The exponential fit it the final
momentum density plot is of the form: aexp(−b|m|) and Gaussian fit is of the form : eexp(−m2

2 f )

It’s seen the property of localisation is destroyed on decreasing h̄. One has to be careful here as to obtain
the above-shown dynamics the time taken (break time) should be increased and also momentum basis
size should be increased to avoid boundary effects.

The break time (τb) is defined as the approximate time we need to evolve the system to observe dynam-
ical localisation. Break time increases on decreasing the h̄ of the system.

τb ≈
K2

h̄2 (2.3.1)
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From the figures 2.8 (b) and (d), we can see that how the best fit for log(|φ 2(t)|) changes from exponen-
tial to Gaussian on decreasing the effective h̄ of the system. As h̄ tends to zero the quantum kicked rotor
shows classical behaviour.

2.4 Noise in kicking strength

Noise (ε) has been added on the kicking strength for every kick, such that for every kick the kicking
strength is drawn from uniformly distribution from [K− ε,K + ε].
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(c) K=8, noise=0.5
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Figure 2.9: Dynamics of QKR with noise in kicks.

In the above figure 2.9, the behaviour of < L2 > vs time and final momentum density after 1000 kicks
in log scale (log(|φ(t)|2)) is plotted for quantum kicked rotor with noise in kicking. To experimentally
realise dynamical localization in kicked rotor via cold atoms the noise in the kick strength during every
kick should be significantly low.
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On introducing the noise in kicking the dynamical localisation in momentum space is destroyed and the
dynamics become completely diffusive for sufficient noise in kicking.

2.5 Mapping kicked rotor to 1d tight binding impurity model

In this section, we explain the mapping between a kicked rotor and a 1d Anderson-type model [9]

Due to the presence of the discrete-time translation symmetry in the Hamiltonian, floquet theory implies
the existence of a conserved quantity called quasi-energy(ω). The quasi-energy states have the below
mentioned form

φω(θ , t) = e−ıωtuω(θ , t) (2.5.1)

where uω(θ , t +1) = uω(θ , t).

States with different quasi-energies are orthogonal. The unitary evolution operators, in this case, turn
out to be the floquet operators.

F = e−
ıV (θ)

h̄ e−
ıT (n)

h̄ (2.5.2)

Where T (n) is the kinetic energy operator and V (θ) is the potential energy operator of kicked rotor.

Time evolution using floquet operators is given by :

|φω(t +1)〉= F |φω(t)〉 (2.5.3)

Similarly, we define u±n as the angular momentum representation of the state just before and after a kick.

u±n =
1√
2π

∫ 2π

0
dθe−inθ u±(θ) (2.5.4)

Between the kicks, the evolution is simple

u−m = eıωe−ıT (n)u+m (2.5.5)

For determining the effect of the kick, it is better to return to the angle representation

u+(θ) = e−ıV (θ)u−(θ) (2.5.6)

Combining the above two equations (2.5.6) and (2.5.5), we get

u+m = eıω
∑
n

Jm−ne−ıh̄n2/2u+n (2.5.7)
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where Jm−n is the Bessel function of first kind.

we define the following quantities :

|u(θ)〉 :=
(∣∣u+(θ)〉+ ∣∣u−(θ)〉)/2 (2.5.8)

W :=− tan
(

V (θ)

2

)
(2.5.9)

Rewriting equation (2.5.6) in terms of u(θ)we get

u−(θ) = u(θ)(1− ıW (θ)) (2.5.10)

u+(θ) = u(θ)(1+ ıW (θ)) (2.5.11)

the Fourier Transform of the above equations:

u−m =
1√
2π

∫ 2π

0
dθe−imθ u(θ)(1− ıW (θ)) (2.5.12)

u+m =
1√
2π

∫ 2π

0
dθe−imθ u(θ)(1+ ıW (θ)) (2.5.13)

Where un is the nth Fourier component of u(θ), and Wn is the nth Fourier component of W (θ). For
simplicity, we use u to stand for u.

um− ı∑
r

Wrum+r = eıEm

(
um + ı∑

r
Wrum+r

)
(2.5.14)

here
Em := ω−T (m) (2.5.15)

Next we isolate the term r = 0 in each sum to one side, and rewrite the equation, we obtain

Tmum + ∑
r 6=0

Wrum+r = Eum (2.5.16)

This the tight-binding model obtained in the momentum space it has a structure similar to the Anderson
impurity model. The onsite potential (Tm) is quasi-random and the hopping strength (Wr) is short-ranged
[9].

In the above equation (2.5.16)

E :=−W0 (2.5.17)
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Tm := ı
1− eı(ω−m2/2)

1+ eı(ω−m2/2
= tan

(
Em

2

)
(2.5.18)

Similarity between QKR and Tight binding model

Kicked rotor Tight binding model(Anderson)
T (m) : kinetic energy

tan([ω−T (m)]/2) Tm : On-site potential
V (θ) : potential

− 1√
2π

∫ 2π

0 dθe−irθ tan[V (θ)/2] Wr : Hopping potential
Angular momentum (m) Lattice sites (r)

From Feynman -Hellman theorem we find that

dE/dω = ∑

〈
sec2 Em

〉
2

≥ 0 (2.5.19)

The above equation implies E is monotonic function of ω . The characteristic of Eigenspectrum and
wave function is same in both the pictures.

Average IPR

For a single eigenstate φα , the IPR is defined as

IPRα = ∑
m
|< m|φα >4 | (2.5.20)

where |m > is the momentum basis state.

The average IPR over the eigenstates in the truncated Hilbert space of d dimension with linear size L.

< IPR >=
∑α IPRα

Ld (2.5.21)
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Figure 2.10: Average IPR vs system size (1d)

In the above figure 2.10 the average IPR of the eigenstates is plotted versus linear system size (L) for
various values of kick strength (K) in the mapped 1d tight binding lattice (2.5.16) .

Its clearly seen that the Average IPR doesn’t scale with the basis size for any value of kicking strength
implying the the localised nature of eigenstates.

Average Level spacing ratio

To check the properties of system like integrability and ergodicity, Average level spacing ratio is a good
measure, its defined as:

〈r〉= 1
Ld−2

Ld−2

∑
α=1

min{γα ,γα+1}
max{γα ,γα+1}

(2.5.22)

where, γα = ωα+1−ωα , ωα are the eigenvalues, L is the linear system size and d is the dimension of
the lattice.

The level spacing distribution can be found with the help of average level spacing ratios < r > [22]:

if < r > = 0.386 then the level spacing distribution is Poisson and the system is integrable

if < r > = 0.530 the level spacing distribution is Wigner Dyson and the system is ergodic.
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Figure 2.11: Average Level spacing ratio vs K (1d)

In the above figure, 2.11 the average level spacing ratio is plotted versus the kick strength (K).

The Average level spacing ratio lies near 0.386 implying the level spacing distribution follows a Poisson
distribution, a signature of dynamical localisation in the system.
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3 Two spatially Coupled kicked rotors

In this chapter, we are going to study the dynamics of Two kicked rotors which are coupled spatially
with a nonlinear coupling of the form cos(θ1 +θ2) with a coupling strength. We are going to investigate
how this interaction in kicks can modify the properties of the kicked rotor discussed in the previous
chapter.

Hamiltonian of coupled kicked rotor

H =
L2

1
2
+

L2
2

2
+[K1 cos(θ1)+K2 cos(θ2)+ J cos(θ1 +θ2)]

+∞

∑
n=−∞

δ (t−n) (3.0.1)

K1, K2 are the strengths of kicking and J is the coupling strength.

3.1 Two spatially coupled classical kicked rotor

Equations of motion are obtained from canonical equations of motion are:

θ̇i =
∂H
∂Li

L̇i =−
∂H
∂θi

(3.1.1)

where i=1,2.

L(1)
n+1 = L(1)

n +K1 sinθ
(1)
n + J sin

(
θ
(1)
n +θ

(2)
n

)
(3.1.2)

L(2)
n+1 = L(2)

n +K2 sinθ
(2)
n + J sin

(
θ
(1)
n +θ

(2)
n

)
(3.1.3)

θ
(1)
n+1 = θ

(1)
n +L(1)

n+1 (3.1.4)

θ
(2)
n+1 = θ

(2)
n +L(2)

n+1 (3.1.5)
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Diffusion constant for classical coupled kicked rotor

We have obtained a first-order approximation to the classical diffusion constant similar to the kicked
rotor by assuming a uniform probability distribution for the angle, and integrating over this distribution.

D(1) =
1

4π2

∫ 2π

0

(
L(1)

n+1−L(1)
n

)2
dθ

(1)
n dθ

(2)
n (3.1.6)

D(1) =
1

4π2

∫ 2π

0
dθ

(1)
n dθ

(2)
n

[
K1 sinθ

(1)
n + J1 sin(θ (1)

n +θ
(2)
n )
]2

(3.1.7)

D(1) =
K2

1
2

+
J2

2
(3.1.8)

Similarly

D(2) =
K2

2
2

+
J2

2
(3.1.9)

Average energy along two different directions is given by:

< E1 >=
< L2

1 >

2
= D(1)t (3.1.10)

< E2 >=
< L2

2 >

2
= D(2)t (3.1.11)

Plots of Two classical coupled kicked rotor
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Figure 3.1: < L2 > vs time for classical coupled kicked rotor
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From the above figure 3.1 <L2 > vs time plots, shows that for large values of kick strengths the dynamics
is diffusive

Analytically calculated diffusion constant fits quite well with the slope of < L2 > vs time for large values
of kick strength (K1,K2 >> 1) as the first-order approximation used to calculate the diffusion constant
is valid only when the phase space is the completely chaotic.

3.2 Two spatially coupled quantum kicked rotor

The quantum operators corresponding to L1 and L2 are L̂1 =−ı∂/∂θ1 and L̂2 =−ı∂/∂θ2 respectively.
Like the one-dimensional case studied in the previous chapter, we have the Floquet-operator .

F̂ = e
−ı ˆV(θ1 ,θ2)

h̄ e−
ıT(L̂1,L̂2)

h̄ (3.2.1)

We construct dimensionless parameters α and β , they are defined as follows:

α1,2 :=
h̄T
I1,2

β1,2 =
K1,2

h̄
,β3 =

J
h̄

are dimensionless kicking and coupling strengths.

In all our calculation T = I = 1
α1,2 = h̄

β1,2 =
K1,2

h̄
,β3 =

J
h̄

We use a split operator technique to perform time evolution. The split operators act on an initial wave-
function, and the evolved wavefunction is used to compute < L2 > and momentum density(|φm(t)|2)

Here m = (m1,m2) represents the momentum basis states.
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Dynamics of two coupled quantum kicked rotors
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Figure 3.2: Dynamics of two spatially coupled quantum kicked rotor

In the above figure 3.2 < L2 > vs time in one direction and the final momentum density after time
evolution of 5000 kicks in a log scale (|φ(t)2|) are plotted for a two spatially coupled quantum kicked
rotor system. The exponential fit of the final momentum density plot is of the form: aexp(−b|m|) and
Gaussian fit is of the form : eexp(−m2

2 f )

We observe that on increasing the coupling strength the break-time increases to observe dynamical
localisation. The density profile in a log scale plot has an exponential fit but on increasing the coupling
strength the best fit becomes a Gaussian. The high coupling strength limit of two coupled quantum
kicked rotor has some similarity with the weak localisation limit in 2d Anderson model.
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3.3 Mapping Two Coupled Kicked rotor to 2d tight binding impurity
model

Due to the presence of discrete-time invariance in the Hamiltonian, using Floquet Bloch theorem the
eigenstates will be the form.

ψω = e−ıωtuω (θ1,θ2, t) (3.3.1)

Here T
(
L̂1, L̂2

)
= 1

2 L̂2
1 +

1
2 L̂2

2 are the kinetic energy terms in the Hamiltonian. V̂ (θ1,θ2) denotes the
potential energy terms.

The eigenvectors are given by
um := 〈m1m2|u〉

(m)≡ (m1,m2) is a two dimensional basis vector.

um =
∫ 2π

0

dθ1dθ2

2π
e−ı(m1θ1+m2θ2)u(θ1,θ2) (3.3.2)

Here |u(θ1,θ2)〉= (|u+〉+ |u−〉)/2

Following the same arguments as in the 1d case, we arrive at the tight-binding model on the two-
dimensional Anderson lattice

Tmum + ∑
r6=0

Wrum+r = Eum (3.3.3)

Onsite potential is given by
Tm := tan([ω−T (m)]/2) (3.3.4)

Kinetic energy

T (m) :=
1
2
(
α1m2

1 +α2m2
2
)

(3.3.5)

W (θ1,θ2) = tan [V (θ1,θ2)/2] (3.3.6)

Hopping term in momentum space

Wr =
∫ 2π

0

dθ1dθ2

2π
e−ı(r1θ1+r2θ2)W (θ1,θ2) (3.3.7)

E :=−W0 (3.3.8)
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Figure 3.3: Modulus of hopping in tight binding impurity model (2d)

In the above figure3.3 Hopping term |Wm0| of 2d mapped tight-binding lattice is plotted with lattice
distance in momentum space. From this above plot, we can conclude that the hopping in 2d mapped
lattice is short-ranged, justifying the name tight binding to the lattice.

Average IPR of mapped 2d tight-binding lattice
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Figure 3.4: Average IPR vs system size (2d)

The average IPR is averaged IPR over all the eigenstates. The average IPR is plotted with linear size of
the system for the mapped 2d lattice Hamiltonian from equation (3.3.3) for varying coupling strength
(J) and for fixed kick strengths K1 = K2 = 1 in figure 3.4 .

The average IPR → 0 slowly for high values of coupling (J ≥ 4) as the system size is increased, this
might be signature of weak localisation in coupled kicked rotor similar to 2d Anderson model. But
for lower values of coupling strengths (J ≤ 1), the average IPR seems to be constant with system size
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implying the localised nature of eigenstates.

Average Level spacing ratio of mapped 2d lattice Hamiltonian
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Figure 3.5: Average Level spacing ratio vs J (2d)

In the above figure 3.5 the average level spacing ratio is plotted versus the coupling strength (J).

The average level spacing ratio is the level spacing ratio average overall eigenvalues of the system.
From the figure 3.5 in which average level spacing ratio vs coupling strength (J) is plotted, it’s seen
that that for small coupling strengths the dynamics is localised (< r >≈ 0.386) implying the presence of
dynamical localisation. But for high values of coupling strength (J ≥ 4) the average level spacing ratio
is < r >≈ 0.41 this deviation might be the signature of weak localisation.
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4 Three spatially coupled kicked rotor

In this chapter, we are going to study the dynamics of Three kicked rotors which are coupled spatially
with a nonlinear nearest neighbour coupling of the form cos(θi +θ j) with a coupling strength. We are
going to investigate how this interaction in kicks can modify the properties compared to that of the
kicked rotor and two coupled kicked rotors discussed in the previous chapters.

Hamiltonian of the system is

H =
1
2

L2
1 +

1
2

L2
2 +

1
2

L2
3 +[

3

∑
i=1

Ki cosθi + J ∑
i6= j

cos(θi +θ j)]
+∞

∑
n=−∞

δ (t−n) (4.0.1)

Where K1,K2,K3 are the kicking strengths and J is the coupling strength between the rotors.

4.1 Three Classical coupled Kicked rotor

Equations of motion are obtained from canonical equations

θ̇i =
∂H
∂Li

L̇i =−
∂H
∂θi

(4.1.1)

where i=1,2,3

L(1)
n+1 = L(1)

n +K1 sinθ
(1)
n + J[sin

(
θ
(1)
n +θ

(2)
n

)
+ sin

(
θ
(1)
n +θ

(3)
n

)]
(4.1.2)

L(2)
n+1 = L(2)

n +K2 sinθ
(2)
n + J[sin

(
θ
(2)
n +θ

(1)
n

)
+ sin

(
θ
(2)
n +θ

(3)
n

)]
(4.1.3)

L(3)
n+1 = L(3)

n +K3 sinθ
(3)
n + J[sin

(
θ
(3)
n +θ

(1)
n

)
+ sin

(
θ
(3)
n +θ

(2)
n

)]
(4.1.4)

θ
(1)
n+1 = θ

(1)
n +L(1)

n+1 (4.1.5)

θ
(2)
n+1 = θ

(2)
n +L(2)

n+1 (4.1.6)

θ
(3)
n+1 = θ

(3)
n +L(3)

n+1 (4.1.7)
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Diffusion constant for three spatially coupled kicked rotors

D(1) =
K2

1
2

+ J2 (4.1.8)

D(2) =
K2

2
2

+ J2 (4.1.9)

D(3) =
K2

3
2

+ J2 (4.1.10)

Average energy along three different directions is given by:

< E1 >=
< L2

1 >

2
= D(1)t (4.1.11)

< E2 >=
< L2

2 >

2
= D(2)t (4.1.12)

< E3 >=
< L2

3 >

2
= D(3)t (4.1.13)

Plots of three classical coupled KR
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Figure 4.1: < L2 > vs time for three classical spatially coupled kicked rotor

In the above figure 4.1 < L2 > is plotted versus time for small(a) and large(b) values of kick strength
along with an analytically calculated fit from equation (4.1.11).

This first-order approximation of diffusion constant is a good approximation with the numerically calcu-
lated values of < L2 > in the plots with large kick strengths (b). But in the case of small kick strengths,
the analytic fit is not good, this implies the presence of regular regions in classical phase space and this
regime first-order approximation to calculate diffusion constants doesn’t hold good.
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4.2 Three Coupled Quantum Kicked rotors

The quantum operators corresponding to L1, L2 and L3 are L̂1 = −ı∂/∂θ1 , L̂2 = −ı∂/∂θ2 and L̂3 =
−ı∂/∂θ3 respectively. Like the one-dimensional case studied in the previous chapter, we have a Floquet-
operator of similar form.

F̂ = e
−ı ˆV(θ1 ,θ2 ,θ3)

h̄ e−
ıT(L̂1 ,L̂2 ,L̂3)

h̄ (4.2.1)

We construct dimensionless parameters of the system similar to the one constructed in the previous
chapter.

α1,2,3 :=
h̄T

I1,2,3

β1,2,3 =
K1,2,3

h̄
,β4 =

J
h̄

are dimensionless kicking and coupling strengths .

In all our calculation T = I = 1 so,
α1,2,3 = h̄

β1,2,3 =
K1,2,3

h̄
,β4 =

J
h̄

We use a split operator technique to perform time evolution. Using this technique we evolve the initial
wavefunction, and the evolved wavefunction is used to determine < L2 > along any direction and final
momentum density |φm(t)|2.

Here m = (m1,m2,m3) is the representation of momentum basis states.

Dynamics of three coupled quantum kicked rotors
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Figure 4.2: Dynamics of three spatially coupled kicked rotors

In the above figure 4.2 < L2 > vs time along one direction is plotted in (a),(c),(e) and final momentum
density |φm(t)|2 after 5000 kicks (b),(d),(f) is plotted in log scale for three spatially coupled kicked
rotors.

For small values of kick strength, the dynamics is localised in momentum space but on increasing the
kick strength the localisation in destroyed. To make sure the saturation in energy is only due to quantum
effects not due to boundary effects we need to evolve the wavefunction for a long time and take a larger
momentum basis to capture the full dynamics. For large values of kick strength (J ≥ 4) the dynamics is
quasi-diffusive (< L2 >≈ tβ ) where 0≤ β ≤ 1 .

This implies that there is a transition from dynamical localised to dynamical delocalized phase on in-
creasing the coupling strength of the kicked rotor.
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4.3 Mapping Three Coupled Kicked rotor to 3d tight binding
impurity model

Using similar arguments as used for Two coupled kicked rotor its straight forward to map Three coupled
kicked rotor model to a 3d tight biding model.

Tmum + ∑
r6=0

Wrum+r = Eum (4.3.1)

Here, (m)≡ (m1,m2,m3) is the representation of momentum basis states.

The onsite potential has the form
Tm := tan([ω−Em]/2) (4.3.2)

where
Em :=

1
2
(
α1m2

1 +α2m2
2 +α3m2

3
)

(4.3.3)

The hopping matrix elements in momentum space is given by:

Wr =
∫ 2π

0

dθ1dθ2dθ3

2π
e−ı(r1θ1+r2θ2+r3θ3)W (θ1,θ2,θ3) (4.3.4)

W (θ1,θ2,θ3) = tan [V (θ1,θ2,θ3)/2] (4.3.5)

E :=−W0 (4.3.6)
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Figure 4.3: Modulus of hopping tight binding impurity model (3d)

The modulus of hopping Wm is plotted as a function of |m| in figure 4.3. It shows that hopping is short
ranged.
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Average IPR for 3d mapped tight-binding lattice
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Figure 4.4: Average IPR vs system size (3d)

The average IPR is the IPR averaged over the eigenstates of Hamiltonian from equation (4.3.1). In the
above figure 4.4 the average IPR is plotted versus linear size of the 3d tight binding model obtained.

From the figure 4.4 for lower values coupling strength (J) average IPR is almost a constant, as J is
increased around J = 4 the average IPR exhibits a smooth scaling with the linear size of the system
(L) and also average IPR → 0 as size of the system is increased. This is signature of delocalisation
in the system. There is not a clear distinction in average IPR to show a transition from localisation to
delocalisation due to the limitation of linear size (L).
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Figure 4.5: Average Level spacing ratio vs J (3d)
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In the above figure 4.5 the variation of average IPR with coupling strength (J) is shown.

On increasing the coupling strength (J) there is a clear transition in average level spacing ratio from
< r >≈ 0.386 (localised dynamics) to < r >≈ 0.529(diffusive dynamics) and this transition happens
around 2≤ J ≤ 4 .

Average level spacing ratio of quantum kicked rotors
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Figure 4.6: Average level spacing ratio vs J (1d,2d and 3d)

In the above figure 4.6 the average level spacing ratio versus coupling strength is plotted for the tight-
binding lattice models in 1d,2d and 3d obtained from quantum kicked rotors with and without coupling.
In the case of the tight-binding lattice (1d) obtained from single quantum kicked rotor without coupling,
we have taken J = K. The abbreviations used in the figure 4.6 is as follows

QKR: Quantum kicked rotor without any coupling, 2CQKR: Two spatially coupled quantum kicked
rotors and 3CQKR: Three spatially coupled quantum kicked rotors.

There is clear transition in the average level spacing ratio from < r >≈ 0.386 to < r >≈ 0.530 on
increasing the coupling strength (J) only in the case of 3d tight-binding model, this dynamics is similar to
the Anderson impurity model as there is a metal-insulator transition observed on increasing the disorder
strength (W ) in the case of 3d, not in 1d and 2d lattice. The main distinction in the transition in our
tight-binding model is it’s from insulator(dynamical localisation) to metal (dynamical delocalisation) on
increasing the coupling strength rather than metal-insulator in the Anderson model.
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5 Quantum Resonance

In this chapter different types of quantum resonance in the kicked rotor is explained.

H(t) =
L2

2
+K cosθ ∑

n
δ (t−n)

Solving the Schrodinger equation with the above-kicked rotor Hamiltonian, a relation between the wave
function after one kick (φ̄(θ)) and the initial wavefunction (φ(θ)) can be obtained and given below in
equations (5.0.1) and (5.0.2).

φ̄(θ) = exp(−iK̃ cosθ)
∞

∑
n=−∞

An exp
(
−i

h̄n2

2
+ inθ

)
(5.0.1)

where K̃ = K
h̄

An =
1

2π

∫ 2π

0
φ(θ)e−inθ dθ (5.0.2)

The wavefunction in equation (5.0.1) is invariant under the substitution h̄ = h̄+ 4mπ , m is an integer.
Therefore it’s sufficient to consider the values of h̄ on the interval (0,4π).

The relation between Fourier components separated by one kick is given by

Ān =
∞

∑
m=−∞

FnmAm (5.0.3)

The Floquet matrix elements is given by

Fnm = (−i)n−m exp
(
−i

h̄
2

m2
)

Jn−m(K̃) (5.0.4)

where, Jn−m(K̃) is a First order Bessel function.

5.1 Primary Resonance (h̄ = 4πm)

The wave function after one kick from equation (5.0.1) is of the from

φ̄(θ) = exp(−iK̃ cosθ)φ(θ) (5.1.1)
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Energy of the kicked rotor can be calculated by:

E(t) =− h̄2

2

∫ 2π

0
φ
∗(θ , t)

∂ 2

∂θ 2 φ(θ , t) (5.1.2)

Long time average of energy goes as

E(t) = K2t2/4 (5.1.3)
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Figure 5.1: Primary quantum resonance

In the above figure 5.1 < L2 > is plotted versus time and the final momentum density in log scale
(log(φ 2

m(t))) after 5000 kicks in case primary resonance is shown. In the figures 5.1 (a) and (c) , we can
see that the energy goes as t2 at long times with the hep of a power law fit(< L2 >≈ αtβ ), and figures
(b) and (d) the log(φ 2

m(t)) has a Super Gaussian fit implying the diffusive dynamics of the system.

Super Gaussian in momentum space:

f (m) = Aexp

−((m−mo)
2

2σ2

)P


where P = 4,6,8,.. m0 is the center of super Gaussian, σ is the standard deviation and P is the degree of
the super Gaussian. This captures the diffusive dynamics in momentum space of kicked rotor.
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5.2 Secondary resonances (h̄ = 4π
p
q )

where p, q are non zero integers and they are not equal.

The wave function after one kick φ̄(θ) is

φ̄(θ) = exp(−iK̃ cosθ) ·F(θ) (5.2.1)

where

F(θ) =
∞

∑
n=−∞

An exp
(
−i

2π p
q

n2 + inθ

)
(5.2.2)

An =
1

2π

∫ 2π

0
φ(θ)e−inθ dθ (5.2.3)

In general the wave function evolution can be done by a scattering matrix S [23]

φ̄

(
θ +

2πm
q

)
=

q−1

∑
n=0

Smnφ

(
θ +

2πn
q

)
(5.2.4)

At large time energy goes as

E(t) = ηt2 +at +b+E(0) (5.2.5)

Therefore the quasi-energy spectrum in resonance is continuous, besides the continuous component, the
spectrum may have discrete levels [23]. (if h̄ = 4π

p
q it has no more than q-1 discrete levels)

K� q

η ∼
(

K
q

)2q

(5.2.6)

K� q

η ≈ K2

ξ q
(5.2.7)

where ξ is a constant independent of K and q.
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Figure 5.2: Secondary quantum resonance

In the above figure 5.2 the behaviour of < L2 > and log(|φ(t)|2) are shown for h̄ commensurate with π

(h̄ = 1
17 π), K

q = 1
68 in (a) and (b), K

q = 1.4
68 in (c) and (d), K

q = 2
68 in (e) and (f) is plotted.

From the above plots it is clearly seen that the coefficient (η) of t2 in long time average energy equation
(5.2.5) follows the dependence explained in equation (5.2.6) [ η ∼ (K

q )
2q].
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5.3 Anti-resonance (h̄ = 2π)

From equation (5.0.1) the Wave function after one kick is given by:

φ̄(θ) = exp(−iK cosθ)φ(θ +π) (5.3.1)

The quasi-energy spectrum has only two discrete levels.

The eigenfunctions are

Φε1(θ) = g±(θ)(1± exp(−iK cos(θ))) (5.3.2)

Φε2(θ) = g±(θ)(1∓ exp(−iK cos(θ))) (5.3.3)

where g±(θ +π) =±g±(θ)

Every level is infinitely degenerate and Φε1 and Φε2 for a complete set.
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Figure 5.3: Anti-resonance

In the figure 5.3 < L2 > is plotted versus time for K = 6 and h̄ = 2π . The dynamics are localised when
h̄ = 4mπ +2π , where m is any positive integer. The spectrum has only two discrete levels. Its seen that
system returns to the initial state after alternate kicks.
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6 Quantum resonances in spatially coupled
kicked rotors

In this chapter quantum resonance in spatially coupled kicked rotors is studied and its distinction from
quantum resonance in kicked rotor is shown.

6.1 Quantum resonance in Two spatially coupled kicked rotors

H =
L2

1
2
+

L2
2

2
+[K1 cos(θ1)+K2 cos(θ2)+ J cos(θ1 +θ2)]

∞

∑
n=−∞

δ (t−n) (6.1.1)

Let the initial wavefunction be φ(θ1,θ2) , we evolve it with the floquet operator and φ̄ (θ1,θ2) be the
wavefunction after one kick.

φ̄ (θ1,θ2) =exp(−iK̃1 cosθ1− iK̃2 cosθ2− iJ̃1 cos(θ1 +θ2))
∞

∑
n1,n2=−∞

An1,n2 exp
(
− ih̄

2
(
n2

1 +n2
2
)
+(n1θ1 +n2θ2)

)
(6.1.2)

where ˜K1,2 = K1,2/h̄ , J̃ = J/h̄

An1,n2 =

(
1

2π

)2 ∫ 2π

0

∫ 2π

0
φ(θ1,θ2)e−i(n1θ1+n2θ2)dθ1dθ2 (6.1.3)

An1,n2 is the Fourier component of wavefunction φ(θ1,θ2), In our numerical calculation we have taken
the range of momentum in two directions (n1,n2) same. This is reason why we observe primary quantum
resonance for h̄ = 2π rather than anti-resonance observed in normal quantum kicked rotor.
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Figure 6.1: Quantum resonance in two spatially coupled kicked rotors

In the above figure 6.1 < L2 > is plotted versus time along one direction (a) for h̄ = 2π ,(b) for h̄ = π .
The power law fit in figure 6.1 (a) and (b) :< L2 >≈ αtβ

Quantum resonance is observed for both (a) h̄ = 2π and (b) h̄ = π . But when h̄ = π quantum resonance
is observed with a flip in energy at each kick (c) this behaviour can be attributed to the interplay between
the periodic terms with two different periods in the kicking potential, this behaviour is also observed at
values h̄ = π + 4mπ , where m is any positive integer. This behaviour is not seen when h̄ = 2π as both
the periodic functions in kicking potential is periodic with 2π .

Energy of the kicked rotor along a direction i (i = 1,2) can be calculated by:

Ei(t) =−
h̄2

2

∫ 2π

0
φ
∗(θ1,θ2, t)

∂ 2

∂θ 2
i

φ(θ1,θ2, t)dθ1dθ2 (6.1.4)

Long time average of energy numerically calculated goes as for h̄ = 2π and h̄ = π :

Ei(t)≈Cit2.5 (6.1.5)

where Ci is a constant determined by the kicking and coupling strengths of the system. The dependence
of Ci on K and J is not very clear as the integral in equation (6.1.4) is not trivial.
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6.2 Quantum resonance in Three spatially coupled kicked rotors

H =
L2

1
2
+

L2
2

2
+

L2
3

2
+[K1 cos(θ1)+K2 cos(θ2)+K3 cos(θ3)+J[cos(θ1+θ2)+cos(θ2+θ3)+cos(θ1+θ3))]

∞

∑
n=−∞

δ (t−n)

(6.2.1)

Let the initial wavefunction be φ(θ1,θ2,θ3) , we evolve it with the floquet operator. φ̄ (θ1,θ2,θ3) be the
wavefunction after one kick.

φ̄(θ1,θ2,θ3)= exp(−iK̃1 cosθ1−iK̃2 cosθ2−iK̃3 cosθ3−iJ̃1[cos(θ1+θ2)+cos(θ2+θ3)+cos(θ1+θ3)]
∞

∑
n1,n2,n3=−∞

An1,n2,n3 exp
(
− ih̄

2
(
n2

1 +n2
2 +n2

3
)
+(n1θ1 +n2θ2 +n3θ3)

)

where K̃1 =
K1
h̄ , K̃2 =

K2
h̄ , K̃3 =

K3
h̄ , J̃ = J

h̄

An1,n2,n3 =

(
1

2π

)3 ∫ 2π

0

∫ 2π

0

∫ 2π

0
φ(θ1,θ2,θ3)e−i(n1θ1+n2θ2+n3θ3)dθ1dθ2dθ3 (6.2.2)

An1,n2,n3 is the Fourier component of wavefunction φ(θ1,θ2,θ3), In our numerical calculation we have
taken the same range of momentum in three directions (n1,n2,n3). So we will observe primary quantum
resonance at h̄ = 4π

3 .
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(c) A zoomed region from (b)

Figure 6.2: Quantum resonance in three spatially coupled kicked rotors

In the above figure 6.2 < L2 > is plotted versus time along one direction for with a power law fit for
h̄ = 4π

3 (a), h̄ = 2π

3 (b) and (c) is a zoomed plot (b) for h̄ = 2
3 π . Power law fit in figure 6.2: < L2 >=αtβ

At h̄ = 2
3 π we observe quantum resonance, but there is also a flip in energy seen at every kick. This

behaviour is also observed at values h̄ = (2
3)π +4mπ , where m is any positive integer. But this flipping

in energy is not observed in the primary resonance case (h̄ = 4π

3 ).

Long time average of energy numerically calculated goes as for h̄ = 4π

3 and h̄ = 2π

3 :

Ei(t)≈Cit2.5 (6.2.3)

where Ei is the average energy along any one directions, Ci is a constant depending on kick strength (K)
and coupling strength (J).

Summary on resonance in coupled kicked rotors

In the below table we have mentioned the minimum values of h̄ required to observed the following
phenomenon.

QKR: quantum kicked rotor without coupling, 2CQKR: Two spatially coupled quantum kicked rotor,
3CQKR: Three spatially coupled quantum kicked rotor.

Anti-resonance in spatially coupled kicked rotor means resonance with a phase flip at every kick.

Quantum resonance QKR 2CQKR 3CQKR
Primary resonance 4π 2π

4π

3
Anti-resonance 2π π

2π

3
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7 Quasi-periodic or Temporally coupled kicked
rotor

In this chapter quasi-periodic or temporally coupled kicked rotor system is studied. By adding temporal
modulation in the kick strength quasi-periodic kicked rotor can be obtained from the standard kicked
rotor. We have dealt with two and three incommensurate frequencies systems using split technique and
exact diagonalisation of mapped tight-binding models.

Hamiltonian of Quasi-periodic kicked rotor with three incommensurate frequencies (2π ,ω2,ω3)

Hqp =
L2

2
+ K̄(t)cosθ ∑

n
δ (t−n) (7.0.1)

where
K̄(t) = K [1+ ε cos(ω2t +ϕ2)cos(ω3t +ϕ3)] (7.0.2)

The classical evolution equations are given by:

{
Ln+1 = Ln + K̄(t)sinθn

θn+1 = θn +Ln+1
(7.0.3)

The only problem here in equation (7.0.3) is that the kick strength is time-dependent. Now we use
the mapping of this quasi-periodic kicked rotor onto a 3d kicked pseudo-rotor with the special initial
condition of a plane wave[24]. Pseudo-rotor is another form of spatially coupled kicked rotor hence we
can approach the quasi-periodic kicked rotor model similar to spatially coupled kicked rotor in the above
chapters.

H =
L2

1
2
+ω2L2 +ω3L3 +K cosθ1 [1+ ε cosθ2 cosθ3]∑

n
δ (t−n) (7.0.4)

This is called a pseudo rotor because of the presence of unusual kinetic energy terms linear in momen-
tum. But this is a periodic time with constant kicking strengths K and ε , so we can easily write the
iteration map.

The advantage of the quasi-periodic kicked rotor is that the dynamics can be numerically generated very
easily, because it requires only one spatial dimension, but displays the richness of 3d systems.
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7.1 Classical Quasi-periodic Kicked rotor

Equations of motion obtained from canonical equations of 3d-pseudo kicked rotor:

L(1)
n+1 = L(1)

n +K sinθ
(1)
n

(
1+ ε cosθ

(2)
n cosθ

(3)
n

)
L(2)

n+1 = L(2)
n +Kε cosθ

(1)
n sinθ

(2)
n cosθ

(3)
n

L(3)
n+1 = L(3)

n +Kε cosθ
(1)
n cosθ

(2)
n sinθ

(3)
n

θ
(1)
n+1 = θ

(1)
n +L(1)

n+1

θ
(2)
n+1 = θ

(2)
n +ω2

θ
(3)
n+1 = θ

(3)
n +ω3

The last two equations are trivially integrated θ
(2)
n = θ

(2)
0 + nω2 and similarly for θ3 . If we now start

with the initial condition θ
(2)
0 = φ2 , θ

(3)
0 = φ3, this mapping is the same as the original quasi-periodic

kicked rotor.

The classical dynamics of the kicked pseudo-rotor along any direction is identical to the one of the
quasi-periodically kicked rotor.

Plots of Classical Quasi-periodic kicked rotor
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Figure 7.1: < L2 > vs time for Classical Quasi-periodic kicked rotor

In the above figure 7.1 < L2 > measure of average energy versus time is plotted along three directions
for K = 8, ε = 0.5 along with a analytic fit using the diffusion constant calculated below.
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The diffusion constants calculated up to first order approximation are given by:

D1 =
K2

2
(1+

ε2

4
)

D2 =
K2ε2

8

D3 =
K2ε2

8

7.2 Quantum Quasi periodic kicked rotor with two incommensurate
frequencies (2QPKR)

Hqp =
L2

2
+ K̄(t)cosθ ∑

n
δ (t−n) (7.2.1)

where

¯K(t) = K[1+ ε cos(ω2t +ϕ2)] (7.2.2)

We have obtained the below plots using split techniques, similar to the ones used in kicked rotor case.
Similar to the case of spatially coupled kicked rotor initial wavefunction is a Gaussian centred around
zero momentum.

Here ω2 =
√

2
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Figure 7.2: Dynamics of quasi-periodic kicked rotor with 2 incommensurate frequencies

The above figure 7.2 the < L2 > vs time and final momentum density after 10000 kicks |φ 2
m(t)| in log

scale is plotted for a fixed ε = 0.1 and two different kicking strengths K = 4 and 6.

As K increases the width of the exponential density profile increases, but it doesn’t become completely
diffusive as the average energy is still localised in the long time limit.

7.3 Quantum Quasi-periodic kicked rotor with three
incommensurate frequencies(3QPKR)

In this case the kicking is of the form
¯K(t) = K[1+ ε cos(ω2t +ϕ2)cos(ω3t +ϕ3)] (7.3.1)

where,
ω2 =

√
2

ω3 =
√

3
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Figure 7.3: Dynamics of quasi-periodic kicked rotor with 3 incommensurate frequencies

In the above figure 7.3 < L2 > versus time and final momentum density (| log(φ 2(t))|) after 10000 kicks
is plotted for a fixed coupling strength (ε = 0.1 )

For kick strength (K = 4) the dynamics is localised in momentum space as seen from (a) and (b). When
the kick strength is increased to K = 6 the dynamics become completely diffusive at long time limit and
the momentum density is Gaussian as shown in (c) and (d).

7.4 Mapping quasi-periodic to tight binding impurity model

The quantum dynamics of the periodically kicked pseudo-rotor can be obtained by Floquet states via
mapping to a 3d Anderson-like model.

H =
L2

1
2
+ω2L2 +ω3L3 +K cosθ1 [1+ ε cosθ2 cosθ3]∑

n
δ (t−n) (7.4.1)

The analogy between the quasi-periodic kicked rotor and a 3d kicked rotor with an initial condition taken
as “plane wave source”. Let’s consider an initial state

Φ(θ1,θ2,θ3, t = 0)≡ φ (θ1, t = 0)δ (θ2−ϕ2)δ (θ3−ϕ3) (7.4.2)

The above-mentioned state is completely localized in θ2 and θ3 and completely delocalized in the con-
jugate momenta L2 and L3. A simple calculation shows that the stroboscopic evolution of Φ under the
pseudo-kicked rotor in equation (7.4.1) is the same as evolving the initial state φ(θ1, t = 0) under the
original quasi-periodic Hamiltonian [11][24].

From a stroboscopic point of view, the time evolution of Φ is determined by the floquet operator.
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F = e−i K
h̄ cosθ1(1+ε cosθ2 cosθ3)× e−ih̄(L2

1/2+ω2L2+ω3L3) (7.4.3)

Φ(θ1,θ2,θ3, t) = F t
Φ(θ1,θ2,θ3, t = 0) (7.4.4)

Using this floquet operator and the initial wavefunction, a mapping between the 3d pseudo-kicked rotor
and 3d Anderson type model can be obtained. The steps in this calculation are exactly similar to the
mapping between the kicked rotor and 1d Anderson type model [9].

TmΦm + ∑
r 6=0

WrΦm−r =−W0Φm (7.4.5)

where m≡ (m1,m2,m3) and r label sites in a 3d lattice in momentum space.

The on-site energy Tm is given by

Tm = tan
{

1
2

[
ω−

(
h̄m2

1
2

+ω2m2 +ω3m3

)]}
(7.4.6)

W (θ1,θ2,θ3) = tan [K cosθ1 (1+ ε cosθ2 cosθ3)/2h̄] (7.4.7)

The hopping matrix elements in momentum space Wr

Wr =
∫ 2π

0

dθ1dθ2dθ3

2π
e−ı(r1θ1+r2θ2+r3θ3)W (θ1,θ2,θ3) (7.4.8)

It should be noted that the 3d aspect comes from the presence of three frequencies in the dynamical sys-
tem: the usual “momentum frequency”– present in the standard kicked rotor equation and two additional
time frequencies ω2 and ω3. Thus, increasing the number of incommensurate frequencies allow one to
tune the effective dimensionality of the system.

In our calculation we have taken (h̄,ω2,ω3,π) are incommensurate with each other1. When the above
conditions are true, then there exists a metal-insulator transition as predicted for the 3d Anderson model
are expected.

1If any of (h̄,ω2,ω3,π) is commensurate with other the dynamics enter quantum resonance regime and there no metal-
insulator transition in this case
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7.5 Level spacing ratio for Mapped 3d tight-binding Hamiltonian
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Figure 7.4: Average Level spacing ratio of tight binding impurity model obtained from 3d Pseudo-kicked
rotor

The quantum dynamics of a quasi-periodic kicked rotor with 3 incommensurate frequencies can be
studied using the 3d pseudo kicked rotor, which in turn can be mapped to a 3d tight binding model in
momentum space as explained in section (7.4).

In figure 7.4 the average level spacing ratio is plotted as a function of coupling strength (J), there is a
transition from Poisson(< r >= 0.386) to Wigner Dyson(< r >= 0.530) in level spacing around J = 5
as a indication of localisation-delocalisation transition in quasi-periodic kicked rotor with 3 incommen-
surate frequencies.
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8 Coupled kicked rotors in momentum space

In this section we have studied two and three kicked rotors coupled in momentum space and the mapping
to an interacting Aubry-Andre model is also studied. The main aim is to check the existence of Many-
body dynamical localisation in two and three coupled kicked rotors.

The Hamiltonian of N coupled kicked rotor in momentum space:

H(t) = K̃(L̂)+V (θ̂)∑
n

δ (t−nT ) (8.0.1)

where L̂ =(L̂1, L̂2, ...L̂N) and θ̂ =(θ̂1, θ̂2, ...θ̂N)

The kinetic energy part (K̃(L̂)) consist of two parts the non-interacting part (K̃0(L̂)) and interacting part
(K̃′(L̂)) arising due to nearest neighbour interaction in momentum space.

8.1 Mapping kicked rotors coupled in momentum space to
interacting tight binding model

A analytic mapping of coupled N quantum kicked rotors in momentum space and interacting variant of
Aubry-Andre model with N particles which can support MBL[12].

The floquet operator corresponding to the above mentioned Hamiltonian (8.0.1)

F = e−ı V (θ̂)
h̄ e−ı K̃(L̂)T

h̄ (8.1.1)

F̂ |A〉= e−iφ |A〉 (8.1.2)

where |A〉 is a Floquet state and φ is their corresponding eigenphase.

In interaction picture, the above floquet equation becomes

e∓iK̂T/(2h̄)e∓
i
h̄V (θ̂)e∓iK̂T/(2h̄)|Ã〉= e∓iφ |Ã〉 (8.1.3)

where |Ã〉= eiK̂T/(2h̄)|A〉
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Let us define the local angular momentum eigenstates for N quantum kicked rotors. |m̃〉= |m̃1, m̃2, . . . , m̃N〉

When the non-interacting kinetic energy part acts on the angular momentum state, K̃0 =
1
2 ∑

N
i=1 L̂2

i and
K̃0|m̃〉= 2h̄ϕ(m̃)|m̃〉 , where ϕ(m̃)≡ h̄

4 ∑
N
i=1 m̃2

i .

similarly when the interacting part of kinetic energy acts on local momentum states, K̃′|m̃〉= 2h̄ϕ ′(m̃)|m̃〉

The explicit form of kinetic energy due to coupling in momentum space K̂′ is not defined, but assumed
that K′ commutes with unperturbed kinetic energy(K̃0), i.e..

[
K̂0, K̂′

]
= 0 .

Let’s define Φ(m̃)≡ ϕ(m̃)+ϕ ′(m̃), from the equation (8.1.3) inserting completeness condition in local
momentum states and projecting 〈ñ| from left, we obtain the following equation:(

−e±iφ +
〈
ñ
∣∣F̂±∣∣ ñ〉)〈ñ|Ã〉

+∑m̃6=ñ ei[Φ(n)−Φ(m)]
〈
ñ
∣∣F̂±∣∣m̃〉〈m̃|Ã〉= 0

(8.1.4)

where F̂+ = F̂†, F− = F̂ .

Following relations are straight forward 〈ñ|F̂ |m̃〉= e−2iΦ(ñ)
〈

ñ
∣∣∣e− i

h̄V (θ̂)
∣∣∣m̃〉 and

〈
ñ
∣∣F̂†
∣∣m̃〉= e2iΦ(m̃)

〈
ñ
∣∣∣e i

h̄V (θ̂)
∣∣∣m̃〉 .

The above equation (8.1.4) can be rewritten in the following way:

hñcñ + ∑
m̃6=ñ

Wñ,m̃cm̃ = cos(φ)cñ (8.1.5)

Where cñ =
〈
ñ | Ã

〉
and hñ represents the on-site potential and Wñ,m̃ represents the hopping potential

given by.

W ˜n,m̃ = Re
{

ei[Φ(ñ)+Φ(m̃)]
∫ 2π

0

dNθ

(2π)N e
i
h̄V (θ)e−i(ñ−m̃)·θ

}
(8.1.6)

The above equation (8.1.5) looks like a N-body Schrodinger equation with onsite potential hm̃ and eigen-
values cosφ

In order to make lattice with interactions lets label hñ ≡ ε(ñ)+V (ñ)

From equation(8.1.6) ∫ 2π

0
dNθ

(2π)N cos
[

V (θ)
h̄ +2ϕ(ñ)+2ϕ ′(ñ)

]
= ε(ñ)+V (ñ) (8.1.7)

The above equation (8.1.7) determines the type of lattice models we can map to as the left-hand side of
the above equation is bounded by the range of quasi-energies1.

The interaction operator can be tuned to get the desired lattice, for example when V (ñ) = 0, we can set
ϕ ′(ñ) = 0 in which case reduces to

ε(ñ) =
∫ 2π

0

dNθ

(2π)N cos
[

V (θ)

h̄
+2ϕ(ñ)

]
(8.1.8)

1Defined up to only modulo 2π h̄/T
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From equations (8.1.7) and (8.1.8) we can obtain a exact solution to determine ϕ ′(n).

cos
[
2ϕ
′(ñ)
]
+Γ1(ñ)sin

[
2ϕ
′(ñ)
]
= Γ2(ñ) (8.1.9)

where

Γ1 =−

∫ 2π

0
dNθ

(2π)N sin
[

V (θ)
h̄ +2ϕ(ñ)

]
∫ 2π

0
dNθ

(2π)N cos
[

V (θ)
h̄ +2ϕ(ñ)

]
Γ2 =1+

V (ñ)∫ 2π

0
dNθ

(2π)N cos
[

V (θ)
h̄ +2ϕ(ñ)

]

2ϕ
′(ñ) = arctan

[
±Γ1γ +Γ2

Γ1Γ2∓ γ

]
∈ [−π,π] (8.1.10)

where γ ≡
√

1+Γ2
1−Γ2

2.

For the N kicked rotors without any spatial coupling V (θ) = h̄∑
N
l=1 k(l) cos(θl).

This implies
Γ1 = tan[2ϕ(ñ)], (8.1.11)

Γ2 = 1+V (ñ)/

{
cos[2ϕ(ñ)]

N

∏
l=1

J0

(∣∣∣k(l)∣∣∣)} . (8.1.12)

Where J0(k) is Bessel function of first kind of zeroth order.

In thermodynamic limit as N→ ∞ the product ∏
N
l=1 J0

(∣∣k(l)∣∣) vanishes, which enforces V (ñ)→ 0.

Hence it’s not possible to map the contact interactions in lattice to kicked rotor coupled in momentum
space in the thermodynamic limit.
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8.2 Two kicked rotors coupled in momentum space (2MQKR)
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(d) Momentum density, K=16

Figure 8.1: Dynamics of Two kicked rotors coupled in momentum space V (ñ) = 0.005

In the above figure 8.1 < L2 > vs time and the final momentum density |φ 2
ñ (t)| is plotted after 400 kicks

for a fixed interaction strength V (ñ) = 0.005.

It’s seen for lower values of kicking (K=6) (b) the momentum density has an exponential profile indi-
cating the presence of MBDL phase. When kicking strength is increased (K=16) (d) the momentum
density becomes uniform, indicating the destruction of the MBDL phase. Role of Truncation error can
be significant.
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8.3 Three kicked rotors coupled in momentum space (3MQKR)
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(b) Momentum density, K=6
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(d) Momentum density, K=16

Figure 8.2: Dynamics of Three kicked rotors coupled in momentum space V (n) = 0. 005

In the above figure 8.2 < L2 > vs time and final momentum density |φ 2
ñ (t)| is plotted after 400 kicks

for a fixed interaction strength V (ñ) = 0.005. Figure 8.2 depicting the dynamics of Three kicked rotors
coupled in momentum space shows a similar behaviour as the Two kicked rotors coupled in momentum
space in figure 8.1. There is the destruction of the MBDL phase on increasing the kicking strength in the
presence of weak interaction(V (n) = 0.005). We need to increase the basis size to avoid the Truncation
error but its computationally expensive.
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9 Conclusions

This thesis is devoted to studying kicked rotors with coupling. We have started with a thorough analysis
of the kicked rotor model in quantum and classical regime. Although most of the work done there are
well established it helped us to understand more intricate details to the calculations we used and it acted
as a testing background for our numerical techniques.

The first type of coupling we considered between the rotors is spatial and of the form cos(θi +θ j), this
form is chosen to make the coupling nonlinear and keep the model non-integrable. We studied mainly
two and three coupled rotors using this form of coupling. We have obtained the behaviour of average
energy and time evolved momentum density using split techniques and its observed in case of three
coupled kicked rotors for large coupling strengths there is an unbound energy growth for a long time
(time much longer than the break time) but this is not observed in case of two coupled kicked rotors. This
phenomenon can be explained by extending the map between a kicked rotor and a tight binding impurity
model[9] to coupled kicked rotors. We have obtained the map between two and three coupled kicked
rotors to 2d and 3d time-independent tight binding impurity model (similar to the Anderson impurity
model). The main things to be check in the mapped lattice model are the presence of random or quasi-
random onsite potentials and short-ranged hopping. The form of interactions decides the type of lattice
in the time-independent impurity model. By studying the spectral statistics of the mapped lattice model
we see a clear indication for the transition between dynamically localized to delocalized phase in case of
three coupled kicked rotor model. This map can be extended between N-spatially coupled kicked rotors
and N-dimensional impurity model, there is localisation-delocalisation transition for N ≥ 3 coupled
kicked rotors. As N→ ∞ the dynamics is expected to become delocalized in momentum space[10]. We
also observe a behaviour similar to weak localisation in 2d Anderson model for large kick strengths in
two coupled kicked rotor dynamics. So in contrast with the behaviour of a quantum kicked rotor which
always shows localised behaviour in momentum space, we obtain new phenomenology arising when the
interactions are added a kicked rotor mainly localized and delocalized phases are observed.

Quantum resonance in kicked rotor occurs when the effective plank constant of the system is commen-
surate with 4π , except for odd integer multiples of 2π where anti-resonance [23] is observed. We have
extended the study of quantum resonance in two and three spatially coupled kicked rotors, and there is
phase flip at every kick but the average behaviour is super-ballistic for effective plank constant of the
system (α = h̄ = 2π

N ), where N is the number of spatially coupled kicked rotors.

The quasi-periodic kicked rotor or temporally coupled kicked rotor with two and three incommensurate
frequencies has been studied. As the quasi-periodic kicked rotor has a continuous-time dependence
other than delta kick time dependence, it becomes a little hard to obtain dynamics using the general
techniques used for the kicked rotor. So to study quasi-periodic we establish a mapping to a pseudo-
rotor model which have only delta-kick time dependence’s under special initial conditions. This pseudo-
rotor with two and three incommensurate frequencies is used to study the behaviour of corresponding
quasi-periodic kicked rotor in the classical and quantum regime. We have also studied the map between
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the pseudo-kicked rotor and a tight binding impurity model similar to the one obtained for spatially
coupled kicked rotors. A localisation-delocalisation transition is observed in the quasi-periodic kicked
rotor with three incommensurate frequencies on increasing the kick strength but not in case of the quasi-
periodic kicked rotor with two frequencies. This is not surprising now as the number of incommensurate
frequencies in quasi-periodic kick rotor corresponds to the number of kicked rotors coupled spatially
in pseudo kicked rotor, which in turn corresponds to the dimensionality of the mapped impurity lattice
model.

At last, we studied the model of kicked rotors coupled in momentum space[12], which has a map to
interacting Aubry-Andre model. This map is not valid in the thermodynamic limit i.e... N → ∞ where
N is the number of kicked rotors coupled. We have primarily studied two and three momentum coupled
kicked rotors, the exact form of momentum coupling is not described but the eigenphases obtained by
acting the interaction term in kinetic energy operator (arise only due to momentum coupling) can be
obtained analytically for weak interaction strength in corresponding mapped lattice model. For weak
interaction strength in the mapped lattice model, a localisation-delocalisation transition is observed two
and three momenta coupled kicked rotors for large values of kick strengths.

The punch line of this thesis is due to the absence of conservation of energy in periodically kicked
systems with added interactions, they are expected to heat up indefinitely but this is not the case always.
As there exists a regime in parameter space of the system where dynamical localisation is present even
with interactions present in the system and this has been verified in systems with spatial, temporal and
momentum interactions.

Future directions

The weak localisation limit which is present in two spatially coupled kicked rotor is not very well
studied. Scaling theory analysis in this regime might help us to understand more about the role of
coupling in the absence of dynamical localisation. Multi-fractal analysis can be done in the regime of
transition from dynamical localisation-delocalisation in coupled kicked rotor.

Spectral statistics of momentum coupled kicked rotors can be done. To characterise MBL phases in
kicked rotors coupled in momentum space quasi-local integrals of motion can be constructed. New
models with kicking potentials different from the standard kicked rotor can be used to make the mapped
lattice interacting even in the thermodynamical limit.

The quantum resonance in spatially coupled kicked rotors can be experimentally realised using cold
atoms setup.
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