
Geometric Knot Theory

A Thesis

submitted to

Indian Institute of Science Education and Research Pune

in partial fulfillment of the requirements for the

BS-MS Dual Degree Programme

by

Adithyan P

Indian Institute of Science Education and Research Pune
Dr. Homi Bhabha Road,

Pashan, Pune 411008, INDIA.

April, 2020

Supervisor: Dr. Rama Mishra
© Adithyan P 2020
All rights reserved









This thesis is dedicated to my parents who have always been supportive throughout
my life.





Declaration

I hereby declare that the matter embodied in the report entitled Geometric Knot
Theory are the results of the work carried out by me at the Department of
Mathematics, Indian Institute of Science Education and Research, Pune, under the
supervision of Dr. Rama Mishra and the same has not been submitted elsewhere for
any other degree.

Adithyan P





Acknowledgements

I would like to express my deepest gratitude to my supervisor, Professor Rama Mishra,
for her constant guidance and encouragement over the past 2 years. I am also very
grateful to Visakh Narayanan for all the discussions we had, and for keeping me mo-
tivated in Knot theory. I would also like to thank my batchmate Nazia - who I could
always count on, for helping me throughout my journey into the completion of my
project and for providing mental and emotional support. I would like to thank my
parents for their unconditional love and relentless support. Last but not the least,
thanks to all my friends and our mathematics community of fifth years and Ph.D. stu-
dents at IISER Pune, for all the cherishing moments we had - doing mathematics and
fun.

ix



x



Abstract
This thesis provides an exposition to some geometric aspects of knot theory. We dis-
cuss certain numerical invariants of knots which are geometric in nature. Many of
them are defined as the minimum value of some quantity over all the directions taken
over one particular diagram or configuration and then minimizing this over all pos-
sible configurations. Crossing index, unknotting index and bridge index are some of
the examples of such invariants. Later some invariants were defined by first taking the
maximum value of these quantities over all the directions taken over one particular
diagram or configuration and then minimizing this over all possible configurations.
They were termed as superinvariants. Superbridge number, supercrossing number
and superunknotting number are studied lately. All these invariants are very diffi-
cult to compute. Certain parametrizations are used to obtain some bounds for these
invariants. Polygonal representation for knots has been instrumental in PL category.
Similarly polynomial representation plays an important role in smooth category. In
this thesis we also study the topology of the spaces of polygonal knots as well as poly-
nomial knots. We discuss some applications of these spaces at the end.
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Chapter 1

Introduction

This thesis is an exposition on the geometric aspects of knot theory. We discuss certain
knot invariants that arise owing to the configurations used to represent the knot. Knot
theory has been a rapidly growing field of research for the past few decades. Under-
standing the depth of the subject gives a flavour of pure and sophisticated mathemat-
ics ingrained in it. At the same time, it has tremendous applications in almost all the
areas that we can think of. A knot is defined as an embedding of unit circle S1 in the
three-dimensional space R3. Since the three-dimensional sphere S3 contains R3, it is
preferred to define a knot as an embedding of S1 in S3. One identifies the embedding
with the subset of S3 which is the image of S1 under the embedding. As there can be so
many such embeddings possible and all these images are topologically homeomorphic
to S1, the question arises that how to classify them. This classification problem comes
under the placement problem. The equivalence is known as ambient isotopy (see Defi-
nition 2.1.2). Historically, the subject started in 1867 with the imagination of physicists
who were exploring the structure of atoms. They proposed that atoms might consist
of knotted vortex tubes of the ether, with different elements corresponding to different
knots. Here different means up to the ambient isotopy. P.G.Tait, a mathematician of
that era, took this project of classifying all knots. This was a difficult task as there were
no tools available. He was a discrete mathematician and hence developed a theory
based on his expertise that is Combinatorics!. He assigned a combinatorial data known
as knot diagram associated to a given knot. A knot diagram is made of two things, a
projection of the knot into a suitable plane where the projected image contains only
transverse double points as possible singular points and at each such double point the
information regarding which point was over/under before projecting. A transverse
double point after such information is referred to as overcrossing/undercrossing. After
obtaining a knot diagram, Tait made several conjectures and used these conjectures to
enumerate knots up to ten crossings. Tait’s theory was based on the assumption that it
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4 CHAPTER 1. INTRODUCTION

is possible to obtain a plane on which the projected image has only transverse double
points as singular points. Tait called it a regular projection. Question then was raised,
if such a plane always exists for every knot. For that purpose, knots were segregated
into two types, tame knots and wild knots. Tame knots are the ones which are either
Piecewise Linear or smooth embeddings of S1 in S3. Any knot which is not tame is a
wild knot. Using a simple algebraic geometry argument one can prove that for every
tame knot there exists a regular projection. In fact, the set of all regular projections for
a given knot is an open and dense set in the space of all projections of the knot. In this
thesis, we confine ourselves to only tame knots. We have discussed both polygonal as
well as smooth embeddings.

Once, we have a tame knot, we can find a regular projection and obtain a knot diagram
associated to it. As there can be many choices of regular projections, there are many
knot diagrams associated to the same knot. Thus, looking at two different knot dia-
grams, how can one infer if they are associated to the same knot. Even more difficult
to predict if two knot diagrams are associated to knots which are ambient isotopic.
This is resolved with the help of three combinatorial moves developed by Reidemeis-
ter, known as Reidemeister Moves (see Definition 2.4.1). Reidemeister’s theorem asserts
that two knot diagrams represent isotopic knots if and only if one can be transformed
to the other using finitely many Reidemister moves. Now, we have a complete kit to
work on the classification problem of knots. We choose a knot diagram, define some
quantity associated to it and check if it remains invariant under all three Reidemister
moves. Any such quantity is a knot invariant and can be utilized to classify knots. All
of them may not be very useful though because many non-isotopic knots may share
the same value. The knot theory is a study of defining powerful knot invariants which
can distinguish as many knots as possible. In the last three decades, several knot in-
variants are defined. Some of them are numerical, some are polynomials and some are
sophisticated algebraic structures. Thus far, there is no invariant which is complete
and which can be computed easily.

Let us discuss some numerical invariants. For a given knot diagram of a knot K, using
the Reidemister moves we can simplify the crossings and obtain a simpler diagram
and call it a reduced diagram. The number of crossings in this reduced diagram is called
the crossing number of the diagram. If we take the minimum of this crossing number
taken over all the diagrams of K, we obtain an invariant, crossing index or minimal
crossing number c(K) (see Subsection 3.1.1) of K. Another interesting invariant is, the
unknotting number u(K) of K. It is defined again in two steps. Least number of crossing
changes (from over to under or from under to over) required to change the diagram
into a diagram of an unknot is called the unknotting number of the diagram and when



5

this is minimized over all possible diagrams is an invariant u(K) the unknotting index
(see Subsection 3.1.2). Several numerical invariants are defined in this manner. Bridge
index (see Subsection 3.1.3) is another important invariant which is defined in the same
fashion. Thinking of a knot diagram as a space curve, we can study its behaviour along
any particular direction, where it will be treated as a function of a single variable.
Since we are in tame knot category, there will be a finite number of local extrema.
Also, the unit vectors along each direction constitute a compact set, when we count
the number of local maxima over all possible directions, it attains its minima as well
maxima. The least number of local maxima over all directions in a diagram is defined
as the Bridge number of the diagram and when we minimize the bridge number of all
the diagrams we get the bridge number b(K) of the knot K which is an invariant. Some
numerical invariants such as genus of a knot (see Definition 2.2.3) are defined using
other geometric objects associated with a knot. There are some numerical invariants
such as braid index that arise through the representation of knots as closure of braids
(see Subsection 3.1.5).

In 1987, Kuiper [Kui87] came up with another kind of invariant. At the diagram level,
he took the maximum number of local maxima taken over all directions. We have
pointed out earlier that the maximum will also exist. He calls it the superbridge in-
dex of the diagram. When we minimize the superbridge index of all the diagrams
we get an invariant called the superbridge index Sb(K) (see Subsection 3.1.6). Clearly
b(K) < Sb(K). The least value of Sb(K) for any nontrivial knot is 3. With this theme
in mind, some more superinvariants like supercrossing index (see Subsection 3.1.7), su-
perunknotting index (see Subsection 3.1.8) were defined later.

We have noticed that numerical invariants are associated with a representation of
knots. In these connections, several parametrizations were studied. One can repre-
sent a knot using line segments or sticks in different ways. In one such representation,
we can count the number of sticks that are used. Clearly, the least number of sticks re-
quired by a particular knot is an invariant called the stick index (see Subsection 3.1.4) of
a knot. Similarly, in smooth category it has been proved that every knot is isotopic to
one point compactification of an embedding of R in R3 given by t 7→ ( f (t), g(t), h(t))
where f (t), g(t) and h(t) are polynomials of degree d. This is known as a polynomial
representation of the knot. For a given knot K the least value of d (positive integer)
such that K has a polynomial representation in degree d is an invariant called poly-
nomial degree of K (see Definition 6.1.5). Both stick index, as well as the polynomial
degree, has been instrumental in drawing inferences of other invariants.

These representations of knots have another side to it. Suppose we consider the set of
all knots obtained using d sticks. We can topologize the set and see the knot equiva-
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lence here. Putting the restriction on the number of sticks may make the classification
more rigid. In other words, we can compare the path components of this space with
the ambient isotopy classes of knots represented in this space. Likewise, for a fixed d
the space of all polynomial knots of degree d can be studied and the path components
of this space can be compared with the equivalence of knots.
This thesis has two parts. In the first part, we have studied various numerical invari-
ants of knots that we mentioned earlier and also their relation with each other. Most
invariants are well understood, we have provided the interesting results on them. We
have taken the study of superbridge index a little more deeply. It has been known that
there are infinitely many knots with superbridge index n for each n ≥ 4. However,
there are only finitely many knots that can have superbridge index 3. We have pro-
vided a detailed proof of this result in this thesis. In the second part of the thesis we
have studied the topology of spaces of polygonal knots with stick number d and the
topology of spaces of polynomial knots of degree d for various values of d. Finding
specific polynomial representation of different knots and plotting them in Mathemat-
ica is really fascinating. We have taken off a few weaving knots and using some known
results found their polynomial representation. Our polynomials provide an evidence
that these knots are strongly negative amphicheiral (see Remark 2.1.3).
This thesis is organized as follows: In chapter 2, we provide the necessary basic defini-
tions that are required for this thesis. In chapter 3, we define certain numerical invari-
ants of knots and discuss how these invariants are related to one another. Choon Bae
Jeon and Gyo Taek Jin proved that there are only finitely many 3-superbridge index
knots, in chapter 4, the proof of the same is written in a more detailed way. Chapter 5
discusses polygonal knots and the topology of spaces of polygonal knots, specifically
polygonal knots which can be realized as a hexagon or a heptagon. In chapter 6, poly-
nomial knots and topology of spaces of polynomial knots are discussed, polynomial
knots with minimal degree 5 are described in detail. In chapter 7, we solve a prob-
lem of finding polynomial representation for weaving knots motivated from similar
results for torus knots. We conclude the thesis by mentioning few problems that were
attempted, and the ideas that we have so far in this direction. We also share some
problems that can be taken up as a project in the future.



Chapter 2

Basic Definitions in Knot Theory

2.1 Knots and knot equivalences

Definition 2.1.1. A knot is homeomorphic image of an embedding f : S1 ↪→ R3.

Example: Unknot (01), Trefoil knot (31), Figure eight knot (41)

Figure 2.1: A, B, C are unknot, trefoil knot and figure eight knot respectively

Remark 2.1.1. A link is homeomorphic image of an embedding f : S1 t S1 t ...t S1 ↪→ R3.

Two knots, K1 and K2 are said to be equivalent if there exists a homeomorphism h :
S3 −→ S3 such that h(K1) = K2.

Definition 2.1.2. An ambient isotopy of R3 is a map Ht(s) : [0, 1]× R3 −→ R3 such that
H0(s) is the identity map in R3. Two knots K1 and K2 are said to be isotopic if ∃ an ambient
isotopy Ht of R3 such that H1(K1) = K2.

All knots are orientable and knots with a chosen orientation are called oriented knots.

Definition 2.1.3. An oriented knot, K is said to be invertible if it is equivalent to the same
knot with opposite orientation, −K.

Remark 2.1.2. If the equivalence between K and −K is through an involution then K is called
strongly invertible.

7



8 CHAPTER 2. BASIC DEFINITIONS IN KNOT THEORY

Figure 2.2: Strongly invertible (taken from [Sak20])

A mirror image of a knot is the knot composed with an orientation reversing homeo-
morphism of R3. It is essentially the knot with the crossings reversed.

Definition 2.1.4. A knot, K is said to be amphichiral if it is equivalent to its mirror image
K∗. An oriented knot, K is said to be positive-amphichiral if it is equivalent to its mirror image
with the same orientation, K∗ and is said to be negative-amphichiral if it is equivalent to its
mirror image with opposite orientation, −K∗.

Remark 2.1.3. If the equivalence described between K and K∗ is through an involution then
K is called strongly positive-amphichiral. Similarly if the equivalence described between K and
−K∗ is through an involution then K is called strongly negative-amphichiral respectively.

Figure 2.3: Strongly positive-amphichiral and strongly negative-amphichiral respec-
tively (taken from [Sak20])

Definition 2.1.5. A knot is said to be polygonal if it is made of a finite number of straight lines
(sticks or edges). A polygonal knot is said to be generic if no four of its vertices are coplanar
and no three of them are collinear.

Definition 2.1.6. A projection of a polygonal knot is regular if the projection has only finitely
many double points which are transverse and there exist no other multiple points.

Definition 2.1.7. A knot is called tame if it is equivalent to a polygonal knot. Knots which are
not tame are called wild knots (see Figure 2.4).
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Figure 2.4: Example of a wild knot

We study invariants which comes from the projection of knots and in order to ensure
the existence of projection we restrict ourselves into smooth category.

Definition 2.1.8. A smooth knot is the image of a smooth embedding of S1 in R3.

Remark 2.1.4. Every smooth knot has a polygonal representation (see Appendix I of [CF77])
and every polygonal knot which is essentially a piece-wise linear knot has a smooth approxima-
tion.

From the above remark tame knots can be defined as smooth knots and the remark
ensures that as long as we are dealing with tame knots we can restrict ourselves to the
smooth category with no loss of information. A regular projection thus can be defined
as,

Definition 2.1.9. A projection of a knot, f : S1 −→ R3 to a plane is regular if π ◦ f is an
immersion where π : R3 −→ P is projection to a plane P .

It can be checked that the above definition ensures that the projection has finitely many
double points with no other multiple points, there are no cusps and there are no over-
lapping of strands. A projection of a knot is called reduced if there are no obvious
ways of decreasing the crossing number such as removing twists in knots ie, one part
of the knot is twisted with respect to the other and removing self crossings in knot
strands (see Figure 2.5).

Figure 2.5: The two obvious ways of decreasing crossing number (taken from [ABF09])

The projection of the knot is simply a 4-valent graph and we lose a lot of information
about the knot. In order to counter this we look at something called the knot diagram.
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A knot diagram is the image of a regular projection with the added over-under infor-
mation of knot strands at each double points.
Since we are interested in studying invariants that come from knot projections we will
be studying only tame knots.

2.2 Connected sum and prime decomposition of knots

Definition 2.2.1. Connected sum of two knots or Composition of two knots K1 and K2 denoted
as K1#K2 is an operation in which we remove two arcs from the two knots and join the two knots
(see Figure 2.6). The arcs removed are chosen such that joining the rest won’t produce any extra
crossings (see Figure 2.7).

Figure 2.6: Composition of the knots J and K (taken from [Ada94])

Figure 2.7: Unwanted crossings coming up due to bad choice of arcs removed (taken
from [Ada94])

The definition does not guarantee that the operation connected sum is well defined but
if we choose the knots to be oriented and force the operation to be such that it respects
the orientation of both the knots in consideration then it becomes well defined. A knot
is composite if it is equivalent to the composition of two nontrivial knots and a knot
that is not composite is called a prime knot. For understanding certain results on the
composition of knots we look at a new concept, Seifert surface of knots.

Definition 2.2.2. A Seifert surface of a knot is a connected compact orientable surface with
the knot as the boundary.
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It was proved that every knot has a Seifert surface and later Seifert gave a simpler
algorithm to find a Seifert surface of a knot given the knot diagram.

(i) Give an orientation to the knot, start moving through the strand of knot and at
each crossing switch between under and over strand preserving the orientation.
If this completes a circle then choose some other point on the knot strand and
repeat this until you travel through the knot once. Now we have a bunch of
disjoint circles called as Seifert circles.

(ii) If two Seifert circles are concentric lift the circle that is inside a little above the
plane containing the other circle and if the circles are disjoint keep it in the same
plane.

(iii) Fill the circles, we will color each of the discs obtained such that the two sides
get two different colors. If two discs are in the same plane color them in a similar
way and if they are in different plane switch the colors.

(iv) Take colored twisted bands and use them to connect the the discs such that the
boundary of the surface obtained is the knot.

Figure 2.8 shows the construction. The surface thus obtained is compact, connected
and orientable (the coloring shows that it has two sides) surface such that the bound-
ary is the knot we started with ; i.e, we have a Seifert surface.

Definition 2.2.3. A genus of a knot is the minimum genera of all the Seifert surfaces of a knot.
For a knot K it is denoted by g(K).

Genus of a knot characterizes unknots. We have K is an unknot if and only if genus
of K is 0. The if part is obvious since a disc is a Seifert surface of unknot. For the only
if part we need a little more machinery we need to prove that if a knot bounds a disc
then it is an unknot which requires Dehn’s theorem (see [Hem04]). Schubert in [Sch53]
proved the following theorem on the behaviour of knot genus under connected sum.

Theorem 2.2.1. For two knots K1 and K2,

g(K1#K2) = g(K1) + g(K2)

Using these we get the composition of two nontrivial knots must yield a nontrivial
knot and genus one knots are prime knots. Schubert later proved the existence and
uniqueness of prime decomposition of knots.
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Figure 2.8: Seifert algorithm, the figures in brackets gives a 3D view (taken from
[Ada94])

Theorem 2.2.2. Every nontrivial oriented knot can be written as the connected sum of finitely
many oriented prime knots and this decomposition is unique upto ordering and knot equiva-
lence.

The existence follows from the above theorem using strong induction on the genus of
a knot. Since genus one knots are prime the theorem is trivially true. Assume every
knot having genus upto n has a prime decomposition. Now any knot of genus n + 1 is
either prime or composite. If it is composite it can be written as the connected sum of
two nontrivial knots and since each of these has genus strictly less than n + 1, each of
these nontrivial knots has prime decomposition by our assumption. The uniqueness
part follows from the following theorem which can be proved using a constructive
argument.

Theorem 2.2.3. Let K be a knot and suppose K = P#Q and K = M#N where P is a prime
knot Q, M and N not necessarily prime. Then either

(i) M = P#J for some knot J and Q = J#N or

(ii) N = P#J′ for some knot J′ and Q = M#J′

Now if a knot K has two prime decompositions K = P1#P2....#Pn and K = Q1#Q2....#Qm

then using the above theorem Q1 = Pi#J for some knot J but since Q1 is prime and Pi
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is nontrivial, J should be unknot. Repeating this argument would give n = m and for
each i ∈ {1, 2, ..., n} Pi = Qj for some j ∈ {1, 2, ..., n} ie, the prime decomposition is
unique upto ordering and knot equivalence.

2.3 Certain types of knots

2.3.1 Torus knots

Definition 2.3.1. A nontrivial knot which can be realized on the surface of an unknotted
torus in three-dimesional space is called a torus knot. If it wraps p times around the meridinal
direction and q times around the longitudinal direction, then it is called a (p, q) torus knot
denoted by T(p, q).

Example: Trefoil is a (3,2)-torus knot (see Figure 2.9).

A (p, q)-torus knot is also a (q, p)-torus knot. Considering the knot as an embedding
of S1 in the 3-sphere S3 and T(p, q) on a solid torus, T inside S3 then S3 − Int(T) is a
solid torus with T(q, p) on it.

2.3.2 Alternating knots

Definition 2.3.2. A knot or link K is alternating if it has a projection such that the crossings
alternate from over to under as we travel along each of the components of K.

Example: Trefoil knot(31), Figure eight knot(41).

Figure 2.9: Trefoil: (3,2)-torus knot (taken from [ABF09])
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2.4 Reidemeister moves

Definition 2.4.1. A Reidemeister move is one of the following three moves that can be done
on the knot diagram.

• Reidemeister move I allows us to put in and take out a twist on knot strands as in Figure
2.10, this move can change the crossing number by 1.

• Reidemeister move II allows us two add or delete 2 crossings as in Figure 2.11.

• Reidemeister move III keeps the crossing number unchanged but allows us slide a strand
of knot from one side of a crossing to the other side of the crossing as in Figure 2.12.

Figure 2.10: Reidemeister move I (taken from [Ada94])

Figure 2.11: Reidemeister move II (taken from [Ada94])

Figure 2.12: Reidemeister move III (taken from [Ada94])

Reidemeister [Rei27] proved the following theorem.

Theorem 2.4.1 (Reidemeister theorem). Two knot diagrams represent the same isotopy class
of knots if they are related by a finite number of Reidemeister moves and planar isotopy.



Chapter 3

Knot invariants

One of the central problems in knot theory is the classification of knots up to ambient
isotopy. A knot invariant is a mathematical object such as a number, a polynomial, a
ring, a group, etc that is attached to every knot such that if the knots are ambient iso-
topic then the mathematical object attached are isomorphic in its category. Over years
different invariants have been studied for knots.
In classical knot theory, one studies numerical and polynomial invariants of knots.
One example of a polynomial invariant is Jones polynomial (see Definition 3.6 in
[Lic12]) which is a very celebrated invariant due to its ease in computation from the
knot diagrams. Another example of knot invariant is the knot complement in S3.
Gordon-Luecke theorem (see Theorem 11.9 in [Lic12]) says that knot complement is
a complete invariant of knots; i.e, knot complement can distinguish a knot from other
knots up to ambient isotopy and mirror image. Also, there are some homological in-
variants such as Khovanov homology (see [Kau11]) and Heegaard-Floer homology
(see [Sah10]) which are of particular interest in recent years. We will be concentrating
on the study of numerical invariants throughout the project.

3.1 Numerical invariants

Numerical invariants are knot invariants that attach a number to every knot and the
numerical invariant is equal for all the knots in the same isotopy class. In this section,
we will look at certain numerical invariants of knots and look at results that compare
these invariants. In this chapter, we will be using knot to refer to the equivalence
class and conformation to refer to a particular element in the equivalence class. We
would use the notation K for knot as well as conformations which will be clear from
the contexts.

15
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3.1.1 Crossing index

It is the least number of crossings for any projection of the conformations of that knot
type. Let us give a formal definition.

Definition 3.1.1. Crossing number of a conformation K is defined as c(K) = min
~v∈S2

(c~v(K))

where c~v(K) is the number of crossings in the projection of the knot to a plane perpendicular to
~v. Crossing index of knot [K] is defined as c[K] = min

K′∈[K]
c(K′)

c[K] = min
K′∈[K]

min
~v∈S2

(c~v(K
′))

The natural question to ask is how crossing index behaves under composition of knots.
It is straight forward to observe that c[K1#K2] ≤ c[K1] + c[K2]. M. Lackenby [Lac09]
proved the following theorem on the lower bound.

Theorem 3.1.1. c[K1]+c[K2]
152 ≤ c[K1#K2] ≤ c[K1] + c[K2]

We have a much stronger result for crossing index of composition of two torus knots
proved by Y.Diao [Dia04]. He defined something called the deficiency of a knot, d[K] =
c[K]− b[K]− 2g[K] + 1 where b[K] is the bridge index of knot which will be defined
later. He proved a more general theorem that for two knots having deficiency zero,
the crossing number of composition is sum of crossing numbers of individual knots.
Then the following theorem follows from the fact that all torus knots have deficiency
zero.

Theorem 3.1.2. If K1 and K2 are torus knots then c[K1#K2] = c[K1] + c[K2]

We explicitly know the crossing index of torus knots.

Theorem 3.1.3. For p < q, c[T(p, q)] = (p− 1)q.

Proof. Refer [Mur91].

For alternating knots we have the following theorem.

Theorem 3.1.4. The crossing index of an alternating knot or link is realized in any reduced
alternating projection.

Proof. Refer [Kau87].

From the alternating projection of the individual knots an alternating projection of
the composition of these knots can be constructed. Therefore the composition of two
alternating knots is an alternating knot. Using this fact and the above theorem we
have the following theorem.

Theorem 3.1.5. If K1 and K2 are alternating knots then c[K1#K2] = c[K1] + c[K2]
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3.1.2 Unknotting index

It is the least number of crossing changes in any projection of the conformations of that
knot type to obtain a projection of an unknot.

Definition 3.1.2. Unknotting number of a conformation K is defined as u(K) = min
~v∈S2

(u~v(K))

where u~v(K) is the number of crossing changes required in the projection of the knot to a plane
perpendicular to ~v for making it into an unknot. Unknotting index of knot [K] is defined as
u[K] = min

K′∈[K]
u(K′)

u[K] = min
K′∈[K]

min
~v∈S2

(u~v(K
′))

It is straight forward to see that u[K] = 0 if and only if K is an unknot. In Figure 3.1
if we switch the darkened crossings we get unknots. For trefoil knot and figure-eight
knot switching just one crossing gives us unknot and since they are nontrivial the un-
knotting index should be 1. Proving that the unknotting index of knot 74 (the third
knot given in Figure 3.1) is 2 is much more difficult, one has to show that switching
one crossing does not unknot 74.

Figure 3.1: The darkened crossings are the candidates for unknotting the given knots
(taken from [ABF09])

It was proved by M. Scharlemann in [Sch85] that u(K1#K2) ≥ 2 for nontrivial knots K1

and K2. In the same paper he proved the following theorem.

Theorem 3.1.6. Knots of unknotting number one are prime.

Kronheimer and Mrowka in [KM93] gave an explicit formula for unknotting index of
torus knots.

Theorem 3.1.7. For p < q, u[T(p, q)] = (p−1)(q−1)
2 .
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3.1.3 Bridge index

This invariant was introduced by H. Schubert [Sch54].

Definition 3.1.3. Bridge number of a conformation K is defined as b(K) = min
~v∈S2

(b~v(K))

where b~v(K) called as crookedness of K with respect to ~v is the number of local maxima of
the function ~v · ~γ(t), ~γ(t) being the parameterization of the knot. Bridge index of knot [K] is
defined as b[K] = min

K′∈[K]
b(K′)

b[K] = min
K′∈[K]

min
~v∈S2

(b~v(K
′))

It is easy to observe that the bridge index of an unknot is 1. There is an alternate
definition for bridge index using knot diagrams. It is defined as the minimal number
of disjoint bridges over all the knot diagrams and knot conformations where a bridge
is a strand of the knot diagram which is an overcrossing strand. From this alternate
definition it is easy to see that if b[K] = 1 then K is an unknot. Hence, we have b[K] = 1
if and only if K is an unknot.
Again we need to know how the bridge index modifies with respect to composition
of knots. The following theorem was proved by Schubert in [Sch54] on behaviour of
bridge index under connected sum.

Theorem 3.1.8. For knots K1 and K2 we have,

b[K1#K2] = b[K1] + b[K2]− 1

Schubert also proved the following theorem on the bridge index of a torus knot.

Theorem 3.1.9. For p < q, b[T(p, q)] = p.

Schubert gave a complete classification of 2-bridge knots, knots with bridge index 2. 2-
bridge knots are called rational knots, they are numerator closures of a rational tangles
and each rational tangle is associated with a rational number (see [KL03] for details).
Then the theorem is stated as,

Theorem 3.1.10. Suppose that the numerator closures of rational tangles with fractions p
q

and p′
q′ ( gcd(p, q) = 1 and gcd(p′, q′) = 1 ) are denoted by K( p

q ) and K( p′
q′ ), then K( p

q ) and

K( p′
q′ ) are isotopic if and only if

(i) p = p and

(ii) either q ≡ q′( mod p) or qq′ ≡ 1( mod p).
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3.1.4 Stick index

Definition 3.1.4. Stick index or minimal stick number of knot [K] is the smallest number of
sticks required to realize the knot as a polygonal knot. It is denoted by s[K]

We have the following theorem regarding the relation between stick index and cross-
ing index.

Theorem 3.1.11. For any nontrivial knot K,

5 +
√

9 + 8c[K]
2

≤ s[K] ≤ 2c[K]

Proof. Refer [Cal01].

Corollary 3.1.12. Any knot with stick index n where 3 ≤ n ≤ 5 is an unknot.

Corollary 3.1.13. The stick index of trefoil knot is 6.

In Theorem 3.1.11 the lower bound is obtained by considering the total number of
crossings possible in the projection along an edge of the polygonal knot. If we instead
consider the projection onto a sphere with one of the vertices of the polygonal knot as
the centre and look at the possible number of crossings we get a much stronger lower
bound. The following theorem gives the new lower bound on stick index.

Theorem 3.1.14. For a nontrivial knot K,

s[K] ≥ 7 +
√

1 + 8c[K]
2

Proof. Refer [Cal01].

Corollary 3.1.15. The stick index of figure eight knot is 7.

Proof. From the above theorem the stick index is strictly greater than 6. We also know

Figure 3.2: Stick representations of Trefoil knot and Figure eight knot respectively
(from the [Cal01])

that there is a stick representation of figure eight knot with 7 sticks (see Figure 3.2). So
we get s[41] = 7.
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For torus knots in general we have

Theorem 3.1.16. For p < q,

1. s[T(p, q)] = 2q for 2 ≤ p < q < 2p

2. s[Tp,2p+1] = 4p for p ≥ 2

Proof. Refer [AS09] and [Jin97].

3.1.5 Braid index

In R3, let A = {(x, 0, 1)|x ∈ Z, 1 ≤ x ≤ n} and B = {(x, 0, 0)|x ∈ Z, 1 ≤ x ≤ n}.
An n-strand braid is defined as set of n non-intersecting smooth paths which connects
points in A to points in B. For all x ∈ {1, 2, ..., n} joining (x, 0, 1) ∈ A to (x, 0, 0) ∈ B
through smooth paths outside the 3-dimensional cube [0, 1]3 would give us a closure
of the braid or closed braid. J.W Alexander in [Ale23] proved that every knot is a
closed braid, this is called the Alexander’s theorem.

Figure 3.3: The figure in the left is a braid and the one in the left is its braid closure

Definition 3.1.5. Braid index of knot isotopy class [K] is the smallest n such that K is the
closure of n-strand braid. It is denoted by β[K].

There is an alternate definition for braid index which will be of our interest, The equiv-
alence of these definitions can be found in [Yam87].
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Definition 3.1.6. Braid number of a conformation K is defined as β(K) = min
~v∈S2

(β~v(K)) where

β~v(K) is the number of Seifert circles in the knot diagram when K is projected to a plane
perpendicular to ~v. Braid index of knot [K] is defined as β[K] = min

K′∈[K]
β(K′)

β[K] = min
K′∈[K]

min
~v∈S2

(β~v(K
′))

Birman and Menasco in [BM90] proved the following theorem on how braid index
behaves under connected sum.

Theorem 3.1.17. For knots K1 and K2 we have,

β[K1#K2] = β[K1] + β[K2]− 1.

We have the following relation between braid index and bridge index.

Theorem 3.1.18. For a knot K, b[K] ≤ β[K].

Proof. Let Figure 3.4 represent the minimal braid representation of the knot, K. It can
be clearly observed there are β[K] no. of local maxima in the direction given by the
arrow. Therefore b[K] ≤ β[K].

Figure 3.4: There are β[K] no.of local maxima in the direction given by the arrow.
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It can be observed that all the invariants bridge index, crossing index, braid index,
and unknotting index were defined as a min-min invariant; i.e, these invariants are
defined as taking a minimum of a function over S2 and then taking the minimum over
all the knot conformations in a knot isotopy type. Any continuous function from a
compact set has an absolute maximum and an absolute minimum hence, it is possible
to define define min-max invariants; i.e, take the maximum of the function over S2

and then minimize it over all the knot conformations in a knot isotopy type. These
min-max invariants are called the superinvariants, for example, superbridge index,
supercrossing index, superbraid index, and superunknotting index. We will study
some of these in detail.

3.1.6 Superbridge index

N.H.Kuiper introduced this new knot invariant in [Kui87].

Definition 3.1.7. Sb[K] = min
K′∈[K]

max
~v∈S2

(b~v(K
′)).

From the definition it is clear that for a knot K, b[K] ≤ Sb[K] but Kuiper infact proved
that this inequality is actually strict ie, b[K] < Sb[K] making use of the concepts of total
curvature of knots introduced by Milnor in [Mil50].

Theorem 3.1.19. For any knot K, Sb[K] ≤ 5b[K] + 3.

Proof. Refer [WS03].

Kuiper in [Kui87] proved that the superbridge index is bounded above by twice the
braid index and explicitly calculated the superbridge index for torus knots.

Theorem 3.1.20. For a knot K, Sb[K] ≤ 2β[K].

The proof of the above theorem follows by giving a parameterization for knots of
braid index β[K] and then calculating the number of local maxima making use of this
parameterization.

Theorem 3.1.21. For coprime integers p and q such that 2 ≤ p < q, superbridge index of the
torus knot T(p, q) is given by Sb[T(p, q)] = min{2p, q}.

The proof follows by looking at a general parameterization for torus knots T(p, q) and
then computing the number of local maxima from this parameterization.



3.1. NUMERICAL INVARIANTS 23

The above theorem guarantees the existence of infinitely many knots of even super-
bridge index. For torus knots of type (n, nk + 1) where n ≥ 2 and k ≥ 2, the super-
bridge index is 2n. Hence, for a fixed n varying the value of k over integers greater
than 2 will give us infinitely many knots of superbridge index 2n. It is infact proved
that there are infinitely many knots of superbridge index greater than 4. What about
knots of superbridge index 3? Choon Bae Jeon and Gyo Taek Jin proved that there are
only finitely many 3-superbridge index knots. We will be giving a detailed proof of
this theorem in the next chapter.
The following theorem discusses how bridge index and superbridge index of a knot
changes when acted upon by an isomorphism of the ambient space R3.

Theorem 3.1.22. Let T : R3 −→ R3 be an isomorphism then for every knot K,

Sb[K] = Sb[T(K)],

b[K] = b[T(K)].

.

Proof. Refer [WS03].

Jin noted that for a knot in stick conformation projected along a particular vector, the
local maxima must occur at the vertices of sticks or along the sticks perpendicular to
the vector. Also, the local maxima will not occur at an edge and its vertices simulta-
neously. Therefore the number of local maxima obtained is atmost half the number of
vertices or edges; i.e,

Theorem 3.1.23. For a knot K, s[K] ≥ 2Sb[K].

Proof. Refer [Jin01].

3.1.7 Supercrossing index

Definition 3.1.8. Sc[K] = min
K′∈[K]

max
~v∈S2

(c~v(K
′)).

Theorem 3.1.24. For any knot K, Sc[K] ≥ c[K] + 3

Proof. It is sufficient to prove these for polynomial knots. We will prove that for a
given knot there will be distinct projections that differ in crossing number by 3. The
idea is to find a projection such that a slight change of perspective would mimic the
Reidmeister moves I and II.
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Figure 3.5: Slight change of perspective which induces Reidemeister move I.

Figure 3.6: Slight change of perspective which induces Reidemeister move II.

We fix a vertex p and choose a tangent at p which intersects the knot at q a point
not on the edges containing p. Now if we project along this tangent then the two
edges containing p will be projected onto one line segment. Looking only at these
adjacent edges, a slight change of perspective (see Figure 3.5) will induce Reidemeister
move I. Now the projection takes p to q a slight change of perspective (see Figure 3.6)
in looking at the edge containing q and the two edges containing p would induce
a Reidemeister move II. Together they give two distinct projections with a crossing
number difference of 3.

Corollary 3.1.25. For every nontrivial knot K, Sc[K] ≥ 6

Theorem 3.1.26. If the stick index of a knot is s then,

Sc[K] ≤ s(s− 3)
2

f or odd s, and

Sc[K] ≤ s(s− 4)
2

+ 1 f or even s.

Proof. Refer [Ada+02].

For a knot with stick index s every edge can intersect (s− 3) other non-adjacent edges
hence Sc[K] ≤ s(s−3)

2 is true for all s. s(s−3)
2 is the total number of crossings that are

possible in general. But when s is even we have restrictions on the number of edges
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which can intersect all other edges which are non-adjacent to it. Hence, when s is even
we have a much stronger inequality. Using this inequality and Theorem 3.1.11 we get
the following relation between crossing index and supercrossing index.

Theorem 3.1.27. c[K] + 3 ≤ Sc[K] ≤ 2(c[K])2 − 3c[K].

Again if we already know that the stick index is even, we have a stronger upper bound
Sc[K] ≤ 2(c[K])2 − 4c[K] + 1. From this new bound we have the following.

Corollary 3.1.28. For a trefoil knot (31), 6 ≤ Sc[31] ≤ 7.

The problem of whether the supercrossing index of 31 is actually 6 or 7 still remains
unproven.
The following theorem discusses how crossing index and supercrossing index of a
knot changes when acted upon by an isomorphism of the ambient space R3.

Theorem 3.1.29. Let T : R3 −→ R3 be an isomorphism then for every knot K,

Sc[K] = Sc[T(K)]

c[K] = c[T(K)]

.

Proof. Refer [Dia18].

Similarly, we can define the super counterparts of the min-min invariants: unknotting
index and braid index. No active study has been done on these, we will be defining
these.

3.1.8 Superunknotting index

Definition 3.1.9. Su[K] = min
K′∈[K]

max
~v∈S2

(u~v(K
′)).

3.1.9 Superbraid index

Definition 3.1.10. Sβ[K] = min
K′∈[K]

max
~v∈S2

(β~v(K
′)).
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Chapter 4

3-Superbridge knots

In this chapter we will focus on 3-superbridge knots, knots with superbridge index 3.
It was proved by Choon Bae Jeon and Gyo Taek Jin in [JJ01] that there are only finitely
many 3-superbridge knots. We will be giving the proof in detail.

Lemma 4.0.1 (Local straightening). Given a knot K, let K′ be a knot obtained by replacing
a subarc of K with a straight line segment joining the end points of the subarc. Then Sb(K) >
Sb(K′).

Proof. Refer [JJ01].

Remark 4.0.1. For 3-superbridge knots, the superbridge number remains unchanged under
local straightening.

This is because for nontrivial knots, superbridge index is always strictly greater than
the bridge index. It is therefore strictly greater than 2. Hence, local straightening
cannot reduce the superbridge number.

Definition 4.0.1. Quadrisecant is a straight line intersecting a knot at four distinct points.

The following theorem was proved by E. Pannwitz in [Pan33].

Theorem 4.0.2. Every nontrivial knot has a quadrisecant.

Definition 4.0.2. The quadrisecant Q of a nontrivial knot K is said to be topologically non-
trivial if, for any two points X and Y of K ∩Q which are adjacent along Q, any disk bounded
by the line segment XY and the arc of K−Q that has end points X and Y meets the interior of
the knot K.

G. Kuperberg [Kup97] proved the following theorem.

Theorem 4.0.3. Every nontrivial knot has a topologically nontrivial quadrisecant.

27



28 CHAPTER 4. 3-SUPERBRIDGE KNOTS

Let K be a 3-superbridge knot with superbridge number 3 ie, Sb[K] = Sb(K) = 3 and
let Q be a quadrisecant of K. Then K−Q consists of four disjoint open arcs l1, l2, l3 and
l4. Suppose π : R3 −→ Q⊥ is the orthogonal projection of R3 onto a plane Q⊥ perpen-
dicular to the quadrisecant, denote π(li) and π(Q ∪ li) by li and l̃i respectively. Using
local straightening we assume that the singular points of π(K) are the the quadruple
point π(Q) and finitely many transversal double points. For every open subarc l of K,
let b~v(K|l) be the number of local maxima of K along the direction ~v on l. Since each l̃i
is closed loop in Q⊥, we must have

b~v(K|li) > 1 or b−~v(K|li) > 1 (4.1)

for every ~v ∈ Q⊥.
For every straight line ρ in Q⊥, denote a unit vector perpendicular to ρ by ~vρ.

Sublemma 4.0.1. We may assume that li has no self crossings ∀ i ∈ {1, 2, 3, 4}.

Proof. Suppose li has self crossings. Then choose a loop λ of li which is minimal (no
subarc of λ is a loop). Then λ bounds an open disc δ.

Case 1: π(K) ∩ δ = φ

We can eliminate this arc by local straightening.

Case 2: li ∩ δ 6= φ

∃ ρ a half line starting from π(Q) which meets li atleast 3 times. Since λ is a closed
loop ∃ one local maxima along ~vρ and −~vρ. Since ρ crosses li and li should complete
a loop at π(Q) there should be atleast one additional local maxima in the direction ~vρ

and −~vρ. Therefore,
b~vρ

(K|li) > 2 and b−~vρ
(K|li) > 2 (4.2)

Fixing this i and a direction ~vρ or −~vρ, two among the other three arcs would have
atleast one local maxima in that direction, which implies

b~vρ
(K) >

4

∑
j=1

b~vρ
(K|lj) > 4 or b−~vρ

(K) >
4

∑
j=1

b−~vρ
(K|lj) > 4 (4.3)

contradicting Sb(K) = 3

Case 3: lj ∩ δ 6= φ where j 6= i
Among the half lines starting from π(Q) through δ, ∃ ρ which crosses lj such that for
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~w = ~vρ or ~w = −~vρ we have

b~w(K|li) > 2, b−~w(K|li) > 1, b~w(K|lj) > 1, b−~w(K|lj) > 1 (4.4)

Fixing this i and j, one among the other two arcs should have a local maxima in the
direction ~w, which implies

b~w(K) >
4

∑
j=1

b~w(K|lj) > 4 (4.5)

contradicting Sb(K) = 3

Sublemma 4.0.2. We may assume that l̃i bounds an open disk δi in Q⊥ which is star-shaped
with respect to π(Q).

Proof. Since l̃i is a loop, it bounds an open disc δi in Q⊥.
Suppose δi is not star-shaped with respect to π(Q) =⇒ ∃ a half line ρ in Q⊥ starting
from π(Q) such that it meets li more than once.

Case 1: If ρ meets li at three or more points. Then condition 4.2 happens and we get
the contradiction 4.4.

Figure 4.1: Deformations that makes the disc bounded star-shaped (taken from [JJ01]).

Case 2: If ρ meets li at two points. There are two discs R and S bounded by li and ρ as
in Figure 4.1. There are two subcases.
Subcase 1: If lj meets R ∪ S then ∃ ρ′ starting from π(Q) crossing lj at a point in R ∪ S.
Then condition 4.3 happens and we get the contradiction 4.5.
Subcase 2: π(K) ∩ (R ∪ S) = φ. We can straighten out the part of li without changing
the knot type. δi can be made star-shaped with finitely many modifications.
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Sublemma 4.0.3. None of the following conditions hold when h, i, j, k are distinct elements of
{1, 2, 3, 4}.

δi ∩ δj ∩ δk 6= φ (4.6)

δi ∩ δj 6= φ and δk ∩ δh 6= φ (4.7)

δi ∩ δj 6= φ, δi ∩ δk 6= φ and δi ∩ δh 6= φ (4.8)

Proof. Assuming these conditions are true, we will find a line ρ in Q⊥ such that it in-
tersects the knot atleast 8 times which will inturn show that b~vρ

(K) > 4 contradicting
Sb(K) = 3

Case 1: If condition 4.6 is true choose points P1 ∈ δi ∩ δj ∩ δk and P2 ∈ δh such that the
straight line ρ joining the points does not pass through π(Q). Then for a ∈ {i, j, k, h},
la crosses ρ at least twice.

Case 2: If condition 4.7 is true then choose points P1 ∈ δi ∩ δj and P2 ∈ δk ∩ δh

such that the straight line ρ joining the points does not pass through π(Q). Then
for a ∈ {i, j, k, h}, la crosses ρ at least twice.

Case 3: If condition 4.8 is true, we can choose three points Pa ∈ δi ∩ δa for a ∈ {j, k, h}
such that the three line straight lines determined by pairs of Pa’s do not pass through
π(Q). Since condition 4.6 cannot happen all edges of ∆PjPkPh intersects π(K) even
number of times. There are two subcases to consider:
Subcase 1: If π(Q) is contained inside ∆PjPkPh, then the boundary of the triangle inter-
sects π(K) atleast eight times and since all the edges intersects even number of times,
one among the three edge should intersect π(K) atleast four times. Extent this edge
and choose this as ρ.
Subcase 2: If π(Q) is contained outside ∆PjPkPh, then ∃ a vertex say Ph such that it
intersects the opposite side PjPk here. Since condition 4.6 cannot occur, the edge PjPk

meets π(K) atleast four times. Take ρ to be the extension of PjPk.

Sublemma 4.0.4. We may assume that the only crossings in li ∪ lj are a set of finitely many
consecutive half twists.

Proof. Sublemma 4.0.1 prevents self crossings and condition 4.6 of Sublemma 4.0.3
implies li ∪ lj cannot intersect any of the other to la’s. From Sublemma 4.0.2 we can
assume that δi’s are star shaped discs with respect to π(Q).
Therefore if a ray in Q⊥ starting from π(Q) meets li and lj, then it meets each of them
exactly once and no other la’s. This inturn implies that the only crossing in li ∪ lj if it
exists is a set of finitely many half twists.
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Sublemma 4.0.5. We may assume that π(K) is as in Figure 4.2 upto planar isotopies of Q⊥,
where each rectangle contains a pair of arcs with finitely many half twists.

Figure 4.2: The distinct projections along quadrisecant possible upto planar isotopies
(taken from [KSY01]).

Proof. This follows directly from the previous sublemmas.

Suppose δi ∩ δj 6= φ and that none of δi and δj contains the other completely. The
connected component of δi − (δj ∪ lj) which does not meet π(K). Such a region is
referred to as a crescent. The boundary of a crescent has only two singular points of
π(K) called as the ends of the crescent. The crescent can have the quadruple point
π(Q) as one of it’s ends.
Now suppose δi is completely inside δj, then we have a loop which passes through
π(Q) which is the projection of one subarc of K. Then the disc bounded is called a
loop crescent.
Crescents are said to be alternating if one of the arcs on the boundary of the crescent
passes over the other arc at one end then it passes under the other arc at the other end.

Sublemma 4.0.6. We may assume that every crescent which is not a loop crescent is alternat-
ing. We may also assume that no crescent is a loop crescent.

Proof. If the crescent is non-alternating then we can remove the two crossings which
makes it non-alternating by a local straightening in the two arcs as shown in the Figure
4.3. By Remark 4.0.1 the superbridge number remains unchanged.

If there is a loop crescent, we may straighten a small arc of the loop near π(Q) without
changing the knot type and the superbridge number. Then Q becomes a trisecant. We
look at distinct configurations of cylindrical neighbourhoods of trisecant upto small
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Figure 4.3: Removing non-alternating crescents (taken from [KSY01]).

perturbations and planar isotopies. For the number of such distinct configurations we
look at the choice of pairs of 6 points on a circle ((6

2)(
4
2)(

2
2)) and to remove repetition

divide it by number of order in which the pairs could be chosen (3!) ie, (6
2)(

4
2)(

2
2)

3! = 15.
Figure 4.4 gives distinct configurations upto rotations.
Upon rotation each of these configurations give rise to 2, 3, 6, 3, and 1 distinct config-
urations respectively. Therefore there are 15 possible configurations proving that upto
rotations these five are the distinct configurations.

Figure 4.4: The 5 distinct configurations possible at the cylindrical neighbourhood
around the trisecant upto rotations, small perturbations and planar isotopy (taken
from [KSY01]).

From Table 4.1 it can be observed that if loop crescents exist then it is an unknot, a link
or a torus knot. 3-superbridge knots are nontrivial and the only 3-superbridge torus
knot is trefoil. Since presence of loop crescents leads to only one knot type: trefoil, it
can be assumed that there exists no loop crescents.

Sublemma 4.0.7. We may assume that no two arcs li and lj can meet more than three times.

Proof. Suppose the two arcs li and lj meet atleast 4 times. For any crossing point Z
of li ∪ lj let Z0 be the mid point of the line segment joining Zi = π−1(Z) ∩ li and
Zj = π−1(Z) ∩ lj. Let O be a point on Q which separates the four points of K ∩Q two
by two. There are two cases to consider,

Case 1: Suppose, the closure of li ∪ lj is not connected. Let us denote the starting and
ending points of li by A and B respectively and that of lj by C and D respectively.
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Configurations

either an unknot or a link torus knot

link unknot

either an unknot or a link
either an unknot or a torus

knot

unknot torus knot

unknot torus knot

Table 4.1: The knots or links possible for a given projection along a trisecant and for
each of the 5 distinct configurations possible at the cylindrical neighbourhood around
the trisecant upto rotations, small perturbations and planar isotopy.
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Subcase 1.1:
Suppose O separates A and D, then, B and C is also separated by O. Let X and Y be the
first and second crossing of li ∪ lj along li, respectively. Then Q, π−1(X) and π−1(Y)
cuts the knot K into 8 disjoint arcs. Take P to be the plane determined by O, X0 and Y0.
Then it can be observed that each of the six arcs, two from K − (li ∪ lj), two between
Q and π−1(X), and two between π−1(X) and π−1(Y) crosses P .
If O separates A and B, then, C and D is also separated by O. Then, it can be observed
that the remaining two arcs between π−1(Y) and Q crosses P . So we have a plane P
such that the knot crosses the plane 8 times. Therefore Sb(K) > 4, a contradiction.
If O does not separate A and B, then it does not separate C and D. Then again the
remaining two arcs between π−1(Y) and Q crosses P (look at the crossing next to Y).
Therefore, we have the same contradiction here.
Subcase 1.2:
Suppose O does not separate A and D, then, it does not separate B and C either. Then,
it can be observed that there exists a disc such that it does not intersect K. Such a case
can be avoided by choosing a topologically nontrivial quadrisecant to begin with.

Case 2: Suppose the closure of li ∪ lj is connected. We assume that the starting point
point and the ending point of li is A and B respectively. We also assume that the
starting point of lj is the ending point of li. Let C be the end point of lj and D be the
remaining point in K ∩Q.
Subcase 2.1:
Suppose O separates B from A and C. Then B and D are on the same side of O in Q.
Let X and Y be the first and second crossing points of li ∪ lj along li. Choose points
X+ ∈ π−1(X) and Y− ∈ π−1(Y) such that

−→
OX+ =

−→
OX0 +

||−−→XiXj||
||−→OA||

−→
OA and

−→
OY− =

−→
OY0 +

||−→YiYj||
||−→OB||

−→
OB

Choosing P to be the plane determined by the points O, X+ and Y− we have all the 8
arcs in K− (π−1(X)∪π−1(Y)∪Q) crossing P arriving at the contadiction, Sb(K) > 4.
Subcase 2.2:
Suppose O separates A from B and C. Then, A and D is in the same side of O in Q. Let
la be the arc with end points A and D and let lb be the arc with end points C and D.
By assuming that Q is topologically nontrivial, we know that lb is the only arc corre-
sponding to the simple loop. Therefore there is a crossing point between la and li ∪ lj,
say Y. Consider the simple loop in l̃i ∪ l̃j created by the last crossing point of li ∪ lj
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along li. By Sublemma 4.0.6, this loop must have a crossing with la. Again, by the
assumption of Q being topologically nontrivial, Y can be chosen such that

−−→
Y0Ya and

−→
OA are in opposite directions. Also, let X be the first crossing point of li ∪ lj along li.
Take P to be the plane determined by the points O, X0 and Y0. Then the following five
arcs, two from la − π−1(Y), the arc lb and the two between Q and π−1(X), crosses the
plane.
If la crosses li at Y, then, the three arcs joins Xi, Yi, B and Xj, successively. Conse-
quently, K crosses P 8 times and results in the contradiction, Sb(K) > 4.
If la crosses lj at Y, then, the three arcs joins Xi, B, Yj and Xj, successively. In this case,
the arc joining the points B and Yj crosses P . Also, since there is a crossing point in
li ∪ lj other than X, the union of the two remaining arcs should cross P atleast twice.
Then again, K crosses P atleast 8 times and results in the contradiction, Sb(K) > 4.
Subcase 2.3:
Suppose O seperates C from the two points A and B. This can be handled in a similar
way as the above subcase.

Sublemma 4.0.8. There are finitely many possible diagrams for K obtained from π(K) by
perturbing near the quadrisecant.

Proof. We look at the distinct configurations possible at the cylindrical neighbourhood
around the quadrisecant upto rotations, small perturbations and planar isotopy. There
are 18 such configurations as shown in the Figure 4.5.

Figure 4.5: The 18 distinct configurations possible at the cylindrical neighbourhood
around the quadrisecant upto rotations, small perturbations and planar isotopy (taken
from [KSY01]).

.
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The number of distinct configurations possible ie, (8
2)(

6
2)(

4
2)(

2
2)

4! = 105 coincides with the
number of distinct configurations obtained from the 18 configurations upon rotation.
Therefore, these are all the configurations possible upto rotations, small perturbations
and planar isotopies.

Theorem 4.0.4. There are only finitely many 3-superbridge index knots.

Proof. From all the sublemmas described above it can be noted that there are only
finitely many knot diagrams that are possible. Therefore, there are only finitely many
possible knot types.

It is conjectured that trefoil and figure-eight knot are the only knots with superbridge
index 3.



Chapter 5

Polygonal knots

Parameterizing knots has been useful in defining certain knot invariants such as stick
index, polynomial degree, etc. and estimating certain knot invariants such as bridge
index, superbridge index, etc. Two of the parameterizations that we will be interested
in are polygonal knots and polynomial knots. While polygonal knots give us classical
compact knots, polynomial knots give us non-compact long knots. We will be study-
ing about the space of these parameterizations, its topology and see how knot isotopy
problems get translated to path equivalence problems in this space.

5.1 The space of polygonal knots

Every knot has a polygonal representation and the stick index gives the minimum
number of edges required to give a polygonal representation of the knot. A knot in its
polygonal representation is called a polygonal knot.

Definition 5.1.1. A polygonal isotopy is an ambient isotopy of R3 which keeps the number of
edges of the polygon in R3 fixed.

Two polygonal knots are said to be equivalent if there exists a polygonal isotopy be-
tween them. We will see later that polygonal isotopy is in fact stronger than isotopy.
Any embedded n-sided polygon (one which has no self-intersections), P in R3 with a
choice of distinguished vertex and an orientation is called a rooted oriented n-polygon.
Any rooted oriented n-polygon, P can be viewed as a point in R3n listing the coordi-
nates in the order in which the vertices appear with respect to the orientation tak-
ing the distinguished vertex as the first vertex. If vi = (xi, yi, zi) for 1 ≤ i ≤ n are
the vertices of the n-polygon with v1 as the first vertex and the vertices numbered
according to the orientation chosen, then P = 〈v1, v2, ...vn〉 can be represented by
(x1, y1, z1, x2, y2, z2, ....., xn, yn, zn) ∈ R3n.

37
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But not every point in R3n would give you an embedded n-sided polygon since there
are possibilities for self intersections. The set of such points is called the discriminant
denoted by Σ(n). For polygons P = 〈v1, v2, ....vn〉 with v1v2 intersecting v3v4 we have,

(v2 − v1)× (v3 − v1) · (v4 − v1) = 0

(v2 − v1)× (v3 − v1) · (v2 − v1)× (v4 − v1) < 0

(v4 − v3)× (v1 − v3) · (v4 − v3)× (v2 − v3) < 0

So the set of polygons with v1v2 intersecting v3v4 is the closure of the locus described
by the above system, hence forming a real semi-algebraic cubic variety. Discriminant
can also be defined as the union of closure of n(n−1)

3 of such real semi-algebraic vari-
eties each consisting of n-polygons having a pair of intersecting edges.

Definition 5.1.2. The space of geometric knots or geometric knot space is defined to be the
compliment of determinant,

Geo(n) = R3n − Σ(n)

Geo(n) is an open subset of Rn since Σ(n) being a finite union of closed sets is closed.
Hence Geo(n) is an open submanifold of Rn, it is infact an open dense submanifold
since any element in Σ(n) can be perturbed by a small amount to get an embedded
n-polygon. Using the bijection from the set of embedded n-polygons to Geo(n) we
can give a topology on the set of embedded n-polygons inducing from the subspace
topology on Geo(n).
It can be observed that a path h : [0, 1] −→ Geo(n) gives a polygonal isotopy in the
space of polygonal knots. So, path components in Geo(n) gives the equivalence classes
of polygonal knots.

Theorem 5.1.1. The spaces Geo(3), Geo(4) and Geo(5) are path connected and consists only
of unknot.

Proof. Fix a plane and choose a triangle in it. Any element in Geo(3) is a triangle and
we can find an polygonal isotopy from this element to the chosen triangle. Hence,
Geo(3) is path connected.
Any element in Geo(4) is a quadrilateral and each quadrilateral has two triangles at-
tached along a side (a hinge). We can rotate one of the triangles along the hinge to get
a planar quadrilateral. Hence, Geo(4) is path connected.
Suppose P = 〈v1, v2, v3, v4, v5〉 is an element of Geo(5) then we have two cases. If
∆v1v2v3 is not intersected by P then you can just straighten the sides v1v2 and v2v3

into one long line segment making it a quadrilateral. If ∆v1v2v3 is intersected by P
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then v4v5 intersects the triangle and in this case ∆v4v5v1 is not intersected hence can
be straightened into a quadrilateral. Then path connectedness of Geo(4) guarantees the
path connectedness of Geo(5).

To study the topology of Geo(n) we look at a stratification of the knot space. Consider
the map g : Geo(n) −→ Geo(n−1) defined by

P = 〈v1, v2, ...., vn〉 7→ g(P) = 〈v1, v2, ...., vn−1〉

This map is not necessarily well defined. There can be cases in which Geo(n) has poly-
gons where the line segment joining v1vn−1 is intersected. But in all these cases small
perturbations can be made so that the image of every element is in Geo(n−1). Fixing
Q ∈ Geo(n−1) it can be observed that g−1(Q) is a 3-manifold of Geo(n). Considering
g−1(Q) for all Q ∈ Geo(n−1) we get a stratification of Geo(n) into 3-manifolds.
The geometric knot spaces Geo(6) and Geo(7) were studied in detail. It was proved that
Geo(6) contains a component of unknot and two components each of right-handed
trefoil and left-handed trefoil. In the case of Geo(7) unknot, right-handed trefoil and
left-handed trefoil has one component each and there are two components of figure-
eight knot. We will be studying these theorem and will be studying about invariants
for geometric hexagons and geometric heptagons.

5.2 Geometric hexagons

5.2.1 The topology of Geo(6)

We will study the knot types that can be realized as hexagons.

Theorem 5.2.1. Geo(6) contains five path components, one component of unknots, two com-
ponents of right-handed trefoil and two components of left-handed trefoil.

Proof. Let H = 〈v1, v2, v3, v4, v5, v6〉 ∈ Geo(6), through a series of linear transforma-
tions in R3 we can take v1 = (0, 0, 0) and v5 = (a, 0, 0) where a > 0. We can also
perturb H such that H intersects the x-axis only at the points v1 and v5. Consider half
planes with x-axis as the boundary, let P2, P3 and P4 denote the half planes contain-
ing v2, v3 and v4. There is nothing special about the x-axis, we could’ve taken the line
containing v1 and v5 and all the half planes with this line as boundary.
Consider the order in which the these half planes occur as we rotate around the x-axis
in the clockwise direction starting from a half plane which does not intersect H. This
divides Geo(6) into six regions which intersect along 2-dimensional regions where
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1. two Pi’s are the same

2. edge of H intersects the x-axis

We have the following lemma which describes all the possible knots that can occur in
each of these regions. If the half planes occur in the order P2−P3−P4 we denote this
configuration by 2− 3− 4.

Lemma 5.2.2 (Structure lemma for Geo(6)). The given table gives the number of connected
components of different knot types in the six regions in Geo(6).

Configurations of the half planes 01 31 −31
2− 3− 4 1 0 0
2− 4− 3 1 1 0
3− 2− 4 1 1 0
3− 4− 2 1 0 1
4− 2− 3 1 0 1
4− 3− 2 1 0 0

Table 5.1: The number of components of unknot(01), right-handed trefoil(31) and left-
handed trefoil(−31) in each of the regions.

The proof of this lemma is just brute force analysis of possibility of knot types in
g−1(g(H)) if H is in any of these regions. The proof can be found in J.A Calvo’s PhD
thesis, [Cal98].
It can be noted that the regions 2− 3− 4 and 2− 4− 3 meet along the two dimensional
subsets where P3 = P4 and regions 4− 3− 2 and 3− 2− 4 meet along the two dimen-
sional subsets which contains hexagons for which v2v4 intersects x-axis. We call these
codimension 1 connections between different regions. All the connections between the
six regions can be summarised in the following figure.

Figure 5.1: Codimension 1 connections between different regions.
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The codimension 1 connections are set of hexagons where

1. P3 = P4

2. P2 = P3

3. P2 = P4

4. P3 = P4

5. P2 = P3

6. P2 = P4

7. v3v4 intersects
x-axis

8. v2v4 intersects
x-axis

9. v2v4 intersects
x-axis

10. v2v3 intersects
x-axis

It can be observed that adjacent regions have unknot common and the set of unknots
of all the regions form one component of Geo(6). Table 5.2 shows that 2− 4− 3 and
3 − 2 − 4 has right-handed trefoils. If these trefoils are in the same component we
should get a path from elements in 2− 4− 3 to 3− 2− 4 since these two are connected
through region 4− 3− 2, the path should contain a point which represents unknot. But
then this would imply that unknot and right handed trefoil are equivalent which is a
contradiction. Hence, trefoils in 2− 4− 3 and 3− 2− 4 forms two separate components
of Geo(6). Similarly, we can show that the left-handed trefoils in 4− 2− 3 and 3− 4− 2
forms the other two separate components of Geo(6).

5.2.2 Generating invariants for geometric hexagons

Definition 5.2.1. The curl of a hexagon H = 〈v1, v2, v3, v4, v5, v6〉 is defined as

curl(H) = sign((v3 − v1)× (v5 − v1) · (v2 − v1))

.The curl of a hexagon in some sense measures whether it twists up or down.

Note 5.2.1. It is an easy calculation to see that

1. Every trefoils of type 3− 2− 4 and 3− 4− 2 have negative curl

2. Every trefoils of type 2− 4− 3 and 4− 2− 3 have positive curl

Corollary 5.2.3. The curl of a rooted oriented hexagonal trefoil is invariant under geometric
deformations.

Proof. Let us assume that this is not the case, then there exists a path h : [0, 1] −→
Geo(6) such that curl(h(0)) = 1 and curl(h(1)) = −1. By intermediate value theorem
∃H ∈ Geo(6) such that curl(H) = 0 which implies that v1, v2, v3 and v5 lies in the
same plane. Such an H would be isotopic to Figure 5.2. It is easy to see that H is
clearly an unknot. But then we got that geometric trefoils are isotopic to an unknot, a
contradiction.
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Figure 5.2: Hexagon of curl zero (taken from [Cal98]).

Remark 5.2.1. It can be observed that for any geometric trefoils the plane containing the even
vertices lie either above or below the plane containing the odd vertices.

Let us define automorphisms r and s in Geo(6), for H = 〈v1, v2, v3, v4, v5, v6〉 ∈ Geo(6)

r〈v1, v2, v3, v4, v5, v6〉 = 〈v1, v6, v5, v4, v3, v2〉

s〈v1, v2, v3, v4, v5, v6〉 = 〈v2, v3, v4, v5, v6, v1〉

To begin with Geo(6) is the space of rooted oriented hexagons, r basically reverses the
orientation and s changes the root vertex by one cyclic permutation.
Let H be a geometric trefoil in Geo(6) such that all the even vertices lie above the plane
of all the odd vertices, then

curl(H) = sign((v3 − v1)× (v5 − v1) · (v2 − v1))

= +1 (5.1)

while for H with opposite orientation,

curl(rH) = sign((v5 − v1)× (v3 − v1) · (v6 − v1))

= − sign((v3 − v1)× (v5 − v1) · (v6 − v1))

= −1 (5.2)

From equations 5.1 and 5.2 we have,

curl(rH) = −curl(H)

.



5.2. GEOMETRIC HEXAGONS 43

This proves the following corollary.

Corollary 5.2.4. Geometric trefoils in Geo(6) are not reversible.

But trefoils are topologically reversible. There are restrictions in the deformations that
one can perform on geometric hexagons due to the presence of rigid edges and this
indeed is why the topological isotopy can’t be translated into a geometric isotopy.
Let us inspect more and see if the presence of two types of left and right handed trefoil
has something to do with the choice of the rooted vertex. We will see how curl behaves
under the automorphism s. Lets start with the same H we took before and it can be
observed that in the case of sH the even vertices lie below the plane containing all the
odd vertices. Therefore we have,

curl(sH) = −curl(H)

Which implies that curl clearly depends on the choice of rooted vertex. So we can
conclude that the irreducubility of trefoils in Geo(6) is a consequence of fixing a root.

Remark 5.2.2. The space Geo(6)/〈s〉 of non-rooted oriented embedded hexagons, and the
space Geo(6)/〈r, s〉 of non-rooted non-oriented embedded hexagons, each consist of exactly
three path-components.

If we know already that the trefoil is either right-handed or left-handed then curl can
distinguish between the two geometrically different trefoils in each of these. This is
the same as saying curl cannot completely distinguish all the five different geometric
hexagons. We will be introducing something called chirality which along with curl
will be able to distinguish between all the five hexagonal knot types.
For a rooted oriented hexagon H = 〈v1, v2, v3, v4, v5, v6〉 a triangle based at v2, ∆123 is
triangle with vertices v1, v2, and v3 oriented by the right hand rule. If H intersects
this triangle, it is either intersected by v4v5, v5v6 or both. The algebraic intersection
number of ∆123, ∆2 is taken to be 1 if one edge intersects in the direction of the orien-
tation and −1 if the intersection is in the opposite direction. If both the edges intersect
then they intersect in opposite directions hence ∆2 is taken to be 0. In a similar way al-
gebraic intersection number of ∆345, ∆4 and algebraic intersection number of ∆561, ∆6

are defined. The following lemma shows that ∆2, ∆4 and ∆6 completely distinguishes
different topological knots in Geo(6).
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Lemma 5.2.5. Let H be a hexagon. Then

(i) H is a right-handed trefoil ⇐⇒ ∆2 = ∆4 = ∆6 = 1

(ii) H is a left-handed trefoil ⇐⇒ ∆2 = ∆4 = ∆6 = −1

(iii) H is an unknot ⇐⇒ ∆i = 0 for some i ∈ {2, 4, 6}.

Proof. Refer [Cal98].

Definition 5.2.2. The chirality of a hexagon H is defined as ∆(H) = ∆2∆4∆6.

Note 5.2.2. From the above lemma we have,

• ∆(H) = 0 ⇐⇒ H is an unknot

• ∆(H) = 1 ⇐⇒ H is an right-handed trefoil

• ∆(H) = 1 ⇐⇒ H is an left-handed trefoil

Now we will use both the tools, curl and chirality we just introduced to define joint
chirality-curl which will be a complete invariant for geometric hexagons.

Definition 5.2.3. The joint chirality-curl of a hexagon H is defined as

J (H) = (∆(H), ∆2(H)curl(H))

Theorem 5.2.6. The joint chirality-curl is an invariant of hexagons under geometric deforma-
tion. In fact, the geometric knot type of a hexagon H is completely determined by the value of
its joint chirality-curl, since

J (H) =


(0, 0) ⇐⇒ H is an unknot

(+1, c) ⇐⇒ H is a right-handed trefoil with curl(H) = c

(−1, c) ⇐⇒ H is a left-handed trefoil with curl(H) = c

Proof. Theorem 5.2.1 shows that there are 5 path components and it can be observed
that for right-handed trefoil and left-handed trefoil the two different path components
corresponds to hexagons with curl +1 and −1 respectively. From Lemma 5.2.5 we
know that ∆(H) clearly distinguishes topological knots and for different topological
trefoils, curl distinguishes the geometrically different ones.
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5.3 Geometric heptagons

5.3.1 The topology of Geo(7)

We will study the knot types that can be realized as heptagons.

Lemma 5.3.1 (Structure lemma for Geo(7)). The given table gives the number of connected
components of possible knot types in different regions of Geo(7).

Configurations of the half planes 01 31 −31 41
2− 3− 4− 5 1 0 0 0
2− 3− 5− 4 1 1 1 0
2− 4− 3− 5 3 3 3 4
2− 4− 5− 3 5 4 4 6
2− 5− 3− 4 1 1 1 2
2− 5− 4− 3 1 1 1 2
3− 2− 4− 5 1 1 1 0
3− 2− 5− 4 1 2 2 0
3− 4− 2− 5 1 1 1 2
3− 4− 5− 2 1 1 1 2
3− 5− 2− 4 10 5 4 8
3− 5− 4− 2 5 4 4 6
4− 2− 3− 5 5 4 4 6
4− 2− 5− 3 10 5 4 8
4− 3− 2− 5 1 1 1 2
4− 3− 5− 2 1 1 1 2
4− 5− 2− 3 1 2 2 0
4− 5− 3− 2 1 1 1 0
5− 2− 3− 4 1 1 1 2
5− 2− 4− 3 1 1 1 2
5− 3− 2− 4 5 4 4 6
5− 3− 4− 2 3 3 3 4
5− 4− 2− 3 1 1 1 0
5− 4− 3− 2 1 0 0 0

Loop+ 3 1 1 2
Loop− 3 1 1 2

Table 5.2: The number of components of unknot(01), right-handed trefoil(31), left-
handed trefoil(−31) and figure-eight knot(41) in each of the regions.

Theorem 5.3.2. Geo(7) contains five path components, one component of unknots, one of
right-handed trefoil, one of left-handed trefoil and two components of figure-eight knots.

Proof. The proof is similar to the geometric hexagons case. We choose a generic hep-
tagon such that v1 and v6 lie in x-axis with v6 = (a, 0, 0) where a > 0. The 24 regions
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in Geo(7) are based on order in which the half planes P2, P3, P4 and P5 containing
v2, v3, v4 and v5 respectively exists when we go about clockwise around the x-axis
starting from a half plane which does not intersect the heptagon at all. But there are
geometric heptagons which intersects all the half planes and so in addition to the 24
regions we have two additional regions Loop+ and Loop− in which the vertices v2,
v3, v4 and v5 loop around the x-axis in right-handed and left-handed fashion respec-
tively. The structure lemma for geometric heptagon is given above. It is not easy as
the hexagonal case since each region has a lot of path components. We won’t be going
into the details there are multiple connections possible between components of trefoil
and unknot hence there are one component each of unknot, right-handed trefoil and
left-handed trefoil. It can be noted that there are two path components of figure-eight
knot. Suppose there exists a path between the figure-eight knots in the two compo-
nents then the path should contain a point in the boundary of one of the 26 regions.
By small perturbations this point can be assumed to be such that the heptagon on this
path intersects the x-axis more than twice. But this is impossible for a figure-eight knot
(one have to take cases by case to see this).

5.3.2 Generating invariants for geometric heptagons

For a geometric heptagon H = 〈v1, v2, v3, v4, v5, v6, v7〉 let us define the the following
functions,

Θ3(H) = sign((v7 − v1)× (v2 − v1) · (v3 − v1)),

Θ6(H) = sign((v6 − v1)× (v7 − v1) · (v2 − v1)).

Note 5.3.1. It can be noted that,

• if v3 and v6 lie on the same side of the plane containing v7, v1 and v2 then Θ3 = Θ6,

• if v3 and v6 lie on different sides of the plane containing v7, v1 and v2 then Θ3 = −Θ6.

Therefore, for a generic heptagon in Geo(7) the functions 1
2(Θ3 + Θ6) and 1

2(Θ3 −Θ6)

are Z2-complementary; i.e, exactly one of them is zero while the other is ±1.
For (i, j) ∈ {(3, 4), (4, 5), (5, 6)} define Iij to be the algebraic intersection number of the
edge vivj with ∆712, giving orientation from that of H.

Lemma 5.3.3. If H is a heptagonal figure-eight knot with Θ3 = Θ6, then exactly one of the
intersection numbers I34, I45 or I56 is non-zero. In particular, I34 + I45 + I56 = ±1

Proof. Refer [Cal98].
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Lemma 5.3.4. If H is a heptagonal figure-eight knot with Θ3 = −Θ6, then exactly one of the
intersection numbers I34 or I56 is non-zero. In particular, I34 − I56 = ±1

Proof. Refer [Cal98].

Theorem 5.3.5. The function

Ξ(H) =
1
2
(Θ3 + Θ6)(I34 + I45 + I56) +

1
2
(Θ3 −Θ6)(I34 − I56)

is an invariant of heptagonal figure-eight knots under geometric deformations.

Proof. From the previous two lemmas it can be noted that Ξ takes values +1 or −1.
Therefore, if the values of Θ3 and Θ6 remains unchanged throughout the isotopy, Ξ
must also remain unchanged. We will consider a geometric deformation of figure-
eight knot which changes Θ3 and show that Ξ remains unchanged under this defor-
mation.
Let H0 be a heptagonal figure-eight knot with Θ3 = 0 which means v3 is in the plane
containing v7, v1 and v2. Pushing v3 away from the plane towards v6, would give us a
heptagon H+

0 with Θ3 = Θ6, similarly pushing v3 away from the plane and away from
v6, would give us a heptagon H−0 with Θ3 = −Θ6. It can be noted that v3v4 is the edge
which is being moved in these transformations, we will denote algebraic intersection
number of v3v4 in H+

0 and H−0 by I+34 and I−34 respectively.
Suppose that I−34 = 0 then by Lemma 5.3.3, I56 = ±1 and hence by Lemma 5.3.4,
I+34 = I45 = 0. Therefore we have,(

I+34 + I45 + I56

)
= I56 = −

(
I−34 − I56

)
.

So, whatever value Θ3 takes Ξ remains unchanged.
Suppose that I−34 = ±1 then by Lemma 5.3.3, I56 = 0. We also have I+34 = 0 hence by
Lemma 5.3.4, I45 = ±1. Since edges v3v4 and v4v5 are adjacent if they intersect ∆712

they should do so in opposite directions, hence I−34 = −I45. Making use of all these we
have, (

I+34 + I45 + I56

)
= I45 = −I−34 = −

(
I−34 − I56

)
.

So whatever value Θ3 takes, Ξ again remains unchanged. Therefore Ξ remains un-
changed under geometric deformations.
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Topological knots being achiral does not guarantee that the geometric knots should
also be achiral. But in the case of figure-eight knots this is infact the case. It can be
observed that heptagonal figure-eight knots are also achiral. Figure 5.3 shows the
deformations.

Figure 5.3: Heptagonal figure-eight knots are achiral (taken from [Cal98]).

For H = 〈v1, v2, v3, v4, v5, v6, v7〉 ∈ Geo(7) we will define the automorphisms r and s of
Geo(7) as follows,

r〈v1, v2, v3, v4, v5, v6, v7〉 = 〈v1, v7, v6, v5, v4, v3, v2〉

s〈v1, v2, v3, v4, v5, v6, v7〉 = 〈v2, v3, v4, v5, v6, v7, v1〉
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Action of r reverses the orientation of H, I34(rH) is the algebraic intersection number
of v6v5 with ∆217 which is the same as the algebraic intersection number of v5v6 with
∆712. Similarly I45(rH) and I56(rH) can be calculated. Then we have the following,

I34(rH) = I56(H) (5.3)

I45(rH) = I45(H) (5.4)

I56(rH) = I34(H) (5.5)

On the other hand we have,

Θ3(rH) = sign((v2 − v1)× (v7 − v1) · (v6 − v1))

= − sign((v6 − v1)× (v7 − v1) · (v2 − v1))

= −Θ6(H), (5.6)

Θ6(rH) = sign((v3 − v1)× (v2 − v1) · (v7 − v1))

= − sign((v7 − v1)× (v2 − v1) · (v3 − v1))

= −Θ3(H). (5.7)

Therefore we have,

Ξ(rH) =
1
2

(
Θ3(rH) + Θ6(rH)

)(
I34(rH) + I45(rH) + I56(rH)

)
+

1
2

(
Θ3(rH)−Θ6(rH)

)(
I34(rH)− I56(rH)

)
=

1
2

(
−Θ6(H)−Θ3(H)

)(
I56(H) + I45(H) + I34(H))

+
1
2

(
−Θ6(H) + Θ3(rH)

)(
I56(H)− I34(H)

)
= − Ξ(H). (5.8)

Equation 5.8 shows that figure-eight knot in Geo(7) is irreversible as opposed to topo-
logical figure-eight knots which are reversible.

Corollary 5.3.6. Figure-eight knots in Geo(7) are achiral but not reversible.

Let us look at how choice of root affects the invariant. Suppose,

Ξ(sH) = −Ξ(H) =⇒ Ξ(s7H) = −Ξ(H)
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which is a contradiction. Therefore,

Ξ(sH) = Ξ(H)

i.e, unlike in Geo(6) the geometric knot type of heptagons does not depend on the
choice of the root.

Remark 5.3.1. The space Geo(7)/〈s〉 of non-rooted oriented embedded heptagons consists of
five path-components. On the other hand, the space Geo(7)/〈r, s〉 of non-rooted non-oriented
embedded heptagons consists of four path-components.



Chapter 6

Polynomial knots

This chapter is based on the study of these two papers by Rama Mishra and Hitesh
Raundal; [MR15] and [RM17].

6.1 Polynomial knots and equivalences

Definition 6.1.1. A long knot is a proper smooth embedding φ : R −→ R3 such that the
map t 7→ ‖φ(t)‖ is strictly monotone outside some closed interval of R and ‖φ(t)‖ → ∞ as
|t| → ∞.

Definition 6.1.2. Two long knots φ, ψ : R −→ R3 are said to be topologically equivalent if
there exists orientation preserving diffeomorphisms f : R −→ R and h : R3 −→ R3 such
that ψ = h ◦ φ ◦ f .

A diffeotopy of R3 is a continuous map H : [0, 1]× R3 −→ R3 such that for all t ∈
[0, 1], Ht = H(t, ·) is a diffeomorphism of R3 and H0 is the identity map of R3.

Definition 6.1.3. Two long knots φ and ψ are said to be ambient isotopic if there exists a
diffeotopy H : [0, 1]× R −→ R3 such that φ = H ◦ ψ. It is denoted by φ ' ψ.

There is a one-one correspondence between the ambient isotopy classes of long knots
and the ambient isotopy classes of tame knots. For every long knot φ : R −→ R3

there is a unique embedding φ̃ : S1 −→ S3 extended from φ through the inverse
stereographic projection from the north pole of S3. Every ambient isotopy class of
tame knots contains a smooth knot ψ : S1 −→ S3 which fixes the north pole, the
restriction of which, ψ̂ : R −→ R3 is a long knot. It can be observed that ̂̃φ ' φ and˜̂ψ ' ψ giving the bijective correspondence.

Definition 6.1.4. A polynomial map is a map φ : R −→ R3 whose component functions are
univariate real polynomials. A polynomial knot is a polynomial map which is an embedding.
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A polynomial knot is a long knot. A. Shastri in [Sha92] proved that every long knot is
topologically equivalent to some polynomial knot. Thus all tame knots K : S1 −→ S3

are ambient isotopic to φ̃ : S1 −→ S3 which is an extension of some polynomial
knot φ : R −→ R3 ;i.e, every knot has a polynomial representation. For example,
t 7→ (t3 − 3t, t4 − 4t2, t5 − 10t) and t 7→ (t3 − 3t, t5 − t3 + 4t, t7 − 42t) are the polyno-
mial representations of a trefoil (see figure 6.1) and figure-eight knots (see Figure 6.2)
respectively.

Figure 6.1: Polynomial representation of a trefoil knot

Definition 6.1.5. A polynomial map φ = ( f , g, h) is said to have a degree sequence (d1, d2, d3)

if deg( f ) = d1, deg(g) = d2 and deg(h) = d3. A polynomial degree of φ is maximum of the
degrees of its component functions.

An ambient isotopy class [K] of a tame knotK : S1 −→ S3 is said to have a polynomial
representation if there exists a polynomial knot φ such that φ̃ ' K and φ is called a
polynomial representation of the knot isotopy class [K]. A knot isotopy class [K] is
said to have polynomial degree d if d is the least degree of all the polynomial repre-
sentations of K and any polynomial representation φ of degree d is called the minimal
polynomial representation of [K].
For any polynomial knot φ of degree d, we can appropriately choose an orientation
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Figure 6.2: Polynomial representation of a figure-eight knot

preserving automorphism of R3 such that φ under this automorphism gives σ =

( f , g, h) such that deg( f ) < deg(g) < deg(h) ≤ d. Also by adding δtd−2, δtd−1 and
δtd for sufficiently small δ > 0 in the respective components, one change the degree
sequence of the polynomial knot into consecutive numbers without changing the knot
type. In other words, every tame knot has a polynomial representation τ = (u, v, w)

such that deg(u) < deg(v) < deg(w) ≤ d.

Remark 6.1.1. The polynomial degree of a knot isotopy class is a knot invariant.

But polynomial degree cannot detect chirality. If φ = ( f , g, h) is a minimal polynomial
representation of knot isotopy class [K] then (− f , g, h), ( f , −g, h), ( f , g, −h) and
(− f , −g, −h) are minimal polynomial representations of knot isotopy class [K∗] of
the mirror image of K which shows that a knot and its mirror image have the same
polynomial degree.

Proposition 6.1.1. For a classical tame knotK : S1 −→ S3 with polynomial degree d we have
the following

1. c[K] ≤ (d−2)(d−3)
2

2. b[K] ≤ (d−1)
2

3. Sb[K] ≤ (d+1)
2

Proof. Refer [DO06].

Corollary 6.1.2. The unknot is the only knot that can be represented as a polynomial knot of
degree d ≤ 4.



54 CHAPTER 6. POLYNOMIAL KNOTS

Corollary 6.1.3. The unknot, the left-handed trefoil and the right-handed trefoil are the only
knots those can be represented as polynomial knots of degree 5.

6.2 Spaces of polynomial knots

Let A be the set of all polynomial maps and P be the set of all the polynomial knots.
For an integer d ≥ 2, we define the following sets:

Ad = {( f , g, h) ∈ A|deg( f ) ≤ d− 2, deg(g) ≤ d− 1, deg(h) ≤ d},

Bd = {( f , g, h) ∈ A|deg( f ) < deg(g) < deg(h) ≤ d},

Cd = {( f , g, h) ∈ A|deg( f ) = d− 2, deg(g) = d− 1, deg(h) = d}.

Also, let Od, Pd and Qd be the set of polynomial knots in Ad, Bd and Cd respectively;
i.e, Od = Ad ∩ P , Pd = Bd ∩ P and Qd = Cd ∩ P . Writing the components of φ =

( f , g, h) ∈ Ad as
f (t) = a0 + a1t + a2t2 + .... + ad−2td−2,

g(t) = b0 + b1t + b2t2 + .... + bd−1td−1,

h(t) = c0 + c1t + c2t2 + .... + cdtd

we can define a natural bijection η from Ad to the euclidean space R3d given by

φ
η7−→ (a0, a1, ...., ad−1, b0, b1, ...., bd−1, c0, c1, ....cd)

We can define a natural metric ρ on Ad given by

ρ(φ, ψ) = ξ(η(φ), η(ψ))

for φ, ψ ∈ Ad, where ξ denotes the Euclidean metric in R3d. This induces a topology
on Ad and with this induced topology on Ad the map η becomes a diffeomorphism.
Then the sets Bd, Cd, Od, Pd and Qd are given the subspace topology, making these
into subspaces of Ad which are homeomorphic to some subspaces of R3d.
It can be noted that the set of all polynomial knots P =

⋃
d≥2Od can be given the

inductive limit topology; i.e, U ⊆ P is open if and only if U ∩ Od is open in Od for
all d ≥ 2. Similarly the set of all polynomial maps A =

⋃
d≥2Ad can also be given

inductive limit topology.
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Note 6.2.1. It is obvious to note that:

• B2 = C2 = P2 = Q2

• C3 = Q3

• Cd * Cd+1 and Qd * Qd+1

Proposition 6.2.1. If two polynomial knots are path equivalent in Kd, then they are topologi-
cally equivalent.

Corollary 6.2.2. If two polynomial knots are path equivalent in P, then they are topologically
equivalent.

Corollary 6.2.3. If two polynomial knots are path equivalent inQd, then they are topologically
equivalent.

Theorem 6.2.4. Suppose φ = ( f , g, h) ∈ Qd be a polynomial knot, then φ and its mirror
image ψ = ( f , g, −h) belong to different path components of the space Qd.

Proof. Refer [RM17].

Corollary 6.2.5. Let φ ∈ Qd, for d ≥ 3, be a polynomial representation of a classical tame
knot K : S1 −→ S3. Then we have the following:

1. If K is amphichiral, then there are at least eight path components corresponding to K in
Qd.

2. If K is chiral, then there are at least four path components corresponding to K and K∗

each in Qd.

6.3 The spaces Pd and Qd for d ≤ 4

We have the following theorems and propositions for spaces of polynomial knots with
d ≤ 4. The proofs can be found in [MR15].

Proposition 6.3.1. The space P2 is open in A2 and it has exactly four path components.

Theorem 6.3.2. The space P3 is path connected.

Proposition 6.3.3. The space Q3 has exactly eight path components.

Theorem 6.3.4. The space P4 is path connected.

Theorem 6.3.5. The space Q4 has exactly eight path components.
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6.4 Polynomial knots of degree five

We will be giving topology to the set of polynomial knots of degree five in a different
way in contrast to what was introduced earlier. This section is based on the paper
[KSY01].
For fixed positive numbers p, q and r,Kp,q,r is the set of polynomial knots φ : R −→ R3

such that φ(t) = ( f (t), g(t), h(t)) where f , g and h are given by,

f (t) = tp + ap−1tp−1 + ... + a1t

g(t) = tq + bq−1tq−1 + ... + b1t (6.1)

h(t) = tr + cr−1tr−1 + ... + c1t

for ai, bi and ci ∈ R.
Similar to Section 6.2 we will be able to give this set a topology by inducing a metric
on Kp,q,r using the natural bijection to a subspace of Rp+q+r−3. If p = q = r then we
will denote the space by Kp.

Lemma 6.4.1. For a knot K with polynomial representation having f (t) and g(t) as given in
the equation 6.1, the crossing index c[K] ≤ (p−1)(q−1)

2 .

Proof. We have a crossing when there exists a pair (s, t), s 6= t such that

f (s)− f (t) = 0 and g(s)− g(t) = 0 (6.2)

We have an (s − t) common in both the equations in 6.2. Since s 6= t, the pair that
satisfies the equations in 6.2 also satisfies the following equations

f (s)− f (t)
s− t

= 0 and
g(s)− g(t)

s− t
= 0 (6.3)

with degrees p− 1 and q− 1 respectively. Then by Bezout’s theorem (see page no. 97
of [CLO05]), the number of common roots is at most (p− 1)(q− 1). Since roots, (s, t)
and (t, s) yields the same crossing, the number of crossings is at most (p−1)(q−1)

2 .

Remark 6.4.1. Part 1 of Proposition 6.1.1 follows from the above lemma taking p = d − 2
and q = d− 1.

Remark 6.4.2. It follows from Corollary 6.1.3 that all the knots inK3,4,5 are unknots or trefoils.
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6.4.1 The space K3,4,5

Proposition 6.4.2. There exists no right-handed trefoils in K3,4,5 with coordinate functions
given by:

f (t) = t3 + a1t,

g(t) = t4 + b2t2,

h(t) = t5 + c4t4 + c3t3 + c2t2 + c1t.

Proof. Refer [KSY01]

In order to study trefoils in K3,4,5 we will consider a much simpler space Ks
3,4,5 with

similar topology. Ks
3,4,5 is a subspace of K3,4,5 which contains all the polynomial knots

φ = ( f (t), g(t), h(t)) with its coordinate functions of the form:

f (t) = t3 + a1t,

g(t) = t4 + b2t2 + b1t, (6.4)

h(t) = t5 + c2t2 + c1t.

Lemma 6.4.3. If φ ∈ K3,4,5, then φ is isotopic to a map in Ks
3,4,5. Furthermore, the space

Ks
3,4,5 is homotopy equivalent to K3,4,5.

Proof. For any φ ∈ K3,4,5 the parametric substitution t 7→ (t − a2/3) eliminates the
quadratic term in the first-coordinate function. Let K′ be the subset of K3,4,5 such that
the quadratic term of the first coordinate is zero. Then it can be checked that the map
H : K3,4,5 × [0, 1] −→ K3,4,5 defined by

F(φ, s) = φ(t− sa2/3)− φ(−sa2/3)

is a deformation retraction fromK3,4,5 toK′. Now using the coordinate transformation

(x, y, z) 7→ (x, y + q1x, z + q2x + q3y)

taking q1 = −b3, q2 = −c4 and q3 = −c3 we can eliminate the cubic term in the second
coordinate function and the cubic and quadratic terms in third coordinate function to
obtain φ′ ∈ Ks

3,4,5. It can be checked that H′ : K′× [0, 1] −→ K′ given by

H′(( f (t), g(t), h(t)), s) = ( f (t), g(t)− sb3 f (t), h(t)− s(c4g(t) + c3 f (t)))

is a deformation retract from K′ to Ks
3,4,5. Hence K3,4,5 deformation retracts to Ks

3,4,5.
So they are homotopy equivalent.
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Let TL and TR be the set of points (a1, b2, b1, c2, c1) ∈ Ks
3,4,5 corresponding to left-

handed trefoil and right-handed trefoil respectively.

Proposition 6.4.4. The sets TL and TR are contractible.

Proof. Refer [KSY01].

Lemma 6.4.5. The polynomial knots associated with the coefficients (a1, b2, b1, c2, c1) and
(a1, b2,−b1,−c2, c1) are isotopic.

Proof. From a polynomial knot with coefficients (a1, b2, b1, c2, c1) we get one with coef-
ficients (a1, b2,−b1,−c2, c1) if we make a parameter substitution t 7→ −t followed by
the coordinate transformation (x, y, z) 7→ (−x, y, −z). Since these are orientation
preserving linear transformations the composition of these map can be extended to an
isotopy to identity, hence the knots are isotopic.

Proposition 6.4.6. There are no right-handed trefoils in Ks
3,4,5.

Proof. By Proposition 6.4.4, TR is contractible, hence it is path connected. Suppose
(a1, b2, b1, c2, c1) ∈ TR then by the above lemma (a1, b2,−b1,−c2, c1) ∈ TR and since
TR is path connected there is a path between them. It can be noted that the third
coordinate changes sign so by intermediate value theorem there exists a point in the
path for which the third coordinate is 0. But then by Lemma 6.4.2 such a right-handed
trefoil cannot exist. This is a contradiction, so there are no right-handed trefoils in
Ks

3,4,5.

Proposition 6.4.7. The space ofK3,4,5 contains a contractible region of left-handed trefoils but
does not contain any right-handed trefoils.

Proof. By Lemma 6.4.3, the space Ks
3,4,5 is homotopy equivalent to K3,4,5. Therefore,

from Proposition 6.4.4 and Proposition 6.4.6 the result follows.

6.4.2 The space K5

Let us express every element φ in K5 in the form of a coefficient matrix.

M(φ) =

1 a4 a3 a2 a1

1 b4 b3 b2 b1

1 c4 c3 c2 c1


It can be noted that, the coefficient matrix can be simplified by left multiplying by
appropriate matrices of the following form:
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τp =

1 p1 p2

0 1 p3

0 0 1

 for p = (p1, p2, p3) ∈ R3,

λr =

r1 0 0
0 r2 0
0 0 r3

 for r = (r1, r2, r3) and ri > 0, and

ρθ =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 for 0 ≤ θ ≤ 2π.

Let us denote the groups {τp}, {λr} and {ρθ} by T, Λ and S1 respectively. Also, given
a set G of 3 × 3 matrices and a set A of 3 × 5 matrices, let us define G(A) to be the set
{ga|g ∈ G, a ∈ A}.

Lemma 6.4.8. Given a set A of 3 × 5 matrices, there is a deformation retraction of T(A) and
Λ(A) onto A.

Proof. Let 0 = (0, 0, 0) and e = (1, 1, 1), note that τ0 = λe = id. It can be checked that
HT : T(A)× I −→ T(A) given by HT(τp(a), s) = τp(1−s)(a) is a deformation retract
from T(A) to A and HΛ : Λ(A)× I −→ Λ(A) given by HΛ(λr(a), s) = λr(1−s)+es(a)
is a deformation retract from Λ(A) to A.

Note 6.4.1. Any action in T, Λ and S1 are orientation preserving homeomorphisms in R3, so
they preserve knot isotopy types.

We can choose τp ∈ T and ρθ ∈ S1 appropriately such that,

ρθ(τp(M(φ))) =

0 0 a′3 a′2 a′1
0 b′4 b′3 b′2 b′1
1 c4 c3 c2 c1

 .

If both a′3 and b′4 are non-zero, the polynomial knot corresponding to this coefficient
matrix can be further reduced by an element in Λ into a polynomial knot in K3,4,5 or
to its mirror image r(K3,4,5), where r : R3 −→ R3 is the reflection operation along the
yz-plane defined by r : (x, y, z) 7→ (−x, y, z). Otherwise, they reduce to a knot in Kp,q,5

or r(Kp,q,5) where p < q and (p, q) < (3, 4).
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Theorem 6.4.9. The space K5 contains a component of left-handed trefoils and a component
of right-handed trefoils, which are each homotopy equivalent to S1.

Proof. From the previous lemma, components of the left-handed trefoils in K3,4,5 are
contractible, denote by TL. We will apply the reduction operations we described earlier
in the opposite order; i.e, T(S1(Λ(TL))) gives the component of left-handed trefoil in
K5. Since T and Λ preserve homotopy type, T(S1(Λ(TL))) has the same homotopy
type as S1. Similarly starting with r(TL) in r(K3,4,5) would give the result for right-
handed trefoil.



Chapter 7

Polynomial representations of weaving
knots

7.1 Motivation

Over the years various results on polynomial representations of torus knots are proved.
A. Ranjan and Rama Mishra in [RS96] proved the following theorem on the polyno-
mial representations for torus knots of type (3, q).

Theorem 7.1.1. A torus knot of type (3, q) can be represented by a polynomial embedding
t 7→ ( f (t), g(t), h(t)) with deg( f (t)) = 5, deg(g(t)) = 2q− 1 and deg(h(t)) = 2q.

And the same paper proved the following theorem on polynomial representations of
knots of type (2, 2n + 1).

Theorem 7.1.2. A torus knot of type (2, 2n + 1) can be represented by a polynomial embed-
ding t 7→ ( f (t), g(t), h(t)) with deg( f (t)) = 3, deg(g(t)) = 4n and deg(h(t)) = 4n + 1.

Later the following much more general theorem was proved in [Mis99].

Theorem 7.1.3. A torus knot of type (p, q) for p ≥ 3 and q > p coprime to p can be rep-
resented by a polynomial embedding t 7→ ( f (t), g(t), h(t)) with deg( f (t)) = 2p − 1,
deg(g(t)) = 2q− 1 and deg(h(t)) = 2q.

The following theorems regarding the parity of components of the polynomial repre-
sentations of strongly invertible knots and a restricted class of knots called faithfully
strongly negative amphichiral knot where proved by Rama Mishra in [Mis06].

Theorem 7.1.4. Every strongly invertible (open) knot can be represented by a polynomial
embedding t 7→ ( f (t), g(t), h(t)) from R to R3 where f (t) and h(t) are odd polynomials
and g(t) is an even polynomial.

61
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Theorem 7.1.5. Every faithfully strongly negative amphichiral (open) knot can be represented
by a polynomial embedding t 7→ ( f (t), g(t), h(t)) from R to R3 where f (t), g(t) and h(t)
are odd polynomials.

There is a class of knots that have the same projection of torus knots called weaving
knots, we will give a formal definition later. In the case of torus knots, the above theo-
rems give many results on polynomial representation- possible degree sequences and
parity of component polynomials. Since weaving knots have the same projections as
torus knots all the above theorems would give us partial data, the polynomial maps of
two components to be precise for weaving knots. This essentially is the motivation to
study polynomial representations of weaving knots. We have proved certain results
on the polynomial representations of weaving knots, it is basically an algorithm to find
the third coordinate given the other two coordinates. Using this algorithm polynomial
representations of certain weaving knots are explicitly calculated. It was also interest-
ing to see how the properties of chirality and invertibility were related to the parity
of polynomial representations. We will try to see these relations for weaving knots as
well.

7.2 Polynomial representations of weaving knots

Let us formally define what a weaving knot is,

Definition 7.2.1. Weaving knots are alternating knots which has the same projection as torus
knots. Weaving knot having the projection of T(p, q) are denoted by W(p, q).

It is straight forward to see that for weaving knot W(p, q) with p < q, crossing number
c[W(p, q)] = c[T(p, q)] = q(p− 1).

7.2.1 Main results

Theorem 7.2.1. A weaving knot of type (3, q), W(3, q) can be represented by a polyno-
mial embedding t 7→ ( f (t), g(t), h(t)) with deg( f (t)) = 5, deg(g(t)) = 2q − 1 and
deg(h(t)) = 4q− 1.

Proof. Let us assume that the weaving knot has a regular projection to the x− y plane.
Now Theorem 7.1.1 gives the existence of polynomial representation with x and y co-
ordinate polynomials having degree 5 and 2q − 1 respectively. Since weaving knots
W(3, q) have the same projection as torus knots T(p, q), take f and g to be the same as
the one obtained from Theorem 7.1.1.
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Let us find all pairs (s, t) ∈ R2 such that f (s) = f (t) and g(s) = g(t) simultaneously.
Since the knot has 2q crossings there will be 2q such pairs (si, ti) 1 ≤ i ≤ 2q. Write sis
and tis in increasing order and relabel them as ai such that ai ≤ ai+1 for 1 ≤ i ≤ 4q− 1.
Choose bi ∈ [ai, ai+1] and define h(t) in the following way.

h(t) =
4q−1

∏
i=1

(t− bi)

By definition h changes sign at each bi forcing the property of being alternating; i.e,
the polynomial embedding t 7→ ( f (t), g(t), h(t)) is the polynomial representation of
weaving knot W(3, n).

For weaving knots of type (3, q), Theorem 7.2.1 guarantees the existence of a polyno-
mial representation t 7→ ( f (t), g(t), h(t)) with all the component functions having
odd degree. The reparametrization t 7→ −t is an orientation reversing involution
which takes the knot to its mirror image.

Remark 7.2.1. Weaving knots of type (3, q) are strongly negative-amphichiral.

The proof of Theorem 7.2.1, in fact, works for weaving knots of type (p, q) for q >

p and q coprime to p. There is nothing special about the weaving knot being type
(3, q). Starting with the polynomial representations that we get from Theorem 7.1.3
and proceeding in a similar way, it can be proved that,

Theorem 7.2.2. A weaving knot of type (p, q) for p ≥ 3 and q > p coprime to p can be
represented by a polynomial embedding t 7→ ( f (t), g(t), h(t)) with deg( f (t)) = 2p − 1,
deg(g(t)) = 2q− 1 and deg(h(t)) = 2q(p− 1)− 1.

Similarly using Theorem 7.1.2 it can be proved that,

Theorem 7.2.3. A weaving knot of type (2, 2n+ 1) can be represented by a polynomial embed-
ding t 7→ ( f (t), g(t), h(t)) with deg( f (t)) = 3, deg(g(t)) = 4n and deg(h(t)) = 4n + 1.

7.3 Computing polynomial representations of weaving

knots using Mathematica

Given t 7→ ( f (t), g(t)) the polynomial representation for a regular projection of the
knot. Define

F(s, t) =
( f (s)− f (t))

(s− t)
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G(s, t) =
(g(s)− g(t))

(s− t)

We compute the resultant of F(s, t) and G(s, t) with respect to s. This gives a polyno-
mial in t say r(t) which is zero if and only if the polynomials F(s, t) and G(s, t) have
a common root; i.e, for t∗, r(t∗) is zero if and only if F(s, t∗) = G(s, t∗) for some s.
Thus, finding all the roots of r(t) will give all the points where the knot projection has
a crossing.
The rest of it follows from the proof. Since these roots represent crossings they should
occur in pairs. We write them in increasing order and relabel them as ai such that
ai ≤ ai+1 for 1 ≤ i ≤ 4q − 1. Choose bi ∈ [ai, ai+1] and define h(t) in the following
way.

h(t) =
4q−1

∏
i=1

(t− bi)
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7.3.1 Example 1: W(3,4)

The following polynomial map t 7→ ( f (t), g(t), h(t)) gives a polynomial representa-
tion of weaving knot W(3, 4).

f (t) = t(t2 − 20)(t2 − 45)

g(t) = t(t2 − 5)(t2 − 36)(t2 − 49)

h(t) = t(t2 − 1)(t2 − 4)(t2 − 20)(t2 − 35)(t2 − 40)(t2 − 48)(t2 − 50)

Figure 7.1: Polynomial representation of a W(3,4)
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7.3.2 Example 2: W(3,5)

The following polynomial map t 7→ ( f (t), g(t), h(t)) gives a polynomial representa-
tion of weaving knot W(3, 5).

f (t) = t(t2 − 10)(t2 − 45)

g(t) = t(t2 − 5)(t2 − 25)(t2 − 40)(t2 − 50)

h(t) = t(t2− 2)(t2− 5.4)(t2− 16)(t2− 31.5)(t2− 40.6)(t2− 43.4)(t2− 45)(t2− 47.7)(t2− 49.7)

Figure 7.2: Polynomial representation of a W(3,5)



Chapter 8

Conclusion

We studied the geometric aspects of knot theory, it was more of a combinatorial ap-
proach. In the initial phase, we studied various numerical invariants and studied
3-superbridge knots in detail. We tried proving the conjecture that trefoil knot and
figure-eight knot are the only 3-superbridge knots. I tried finding a combination of
numerical invariants which could potentially serve as an upper bound for the super-
bridge index. Unfortunately, I haven’t been able to prove this as of now. Another idea
to approach the problem is using the proof of the Theorem 4.0.4. This is a brute force
method, we will have to look at all the possibilities of knots, starting with the finite
choices of projection along a quadrisecant.
The second part of the project aimed at studying polygonal and polynomial represen-
tations of knots and also the topology of spaces of polygonal knots and polynomial
knots. It is conjectured that the minimal polynomial degree is one less than the stick
index. We studied the spaces of knots which could be expressed as a polygon with
6 edges and the spaces of knots which have polynomial representations of degree 5.
It can be noted that both of these spaces contain only unknot, left-handed trefoil, and
right-handed trefoil. It somehow sheds light towards the relation between minimal
polynomial degree and stick index that is put forth by the conjecture. I tried to see
if a bound can be found on the degree of polynomial representations that a knot of
a particular stick index can take. I am still working on this problem. If we look at
the crossing points of a knot of stick index k and use Lagrange interpolation we get a
polynomial of degree k− 1, now I am trying to see how this polynomial could be per-
turbed such that the degree remains unchanged and the polynomial obtained in fact
becomes a polynomial representation of the knot that we started with. Another prob-
lem we tried solving was to find the polynomial representations of weaving knots.
This was motivated from similar theorems in the case of torus knots. In the last chap-
ter, we proved that weaving knots of type (3, n) has degree sequence (5, 2n− 1, 4n− 1)

67
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and as a consequence, we get that weaving knots of type (3, n) are strongly negative-
amphichiral. We have in fact found an algorithm to find the polynomial representation
of a weaving knot of type (p, q) for p ≤ q and p co-prime to q given the polynomial
representation of its torus counterpart.
For my future studies, I find myself more inclined to homological invariants of knots.
One of the very less understood knot invariants is the unknotting number. Recently
using a homological invariant, knot Floer homology Akram Alishahi and Eaman Eftekhary
in [AE18] gave a much better lower bound on the unknotting number for composite
knots. I plan on studying these homological invariants in the future.
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