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Abstract

The goal of the project is to prove the Hodge decomposition theorem for compact Rieman-

nian manifolds. This theorem states that any smooth differential form on such a manifold

can be expressed in a unique way as a sum of a harmonic form, a closed form and a co closed

form. The proof involves a study of elliptic differential operators on manifolds. We will see

applications of this theorem can be used to prove some theorems like the Poincaré duality

and the Kunneth Formulae.
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Introduction

Let us start with two finite dimensional vector spaces U and V and a linear map T between

them. We have the adjoint of this map, T ∗. Now what can we tell about the solutions of

the equation Tu = v. One necessary condition for the existence of the solution would be

that v ⊥ Ker(T ∗), since if x ∈ ker(T ∗), then 〈v, x〉 = 〈Tu, x〉 = 〈u, T ∗x〉 = 0, had a solution

existed. In fact, for the finite dimensional case this is in fact a sufficient condition as it can

be shown without a lot of trouble that Im(T ) = (Ker(T ∗))⊥. The Hodge Decomposition

Theorem is a generalisation of this simple theorem.

Consider the the differential operator L := d
dx2

for smooth function on the real line, this

is just the map that sends a function f to its second derivative f ′′. This is a linear operator.

Let us work with the space of functions with period 2π so that we can define an inner product

on this space as, 〈f, g〉 =
∫ 2π

0
fgdx. Then L is a linear operator, which we observe using

integration by parts, is in fact self-adjoint. What is the kernel of L? u′′ = 0 forces u to be

linear of the form u = ax + b, but it has to be 2π periodic, this constrains a = 0. Hence

Ker(L) = constants.

Suppose we are trying to look for a solution of Lu = f . We cannot use the arguments

in the previous paragraphs as we are working with infinite dimensional spaces. However

integrating both sides from 0 to x, we see u′(x) = u′(0) +
∫ x
0
f . Now suppose we have a

solution, then it has to be periodic, and u′(0) = u′(2π) =⇒
∫ x
0
f = 0. Recall that L is a

self adjoint operator Ker(L∗) = Ker(L) = constants. Clearly
∫ x
0
f = 0 =⇒ f ⊥ Ker(L).

Hence we have a necessary condition, which in fact turns out to be sufficient. Hence, even

in this infinite dimensional case, Lu = f has a solution iff f ⊥ Ker(L).

This is precisely the Hodge Decomposition Theorem where your manifold is R. For a

general manifold, L turns out to be what is called the Hodge-Laplacian, ∆ which is a self
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adjoint linear operator on smooth forms. The Hodge-Decomposition Theorem states that

∆ω = α has a solution precisely when α ∈ (Ker(∆))⊥. However there are a lot of subtle

things that need to be done since we don’t have a well defined notion of a PDE on a manifold

to start with, or an inner product on the space of smooth forms.

The goal of this project is to give a self contained proof of the Hodge Decomposition

Theorem. This is an exposition closely following the proof outlined in [1]. The result has far

reaching consequences in getting information about the cohomology groups of the manifold

which is an algebraic quantity and as such not an easy quantity to calculate. Below is a brief

outline of the chapters.

The proof involves a study of PDE on manifolds. But what does it mean to have a PDE

on a manifold? Is it independent of the co-ordinate system? Does it match with our usual

notions when we consider Rn as a smooth manifold. All these questions are dealt with in

the first chapter. The analysis of PDE involves a inevitable study of Sobolev Spaces. This is

a vast theory and studying it in it’s generality will sufficiently take us off course. Hence we

limit our study to the case of periodic functions which is far easier to deal with. The second

chapter involves a brief section on Fourier Analysis, as you would’ve guessed, as does any

theory on periodic functions, then we define Sobolev spaces and see generalisations of some

things from calculus.

The third chapter deals with defining PDE and looking at some properties of the solutions.

Most of these are a direct consequence A special class of PDE, called the elliptic PDE. In order

to work with and study PDE e develop the theory of Sobolev Spaces, not in generality, but for

periodic functions, which is much easier due to the techniques of Fourier Analysis. We give

a brief exposition on the same(Fourier Analysis. We will see this is sufficient for our purpose

for compact manifolds. The final chapter gives us the proof the main analytical theorems

that will be used to prove the Hodge-Decomposition Theorem. This is a self contained

read, with the reader assumed to have a working understanding of functional analysis and

differential geometry along with the elementary notions of a Riemannian metric and the

concept of partitions of unity.
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Chapter 1

The Hodge Decomposition Theorem

The Hodge decomposition theorem is an important result in differential geometry about

certain representatives of the de Rham cohomology class. This theorem tells us that we

can always find certain “nice” representatives called Harmonic forms for each class.These

are “nice” in the sense that these representatives minimizes some sort of energy function on

p-forms. This is very useful in calculating the cohomology groups of manifolds which is not

a trivial task. Using something called the Bochner Technique we can conclude results about

the cohomology classes given some conditions on the curvature, for instance if the curvature

of a compact oriented manifold is positive then the cohomology class is trivial since there

exist no harmonic forms.

Now we would like to define the Laplacian on the manifolds, but it is not straight forward

how to define PDE’s on manifolds, let alone the Laplacian, because the usual notion of partial

derivatives seems to change with the choice of co ordinate system on the manifold. However

we have an exterior derivative d which is a well-defined operator resembling some sort of

derivative which acts on forms, and functions are nothing but zero forms. We will define the

δ operator which is the adjoint of d, and then the Laplacian using these two linear operators.

We will see that defining the Laplacian like this in fact coincides with the usual definition of

the Laplacian on functions in Rn.
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1.1 The ∗ operator

Let V be a finite dimensional vector space of dimension n, with an inner product 〈. , .〉. Since

we have an inner product, we can use this to get an isomorphism between V and V ∗ and as

a result ΛpV ' ΛpV ∗. Since Hom(V,W ) = V ∗ ⊗W and we already have an isomorphism

between ΛpV and ΛpV ∗, the inverse gives an element Hom(ΛpV ∗,ΛpV ), we get an element

of ΛpV ∗⊗ΛpV . But an element here is nothing but an inner product on ΛpV . We have used

the fact that ΛpV ∗ = (ΛpV )∗ This inner product on Λp(V ) is follows:

〈w1 ∧ w2 ∧ wp . . .∧p, v1 ∧ v2 ∧ . . . ∧ vp〉 = det〈wi, vj〉

where wi’s and vi’s are in V . Extend this bilinearly to whole of Λp(V ).

The inner product defined on Λp(V ) as above is clearly independent of the initial vectors

you start with, since we are using the inner product on V and there is no reference to

any basis. Now if B = {e1, e2, . . . , en} is an orthonormal basis of V, 〈. , .〉, then Bp =

{ei1 ∧ ei2 ∧ . . . ∧ eip : eik ∈ B, i1 < i2 < . . . < ip} is an orthonormal basis for ΛpV with the

inner product defined as above. This follows directly from the definition of the inner product

on ΛpV

Definition 1.1.1 (The * operator). Let V be an n dimensional vector space with an inner

product 〈. , .〉. Choose an orthonormal basis of V, B = {e1, e1, . . . , en}. Now define ∗ as

follows:

∗ : Λp(V )→ Λn−p(V )

∗(ei1 ∧ ei2 ∧ . . . ∧ eip) = (−1)sgn(I)ej1 ∧ ej2 ∧ . . . ∧ ejn−p

where {j1, j2, . . . , jn−p} is the complement of {i1, i2, . . . , ip} in {1, 2, . . . , n}, that is,

{1, 2, . . . , n}\{i1, i2, . . . , ip} = {j1, j2, . . . , jn−p}

and sgn(I) is the sign of the permutation I, which takes {1, 2, . . . , n} to {i1, i2, . . . , ip, j1, j2, . . . , jn−p}
Another way to look at is just as the complement in the standard volume form.

(ei1∧ei2∧. . .∧eip)∧∗(ei1∧ei2∧. . .∧eip) = (−1)sgn(I)ei1∧ei2∧. . .∧eip∧(ej1∧ej2∧. . .∧ejn−p) = e1∧e2∧. . .∧en

First we need to show that this definition is well-defined. What if we start with another
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basis B
′

= {e′1, e′2, . . . , e′n}? Note we have to put an extra condition that this basis needs

to be the same orientation B since we used this to define the sign of the map. We can find

a n × n matrix A such that Aei = e′i. A will be an orthogonal matrix since with positive

determinant since we have orthogonal basis of the same orientation. Now,

∗(e′i1 ∧ e
′
i2
∧ . . . ∧ e′ip) = ∗(Aei1 ∧ Aei2 ∧ . . . ∧ Aeip) = det(A) ∗ (ei1 ∧ ei2 ∧ . . . ∧ eip)

Since det(A) = 1, we conclude that the ∗ operator is well-defined.

Lemma 1.1.1. The ∗ operator satisfies the following property: ∗∗ = (−1)(n)(n−p)

Proof. Suppose ∗(ei1 ∧ ei2 ∧ . . . ∧ eip) = ej1 ∧ ej2 ∧ . . . ∧ ejn−p or in other words

(ei1 ∧ ei2 ∧ . . . ∧ eip) ∧ ej1 ∧ ej2 ∧ . . . ∧ ejn−p = e1 ∧ e2 ∧ . . . ∧ en (1.1)

Here we have used up the factor of (−1)sgn(I) to reorder the basis elements of the image.

Now, clearly ∗ ∗ (ei1 ∧ ei2 ∧ . . . ∧ eip) = (−1)?(ei1 ∧ ei2 ∧ . . . ∧ eip), i.e it gives back the same

element(since complement of a complement is the same thing) upto a sign which we have to

determine. This is done by:

∗(ei1 ∧ ei2 ∧ . . . ∧ eip) ∧ ∗ ∗ (ei1 ∧ ei2 ∧ . . . ∧ eip) = e1 ∧ e2 ∧ . . . ∧ en

ej1 ∧ ej2 ∧ . . . ∧ ejn−p ∧ (−1)?(ei1 ∧ ei2 ∧ . . . ∧ eip) = e1 ∧ e2 ∧ . . . ∧ en

Notice that from 1.1, we just need to show

ej1 ∧ ej2 ∧ . . .∧ ejn−p ∧ (−1)?(ei1 ∧ ei2 ∧ . . .∧ eip) = (ei1 ∧ ei2 ∧ . . .∧ eip)∧ ej1 ∧ ej2 ∧ . . .∧ ejn−p

Now we need to move each eik across n − p terms of ejl . There are p eik ’s. Since each

step gives us a factor of −1, we see that the the we need to multiply by (−1)p(n−p). Hence

∗ ∗ (ei1 ∧ ei2 ∧ . . . ∧ eip) = (−1)p(n−p)(ei1 ∧ ei2 ∧ . . . ∧ eip)

This operator seems to have popped out of nowhere. But in fact it is closely related

to the inner product that we started out with. We already have some hints towards some

relation as the definition of ∗ involved choosing an orthonormal basis.

Lemma 1.1.2. 〈v, w〉volM = ∗(v ∧ ∗w)
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Proof. We just have to verify this for the basis elements, due to linearity it will follow for all

vectors. Suppose we start with two distinct basis vectors v and w, then there will be some

common ei between v and ∗w, and due to this ∗(v ∧ ∗w) = 0. Since v and w are orthogonal

〈v, w〉 = 0. Next when we take the same basis vectors, ∗(v ∧ ∗v) = ∗(e1 ∧ e2 ∧ . . . ∧ en) = 1.

Also 〈v, v〉 = 1 since it’s an orthonormal basis. Hence by verification we have proved the

lemma.

We have the inner product as above on Λp(TxM) for each x ∈ M . Given two smooth p

forms ω, η, we can define

〈ω, η〉(x) = 〈ω(x), η(x)〉

Using this we can define an inner product on Ωp(M) as follows:

〈ω, η〉 =

∫
M

〈ω, η〉(x)volM =

∫
M

∗(ω(x) ∧ ∗η(x))

1.2 The δ operator

The δ operator is the formal adjoint of the exterior derivative, d, where Ωp(M) is equipped

with the inner product as defined as above.

〈dω, η〉 = 〈ω, δη〉

where ω ∈ Ωp(M) and η ∈ Ωp+1M

Definition 1.2.1 (The δ operator). The δ operator is defined as follow:

δ : Ωp+1(M)→ Ωp(M)

δ = (−1)n(p+2)+1 ∗ d∗

and δ satisfies:

〈dω, η〉 = 〈ω, δη〉

for all ω ∈ Ωp(M) and η ∈ Ωp+1M . For zero forms it is just the zero map.

We will show that with the definition of δ as above it is in fact the adjoint of d. Take
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α ∈ Ωp−1M and β ∈ ΩpM . Then

d(α ∧ ∗β) = dα ∧ ∗β + (−1)p−1α ∧ d ∗ β

Since ∗∗ = (−1)(p−1)(n−p+1) acting on d ∗ β, we have:

d(α ∧ ∗β) = dα ∧ ∗β + (−1)p−1(−1)(p−1)(n−p+1)α ∧ ∗ ∗ d ∗ β

d(α ∧ ∗β) = dα ∧ ∗β − α ∧ ∗δβ

Now integrate both sides and using stokes theorem we obtain 〈dα, β〉 = 〈α, δβ〉

1.3 The Hodge Laplacian

We can use d and δ to define a symmetric linear operator on the space of smooth p-forms.

Definition 1.3.1 (The Hodge Laplacian). The Hodge Laplacian denoted by ∆, is defined

as follows:

∆ : Ωp(M)→ Ωp(M)

∆ = dδ + δd

Lemma 1.3.1. Properties of ∆

1. The Hodge Laplacian, ∆ is a symmetric linear form on the space of smooth p-forms.

2. ∆φ = 0 ⇐⇒ dφ = 0 and δφ = 0

3. The Hodge star commutes with the Laplacian, ∗∆ = ∆∗

Proof. 1. Let α, β ∈ Ωp(M). Clearly ∆ is linear as it is the composition of linear operators.

〈∆α, β〉 = 〈(dδ + δd)α, β〉
= 〈dδα, β〉+ 〈δdα, β〉
= 〈α, δdβ〉+ 〈α, dδβ〉
= 〈α, (δd+ dδ)β〉
= 〈α,∆β〉
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This shows that it is symmetric.

2. Observe the following:

〈∆φ, φ〉 = 〈dδφ+ δdφ, φ〉
= 〈dδφ, φ〉+ 〈δdφ, φ〉
= 〈δφ, δφ〉+ 〈dφ, dφ〉
= ||δφ||2 + ||dφ||2

It follows directly from the above equality and the definition of ∆.

3. Straightforward calculation using the definition of δ and that result ∗∗ = (−1)(n)(n−p).

Okay now we have defined the Hodge-Laplacian. The least we can expect is for this

operator to be equal to the usual Laplacian on Rn for functions or zero forms with the

euclidean metric. We will show that this is indeed that case. We will also calculate it for

smooth p forms and notice that it is just the Laplacian of each of the components. We have

a global basis for the tangnet bundle and co-tangent bundle given by { ∂
∂dx1

, ∂
∂dx2

, . . . , ∂
∂dxn
}

and {dx1, dx2, . . . , dxn}. δf = 0 since it is a zero form. Next we need to calculate δdf , that
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is (−1)2n+1 ∗ d ∗ df (Since df is a one form). Hence δdf = − ∗ d ∗ df

df =
n∑
i=1

∂f

∂xi
dxi

∗df = ∗(
n∑
i=1

∂f

∂xi
dxi) =

n∑
i=1

∗( ∂f
∂xi

dxi)

=
n∑
i=1

(−1)i−1
∂f

∂xi
dx1 ∧ dx2 ∧ . . . ∧ dxi−1 ∧ dxi+1 ∧ . . . ∧ dxn

d ∗ df = d(
n∑
i=1

(−1)i−1
∂f

∂xi
dx1 ∧ dx2 ∧ . . . ∧ dxi−1 ∧ dxi+1 ∧ . . . ∧ dxn)

=
n∑
i=1

(−1)i−1d(
∂f

∂xi
dx1 ∧ dx2 ∧ . . . ∧ dxi−1 ∧ dxi+1 ∧ . . . ∧ dxn)

=
n∑
i=1

(−1)i−1
∂2f

∂x2i
dxi ∧ dx1 ∧ dx2 ∧ . . . ∧ dxi−1 ∧ dxi+1 ∧ . . . ∧ dxn)

=
n∑
i=1

∂2f

∂x2i
dx1 ∧ dx2 ∧ . . . ∧ dxn

− ∗ d ∗ df = − ∗ (
n∑
i=1

∂2f

∂x2i
dx1 ∧ dx2 ∧ . . . ∧ dxn)

= −
n∑
i=1

∂2f

∂x2i

(1.2)

Hence

dδf + δdf = −
n∑
i=1

∂2f

∂x2i

So we get back our usual Laplacian with a negative sign. The calculations for p forms can

be similarly be computed and we will see that for ω =
∑

I ωIdx
I where I = (i1, . . . , ip) is a

multi-index and dxI = dxi1 ∧ dxi2 . . . ∧ dxip . Then

∆ω = (dδ + δd)ω =
∑
I

(dδ + δd)ωIdx
I =

∑
I

ω′Idx
I

where

ω′I = −
p∑

k=1

∂2ωI
∂x2ik

for I = {i1, . . . , ip}
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Definition 1.3.2 (Harmonic p-forms). The space of harmonic p-forms in just the kernel of

the Hodge-Laplacian. It is denoted by Hp.

Hp = {ω ∈ Ωp(M) : ∆ω = 0}

We have now developed the the various definitions and operators for stating the Hodge

theorem.

1.4 The Hodge Decomposition Theorem and Applica-

tions

Theorem 1.4.1 (The Hodge Decomposition Theorem). Given any integer 0 ≤ p ≤ n, the

space of harmonic forms is finite dimensional and we have the following orthogonal direct

sum decomposition of the space Ωp(M) of smooth forms on a compact oriented Riemannian

manifold, M:

Ωp(M) = ∆(Ωp(M))⊕Hp(M)

Consequently, the equation ∆ω = α has a solution ω ∈ Ωp(M) if and only if the p-form α is

orthogonal to the space of harmonic p-forms.

Once we have this theorem we now show that any de-Rham cohomology class has a

unique harmonic representative.

Corollary 1.4.1.1. Every de-Rham cohomology class of a compact oriented manifold con-

tains a unique harmonic representative. Hence the de-Rham cohomology groups are all finite

dimensional.

Proof. Let [ω] be some p-th de-Rham cohomology class. Take an element in this class,

α ∈ [ω]. Now from Theorem 1.4.1 we see that α = ∆φ + η, where φ ∈ Ωp(M) and η ∈ Hp.

Hence

α = ∆φ+ η = dδφ+ δdφ+ η

We apply d on both sides. Since d2 = 0 and ∆η = 0 =⇒ dη = 0, and α is a closed form,
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we obtain:

0 = dδdφ

||δdφ||2 = 〈δdφ, δdφ〉
= 〈dδdφ, dφ〉
= 〈0, dφ〉
= 0

Hence ||δdφ||2 = 0 =⇒ δdφ = 0. Now since

α = dδφ+ δdφ+ η = dδφ+ η

Observe that α and η differ by a closed form. Hence η is the desired harmonic representative

in [ω]. Now we show that this form is unique. Let η1, η2 be two harmonic forms in the same

class. Then η1 − η2 is a harmonic forms and they differ by a closed form, i.e, η1 − η2 = dα.

Now,

||η1 − η2||2 = 〈η1 − η2, η1 − η2〉
= 〈η1 − η2, dα〉
= 〈δ(η1 − η2), α〉
= 〈0, α〉
= 0

Hence η1 − η2 = 0 which means that η1 = η2. Hence the harmonic representative is unique.

The finite dimensionality of the de-Rham cohomology group follows as the space of harmonic

forms is finite dimensional and from above we have a unique harmonic representative for each

class.

Corollary 1.4.1.2 (Poincaré Duality). Let Hp
de−Rham(M) denote the p-th de-Rham coho-

mology of a compact oriented manifold M. Then we have an isomorphsim:

Hn−p
de−Rham(M) ∼= (Hp

de−Rham(M))∗

Proof. Since we are working with finite dimensional spaces with an inner product, Hn−p
de−Rham(M) ∼=

(Hp
de−Rham(M))∗ is the same as having a non-degenerate bilinear from on Hn−p

de−Rham(M) ×
Hp
de−Rham(M). We define the form as follows. Represent any class in the cohomology groups
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by their harmonic representatives. Then:

([α], [β]) :=

∫
M

α ∧ ∗β

This is well defined since the harmonic representatives are unique.Clearly this is bilinear.

Now suppose for a fixed [α], ([α], [β]) = 0 for every β. Since ∗ commutes with ∆, ∆(∗α) = 0

and as a result ∗α is a closed form. Take the class [∗α]. Now,

([α], [∗α]) = 0 =⇒
∫
M

α ∧ ∗α = 0 =⇒ ||α||2 = 0

Hence α = 0. This proves non-degeneracy.

1.5 Proof of The Hodge Decomposition Theorem

We will give a proof of the Hodge Decomposition Theorem in this section. We will be

assuming two theorems, which we will be proving in the subsequent sections.

Theorem 1.5.1 (Regularity Theorem). Let α ∈ Ωp(M), and l be a weak solution to the

equation ∆ω = α. That is l : Ωp(M) → R is a linear map with the property that l(∆ω) =

〈α, ω〉. Then there exists ω0 ∈ Ωp(M) such that

l(β) = 〈ω0, β〉

for every β ∈ Ωp(M), which implies that ∆ω0 = α.

In general it is a difficult to say whether a general PDE has a smooth solution. However

the Laplacian is a very special PDE,called an elliptic PDE (which we will show later).

Roughly it means that all the partial derivatives of the solution are controlled by the a

smaller set of partial derivatives for every order. Hence we can conclude the existence of

smooth solutions under some additional conditions.

Theorem 1.5.2 (∆ is a compact operator). Let {αn} be a sequence in Ωp(M) such that

||αn|| ≤ c and ||∆αn|| ≤ c for all n and for some fixed c > 0. Then there exists a subsequence

{αnk
} which in Cauchy in Ωp(M).
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Again this theorem makes use of the fact that ∆ is elliptic. It is not surprising then

since we have a bound on both the values of the function and all it’s partial derivatives of

all order, to expect some sort of convergence. Now we need a technical lemma.

Lemma 1.5.1. For any β ∈ (Hp)⊥ there exists c > 0 such that

||β|| ≤ c||∆β||

Proof. Assume to the contrary that there exists no such constant c. Then for every n ∈ N,

there exists βn ∈ (Hp)⊥ such that ||βn|| ≥ n||∆βn||. By renormalizing, i.e setting ψn = βn

||βn||
1
2

,

we obtain a sequence of forms, {ψn} ∈ (Hp)⊥. Now ||ψn|| = 1. Since ||∆ψn|| ≤ 1
n

for all

n, this means that ||∆ψn|| → 0. Since the series {||∆ψn||} converges, it is bounded, say

||∆ψn|| ≤ c. Hence we have

||ψn|| ≤ c+ 1

||∆ψn|| ≤ c+ 1

from Theorem 1.5.2, we obtain a Cauchy subsequence which we denote by the same index

{ψn}. We conclude that for a fixed φ, 〈ψi, φ〉 is a Cauchy sequence because

|〈ψl, φ〉 − 〈ψm, φ〉| = |〈ψl − ψm, φ〉| ≤ ||ψl − ψm|| ||φ||

Now define a linear functional on Ωp(M) as follows:

l : Ωp(M)→ R

l(φ) = lim
n→∞
〈ψi, φ〉

This is well defined since for a fixed φ the sequence converges as it is Cauchy as shown above.

Now we observe that:

l(∆φ) = lim
n→∞
〈ψn,∆φ〉 = lim

n→∞
〈∆ψn, φ〉 = 0.

Hence l is actually a weak solution of the PDE ∆ω = 0. From Theorem 1.5.1, we know that

there exists ψ ∈ Ωp(M) such that l(φ) = 〈ψ, φ〉. Hence,

lim
n→∞
〈ψi, φ〉 = 〈ψ, φ〉.

13



This means that ψn → ψ. Since ψi ∈ (Hp)⊥ and ||ψi|| = 1 for all i, we obtain that ψ ∈ (Hp)⊥,

since (Hp)⊥ is closed and ||ψ|| = 1, since ||.|| is a continuous function. However since ∆ψ = 0,

we have ψ ∈ Hp. Then ψ ∈ (Hp)⊥ ∩Hp = {0}. But this is impossible since ||ψ|| = 1. Hence

we have a contradiction.

Now we proceed to the main proof:

Proof of Theorem 1.4.1(The Hodge Decomposition Theorem). First we will show that Hp is

finite dimensional. Assume to the contrary that Hp is not finite-dimensional. Then we

can find an infinite sequence of orthonormal elements in Hp, say {αn}. Now since αn ∈
Hp,∆αn = 0. Also since our sequence is orthonormal we have ||αn|| = 1. Hence we can use

Theorem 1.5.1 to conclude that there exists a Cauchy subsequence. But ||αn − αm|| =
√

2

for all n,m since the sequence is orthonormal, and consequently there cannot be a Cauchy

subsequence. So we have a contradiction. Hence Hp is finite dimensional.

Select an orthonormal basis of Hp, {ω1, ω2, . . . , ωl}. Then for any α ∈ Ωp(M) set β =

α−
∑l

i=1 〈ωi, α〉ωi. Note that 〈β, ωi〉 = 0 for each i. Hence β ∈ (Hp)⊥. Since Hp ∩ (Hp)⊥ =

{0}, we conclude that Ωp(M) = (Hp)⊥ ⊕ Hp. Hence the proof is reduced to showing that

(Hp)⊥ = ∆(Ωp(M)).

First we show that ∆(Ωp(M)) ⊆ (Hp)⊥. Suppose ω ∈ ∆(Ωp(M)) and α ∈ Hp i.e ∆α = 0.

Let ∆ω′ = ω Then

〈ω, α〉 = 〈∆ω′, α〉 = 〈ω′,∆α〉 = 0.

Hence we have one way containment.

Next to show that (Hp)⊥ ⊆ ∆(Ωp(M)). So given α ∈ (HP )⊥, we need to find ω ∈ Ωp(M)

such that ∆ω = α. Hence we need a solution to the PDE ∆ω = α. The procedure is to

construct a weak solution and then obtain the required ω by using Theorem 1.5.1. Hence

we need

l : Ωp(M)→ R

which satisfies

l(∆ω) = 〈α, ω〉

We will start by defining a linear functional with this property on the subspace ∆(Ωp(M)).

14



Define:

l : ∆(Ωp(M))→ R

l(∆ω) = 〈α, ω〉

We want to extend this function to all of Ωp(M) is order to use Theorem 1.5.1. This can be

achieved by using Hahn-Banach Extension theorem, which requires l to be bounded. We use

Lemma 1.5.1 to show this. But first we need to show that l is well-defined, i.e if ∆ω1 = ∆ω2,

then l(∆ω1) = l(∆ω2). But this is clear since ∆(ω1−ω2) = 0 which means l(∆(ω1−ω2)) = 0.

By linearity we conclude that l is a well-defined function.

Now to show that l is bounded. Note that in order to apply Lemma 1.5.1 we need

ω ∈ (Hp)⊥. But we already know that

Ωp(M) = (Hp)⊥ ⊕Hp

Hence write ω = ω1 + ω2 where ω1 ∈ (Hp)⊥ and ω2 ∈ Hp. Now,

||l(∆ω)|| = ||l(∆ω1)|| = |〈α, ω1〉|
≤ ||α|| ||ω1|| ≤ c||α|| ||∆ω1|| = c′||∆ω||

We have shown that l is a bounded linear functional on ∆(Ωp(M)). Hence, using the Hahn-

Banach Extension theorem we can extend l to obtain,

l′ : Ωp(M)→ R

satisfying the property l′(∆ω) = l(∆ω) = 〈α, ω〉. Hence from Theorem 1.5.1, there exists

ω′ ∈ Ωp(M) such that ∆ω′ = α.Therefore we have found a solution to the equation ∆ω = α

and this completes the proof of the theorem.
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Chapter 2

Sobolev Spaces

This section we develop the relevant theory for proving the two theorems used in the proof of

the Hodge Decomposition Theorem. The general theory of Sobolev spaces is a huge topic and

studying that will take us considerably off course. So we restrict ourselves to space of periodic

functions, these are a lot easier to deal with since we can use the Fourier decomposition.

This is sufficient in the case of manifolds since we will always prove things locally. We will

use charts and partitions of unity, and due to compact support we can extend it periodically

to the whole of Rn. These will become more clear in the next chapter where we will actually

put to use all the machinery developed here.

First we define some notations:

P = {f : Rn → Cm such that f is smooth and periodic with period 2π}
C∞ = {f : Rn → Cm such that f is smooth}
C∞0 = {f : Rn → Cm such that f is smooth and compactly supported}
C∞0 (V ) = {f : Rn → Cm such that f is smooth and supp f ⊆ V }

2.1 Fourier Series

In the section we will look at the necessary results from Fourier analysis. In the next section

of Sobolev Spaces, we will prove of lot of properties and theorems, for functions that are

periodic and smooth, so that we can use some of the results of this chapter. Proving the

theorems of general Sobolev spaces, which requires us to do a lot of analysis on Lp functions,
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will take us significantly away from the present topic. Hence we prove all the theorems for a

certain subset of functions, which are nice, in the sense they have a Fourier series expansion.

Some notations: α = (α1, . . . , αn) where αi’s are all non-negative integers. For ξ ∈ Zn, we

denote:

ξα = ξα1
1 . . . ξαn

n

[α] = α1 + . . .+ αn

|ξ|2 = ξ21 + . . .+ ξ2n

We denote

Dα =
∂

∂xαn
n

· · · ∂

∂xα1
1

Let P = {f : Rn → Cm such that f is smooth and periodic with period 2π}. And Q

be the cube of side 4π centered at zero in Rn, also called the 2π cube centered at 0, i.e

Q = {p = (p1, . . . , pn) ∈ Rn : |pj| < 2π, 1 ≤ j ≤ n}
Take an element φ ∈ P . For each ξ ∈ Zn, define

φξ =
1

(2π)n

∫
Q

φ(x)e−ix.ξ

Theorem 2.1.1. Let φ ∈ P, and φξ defined as above. Then the following series converges

uniformly to φ. ∑
ξ∈Zn

φξe
ix.ξ

Proof. By repeatedly integrating by parts we obtain the following for each non-zero ξ ∈ Zn:

|φξ| ≤
ck∏
ξ2k

Now we prove a useful inequality that we will be using very frequently.

(1 + |ξ|2)k = (1 + ξ21 + . . .+ ξ2n)k

=
∑
[α]=k

(
k

α

)∏
ξ
2αi+1

i

≤ c
∏

ξ2ki
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Here
(
k
α

)
= k!

α1!...αn!
Hence,

|φξ| ≤
ck∏
ξ2k
≤ c′k

(1 + |ξ|2)k

Hence we reduce the problem to the convergence of the series
∑

1
(1+|ξ|2)k . First define the

set

Aj = {ξ = (ξ1, . . . , ξn) : max
0≤i≤n

|ξi| = j}

We will calculate the cardinality of Aj. First we fix the component which attains the max-

imum, there are n possibilities for this. It could take the value j or −j.The other n − 1

elements can take values ranging from −j, . . . , j, i.e, any of these 2j + 1 elements. There is

a subtle overcounting going on but we can anyways conclude than the cardinality of Aj is

less than 2n(2j + 1)n−1. Also observe that for each ξ ∈ Aj we have |ξ|2 ≥ j2.

aj =
∑
ξ∈Aj

1

(1 + |ξ|2)k
≤
∑
ξ∈Aj

1

(1 + j2)k
≤ 2n(2j + 1)n−1

1

(1 + j2)k

Now for j ≥ 1, we have (2j + 1)n−1 ≤ cjn−1 and (1 + j2)k ≥ j2k. Hence we conclude that,

aj ≤ cjn−1−2k

Since Zn = ∪j≥0Aj, ∑
ξ∈Zn

1

(1 + |ξ|2)k
= 1 +

∑
j>0

∑
ξ∈Aj

1

(1 + |ξ|2)k

= 1 +
∑
j>0

aj

≤ 1 +
∑
j>0

cjn−1−2k

We know that the the second term which is a geometric series converges when n − 1 −
2k < −1, that is when k > bn

2
c + 1. But since φ is smooth, we can take k to be as

large as possible. Hence by the comparison test, we conclude that the
∑

ξ φξ converges

absolutely to some continuous function ψ (since the finite sums are all smooth functions and

the convergence is uniform). Now we show that in fact φ = ψ. Let Φ = φ − ψ. Let t be a

trigonometric polynomial, i.e, a finite sum of terms of the from aξe
ix.ξ where aξ ∈ Cm. Take
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t =
∑

finite aξe
ix.ξ Now notice:∫

Q

Φ.t =

∫
Q

(φ− ψ).t

=

∫
Q

φ.t−
∫
Q

ψ.t

=

∫
Q

φ.(
∑
finite

aξe
ix.ξ)−

∫
Q

ψ.(
∑
finite

aξe
ix.ξ)

=
∑
finite

∫
Q

φ.aξe
ix.ξ −

∑
finite

∫
Q

ψ.aξe
ix.ξ

=
∑
finite

aξ.φ−ξ −
∑
finite

aξ.φ−ξ

= 0

Now by the Stone-Weierstrass Theorem we can find a trigonometric polynomial t, such

that ||Φ− t||∞ < ε.

||Φ||2 =
1

(2π)n

∫
Q

Φ.Φ =
1

(2π)n

∫
Q

− 1

(2π)n

∫
Q

Φ.t =
1

(2π)n

∫
Q

Φ.(Φ− t) ≤ ||Φ− t||∞||Φ||

||Φ|| ≤ ε

Since ε is arbitrary and Φ is a continuous function, we conclude that Φ = 0 and hence φ = ψ.

We have proved that the series converges uniformly to φ.

φ =
∑
ξ∈Zn

φξe
ix.ξ

We now look at the derivatives of φ and how these change the Fourier coefficients. By using
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integration by parts, we observe:

(Dαφ)ξ =
1

(2π)n

∫
Q

Dαφ.e−ix.ξ

=
(−1)[α]

(2π)n

∫
Q

Dα(e−ix.ξ).φ

=
(−1)[α]

(2π)n

∫
Q

(−i)[α]ξαe−ix.ξ.φ

= i[α]ξαφξ

For ease of notation we will denote Dα to actually mean

D[α] =
1

i[α]
∂

∂xαn
n

· · · ∂

∂xα1
1

Then we have

(Dαφ)ξ = ξαφξ

2.2 Sobolev Spaces

We define the set S := { sequences in Cm indexed by ξ ∈ Zn}. Hence a typical element of

S would be denoted by u = {uξ} where each uξ ∈ Cm as ξ varies over Zn.

Definition 2.2.1 (Sobolev Spaces Hs).

Hs = {u ∈ S :
∑
ξ∈Zn

(1 + |ξ|2)s|uξ|2 <∞}

If we define an inner product on S as

〈u, v〉s =
∑
ξ∈Zn

(1 + |ξ|2)suξvξ

then Hs is precisely the subset of S with a finite norm, the norm being induced from 〈. , .〉s
Notice that any φ ∈ P has a Fourier series and hence we can identify φ with the series

{φξ}ξ ∈ S, and from the results of the previous section we conclude that P ⊂ Hs for each

s. Now we define the operators Dα. The intuition is as follows. We know that for smooth
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periodic functions we have the Fourier coefficients, φξ, and we have an obvious way for

defining Dαφξ to be (Dαφ)ξ, i.e, Dαφξ = ξαφξ. We extend this to all the sequences in S.

For φ ∈ S,

(Dα(φ))ξ = ξαuξ

Also from previous inequality we can conclude that the more the differentiable the function

is, the higher the order of the Sobolev space it belongs to. And the converse is also true.

Suppose u ∈ Hs for large s, then we can show that the formal Fourier series actually converges

to a smooth functions with some derivatives.

Theorem 2.2.1 (Properties of Sobolev Spaces). We have the follow inequalities which will

be useful:

ω is a complex valued smooth periodic function on Rn, φ, ψ ∈ P

(a) If t < s, then ||u||t ≤ ||u||s, hence Hs ⊂ Ht. Denote by H−∞ to be the union of all Hs.

(b) Dα is a bounded operator from Hs+[α] to Hs for each s. We have the inequality,

||Dαu||s ≤ ||u||s+[α]

(c) |〈φ, ψ〉s| ≤ ||φ||s+t||ψ||s−t

(d) (Peter Paul Inequality) Given t′ < t < t′′ and any ε > 0, we can find another constant

which depends only on ε, call it c(ε) such that :

||φ||2t ≤ ε||φ||2t′′ + c(ε)||φ||2t′

Proof. (a) t < s =⇒ (1 + |ξ|2)t < (1 + |ξ|2)s, as a result ||u||t ≤ ||u||s, and Hs ⊂ Ht.

(b) (Dαu)ξ = ξαuξ

So

||Dαu||2s =
∑
ξ

(1 + |ξ|2)s|(Dαu)ξ|2

=
∑
ξ

(1 + |ξ|2)s|ξαuξ|2 =
∑
ξ

(1 + |ξ|2)s|ξαuξ|2

≤
∑
ξ

(1 + |ξ|2)s(1 + |ξ|2)[α]|uξ|2 = ||u||2s+[α]
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(c) We will use the Cauchy Schwartz inequality for the complex numbers to prove this.

|〈φ, ψ〉s| =
∑
ξ

(1 + |ξ|2)sφξψξ

=
∑
ξ

(1 + |ξ|2)
s+t
2 φξ.(1 + |ξ|2)

s−t
2 ψξ

≤ (
∑
ξ

(1 + |ξ|2)s+t|φξ|2)
1
2 (
∑
ξ

(1 + |ξ|2)s−t|ψξ|2)
1
2

= ||φ||s+t||ψ||s−t

(d) We have the following observation: t′′− t > 0 and t− t′ > 0. Now if y > 0, then either

y or 1
y

has to be greater than 1. Hence we have:

1 ≤ yt
′′−t +

(
1

y

)t−t′

Now given ε, take y = ε
1

t′′−t (1 + |ξ|2) to obtain:

(1 + |ξ|2)t ≤ ε(1 + |ξ|2)t′′ + c(ε)(1 + |ξ|)t′

where c(ε) = ε
t′−t
t′′−t The required inequality follows from the above by multiplying

throughout by |φξ|2 and summing over ξ.

2.3 Sobolev and Rellich theorem

In this section we prove two useful theorems. Sobolev theorem makes our previous intuition,

of a formal Fourier series converging to a function that is more differentiable, the higher the

order of the Sobolev space it belongs to, more rigorous. Rellich theorem is concerned with

whether we have a convergent sequence or in particular a Cauchy sequence. This is a hard

question in general, and whether there is exists a Cauchy subsequence is easier to answer.

This too is not easy to do using elementary analysis. The way we get around this is, we

impose conditions on the sequence in higher order Sobolev spaces, and this is sufficient to

give us some sort of convergence in a lower order Sobolev space.
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Theorem 2.3.1 (Sobolev Theorem). If s > bn
2
c + 1, then the series

∑
ξ uξe

ιx.ξ converges

uniformly. Thus each s > bn
2
c+ 1 corresponds to a continuous function.

Proof. We will show that
∑

ξ uξe
ιx.ξ converges absolutely. Since for finite sums this is a

continuous function, that means the limit is also a continuous function.

||
∑
|ξ|≤N

uξe
ιx.ξ|| ≤

∑
|ξ|≤N

|uξ|

=
∑
|ξ|≤N

(1 + |ξ|2)
−s
2 .(1 + |ξ|2)

s
2 |uξ|

≤ (
∑
ξ≤N

(1 + |ξ|2)−s)
1
2 ((1 + |ξ|2)s|uξ|2)

1
2

= (
∑
ξ≤N

(1 + |ξ|2)−s)
1
2 ||u||s

But since s > bn
2
c+ 1,

∑
ξ≤N(1 + |ξ|2)−s converges. Hence by using the Weierstrass M-test,

we conclude that the series
∑

ξ uξe
ιx.ξ is uniformly convergent.

Corollary 2.3.1.1. If u ∈ Hs, t > bn2 c + 1 + m. Then if [α] ≤ m, Dαu ∈ Ht−[α] from (a)

of 2.2.1. Now t − [α] > bn
2
c + 1. Hence from the Sobolev Lemma we conclude that Dαu is

continuous. We conclude that u ∈ Cm

Theorem 2.3.2 (Rellich Theorem). Let {ui} be a bounded sequence in Ht, that is ||ui||t ≤ c

for some c > 0. Suppose s < t. Then there exists a subsequence {uik} which converges in

Hs.

Proof. We have
∑

ξ(1 + |ξ|2)t|uiξ|2 ≤ c for each i. Now fix ξ ∈ Zn. The sequence {(1 +

|ξ|2) t
2 |uiξ|} is a bounded sequence in R. Hence we have a convergent subsequence which we

denote by the same index. Now we use the diagonal argument to obtain a sequence {ujk},
such that {(1 + |ξ|2) t

2 |ujkξ |} converges for all ξ. {uik} is the required Cauchy subsequence in

Hs

||ujk − ujl ||2s =
∑
ξ

(1 + |ξ|2)s|ujkξ − u
jl
ξ |

2

=
∑
ξ<N

(1 + |ξ|2)s−t(1 + |ξ|2)t|ujkξ − u
jl
ξ |

2 +
∑
ξ≥N

(1 + |ξ|2)s−t(1 + |ξ|2)t|ujkξ − u
jl
ξ |

2

=: A+B
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B =
∑
ξ≥N

(1 + |ξ|2)s−t(1 + |ξ|2)t|ujkξ − u
jl
ξ |

2

≤ (1 +N2)s−t
∑
ξ∈Zn

(1 + |ξ|2)t(|ujkξ |
2 + |ujlξ |

2 + 2|ujkξ ||u
jl
ξ |)

= (1 +N2)s−t
(∑
ξ∈Zn

(1 + |ξ|2)t|ujkξ |
2 +

∑
ξ∈Zn

(1 + |ξ|2)t||ujlξ |
2 + 2

∑
ξ∈Zn

(1 + |ξ|2)
t
2 |ujkξ |(1 + |ξ|2)

t
2 |ujlξ |

)
= (1 +N2)s−t(||ujk ||t + ||ujl ||t + 〈ujk , ujl〉s)
≤ (1 +N2)s−t(c+ c+ ||ujk ||s ||ujl ||s)
≤ (1 +N2)s−t(c+ c+ c2)

<
ε

2

by choosing N large enough since s− t < 0. Now after choosing such an N = No,

A =
∑
ξ<No

(1 + |ξ|2)s−t(1 + |ξ|2)t|ujkξ − u
jl
ξ |

2

≤
∑
ξ<No

(1 + |ξ|2)t|ujkξ − u
jl
ξ |

2

Since for a fixed ξ, {(1 + |ξ|2) t
2 |ujiξ |} converges, we can find Jξ such that, for all jk, jl > Jξ,

(1 + |ξ|2)
t
2 (|ujkξ | − |u

jl
ξ |) ≤

√
ε

2σ

where σ = #{ξ ∈ Zn : |ξ| < N0}. Since we have only a finite number of |ξ| < No, we choose:

J = max{Jξ : |ξ| < No}

Now if jk, jl > J , then

A ≤
∑
ξ<No

(1 + |ξ|2)t|ujkξ − u
jl
ξ |

2

≤
∑
ξ<No

ε

σ

=
ε

2
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Hence combining the estimates for A and B, we conclude that, for large enough jk, jl,

||ujk − ujl ||2s = A+B

≤ ε

2
+
ε

2

= ε

Hence {uji} is our required Cauchy subsequence in Hs.

2.4 Difference Quotients

What does it mean for a function to be differentiable. Suppose f : R → R is a continuous

function. Then we say that f is differentiable at x0 if the following limit exists and the limit

is called the differential of f at xo, denoted by f ′(x0).

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h

Note that if this limit exists then f(x0+h)−f(x0)
h

is necessarily bounded. And conversely if there

is a uniform bound on this term for all h, then in fact the limit exists and f is differentiable.

Keeping this example and intuition in mind we proceed to define difference quotients.

Suppose φ ∈ P , then we want to look at the term φ(x+ h). Since we already have a Fourier

decomposition, we observe the foll wing:

φ(x+ h) =
∑
ξ

φξe
i(x+h).ξ =

∑
ξ

φξe
i(x.ξ+h.ξ) =

∑
ξ

φξe
ix.ξeih.ξ =

∑
ξ

eih.ξφξe
ix.ξ

Hence we see that a translation by h corresponds to the ξth Fourier coefficients being scaled

by eih.ξ. We extend this to the space S. We define the translation map, Th, as follows:

(Th(u))ξ = eih.ξuξ

Now we can define the difference quotients for u ∈ S. We denote it by uh, defined as:

uh =
Th(u)− u
|h|
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(uh)ξ =
(Th(u))ξ − uξ

|h|
=
eih.ξuξ − uξ
|h|

Similar to the real one dimensional case, we have analogous theorem for Sobolev spaces.

Lemma 2.4.1. If u ∈ Hs+1, then ||uh||s ≤ ||u||s+1 for all non-zero h ∈ Rn.

Proof.

||uh||s =
∑
ξ

(1 + |ξ|2)s|uhξ |2

=
∑
ξ

(1 + |ξ|2)s
∣∣∣∣∣
∣∣∣∣∣eih.ξuξ − uξ|h|

∣∣∣∣∣
∣∣∣∣∣
2

=
∑
ξ

(1 + |ξ|2)s
∣∣∣∣∣
∣∣∣∣∣eih.ξ − 1

|h|

∣∣∣∣∣
∣∣∣∣∣
2

||uξ||2

By using the series expansion of eihx.ξ and the Cauchy-Shwarz inequality we can that∣∣∣∣∣
∣∣∣∣∣eih.ξ − 1

|h|

∣∣∣∣∣
∣∣∣∣∣
2

≤ 1 + |ξ|2

Hence, we have:

||uh||2s =
∑
ξ

(1 + |ξ|2)s
∣∣∣∣∣
∣∣∣∣∣eih.ξ − 1

|h|

∣∣∣∣∣
∣∣∣∣∣
2

||uξ||2

≤
∑
ξ

(1 + |ξ|2)s(1 + |ξ|2)||uξ||2

= ||u||s+1

Now for the converse,

Lemma 2.4.2. If u ∈ Hs, and there exists a constant c, such that ||uh||s ≤ c for all non-zero

h ∈ Rn, i.e, ||uh||s is uniformly bounded, then u ∈ Hs+1.
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Proof. We will give a sequence in Hs+1 which converges to u. The obvious candidate for

this sequence which agrees with u in a finite number of places and is zero for all the other

indices, i.e,{uN} is defined as follows:

(uN)ξ =

uξ if |ξ| < N

0 otherwise

Clearly this sequence converges to u. We will show that this sequence is uniformly bounded

in Hs+1. First an observation, if we let h = tei where {e1, . . . , en} form an orthonornmal

basis for Rn, then:

lim
t→0

eiξ.tei − 1

|tei|
= lim

t→0

eitξi − 1

|t|
= iξie

iξi

Now,

||uh||s < k =⇒
∑
|ξ|<N

(1 + |ξ|2)s|uξ|2
∣∣∣∣∣
∣∣∣∣∣eih.ξ − 1

|h|

∣∣∣∣∣
∣∣∣∣∣
2

≤ k2

We take h = tei, then take limit as t→ 0 to obtain∑
ξ<N

(1 + |ξ|2)s|uξ|2|ξi|2 < k2 for 0 ≤ i ≤ n

Adding up all these inequalities and the fact that u ∈ Hs we conclude:

||uN ||2s+1 =
∑
ξ<N

(1 + |ξ|2)s|uξ|2(1 +
n∑
i=1

|ξi|2) < nk2 + ||u||2s

We see that {uN} is bounded in Hs+1 uniformly. Therefore u ∈ Hs+1.

2.5 Some Technical Results

We prove some technical lemmas in this section which are required to prove the various

theorems and inequalities in the upcoming sections the most important of which is the elliptic

regularity and the fundamental inequality for periodic elliptic partial differential operators.

First we will prove some lemmas for Hs, which will then be used to prove required lemmas

for partial differential operators.
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To prove the following two lemmas, we define a new operator called Kt. This will be an

isometry between Sobolev space of different another orders. The reason behind doing this is,

we can prove these lemmas rather easily for when s ≥ 0. Then the case for s < 0 is proved

by using Kt to reduce it to the case of s ≥ 0.

Define for u ∈ S, Ktu, where the sequence is given by,

(Ktu)ξ = (1 + |ξ|2)tuξ

Lemma 2.5.1. Properties of Kt

1. Kt : Hs → Hs−2t is an isometry

2. The inverse of Kt is K−t

3. If φ ∈ P and t ≥ 0, then

Ktφ =

(
1−

n∑
i=1

∂2

∂x2i

)t
φ

4. For every s and t,u, v ∈ Hs we have the following:

〈u, v〉s = 〈u,Ktv〉s−t = 〈Ktu, v〉s−t

Now we have defined Kt, we proceed to prove the following technical lemmas.

Lemma 2.5.2. Let ω be a smooth real valued periodic function on Rn. Then given an integer

s, we can find constants c which depends only on s and n, and c′ which depends on s,n and

ω and it’s derivatives such that:

||ωφ||s ≤ c||ω||∞||φ||s + c′||φ||s−1

In particular, due to Theorem 2.2.1 we can say, ||ωφ||s ≤ c′′||φ||s.

Proof. We first prove for the case s ≥ 0, follows from the fact that: ||φ||s ≤ C
∑s

[α]=0 ||Dαφ||.
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Then

||ωφ||s ≤ C
s∑

[α]=0

||Dαωφ|| = C

s∑
[α]=0

||Dαωφ− ωDαφ+ ωDαφ||

≤ C
s∑

[α]=0

||(Dαω − ωDα)φ||+ C

s∑
[α]=0

||ωDαφ||

≤ c′
s∑
i=0

||φ||i−1 + c||ω||∞
s∑
i=0

||φ||i

≤ c′(s− 1)||φ||s−1 + cs||ω||∞||φ||s = C ′||φ||s−1 + C ′′||ω||∞||φ||s

Now when s < 0, we hit it by Ks to reduce it to the s = 0 case.

||ωφ||s = 〈ωφ, ωφ〉s = 〈ωK−sKsφ,Ksωφ〉0
= 〈ωK−sKsφ+K−sωKsφ−K−sωKsφ,Ksωφ〉0
= 〈K−sωKsφ,Ksωφ〉0 + 〈(ωK−s −K−sω)Ksφ,Ksωφ〉0

Using the case of s ≥ 0(since −s > 0), Cauchy Schwartz and properties of Ks, we see that

for the first term:

|〈K−sωKsφ,Ksωφ〉0| = |〈ωKsφ,Ksωφ〉−s|
≤ ||ωKsφ||−s||Ksωφ||−s
≤ (c||ω||∞||Ksφ||−s + k′||Ksφ||−s−1)||ωφ||s
≤ (c||ω||∞||φ||s + k′||φ||s−1)||ωφ||s

For the second term, we use the definition of Ks on smooth functions, i.e 3) of Lemma

2.5.1 to obtain that:

ωK−s −K−sω =
−2s−1∑
[α]=0

aαD
α

where aα are continuous functions of derivatives of ω. Then by using elementary analysis,

Cauchy Schwartz and the properties of Dα and Ks we obtain:

|〈(ωK−s −K−sω)Ksφ,Ksωφ〉0| ≤ const||φ||s−1||ω||∞||φ||s
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From the bounds on the two terms we get our desired inequality.

Lemma 2.5.3. Let ω be a complex-valued smooth periodic function on Rn. Then for any

integer s,

|〈ωφ, ψ〉s − 〈φ, ωψ〉s| ≤ c(||φ||s||ψ||s−1 + ||φ||s−1||ψ||s)

And we have a special condition when s = 0, 〈ωφ, ψ〉0 = 〈φ, ωψ〉0

Proof. The case for s = 0 when φ, ψ ∈ P is nothing but a direct consequence of the fact that

〈. , .〉0 is the same as the L2 norm and as P is dense in H0. Take s < 0 and φ, ψ ∈ P . Then

we have:

〈ωφ, ψ〉s = 〈ωφ,Ksψ〉0 = 〈ωK−sKsφ, ψ〉0
= 〈K−sKsφ, ωKsψ〉0 = 〈Ksφ,K−sωKsψ〉0
= 〈φ, ωψ〉s − 〈φ, ωψ〉s + 〈Ksφ,K−sωKsψ〉0
= 〈φ, ωψ〉s − 〈Ksφ, ωψ〉0 + 〈Ksφ,K−sωKsψ〉0
= 〈φ, ωψ〉s + 〈Ksφ, (K−sω − ωK−s)Ksψ〉0

We already did an approximation in the previous lemma for a term similar to the second

term. After re-arrangement and observing the symmetry we obtain the desired inequality.

The case for s > 0 is proved exactly as above but you use K−s first.
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Chapter 3

PDE Theory

In this chapter we define partial differential operators and some analytic results on them.

These are pretty straightforward from the bounds that we proved the Dα operator and

after all a partial differential operator will be made up of these, so we can easily extend

those results. More importantly e deal with a very special kind of operator called an elliptic

operator, the prime example being the Laplacian. These operators have positive eigen values

and that allows us to prove more stronger results and have better control over the solutions.

3.1 Partial Differential Operators

We prove some lemmas on partial differential operators which are a direct consequence of

the lemmas of the previous section.

Definition 3.1.1 (Partial Differential Operators). An partial differential operator of order

l is,

L = Pl(D) + ...+ P0(D),

where each Pl(D) is a m×m matrix, and each element of the matrix is a partial differential

operator on complex-valued functions of a constant order, that is, (Pl(D))ij =
∑

[α]=l a
α
ijD

α,

where α is a multi-index, α = (α1, α2, . . . , αn) and aαij are complex valued smooth functions

on Rn. The partial differential operator is called periodic when the aαij’s are periodic functions

and we say that it is an operator on P
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The simplest examples partial differential operators are the usual constant coefficients

partial derivatives of functions on Rn, ∂k

∂xki
. Also linear combinations of these and varying

the orders, along with multiplying them with smooth functions give us the class of linear

partial differential operators for single valued functions. These are the building blocks for the

differential operators on multi-valued functions, which are nothing but matrices composed

of elements, which look like the partial differential operators on single valued functions.

Lemma 3.1.1. Let L be a partial differential operator on P of order l. Given φ ∈ P, we

can find constants:

c which depends on n,m, l and s;

k which is a bound on the coefficients of the highest order term of L;

c′ which depends on n,m, l, s and all the coefficients of L and it’s derivatives;

such that:

||Lφ||s ≤ ck||φ||s+l + c′||φ||s+l−1

In particular ||Lφ||s ≤ c′′||φ||s+l.

Proof. The proof for m = 1, is nothing but a direct consequence of the inequalities in b0 of

2.2.1 and 2.5.2. The case for an arbitrary m, follows from seeing that

||Lφ||2s =
∑
ξ

(1 + |ξ|2)s||(Lφ)ξ||2

=
∑
ξ

(
(1 + |ξ|2)s

n∑
i=1

|((Lφ)ξ)i|2
)

=
n∑
i=1

(∑
ξ

(1 + |ξ|2)s|((Lφ)ξ)i|2
)

=
n∑
i=1

||(Lφ)i||2s

Now we have: ||Lφ||2s =
∑n

i=1 ||(Lφ)i||2s =
∑n

i=1

∑n
j=1 ||Lijφj||2s. Hence we can find a constant

which depends only on m, to get ||Lφ||s ≤
∑

i,j ||Lijφj||s. Now the general inequality follows

from the m = 1 case.

Remark. 1.Notice that looking at P as a subset of Hs we can look at L as a bounded linear

map from a dense subset of Hs+l to Hs. Hence by Hahn-Banach extension theorem we can

extend this map to obtain, L : Hs+l → Hs, satisfying the above inequalities.
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Remark. 2. If L is a partial differential operator of order l and ω is a smooth function, then

Lω − ωL is a partial differential operator of order l − 1. Hence we have (Lω − ωL)(φ) ≤
c||φ||s+l−1

Lemma 3.1.2. Let ω be a smooth-real valued periodic function on Rn and L be a periodic

partial differential operator of order l. Then for all u ∈ Hs+l,there exists c > 0, such that:

|〈L(ω2u), Lu〉s − 〈L(ωu), L(ωu)〉s| ≤ c||u||s+l||u||s+l−1

Proof.

〈L(ω2u), Lu〉s − 〈L(ωu), L(ωu)〉s = 〈ωL(ωu), Lu〉s − 〈L(ωu), ωLu〉s+
〈L(ωu), ωLu〉s − 〈L(ωu), L(ωu)〉s+
〈L(ω.ωu), Lu〉s − 〈ωL(ωu), Lu〉s

|〈L(ω2u), Lu〉s − 〈L(ωu), L(ωu)〉s| ≤ |〈ωL(ωu), Lu〉s − 〈L(ωu), ωLu〉s|+
|〈L(ωu), (ωL− Lω)u〉s|+
|〈(Lω − ωL)(ωu), Lu〉s|

The first term is reduced using Lemma 2.5.3 and use the Cauchy Schwartz on the last two

terms. Then repeated use of Lemma 3.1.1 and remarks, and Lemma 2.5.2 gives us the desired

inequality.

3.2 Elliptic PDE

Definition 3.2.1. Elliptic Partial Differential Operator Given a partial differential operator

of order l ,

L = Pl(D) + ...+ P0(D),

where , (Pl(D))ij =
∑

[α=l] a
α
ijD

α, where α is a multi-index, α = (α1, α2, . . . , αn) and aαij are

complex valued smooth functions on Rn. For each ξ = (ξ1, ξ2, . . . , ξn) construct a new matrix

Pl(ξ), where you substitute for each Dα that element ξα = ξα1
1 . . . ξαn

n . We call the partial

differential operator L elliptic at x if Pl(ξ)(x) is invertible for each non-zero ξ.
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The prototypical example for an elliptic PDE is the Laplacian on Rn, which is a second

order operator. The Laplacian, L, of a function f on Rn is defined as

Lf =
n∑
i=1

∂2f

∂x2i

Writing this in the form of our definition, since the range of the function is in R, the Pk(D)

are 1× 1 matrices or just numbers. Also only there are only terms with order 2, i.e,

L = P2(D)

P2(D) =
n∑
i=1

Dei

where ei = (0, . . . , 2, . . . , 0), with 2 at the i-th place. Then for any non-zero ξ ∈ Rn,

P2(ξ) =
∑n

i=1(ξi)
2. Since ξ is non-zero we see that P2(ξ) is non-zero and hence invertible.

Therefore the Laplacian on Rn is an elliptic operator.

Remark. Notice that the condition is only for the matrix consisting of the highest order

derivatives.

Lemma 3.2.1. The partial differential operator L of order l is elliptic at x if and only if

L(φlu)(x) 6= 0

for any u, a Cm-valued functions smooth functions on Rn such that u(x) 6= 0 and φ, a smooth

function on Rn such that φ(x) = 0 and dφ(x) 6= 0

Proof. Fix x = (x1, . . . , xn). We need to show that this condition is equivalent to the fact

that Pl(ξ)(x) is invertible for each non-zero ξ. Another equivalent way of telling this is

Pl(ξ)(x) 6= 0 when x 6= 0. The condition φ(x) = 0 forces only the highest order derivatives

to survive in L(φlu)(x) as seen below:
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Suppose α = (α1, . . . , αn). Then:

Dα(φl) =
1

i[α]
∂

∂xαn
n

· · · ∂φ
l

∂xα1
1

=
1

i[α]
∂

∂xαn
n

· · · ∂

∂xα1−1
1

(
lφl−1

∂φ

∂x1

)
=

1

i[α]
∂

∂xαn
n

· · · ∂

∂xα1−2
1

(
l(l − 1)φl−2

∂φ

∂x1

∂φ

∂x1
+ lφl−1

∂2φ

∂x21

)
Now since φ(x) = 0, only the terms independent of φ survive. This would require us to

differentiate the remaining powers of φ again and again to get terms of the form (for example

in the case above):

l(l − 1) . . . (l − [α])

i[α]
φl−[α]

(
∂φ

∂xn

)αn

· · ·

(
∂φ

∂x1

)α1

Hence only for [α] = l, φ disappears and the terms survive. Hence,

L(φlu)(x) = Pl(dφ|x)(u)(x)

where dφ|x =
(
∂φ
∂xn

∣∣∣
x
, . . . , ∂φ

∂x1

∣∣∣
x

)
. Now for each ξ ∈ Rn non-zero, set

φ(t) = (ξ1(t− x1), . . . , ξn(t− xn))

Observe that φ is smooth, φ(x) = 0 and dφ|x = (ξn, . . . , ξ1) which is non-zero. Now

Pl(dφ|x) = Pl(ξ). Since this is a constant matrix,

Pl(dφ|x)(u)(x) = Pl(ξ)(u(x))

Now for any non-zero v ∈ Rn we define u(t) = v, the constant function. This is clearly

non-zero. For this particular choice of φ and u we see:

L(φlu)(x) 6= 0 ⇐⇒ Pl(dφ|x)(u)(x) 6= 0 ⇐⇒ Pl(ξ)(v) 6= 0

Since this is true for all u(t) = v where v is non-zero, the last terms is the same as the matrix

being invertible. Hence the two statements are equivalent.

Now we proceed to prove two of the main theorems on elliptic PDE, the fundamental
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inequality and the regularity theorem.

Theorem 3.2.1 (Fundamental Inequality). Let L be an elliptic operator on of order l, and

let s be an integer. Then there exists a constant c > 0 such that

||u||s+l ≤ c(||Lu||s + ||u||s)

for all u ∈ Hs+l

Proof. We will first prove it for the special case where L0 is an elliptic operator of order l,

consisting of only l-order terms and the coefficients being constants. Also since P is dense

in Hs, it is sufficient to prove the theorem for φ ∈ P . Since the operator is elliptic, Pl(ξ)

is invertible for all non-zero ξ. This means that for any non zero u ∈ Rn, Pl(ξ)u 6= 0, that

means |Pl(ξ)u|2 > 0. Now since the order of each term is l, and is the same throughout, we

can just look at the map:

Sn−1 × Sn−1 → R

(ξ, u) 7→ |Pl(ξ)u|2

Since Sn−1XSn−1 is compact, and the map is easily seen to be continuous(since it’s a com-

position of continuous map),we deduce that |Pl(ξ)u|2 > c for some c > 0. Now given any

non-zero ξ, u ∈ Rn\0, ξ
|ξ| ,

u
|u| ∈ S

n−1. Hence we obtain that:

|Pl(ξ)u|2 > c|ξ|2l|u|2

Thus for φ ∈ P ,

||L0(φ)||2s = ||Pl(φ)||2s
=
∑
ξ

(1 + |ξ|2)s|(Pl(φ))ξ|2

=
∑
ξ

(1 + |ξ|2)s|Pl(ξ)φξ|2

≥
∑
ξ

(1 + |ξ|2)sc|ξ|2l|φξ|2

= c
∑
ξ

|ξ|2l|φξ|2(1 + |ξ|2)s
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Proceeding,

(||L0(φ)||2s + ||φ||2s)2 ≥ ||L0(φ)||2s + ||φ||2s
≥ c

∑
ξ

|ξ|2l|φξ|2(1 + |ξ|2)s +
∑
ξ

(1 + |ξ|2)s|φξ|2

≥ c′
∑
ξ

|φξ|2(1 + |ξ|2)s(|ξ|2l + 1)

≥ c′′
∑
ξ

|φξ|2(1 + |ξ|2)s(1 + |ξ|2)l

= c′′
∑
ξ

|φξ|2(1 + |ξ|2)s+l

= c′′||φ||2s+l

Hence we have proved it for elliptic operators with constant coefficients which consists of

only the highest order terms. To prove it for general periodic elliptic operators we will show

that for any point p ∈ Rn, we can find a neighbourhood of p,Up such that for all φ ∈ P with

support in U and 2π translates of U , the theorem holds. Then we will use a partition of

unity argument to prove it for global periodic smooth functions. Let L0 denote the highest

order coefficient matrix at the point p. We already know that for such operators,

||φ||s+l ≤ c(||L0(φ)||s + ||φ||s)

Writing L0 = L0 − L + L and using the triangle inequality(keep this general procedure in

mind, we will be frequently using it):

||φ||s+l ≤ c′(||Lφ||s + ||(L0 − L)φ||s + ||φ||s)

Now we know that for a PDE L on P , we have the following inequality, φ ∈ P :

||Lφ||s ≤ ck||φ||s+l + c̃||φ||s+l−1

Choose ε < 1
2cc′

. Now choose a neighbourhood of of p such that the coefficients of the highest

order terms of L̃ = L0 − L are bounded by ε. This can be done since the coefficients are

smooth functions on Rn. Notice that L̃ is no longer periodic. Hence we choose a smaller

neighbourhood Up on which L̃ agrees with a periodic elliptic PDE on that set. Abusing

notation we denote this too by L̃. Now for φ ∈ P with support in Up(and it’s 2π translates),
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we observe that:

||φ||s+l ≤ c′(||Lφ||s + ||(L0 − L)φ||s + ||φ||s)
= c′(||Lφ||s + ||L̃φ||s + ||φ||s)
≤ c′(||Lφ||s + ck||φ||s+l + c̃||φ||s+l−1 + ||φ||s)
≤ c′(||Lφ||s + cε||φ||s+l + c̃||φ||s+l−1 + ||φ||s)

≤ c′||Lφ||s +
1

2
||φ||s+l + c′c̃||φ||s+l−1 + c′||φ||s)

Now applying Peter-Paul Inequality to ||φ||s+l−1 with s < s+ l− 1 < s+ l, and ε = 1
4c′c̃

, we

obtain that:

||φ||s+l−1 ≤ ε||φ||s+l + const||φ||s

Hence,

||φ||s+l ≤ c′||Lφ||s +
1

2
||φ||s+l + c′c̃ε||φ||s+l + ε const||φ||s + c′||φ||s

= c′||Lφ||s +
1

2
||φ||s+l +

1

4
||φ||s+l + const||φ||s

≤ c′||Lφ||s +
3

4
||φ||s+l + const||φ||s

1

4
||φ||s+l ≤ c′||Lφ||s + const||φ||s

||φ||s+l ≤ C(||Lφ||s + ||φ||s)

Now we have some sort of local result. We proceed for the global case as follows. First cover

Rn by {Up}p∈Rn , where the Up are as above.Consider the torus T n obtained by quotienting

out Rn by translations by 2π. Cover T n by the projections of these open sets onto the torus.

This is an open cover for T n and since T n is compact we have a finite subcover, {U1, . . . , Uk}.
Now we consider a partition of unity ωi of sub-ordinate to this finite cover with the extra

condition that
∑k

i=1 ω
2
i = 1. This can be done. There are some subtle points to note here.

We construct the finite cover and the partitions of unity on the torus. But notice that pulling

it back to Rn we get a cover of Rn with 2π translates of these open sets and a partition of
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unity which are real 2π periodic smooth functions on Rn. Now,

||φ||2s+l = 〈φ, φ〉s+l = 〈
k∑
i=1

ω2
i φ, φ〉s+l

=
k∑
i=1

〈ω2
i φ, φ〉s+l

≤
k∑
i=1

〈ωiφ, ωiφ〉s+l + const||φ||s+l||φ||s+l−1

=
k∑
i=1

||ωiφ||2s+l + const||φ||s+l||φ||s+l−1

From c),d) of Theorem 2.2.1 and the fact that ωi’s are real. Now since suppωi ⊂ Ui, and

there are only a finite number of terms, we can take the biggest constant among the terms

from the inequality we proved locally.Hence,

||φ||2s+l ≤ c1

k∑
i=1

||Lωiφ||2s + c2||φ||2s + c3||φ||s+l||φ||s+l−1

= c1

k∑
i=1

〈Lωiφ, Lωiφ〉s + c2||φ||2s + c3||φ||s+l||φ||s+l−1

≤ c′1

k∑
i=1

〈L(ω2
i φ), Lφ〉s + c2||φ||2s + c′3||φ||s+l||φ||s+l−1

= c′1〈
k∑
i=1

L(ω2
i φ), Lφ〉s + c2||φ||2s + c′3||φ||s+l||φ||s+l−1

≤ c′1〈L(
k∑
i=1

ω2
i φ), Lφ〉s + c2||φ||2s + c′3(

1

2c′3

||φ||2s+l
2

+ 2c′3
||φ||2s+l−1

2
)

= c′1〈Lφ,Lφ〉s + c2||φ||2s +
1

2
||φ||2s+l + c4||φ||2s+l−1

Using the same trick as before, applying the Peter-Paul Inequality to ||φ||s+l−1, with s <
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s+ l − 1 < s+ l, and ε = 1
4c4

, we obtain:

||φ||2s+l ≤ c′1||Lφ||2s + c2||φ||2s +
1

2
||φ||2s+l +

1

4
||φ||2s+l + const||φ||2s

||φ||2s+l ≤ c′1||Lφ||2s + c′2||φ||2s +
3

4
||φ||2s+l

1

4
||φ||2s+l ≤ c′1||Lφ||2s + c2||φ||2s

Hence we conclude that:

||φ||s+l ≤ c(||Lφ||s + ||φ||s)

Theorem 3.2.2 (Regularity for Periodic Elliptic Operators). Let L be a periodic elliptic

operator of order l. Let u ∈ H−∞ and v ∈ Ht such that

Lu = v

Then u ∈ Ht+l

Proof. It is sufficient to prove that for u ∈ Hs and v = Lu ∈ Hs−l+1 , u ∈ Hs+1. We will

prove this by showing that the difference quotient of u, is bounded in the ||.||s norm. Before

that we denote by Lh the partial differential operator where the coefficients functions are

replaced by their difference quotients. Now we observe that,

Luh + Lh(Thu) = (Lu)h

Since L is linear and the equality is component wise, it is sufficient to check the condition

for a single term, and the above formulae will hold for L due to linearity. Taking a single

term, it is of the form: aα(x)Dαu(x) = v(x).

1. aα(x)Dαuh(x) = aα(x)Dαu(x+ h)− u(x)

|h|
2. (aα(x)Dα)h(Thu) = (aα)h(x)Dα(u(x+ h))

=
aα(x+ h)− aα(x)

|h|
Dα(u(x+ h))
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Adding 1 and 2, we obtain:

aα(x)Dαuh(x) + (aα(x)Dα)h(Thu)

= aα(x)Dαu(x+ h)− u(x)

|h|
+
aα(x+ h)− aα(x)

|h|
Dα(u(x+ h))

=
aα(x)Dαu(x+ h)− aα(x)Dαu(x) + aα(x+ h)Dα(u(x+ h)− aα(x)Dα(u(x+ h)

|h|

=
aα(x+ h)Dα(u(x+ h)− aα(x)Dαu(x)

|h|

=
Th(a

αDαu)(x)− (aαDαu)(x)

|h|
= (aαDαu)h(x)

Hence we have showed

(aαDα)(uh) + (aαDα)h(Thu) = (aαDα(u))h

Now using the fundamental inequality and the above result,

||uh||s ≤ c(||Luh||s−l + ||uh||s−l)
≤ c(||(Lu)h − Lh(Thu)||s−l + ||uh||s−l)
≤ c(||(Lu)h||s−l + ||Lh(Thu)||s−l + ||uh||s−l)

Since u ∈ Hs and l is at least 1, we see ||uh||s−l ≤ ||uh||s−1 ≤ ||u||s.
Similarly, Lu ∈ Hs−l+1, hence ||(Lu)h||s−l ≤ ||(Lu)||s−l+1.

Now since the coefficients of the differential operator are all smooth, this means that the

difference quotients are all uniformly bounded. Hence, ||Lh(Thu)||s−l ≤ c||Thu||s. But we

know that Th is an isometry, therefore ||Thu||s = ||u||s.
From all the arguments above we conclude :

||uh||s ≤ c(||Lu||s−l+1 + ||u||s)

Hence u ∈ Hs+1
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3.3 Reducing to Periodic case

Till now we have been working with and in fact all the theorems we proved are for periodic

functions and periodic elliptic partial differential operators. But in general this need not be

periodic, for example the Laplacian on the manifold. How do we get around this problem.

We will show that given any elliptic differential operator of Rn, for each p ∈ Rn, we can find

a neighbourhood V , on which it agrees with a periodic elliptic partial differential operator.

Let L0 denote the value of this of the elliptic operator at p. Since ellipticity is a continuous

condition on the coefficients(the determinant being a continuous map),we can find ε > 0,

such that the operator is still elliptic if the coefficients differ by at most ε from that of

L0. Choose a neighbourhood, U of p, which is contained in the 2π cube centered at p, and

on which the coefficients of L differ from that of L0 by at most ε(This is possible since the

coefficients are all smooth functions and there are only a finite number of them). Now choose

V ⊂ V ⊂ U , and construct a smooth function ω such that 0 ≤ ω ≤ 1, ω = 1 on V and

suppω ⊂ U . Define:

L̃ = ωL+ (1− ω)L0

Observe that the coefficients of L̃ differ from that of L0 by at most ε inside U . And outside

U it is just L0. Hence we have a elliptic partial differential operator defined all over Rn.

Also, L̃ = L on V . However there is a subtle point to see that this is not periodic. That can

easily be taken care of by observing that it uniformly takes the value of L0 at the sides of

the 2π cube(since U ⊂ 2π cube), which is the same as the value at the center. Hence we can

extend it periodically to whole of Rn to obtain the required periodic elliptic operator L̃.

3.4 ∆ is an elliptic PDE

We show that the Laplacian is an elliptic PDE. We need some results from vector spaces.

Lemma 3.4.1. Let U, V,W be finite dimensional inner product spaces. Suppose the following

sequence is exact:

U
A−→ V

B−→ W

Suppose the adjoints of A and B are A∗ and B∗ respectively. Then the map:

AA∗ +B∗B : V −→ V
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is an isomorphism.

Proof. Since the domanin and co-domain have the same dimension, by the rank-nullity

theorem we need to just so that the map is injective. First we wil show, A∗ : V → U is

injective on the image of A,Im(A). Suppose v ∈ Im(A), i.e, v = Au for some u ∈ U and

v ∈ Ker(A∗), then

A∗(v) = 0 =⇒ A∗Au = 0

=⇒ 〈A∗Au, u〉 = 0

=⇒ 〈Au,Au〉 = 0

=⇒ Au = v = 0

Hence A∗ is injective on the Im(A). Now we will show AA∗ +B∗B is injective. Let v 6= 0.

(AA∗ +B∗B)v = 0 =⇒ 〈(AA∗ +B∗B)v, v〉 = 0

=⇒ 〈AA∗v, v〉+ 〈B∗Bv, v〉 = 0

=⇒ 〈A∗v,A∗v〉+ 〈Bv,Bv〉 = 0

If Bv 6= 0, then (AA∗+B∗B)v 6= 0. Suppose Bv = 0, i.e, v ∈ Ker(B) then since the sequence

is exact, v ∈ Im(A). Now we know that A∗ is injective on Im(A). Hence v 6= 0 =⇒ A∗v 6= 0

and consequently (AA∗ +B∗B)v 6= 0. Hence v 6= 0 =⇒ (AA∗ +B∗B)v 6= 0

Lemma 3.4.2. Suppose ξ ∈ V , a finite dimensional inner product space. Then the following

sequence is exact:

Λp−1(V )
ξ−→ Λp(V )

ξ−→ Λp+1(V )

where ξ(ω) = ξ ∧ ω

Proof.

Theorem 3.4.1 (∆ is Elliptic).

Proof. Let ξ ∈ Ω1(M). We have the following exact sequence for each m ∈M :

Λp−1(T ∗mM)
ξm−→ Λp(T ∗mM)

ξm−→ Λp+1(T ∗mM)
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where ξm(ω(m)) = ξ(m)∧ ω(m), where ω is an alternating smooth form. We know that the

adjoint of ξm is

ξ∗m = (−1)np ∗ ξm∗

Now, we have

ξmξ
∗
m + ξ∗mξm : Λp(T ∗mM)→ Λp(T ∗mM)

By using the expression for ξ∗m we obtain that:

ξmξ
∗
m + ξ∗mξm = (−1)npξm ∗ ξm ∗+(−1)n(p−1) ∗ ξm ∗ ξm (3.1)

Now to prove that ∆ is elliptic. We will show that for any point m on the manifold,

∆(φ2α)(m) 6= 0 for all smooth p-forms α, α(m) 6= 0 and smooth functions φ, satisfying

φ(m) = 0 and dφ(m) 6= 0.

∆ = dδ + δd : Λp(T ∗mM)→ Λp(T ∗mM)

= (−1)n(p+1)+1d ∗ d ∗+(−1)n(p+1+1)+1 ∗ d ∗ d
= (−1)n(p+1)+1d ∗ d ∗+(−1)np+1 ∗ d ∗ d

next

∆(φ2α)(m) = ((−1)n(p+1)+1d ∗ d ∗+(−1)np+1 ∗ d ∗ d)(φ2α)(m)

= (−1)n(p+1)+1d ∗ d ∗ (φ2α)(m) + (−1)np+1 ∗ d ∗ d(φ2α)(m)

Let us calculate d ∗ d ∗ (φ2α)(m) and ∗d ∗ d(φ2α)(m).

d ∗ d ∗ (φ2α) = d ∗ d(φ2 ∗ α)

= d ∗ (2φdφ ∧ ∗α + φ2d ∗ α)

= d(2φ ∗ (dφ ∧ ∗α) + φ2 ∗ d ∗ α)

= 2(dφ ∧ ∗(dφ ∧ ∗α) + 2φd(∗(dφ ∧ ∗α))) + 2φdφ ∧ (∗d ∗ α) + φ2d ∗ d ∗ α

Observe that since φ(m) = 0, we obtain that d ∗ d ∗ (φ2α)(m) = 2(dφ∧ ∗(dφ∧ ∗α)(m). Now

if we let dφ(m) = ξm, we see that

d ∗ d ∗ (φ2α)(m) = 2ξm ∗ ξm ∗ α(m)

where we the same symbol ξm to denote the map from
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Similarly,

∗d ∗ d(φ2α)(m) = 2 ∗ ξm ∗ ξmα(m)

Therefore,

∆(φ2α)(m) = (−1)n(p+1)+1d ∗ d ∗ (φ2α)(m) + (−1)np+1 ∗ d ∗ d(φ2α)(m)

= (−1)n(p+1)+12ξm ∗ ξm ∗ α(m) + (−1)np+12 ∗ ξm ∗ ξmα(m)

= −2[(−1)npξm ∗ ξm ∗+(−1)n(p−1) ∗ ξm ∗ ξm](α(m))

From 3.1,we know that this is an isomorphism and since α(m) 6= 0, we conclude that

∆(φ2α)(m) 6= 0. This shows that ∆ is an elliptic operator.
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Chapter 4

Proofs

In this chapter we will prove the two main theorems we used in the proof of the Hodge

Decomposition Theorem, namely theorems on regularity and compactness. The procedure

for both these proofs is to prove them locally, in a small enough chart so that we can

reduce it to working with periodic elliptic PDE which is always possible in a small enough

neighbourhood. Choose such neighbourhoods then use a partition of unity to patch the

results of each neighbourhood to get a sort of global result. Also using the compactly

supported functions lets us extend the functions periodically to whole of Rn.

4.1 Proof of Regularity

We prove the regularity theorem.

Proof of 1.5.1. We will denote the inner product and norms in Ωp(M) as 〈. , .〉′ and || . ||′

while the standard inner product and norms on the euclidean space as 〈. , .〉 and || . ||. So

given f ∈ Ωp(M) and a bounded linear map

l′ : Ωp(M)→ R
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such that l′(∆φ) = 〈f, φ〉′ for all φ ∈ Ωp(M), then there exists u ∈ Ωp(M) such that

l′(φ) = 〈u, φ〉′

and ∆u = f . We first reduce the problem to a local problem. Let (U, γ) be a chart around

m ∈ M such that γ(U) = Rn. Now we observe that smooth p-forms correspond to smooth

functions from Rn to Rm ⊆ Cm where m =
(
n
p

)
.

Also functions in C∞0 can be extended by zero to obtain complex valued smooth forms on

M with support inside U . We would like to extend 〈. , .〉′ to complex valued smooth forms.

This is done by defining:

〈u1 + iu2, v1 + iv2〉′ = 〈u1, u2〉′ + 〈v1, v2〉′ + i(〈u2, v1〉′ − 〈u1, v2〉′)

We note that this is a hermitian inner product on complex-valued p-forms which agrees with

our initial inner product on real valued p-forms. Now we have an the usual L2 inner product

on C∞0 , given by

〈φ, ψ〉 =

∫
Rn

φ.ψ

where φ.ψ = φ1.ψ1 + φ2.ψ2 + . . .+ φm.ψm.

we can define another inner product on C∞0 , by first looking at it as complex valued p-forms

on the manifold M . Then

〈φ, ψ〉′ =
∫
Rn

φ̃.ψ̃

where φ̃, ψ̃ are p-forms on M by extension by zero.

Since both 〈. , .〉′ and 〈. , .〉, are defined as integrals of point wise inner product there exists

an invertible matrix A such that

〈u, v〉′ = 〈u,Av〉

∆ induces a elliptic partial differential operator L of order 2. Let L∗ be the adjoint of L

w.r.t 〈. , .〉. Note that the adjoint of L w.r.t 〈. , .〉′ is nothing but the adjoint of ∆. Take

φ, ψ ∈ C∞0 and observe that:

〈L∗φ, ψ〉 = 〈φ, Lψ〉
= 〈A−1, Lψ〉′

= 〈∆∗A−1φ, ψ〉′ = 〈∆A−1φ, ψ〉′

= 〈A∆A−1φ, ψ〉
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Hence L∗ = A∆A−1 Define

l : C∞0 → C

l(φ) = l′(A−1φ)

Claim: l is locally represented by a smooth function. That means given any p ∈ Rn, there

exists a neighbourhood Wp of p, and a smooth function up ∈ P , such that, for any φ ∈
C∞0 (Wp),

l(φ) = 〈up, φ〉

Claim =⇒ the proof.

First we collect all such up’s on Rn. Now if Wp ∩Wq 6= φ, then up|Wp∩Wq = uq|Wp∩Wq since

they agree on all φ ∈ C∞0 (Wp ∩ Wq). Hence we can patch up these to define a function

u ∈ C∞ which satisfies u|Wp = up|Wp . Now take a partition of unity {φi} subordinate to the

cover {Wp}. Now for any t ∈ C∞0 ,

l(t) = l(
∑
i

φit)

=
∑
i

l(φit)

=
∑
i

〈u, φit〉

= 〈u,
∑
i

φit〉

= 〈u, t〉

Now suppose φ is a smooth form on M with support in U . Then

l′(φ) = l(Aφ) = 〈u,Aφ〉 = 〈u, φ〉′

Using similar arguments as above we can patch up the various u’s and we get that for any

φ ∈ Ωp(M),

l(φ)′ = 〈u, φ〉′
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Proof of claim: Fix p ∈ Rn. Construct a 2π cube with p as the center, Q = {y ∈ Rn :

|xi(p)− xi(y)| < 2π,∀ 0 ≤ i ≤ n}. Choose an open set V ⊂ V ⊂ Q. Denote l̃ = l|C∞0 (V ).

1. l is a bounded linear functional.

Since V is compact and || . || is continuous, ||A−1x || attains a maximum value as x varies

over V .

|l̃(φ)| = |l(φ)| = |l′(A−1φ)|
≤ c||A−1φ||′

= c|〈A−1φ,A−1φ〉′|
1
2

= c|〈φ,A−1φ〉|
1
2

≤ c||φ||
1
2 ||A−1φ||

1
2

≤ c||φ||
1
2 sup
x∈V

(||A−1x ||
1
2 )||φ||

1
2

≤ c||φ||

2.

l̃(L∗φ) = l(A−1L∗φ)

= l′(A−1(A∆A−1)φ)

= l′(∆(A−1φ))

= 〈f, A−aφ〉′ = 〈f, φ〉

Recall 〈 , 〉 = 〈 , 〉0. From 1) we see that l̃ is bounded linear functional, by the Hahn Banach

extension theorem, we can extend it to the closure of C∞0 (V ) ≈ P w.r.t the norm induced

by 〈 , 〉0 to obtain a Hilbert space. Using the Riez’s representation theorem, we can find

ũ, such that l̃(t) = 〈ũ, t〉0. Now we want to show that on a small enough neighbourhood,

ũ represents a periodic smooth function. That is we can find u ∈ P and a neighbourhood

Wp such that u|Wp = ũ|Wp . Choose a neighbourhood of p, O0 ⊂ O0 ⊂ V such that we can

find a periodic elliptic partial differential operator,L̃ which agrees with L on O0. Choose

another neighbourhood of p, O which is contained in in O0. Now construct a series of open

sets, Oi, i > 0 satisfying, O ⊂ Oi and Oi ⊂ Oi−1. For each i > 0, define real valued smooth

functions ωi as follows:

ωi = 1 on Oi
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suppωi ⊆ Oi−1

Take v1 = ω1ũ ∈ H0

L̃v1 = L̃ω1ũ

= ω1L̃ũ+ L̃ω1ũ− ω1L̃ũ

= ω1L̃ũ+ (L̃ω1 − ω1L̃)ũ

Notice that since L̃ is of order 2, M1 = L̃ω1 − ω1L̃ is H0, we see that M1ũ ∈ H−1. The first

term ω1L̃ũ, we claim is equal to ω1f .In fact for any i > 0, we show ωiL̃ũ = ωif .

〈ωiL̃ũ− ωif, φ〉0 = 〈ωiL̃ũ〉0 − 〈ωif, φ〉0
= 〈L̃ũ, ωiφ〉0 − 〈f, ωiφ〉0
= 〈ũ, L ∗ ωiφ〉0 − l̃(L∗ωiφ)

= l̃(L∗ωiφ)− l̃(L∗ωiφ)

= 0

This means that ωiL̃ũ ∈ C∞0 (Oi−1). In particular, ω1L̃ũ ∈ C∞0 (O0) ≈ P ⊆ Hs for all s.

Hence L̃v1 ∈ H−1. Now since L̃ is a periodic elliptic operator of order 2, and v ∈ H−1, we

conclude from the Theorem 3.2.2, that u ∈ H1.

Next let v2 = ω2ũ = ω2ω1ũ = ω2v1. Proceeding as above:

L̃v2 = ω2L̃ũ+ (L̃ω2 − ω2L̃)v1

ω2L̃ũ ∈ C∞0 (O1) ≈ P ⊆ Hs for each s. M2 = L̃ω2 − ω2L̃ has order 1 so M2v1 ∈ H0. Hence

v2 ∈ H2 from Theorem 3.2.2.

Similarly we can prove that vi = ωiũ ∈ Hi. Choose an open set containing p, Wp such

that Wp ⊆ O0. Construct a real valued smooth function ω such that ω = 1 on Wp and

suppω ⊂ O. Define u = ωũ = ωωiũ for all i > 0. Hence we see that u ∈ C∞0 (O)) ≈ P . Take
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φ ∈ C∞0 (Wp):

l(φ) = l̃(φ)

= 〈ũ, φ〉0
= 〈ũ, ωφ〉0
= 〈ωũ, φ〉0
= 〈u, φ〉0 = 〈u, φ〉

�

4.2 Proof of Compactness

This will be a proof of Theorem 1.5.2. Hence given a sequence {αn} ∈ Ωp(M), such that,

||αn|| ≤ c and ||∆αn|| ≤ c, for some c > 0, then there exists a Cauchy subsequence. Again

we will prove the theorem locally. First we show:

Lemma 4.2.1. Given a point p on the manifold M , there exists a neighbourhood Wp, such

that for all functions φ, with suppφ ⊆ V , the sequence {φαn} has a Cauchy subsequence.

Proof of 1.5.2(∆ is a compact operator). By using Lemma 4.2.1, cover the manifold M by

neighbourhoods Wp such that, for each for each function φ, with suppφ ⊆ V , the sequence

{φαn} has a Cauchy subsequence. Now since M is compact we have a finite subcover, say

{W1,W2, . . . ,Wk}. Now choose a partition of unity {φi} subordinate to this cover. Start

with W1. We have a Cauchy subsequence of {φ1αn} since suppφ1αn = suppφ1 ⊆ W1. Call

it {φ1αnj
}. Now consider the sequence {φ2αnj

}. Again suppφ2αnj
= suppφ2 ⊆ W2. Hence

we get another subsequence of, say {φ2αn′j}. Now look at {φ3αn′j}.Continuing this process,

as we have to do this only a finite number of times, due to a finite cover, we finally obtain a

sequence, {an′} such that for each φi, the sequence {φiαn′} is Cauchy due to our construction.
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{an′} is the desired Cauchy subsequence.

||αn′ − αm′ || = ||1.(αn′ − αm′)||

= ||
k∑
i=1

φi(αn′ − αm′)||

= ||
k∑
i=1

(φiαn′ − φiαm′)||

≤
k∑
i=1

||φiαn′ − φiαm′||

Since for each i, we have a Cauchy sequence, we can make each of the terms in the last sum

as small as we want. Hence {an′} is a Cauchy subsequence.

Proof of Lemma 4.2.1. Choose a co-ordinate neighbourhood around m, (U, γ) such that

γ(m) = p and γ(U) = Rn. Let us stick to the same notations as in the proof of regu-

larity. Suppose φ is a function with support in O0, we would like to show that {φαn} has

Cauchy subsequence in the || . ||′ norm. But we know that since O0 is compact, the || . ||′

norm is equivalent to the || . ||2 norm on C0
∞(O0)

But we know that on C0
∞(O0) the || . ||2 norm is the same as the || . ||0 norm. Hence our

problem is reduced to showing that there is a Cauchy subsequence is the || . ||0 norm. This

can be shown by proving that that the sequence is bounded in || . ||1 norm and using Rellich
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Theorem 2.3.2.

||φαn||1 ≤ c(||L̃φαn||−1 + ||φαn||−1)
= c(A+B)

A = ||L̃φαn||−1 = ||Lφαn||−1
= ||φLαn + (Lφ− φL)αn||−1
≤ ||φLαn||−1 + ||(Lφ− φL)αn||−1

||(Lφ− φL)ταn||−1 ≤ ||ταn||−1
≤ c||ταn||0 = c||ταn||
≤ c||ταn||′

≤ c||αn||′

||φLαn||−1 ≤ c||φLαn||0 = c||φLαn||2
≤ c||φLαn||′

≤ c||∆αn||′

B = ||φαn||−1 ≤ c||φαn||0
≤ c||φαn||′

= c||αn||′

Since ||αn||′ and ||∆αn||′ are bounded we see that ||φαn||1 is bounded for all n. Hence we

have a Cauchy subsequence in H0, which implies we have a Cauchy subsequence in the || . ||′

norm.
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