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Abstract

This thesis project aims to study magnetic properties and current densities of molecules
exposed to magnetic fields using the fully numerical Gauge Including Magnetically Induced
Currents (GIMIC) [1] method that has been developed by the Helsinki group and their col-
laborators. The magnetically induced current density has been studied for molecules like
benzene and cyclopentadienyl anion, which are aromatic and cyclobutadiene, which is an-
tiaromatic. Ring-current pathways have been calculated for caffeine by numerically integrat-
ing the strength of the current density flowing through-plane intersecting chemical bonds of
the molecular rings. The current densities of two isomers of cyclic C;B;NHg have also been
investigated. The paratropic and diatropic contributions to the current densities were iden-
tified and separated using a novel computational method developed in Helsinki. A method
for analyzing spatial contributions to the nuclear magnetic shielding has been developed and
applied to benzene as a test case. The approach has been used in studies on CHy, CFy,
CH;3 and CF5 .
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Chapter 1

Introduction

When a molecule is placed in an external magnetic field, its electrons interact with the
magnetic field and the angular momentum operator couples, as a result of which, they start
precessing around the atoms and throughout the molecule. This electronic motion gives
rise to a magnetically induced current density along the molecule. According to Faraday’s
law, the induced current density in most molecules induces a secondary magnetic field that

opposes the direction of the external magnetic field.

The effect of the external magnetic field is quite similar to the effect of magnetic fields on
a ring in classical physics. For molecules, however, quantum effects must also be taken into
account as spatially separated magnetically induced currents might flow in either the classical
or the non-classical direction. The classical current effectively weakens the field while the
non-classical currents enhance the magnetic field. The currents flowing in the classical and

non-classical directions are called diatropic and paratropic currents, respectively.

Current density

Magnetic interactions are generally quite weak compared to electrostatic forces in the molecule,
and hence most quantum mechanical approaches to understand these interactions use per-
turbation theory. At the perturbation theory level, the magnetic field is assumed to be weak
and time-independent, and the current density is the first-order response to the applied

magnetic field.



Knowledge about the current density is relevant because the current density is a map of
how the electron moves in the molecular systems upon exposure to external magnetic fields.
However, it is still not possible to obtain this information using experimental methods,
and hence theoretical calculations are mandatory in understanding them. Quantities like
the nuclear magnetic resonance (NMR) chemical shifts and magnetic susceptibilities can be

related to the magnetically induced current density via Biot—Savart law [2].

The magnetic shielding is a rank-2 tensor that describes the relative change in the local
magnetic field at the nuclear position relative to the external magnetic field. This change in
the local magnetic field arises from the interaction of the electron cloud with the external
field and can lead to shielding of the nucleus where the local magnetic field is increased
with respect to the external field or de-shielding where the local magnetic field is decreased.
In general, shielding is thought to arise from a spherical charge density, while de-shielding
arises from non-spherical charge density originating from electrons in p- or higher angular

momentum orbitals [3].

In NMR spectroscopy, the measured property is the chemical shift as a function of the
resonance frequency of the nucleus relative to a given standard. The formal relation between

the chemical shift and shielding tensors is given as

d = 1oy — 0, (1.1)

where 9§ is the chemical shift tensor, ¢ is the shielding tensor, 1 is the unitary matrix and oy,
is the trace of the shielding tensor and is known as the isotropic shielding of the standard

reference used in the NMR experiments.

However, determining the oy, is quite difficult as it involved the determination of the
paramagnetic contributions to the shielding using its relationship with the spin rotational
constant and the corresponding diamagnetic contribution using quantum mechanical meth-

ods [4]. The formal definition of the components of the shielding tensor is:

O*FE

= om..0B; (1.2)

Oap

where F is the total electronic energy of the molecule, B is the external magnetic field, and



m! is the magnetic moment of the nucleus of interest. From this equation, we can conclude
that the shielding tensor is an anti-symmetric tensor because exchanging the indices o and

S leads to a different quantity, i.e. 0,3 # 0ga-

0°E 0°E
Oap = = 08
o Om,0Bs " Om,dB, "’

Aromaticity

The concept of aromaticity lies at the very heart of chemistry. In modern textbooks of organic
chemistry, aromatic molecules are described as having pronounced stability, planar geometry,
energetics, and magnetic properties. However, from the beginning of its conception, the
notion of aromaticity turned out to be controversial, difficult to understand, and to convey

in a few words.

According to the ring-current model, magnetically induced current density vortices arise
when a molecule is placed in an external magnetic field [2]. The current density reflects the
electronic structure of the molecule giving a unique representation of its properties. Molecules
that sustain a non-zero net current strength exhibit aromatic or anti-aromatic properties
depending on the direction of the current flow with respect to the external magnetic field. A
typical feature of aromatic molecules is the presence of conjugated m-electron pathways along
the molecular ring. Aromaticity can be reliability studied using the ring-current criterion [2].
Although traditionally associated with the stability and chemical properties of molecules, the
abstract concept of aromaticity is of great importance and goes beyond chemical reactivity.
The highly delocalized excited state usually makes the molecules suitable as semi-conductors

and chromophores, which are of practical interest.

The goal of the thesis was to understand the theory behind the current density and shield-
ing tensor and to obtain a visual representation for them. The currents in the molecules can
be separated into diatropic and paratropic using the tropicity detection algorithm developed

in the group.

The work in this thesis is structured as follows. The following chapter presents the time-
independent Schrodinger equation and leads us to the expression for molecular energy in

terms of the one- and two- electrons integrals. Chapter 3 discusses some of the commonly



used approximation methods to calculate the wavefunction and the total energy of the molec-
ular system. Chapters 4 and 5 introduce the underlying theory behind the GIMIC method
and the tropicity detection program. Chapter 4 focuses on obtaining an expression for the
current density, while Chapter 5 introduces the methods used to study the current density,
the tropicity detection algorithm, and the expression for magnetic shielding tensor for the

molecules.



Chapter 2
The molecular energy

The time-independent Schrodinger equation can be written as HU = EW, where H is the
Hamiltonian and W is the wave function [5-8|. In atomic units, the molecular Hamiltonian

is expressed as

RIS W DD B B ED I Y

i>7 a>b

where N is the number of the electrons, k is the number of nuclei, m, is the mass of the i
nucleus, Z, is the charge on a'" nucleus and the operator r;; is the distance between electrons
i and j. Using the Born-Oppenheimer approximation [9], the nuclear degrees of freedom and
the electronic degrees of freedom can be separated, which makes the wave function only
parametrically dependent on the nuclear coordinates. The wave function then depends on

4N variables, including the electron spin.

The electronic wave function should be consistent with the Born probability interpreta-
tion [10] i.e.,

/dx1 codxn U (xg X)) (XL oxy) = 1, (2.2)

where U* is the complex conjugate and x = (ry,r2,73,0), with o € {«, 5} is the electron spin.



For a closed-shell system, .e molecules with no unpaired electrons, the spin can be separated
from the spatial dimensions and integrated separately, leaving 3N degrees of freedom per

electron. The electron density of the system is then

p(r) = N/m codry¥(r, o, Ty) (T, T, L T). (2.3)

To solve the Schrodinger equation, we expand the wavefunction in a basis of 3/N-dimensional
functions called Slater determinants given as ® = det|p,(r1)...¢4(rn)|. The one-particle
functions can be then written as a linear combination of atom-centred functions optimised

to resemble the atomic orbitals,

Nao

Ga(r) =Y Caxpu(r). (2.4)

The atomic orbitals (AO) are constructed using the Gaussian Type Orbitals (GTOs) given
as

Xu(r) = Z w&uri?riyrize_%”rza (2.5)
1

where ag, are the orbital exponents, wy, are the contraction coefficients and {l(,.} € Z;}
are the pre-factor components related to the orbital angular momentum. The principal
reason for using GTOs is due to their locality and the “Gaussian Product Theorem”, which
guarantees that the product of two GTOs centred on two different atoms can be expressed as
a finite sum of Gaussian centred on a point along the axis joining the two points. A function
of two variables can be expanded by considering the expansion coefficients as functions of

the second variable. This function can again be expanded in the same basis

O(ry,15) = > Cplra)xu(rn) = D Chuxu(r)xw(ra): (2.6)

1%

Hence the exact N-particle wave function can be written as

10



N! N

="y ()" P, [ [ o () (2.7)

k n=1 i

where k is the k' set of MOs. The permutation operator, P, ensures fermionic antisymmetry
of the wave function by generating the n'" permutation of the electronic coordinates r; and

P is the number of transpositions needed to generate the permutation.

A very elegant way of constructing a wave function of the proper symmetry, is through
the formalism of second quantization. Second quantization revolves around a set of abstract
creation and annihilation operators acting on Slater determinants. An electron is created
in a spin-orbital ¢, from the vacuum by the creation operator a; |0gPr) = |Opdypr). The
conjugate operator is called the annihilation operator, a, |¢p0,0,) = |p,0r) (p # q,7) which
destroys the electron in a spin-orbital ¢,. The following anti-commutation relations exists

for the two operators

{al,al} = alal + alal =0 alal = —alal
{ap, a,} = apa, +aga, =0 = Ay, = —040, : (2.8)
{ap, al} = apal + ala, = b, apal = by — alay,

Using the formalism of the creation and annihilation operators, the electronic Hamilto-

nian can be written as

A 1
H= Z hpqa;aq + 1 Z gpm,sa;f)aj]asaT, (2.9)
rq

pgars

where hy, and g,,s are given as

7 . 7 ]- 2 K ZA
hpg = (Gp(I 1]g(1))  with h = -2 V(1) = ) —= (2.10)
A 1A

Gpars = (Dp(1)Sg(D| 115 16r(1)05(2)) — (6,(1)04(2)] 712’ [65(1)61(2)) = (pal [rs) . (2.11)

11



Using the anti-commutation relations, the energy expression can be reduced to involve
only specific integrals and orbital coefficients. The electronic energy can thus be written in

matrix form as

1
E = Z h,uuD;w + 5 Z g,uaupd;wl/py (212)

Qv purop
where D,,, and d,,,, are the one- and two-electron density matrices, h,, and g, are

the one- and two- electron interaction integrals respectively and are given as

hw = (Xl B IX0) and Guowp = (XXo X0 X0) S (2.13)

12



Chapter 3

Molecular electronic structure methods

3.1 The mean-field approximation

The Hartree-Fock (HF) approximation [11-13] is the computationally least demanding ab initio
wave function based method for calculating the molecular energy. In the HF approximation,
the wave function is truncated at the first term in the expansion of Eq. 2.7 i.e., wave function

of the system can be approximated by a single Slater determinant.

The energy of the one-determinant trial function is

7

B[] = (@] 19) = 3" (0l h o) + > ((ouesl i [ 16365) = (010513 |6501))

=S todbld + 5 S0 (- K)le, ()

where J describes the interaction between two charge distributions and is called the Coulomb
operator, and K arises from the antisymmetry of the wave function and is called the exchange
operator. Linear variations under the constraint that the one-particle functions remain

orthonormal on the trial functions gives the Hartree-Fock equations,

13



Joi = ity (3.2)

where f is the Fock operator given as [14]

= h(1) Z (1)) = h(1) 4+ o (1). (3.3)

Solving the HF equations, yields the molecular orbitals ¢; and the orbital energies ¢;. How-
ever, due to the variational principle [15], the obtained energies are always higher than
the ground state energy. The equations must be solved iteratively until self consistency is

reached.

The cigenvalue of the total Fock operator, F' =Y. f(7) is

F ") = B [T5), (3.4)

where Ey = Ziv €;. This eigenvalue is not the real ground state energy due to double

counting of the electron-electron interactions. The true HF ground state energy is

Fyr = \IJHF‘ i |\IJHF> Zez -5 Z ¢l j |¢l> ) (3'5)

which is not an eigenvalue of the Fock operator. The difference between the mean-field
energy and the exact energy is due to the fact that electrons do not move independently of
each other, which is called the correlation energy. Electron correlation lowers the probability
of two electrons being close to each other and lowers the overall energy by reducing the

electron-electron repulsion.

14



3.2 Perturbation theory

In quantum mechanics, perturbation theory [16] is an approximation scheme for describing
a complicated quantum system in terms of a simpler one. The idea is to start with a simple
system for which a mathematical solution is known, and add a "perturbing" Hamiltonian
representing a weak disturbance to the system. Suppose the eigenvalues of a Hamiltonian
Hy is known, and we want to know the energy of the Hamiltonian H = Hy + AH;, where
{\ € [0,1]} is a parameter. When the effects of H; on the energy are small compared to
Hy, the eigenvalues and eigenfunctions of H can be found by expanding both the energy and

wave function in a Taylor series in A with

(Ho + \Hy) (0 + )\‘11511) +A20@ 4 ) =
(EQ +AEY + XED 4. )W) + AU + XU@ 4., (3.6)

where

B = (W[ Ho[0) and B = (40|, [140). 7

Using the complete set of eigenfunctions of the unperturbed Hamiltonian, the perturbed

wave function can be expanded as

v =3 wl, (3.8)

i

The first-order energy correction can be calculated simply as the expectation value of
the unperturbed zero-order wave function. The expansion coefficients for the first-order

correction to the wave function can be calculated as,

(8 o)
1) _ n 1 i

C

15



The second-order energy correction is then

<\If,£?) o, ’\If§°>> <\If,(-0)’ H, ‘qf£?>>

@ _
E® = ; 20 50 . (3.10)

3.3 Density functional theory

Density functional theory (DFT) is a quantum-mechanical method that describes the prop-
erties of many-body systems by using functionals, i.e., functions of another function, which
in this case is the electron density. Thus, instead of having to work with a 3/N-dimensional
wave function, every molecular ground-state property can be calculated from a quantity
which is only 3-dimensional. However, the exact electron density is not known and is needed
to be approximated. In the Kohn-Sham equations [17-19], the density is expanded in a basis

of molecular orbitals. The Kohn-Sham energy for a molecular system is

Exs = (h) + J{p} + Ex{p}, (3.11)

where the curly brackets indicate functionals and . is the exchange-correlation(XC) func-
tional. The exchange-correlation functional represents the difference between the exact and
the approximate systems. It is associated with the Kohn-Sham potential, vks which is given

as

VKS(T) = Vegt(r) + v7(7) + Uxe(T), (3.12)

where v (r) is the external potential created by the nuclei, v;(r) the electrostatic repulsion

by the electrons, and vy.(r) is the exchange-correlation potential.

On substituting the Kohn-Sham potential into the Schrédinger equation, and solving it

leads us to the Kohn-Sham equations,

16



To apply the Kohn-Sham equations to real molecules, it is necessary to find a good
approximation to the exchange-correlation functional which can be done in a lot of different
ways. In the local-density approximation (LDA) [20, 21|, the electron density is based on
the electron gas model by Fermi, Thomas and Dirac. The exchange-correlation energy is
calculated by integrating the electron correlation functional scaled by the electron density

at each point in space,

E?Az/}uk@w%. (3.14)

The exchange energy functional in LDA can be solved analytically.

In the generalised-gradient approximation (GGA) [22, 23|, the exchange-correlation en-
ergy is defined using the derivative of the electron density with respect to the Cartesian

coordinates,

£S = [ plr)elp. Vo)d'r (3.15)
The Hartree-Fock method can be considered as an extreme case of DFT with the corre-
lation energy being zero and the exchange energy is exact. This method thus describes the

single-determinant problem accurately. The hybrid functionals uses the GGA, LDA as well

as a fraction of HF exchange to give approximate results.

ERP = BIPA +a (BJY — E{PY) + 0B + 6 EYA (3.16)

where a, b and ¢ are parameters. The B3LYP functional is one of the most commonly used
hybrid functionals with a = 0.2, b = 0.72 and ¢ = 0.81.

17
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Chapter 4

Molecular response to a magnetic field

As a molecule is exposed to a magnetic field, the electrons in the molecule start precessing
due to coupling between their angular momentum and the field. This circular motion in turn
induces a current density in the molecule. The current density induces a secondary magnetic
field which, in most molecules, opposes the external field, thereby minimizing the effect of

the external field. This phenomenon is in many ways similar to classical electrodynamics.

In quantum-mechanical systems however, magnetically induced current densities may also
flow in the non-classical direction. The direction of current flow is referred to as tropicity
and it is defined with respect to the external magnetic field direction. By convention, the
current flowing in the classical direction are called diatropic, while the non-classical ones are

called paratropic.

The magnetically induced current density describes how electrons move in a system ex-
posed to an external magnetic field. Although the magnetically induced current density is
a quantum mechanical observable and an operator for it is defined, there is no equipment
available to measure it directly, therefore theoretical calculations must be conducted to study
them. Indirect insights on the strength of the current density is obtained from NMR chemical
shifts.

19



4.1 The magnetically induced current density

In presence of a uniform, time-independent magnetic field with a flux B, a current density

J is induced

i

1) = ;

/d@...dfn(@*v\p — VU + 2 AP, (4.1)

Here, W is the wave function and AB is the vector field describing the external magnetic
field,

—

B x (f— Ro), (4.2)

N[ —

AP (F) =

in the above equations, Ro illustrates the gauge origin of the magnetic field.

For a molecule in a stationary state, the charge-conservation condition becomes V - J=0.
For a molecules with no unpaired electrons, this reduces to J = 0 in the absence of an external

magnetic field.

For an isotropic medium, the magnetic flux density B is uniquely defined by the vector

potential A. However the reverse is not true since

B =V x (AF) + V&(©) = V x A(T) (4.3)

Here, ®(7) is an arbitrary scalar function, thus rendering the choice of gauge origin for the
magnetic field undermined. The use of finite basis sets inevitably brings gauge dependence
in quantum chemical calculations of magnetic properties. In modern calculations of NMR
chemical shifts [24] and in calculations of current densities using the GIMIC program, gauge-

origin independence is ensured using gauge-including atomic orbitals (GIAOs) given as:

xu(r) = ¢ REARIEL D0 (44)

20



where x,(?)(r) denotes a standard Gaussian-type basis function with ﬁu as the centre.

The vector potentials due to the nuclear magnetic moments of I** nucleus, m; is given

as,

My x F— R
_ 2 x (T = Rip)

A I(r) |F_ﬁ[|3

(4.5)
This vector potential couples with the external magnetic field and the resulting in the

total vector potential /T, which contains the terms arising from both the external magnetic

field and the nuclear magnetic moment.

A= AP(r) + > A™(F) (4.6)

mr

4.2 Analytic-derivative-based current-density theory

The electronic energy of a molecule can be written as given in Eq. 2.12 where h,, and ¢,,,,

are the one- and two-electron interaction integrals given by

h“l,:/df'x;hx,, and gp,l/o'p://d'F]_dFQXZXZTl—QlXVXp , (4.7)

D,, and d,,., are the one- and two-electron density matrices and h is the one electron
Hamiltonian. Differentiating the electronic energy in Eq. 2.12 with respect to the nuclear
magnetic moments and the external magnetic field in the limit of zero magnetic field, yields

the nuclear magnetic shielding tensor |25-27| given by:

, 0°E

UaB

L 4.8
aTTL[u@Bﬁ E:O,mI:O ( )

Evaluating Eq. 4.8 together with energy expression in Eq. 2.12 gives the following

relation for the magnetic shielding tensor elements:

21



5 hluj 8D,uy ah,u,V
v — 4.
Z " 8m[ 6Bg Z aBg 8m[a ( 9)

1%

where 0D,,, /0By are the magnetically perturbed density matrices in the 5 = {z,y, 2z} Carte-
sian direction, and 0hy,, /Om! along with 8h,,,/Om?’0Bs as the corresponding derivatives of

integrals of h.

The interaction energy between the nuclear magnetic moment and the external magnetic

field can also be expressed in terms of the current density and the vector potential as |2|:

EmB = / A () - TB(r)dr (4.10)

where A" is given in Eq. 4.5.

Using the Eq. 4.10 along with Eq. 2.12, we obtain an alternative expression for the
nuclear magnetic shielding,

—R
O-LIVB = _ea&y/ _,I(;j’y ) (411)
7 — Ry

where, €46, is the Levi-Civita symbol, (a,d,7) are the Cartesian coordinates, and

0T (r)

Bgs _
\7')/ (7’) - 8B5 3

(4.12)

are the matrix elements of the first-order induced current density:.

On equating Eq. 4.9 and Eq. 4.12 and introducing the one-electron basis functions, we
obtain the relation between the magnetic shielding and the current density matrix [3]. After
further simplifying, we obtain the working equation for the calculation of the magnetically

induced current density tensor, JWBB (r), as:
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Since this equation only involves the basis function and derivatives of the basis functions
along with the one-electron density matrix, it is easily evaluated at each point in space. The
current density tensor is independent of all the nuclear positions as the dependence of each

individual contribution on the nuclear position R; cancels out for all the terms.

Implementation

In the GIMIC program, the Eq. 4.13 for jf ?(r) is implemented in matrix form. The starting
point for such a form is a vector ¥ whose elements are made up of the basis function values
at each grid point. We need to evaluate the derivatives of the basis functions with respect
to the 3D coordinates. Due to the field dependence of GIAOs |28, 29|, evaluation of the first
derivative of the basis functions with respect to components of the external magnetic field
as well as a second derivative with respect to the magnetic field B and the 3D coordinates
is needed. The expression for the spin contributions to the magnetically induced current

density tensor, J2?(r) is then given as:

Jo'"(r) = 8" Pady — 5 Ddo + 7 Difas — a5 (7 D)7, (4.14)

where, D are the atomic orbital (AO) density matrices, P, are the corresponding magneti-
cally perturbed AO density matrices and ga, d;, Jap are the derivatives of the basis functions

and are given as:

v _ 00 o
9B, ° ° " om ° 07 oroBy

b, = (4.15)

where the o and 8 are the Cartesian coordinate axes (z,y,z). The AO perturbed and un-
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perturbed density matrices can be obtained by any standard an inito program capable of
calculating nuclear magnetic shielding tensors. In this case, the program used was TURBO-

MOLE [30], the results from which will be presented in the subsequent section.

24



Chapter 5

Computational details

Nuclear magnetic resonance (NMR) spectroscopy is a spectroscopic technique used to inves-
tigate molecular structures. In NMR experiments, the sample is placed in a static magnetic
field, which induces magnetic polarization of the nuclear spins in the molecule. The sample
is then perturbed with radio waves which are absorbed by the NMR-active nuclei present
in the sample. All isotopes that contain an odd number of protons and neutrons, have an

intrinsic nuclear magnetic moment and angular momentum ¢.e. a total nonzero nuclear spin.

For a nucleus with spin I and nuclear magnetic moment y in a magnetic field By, the

energy level separation is

B
AE = p=2. (5.1)
I
The frequency of the electromagnetic radiation that induces a transition between two

adjacent energy levels is

AFE
Vg = —. 5.2
0= (52)
The observed resonant frequencies of the nuclei are heavily dependent on their chemical
environment. The electrons around a nucleus generate a small induced magnetic field that

generally opposes the applied field By. The effective magnetic field Beg is therefore weaker
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that the applied magnetic field By and depends on the shielding constant [31] for the atom

g,

Beﬂ‘ = BO - O'BQ (53)

5.1 Tropicity detection

In order to determine the contributions from the diatropic and paratropic current density to
the nuclear magnetic shielding, the module TROPICITYDETECTION developed in the group
was employed. The program classifies whether a given grid point belongs to a diatropic or
a paratropic current-density vortex. By repeating the procedure for each grid point, the
program can separate diatropic and paratropic contributions to the current density which
are then written to different files. The values of current density obtained from GIMIC are
only given at discrete grid points which can be adjusted for each calculation. Therefore, the
value of current density must be interpolated from the known values at each grid point. To
get the value of each point, we use linear interpolation which is based on the 8 closest grid

points that form a cuboid around a given point.

In the TROPICITYDETECTION module, trajectories are drawn by extrapolating the cur-
rent density vector field using the Runge-Kutta method. In the Runge-Kutta method, a
function is approximated by adding to an initial valuc of the function a weighted average of
four increments, each of which is a product of the step length (a suitably small constant)
and an estimated slope of the function. The function being approximated here is the current
density vector field. For a given step length h and a vector v(a, ) at an initial position given

by a,,, the next position is given by

1 - o o
Unt1 = Qp + é(kl + 2ko + 2k3 + ky), (5.4)

where

k= Wi (@) (5.5)



S 1-
]{72 - hﬁ <6n —I— —kl) 3 (56)

2
- . 1-
k’g = hv (an + §]€2) s (57)
- . 1-
]i’4 = hv (an + 5/{73) . (58)

An average of these four points are taken such that the increments ki and kg are given
more weight as they are based on the slope at the midpoint of the interval. The value of the
current density vector field is generally not known at the point a, + k£ because the values
of the current density are only given at discrete points inside the cube file. Therefore, the
value of the current density must be interpolated from the known values. In the TROPICITY-
DETECTION program this is done with linear interpolation from the 8 points that form the
cuboid which encloses the point a,,; in the cube file. The above process is repeated until
the trajectory is completed. However, generally, the exact starting point will not be reached.
Approximating the field using linear interpolation and the Runge-Kutta method introduces
uncertainties. To circumvent this, the trajectory is extended until a point sufficiently close
to the starting point is reached. This can be achieved by checking if the distance between a
point and the starting point is less than some fraction of the distance between the starting

point and the farthest point from the starting point already included in the trajectory,

|d,, — do| < € |@maz — A - (5.9)

Setting € to be too large will cause the trajectories to end abruptly and a very small value
of € will cause the trajectories to never converge. In the present calculations, the value was
selected to be e = 0.1.

Once the trajectory is completed, its tropicity can be determined. For each point a, in
the trajectory, the cross product ¥(a,) X ¥(d,+1) is taken. The components along By of these

products are then summed,
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t=> Bolt(dn) X 0(dns1)]- (5.10)

The parameter t is then used to determine the tropicity of the trajectory. For ¢t < 0 we have

a paratropic current density, whereas for ¢ > 0 we have a diatropic current density.

If the trajectory starting at some point would extend to beyond the cube formed by the
grid points, it cannot be completed and the point will not be assigned a tropicity value. This
causes some current flux to be ignored when doing calculations, and could be resolved by

taking a cube with larger dimensions.

5.2 The current density and tropicity

We have used the PARAVIEW program for visualisation of the current density vector field ob-
tained using GIMIC. A colour scheme is employed to show the strength of the current density
where black is the lowest corresponding to a |J(r)| < 107 nA T~! m~2 and increasingly in

the order red orange yellow and white which corresponds to a [J(r)| > 0.1 nA T~ m~2.

Cross-section of current density reveals the presence of various other smaller domains
embedded into the global current density domain. The outermost global current is always
diatropic, while in the case of atoms, there is a strong, concentrated current density due
to the core electrons. These features are referred to as atomic ring currents [32], and their
strength depends on the number of core electrons. Additionally, there are current density
vortices present at the chemical bonds, which are called bond currents and are generally

weak diatropic currents.

The strongest ring currents are observed when the applied magnetic field is perpendicular
to the molecular plane as the p orbitals of the atoms in the conjugated 7 electron pathway
are aligned with the direction of the magnetic field. In polycyclic molecules and non-planar
molecules, multiple ring currents can be present. The presence of heteroatoms can alter the
ring current pathways depending on the electronegativity of the atom present. For example,
in the neighborhood of a nitrogen atom, there are significant local atomic current density
domains which enclose the bond currents of the neighboring N—H bonds as is visible in the

streamline representation of current density in caffeine and a five-membered ring containing
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Figure 5.1: Magnitude of the current densities in (a) benzene, (b) cyclobutadiene

both nitrogen and boron. Heteroatoms cause the formation of complicated patterns of the
global ring currents. Ring currents often do not follow planar trajectories, as can be seen for

methane and tetrafluoromethane.

5.3 Calculation of the strength of the current density

The strength of current density is calculated by placing an integration plane through a par-
ticular current-density domain where the plane is extended from the center of the molecular
ring until the current density vanishes along with an 8 ay distance above and below so that
the whole cross-section of current density domain is evaluated. For each grid point in the
plane, we can assign a positive or negative sign depending on the tropicity of the current.
However, the tropicty cannot be assigned as tropicity is a global property of the vortex and
cannot be characterized by a single point. When a vortex passes through the plane, it first
appears to pass in one direction. After crossing the vortex, it appears to come from the op-
posite direction, due to which the net current vanishes. When the integration plane divides

the molecule into two halves, the net current must vanish due to charge conservation.

When the integration plane passes through a bond or an atom vortex, the ring current
gets integrated twice as it circles twice the vortex origin. Due to charge conservation, the
total ring current strength of a bond or atom vanishes, and hence we can calculate the global
net ring-current. The atomic/bond vortex can be seen as a feature in the current strength

plot as a peak, which depends on the strength of the atomic vortex. Aromatic molecules
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Figure 5.2: Integration plane cutting the bond

generally sustain a positive current strength while anti-aromatic molecules sustain a negative
ring current. Molecules with ring-current strengths of £3 nA T~! are generally considered

non-aromatic.

The plane is split vertically into thin slices. Differential contributions to the induced
current (in nA T~ 'ay™!) passing through slices of integration plane can be plotted as a
function of the z coordinate along the plane. The width of the slice used is 0.005 ag. The

current density is evaluated on the grid 0.002 a( apart horizontally.

5.4 Visualisation of shielding constants in space

When a time independent uniform magnetic field acts upon the permanent dipole p; of the

I*" nucleus in a molecule, the resulting perturbing vector potential is

A= AP 4 A™ (5.11)

where,
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1
AB:§BX(7’—7’O) and A™ =«

The electronic wave-function can be expanded as a series to account for the perturbation

as

Y=y + Y8 -BHyY™mp+ ..., (5.13)

where 1 is the ground state wave-function and 1 is the electronic wave-function in

presence of the magnetic field and is given as

199) = =g 2 1) L1 (5.14)

Since the perturbation from the external magnetic field and the nuclear moments are de-
scribed by imaginary operators. Hence stationary currents that do not modify the electronic

charge distribution are induced.

The first-order current density tensor expanded in a power series is

Ja(r) = JO@) + TP (r)Bs + .. (5.15)

where J.° (r) is the second-rank current density tensor. The second-order interaction energy

can be thus be written as [2]

BB _ 210 AV AB(r) - JB(r), (5.16)
Wb _ % / dVA™ (r) - JB(r). (5.17)

The magnetic shielding at nucleus I and the magnetic susceptibility are given as
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O-QB é?m]a@Bg and XQB 8BaﬁBﬁ’ (5 8)
and can be written as
1 — R
ol = _Eeam/czv| T |§J °(r), (5.19)
1

Xad = 5_Casy / dvrﬁjfs(r). (5.20)

For any point in space for a particular nucleus, the integrand in Eq. 5.19 is the contribu-
tion to the shielding constant of that point to the specific nucleus. The spatial contribution
to the carbon and hydrogen nuclei are shown in Fig. 5.3 as well as in Fig. 5.4 in higher

resolution.

The second-rank tensor, o, is expressed as the sum of three tensors of rank 0, 1 and

2 which are the isotropic shielding , the anti-symmetric contribution and the A parameter

respectively,
Oz Ozy O 1 00 0 afy gt Dgw Dgy A
0= |0y Oy 0y:| =0io [0 1 0] + U;‘x 0 sz + | Ay Ay Ayz|,
Oz Osy O 0 01 Jfl, afy 0 A AL AL
where
1
Oiso = 5(0-9::6 + Oyy + Uzz)7 (521)
A
O = Oop — Opa (5.22)
and
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1
Aap = 5(0ap + 0a) = Tisodag. (5.23)

() (b)

Figure 5.3: Spatial contribution to the isotropic magnetic shielding of points in space for (a)
carbon (b) hydrogen of benzene.

As we approach the nucleus, the contribution increases rapidly because of the inverse
cubic (r73) relation with distance. The partial contribution to the isotropic magnetic shield-
ing constant depends on the local environment around the atom. For heteroatoms, the
spatial contribution to shielding constant depends on their neighbouring atoms and their

electronegativity which can be seen in Fig 5.5.

(a) (b)

Figure 5.4: Spatial contribution to the isotropic magnetic shielding of points in space for (a)
carbon (b) hydrogen of benzene in higher resolution
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Figure 5.5: Spatial contribution to the isotropic magnetic shielding of points in space for (a) boron
(b) nitrogen (c) carbon of NBBCC
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Chapter 6

Results and discussion

Benzene, cyclobutadiene and cyclopentadienyl anion

Benzene is the most studied aromatic molecule and is used here as a test molecule. For
molecular structure calculations of benzene, we used two different basis sets: triple-{ valence
basis sets augmented by polarization functions (TZVP), and a quadruple-¢ valance basis
sets augmented by polarization functions (QZVP) [33-35] . The NMR shielding constants
are calculated using the module mpshift for TURBOMOLE [36]. The calculations with def2-
QZVP using the B3LYP [34] functional with m3 grid gives a shielding constant of 46.81
for carbon and 23.73 for hydrogen, while for the basis set def2-TZVP using the B3LYP
functional with m5 grid, we obtain a shielding constant of 51.11 and 23.95 for carbon and
hydrogen respectively. TURBOMOLE calculates the shielding constants analytically as the
second derivative of the energy, whereas GIMIC uses the numerical integration method, which
might be inaccurate due to which the GIMIC methods leads to slightly different values from
the TURBOMOLE reference data.

Table 6.1: The isotropic magnetic shielding constants of C and H of benzene as obtained by GIMIC
and TURBOMOLE

Atom | GIMIC TURBOMOLE
C 51.11285 51.11291
H 23.95653 23.95651

35



For the remaining calculations, a cuboidal grid was used as the number of points can be
adjusted easily in them by increasing or decreasing the spacing between neighboring points.
On increasing the number of grid points, the rationalization into paratropic and diatropic
contribution to the magnetic shielding increases. The values of paratropic and diatropic

shielding for different grid spacing for the carbon in benzene are as follows:

Table 6.2: Paratropic and diatropic contributions to the shielding constant

(a) grid spacing of 0.25 ay (b) grid spacing of 0.15 ag
Diatropic Paratropic Diatropic Paratropic
Atom | contribution | contribution Atom | contribution | contribution
to shielding | to shielding to shielding | to shielding
C 52.774 -1.673 C 58.046 -6.944
C 51.560 -0.458 C 54.414 -3.313
C 46.846 4.005 C 56.520 -5.419
C 46.373 4.555 C 54.224 -3.123
C 36.750 14.369 C 55.085 -3.985
C 38.099 12.841 C 57.009 -5.909

As we reduce the spacing, the values get closer and closer to the values obtained by
TURBOMOLE, and the paratropic and diatopic contribution to the shielding constant converge
respectively. As we change the spacing from 0.05 to 0.03 ag, the values do not change much,

and the final values are:

Table 6.3: Contributions to the shielding constant with a grid spacing of 0.03 ag

(a) Benzene (b) Cyclobutadiene

Diatropic Paratropic Diatropic Paratropic

Atom | contribution | contribution Atom | contribution | contribution

to shielding | to shielding to shielding | to shielding

C 60.209 -9.110 C -43.32 92.02

C 60.257 -9.158 C -43.58 92.52

C 60.281 -9.182 C -43.13 91.75

C 59.873 -8.774 C -42.22 91.07
C 60.310 -9.212
C 60.235 -9.136

Benzene is the classic example of an aromatic molecule [37-39]. The criteria often used for
aromaticity are low reactivity, planar structure, downfield proton chemical shifts, and mag-

netic susceptibility anisotropy. The reason for the large magnetic susceptibility anisotropy
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is the strong ring current in the molecular frame induced by the external magnetic field.
The GIMIC calculations show that benzene has a strong diatropic ring current around the

molecular ring and a weaker paratropic ring current inside the ring [40, 41].

Cyclobutadiene is an anti-aromatic [42, 43| molecule which, according to the ring-current
model [2], sustains a net paratropic ring current. The calculations show that it sustains
a strong paratropic ring current, mainly inside the molecular ring and a weak diatropic
ring current outside the ring. The accuracy of the calculations of the current strength in
cyclobutadiene also exhibit the same trend that when the spacing is decreased, the values
for paratropic and diatropic contributions to the shielding converge respectively. Plots of
the profile of the ring current through different integration planes arc presented in Fig. 6.1
and Fig. 6.2.
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Figure 6.1: Strength of the ring currents in benzene, cyclobutadiene, and the cyclopentadienyl
anion obtained by integrating through a C—C bond starting from the centre of the molecular ring
to 8 ag away from the bond.

The integration of these plots or the area under the curve for both the positive and nega-

tive graphs give the diatropic and paratropic currents passing though that plane respectively.
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Figure 6.2: Strength of the ring currents in benzene, cyclobutadiene, and the cyclopentadienyl
anion obtained by integrating through a C atom starting from the centre of the molecular ring to 8
ag away from the atom.

The current passing through benzene and cyclobutadiene are given in Table 6.4.

Table 6.4: Current strengths (in nA T~1) of the diatropic and paratropic contributions to the ring
current of benzene and cyclobutadiene

(a) Benzene (b) Cyclobutadiene

Positive | Negative | Total Positive | Negative | Total
Atom 17.69 -6.14 | 11.54 Atom -25.33 4.74 | -20.58
Bond 16.47 -4.87 | 11.59 Bond -24.28 3.93 | -20.34

The cyclopentadienyl anion is a five-membered planar ring with the chemical formula

CsHs .

It is an aromatic molecule as it contains 67 electrons and follows the Hiickel rule

of aromaticity [44-46|. The current density pathways and current strength plots show the
presence of a weak paratropic current inside the ring with a strength -4.51 nA T, which

is surrounded by a strong diatropic current that extends outside the molecule making the
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molecule aromatic with a total strength of 17.42 nA T~!. The overall current around the
molecule is thus diatropic with a strength of 12.90 nA 7! and hence the molecule is as

aromatic as benzene.

Figure 6.3: Magnitude of current density in the cyclopentadienyl anion

Naphthalene

Naphthalene consists of two six-membered rings fused by a common bond which leads to the

formation of some interesting current-density pathways.

Figure 6.4: Magnitude of current density in naphthalene

As naphthalene is just two benzene rings fused, its current density pathway looks similar

to the benzene current pathways, which can be seen in the current density pathways for
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naphthalene. It contains a strong diatropic current with a strength of 17.79 nA T~! along

the ring with a weaker paratropic current -4.65 nA T~! in the center of the two rings.
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Figure 6.5: Strength of the ring currents in napthalene obtained by integrating through a C—-C
bond and C atom starting from the centre of the molecular ring to 8 bohr away

Five-membered rings containing boron and nitrogen heteroatoms

We studied two isomers of a molecule with the chemical formula CoBsNH5. The first molecule
had the two boron adjacent to each other, and the two carbons also adjacent to each other
attached to the boron via nitrogen (NByCy) while the second molecule had both boron
bonded to the nitrogen and one carbon while hydrogen atoms fulfilled the remaining valencies
(NBC3B).

Table 6.5: Current strengths (in nA T—1) for the five-membered rings with two boron atoms, two
carbon atoms and one nitrogen atom obtained by integrating through a chemical bond.

(a) NBBCC (b) NBCCB
Positive | Negative | Total Positive | Negative | Total
Atom -14.59 7.83 | -6.76 Atom -12.39 7.64 | -4.74
Bond -13.58 7.46 | -6.11 Bond -13.64 9.19 | -4.45

The current density pathways for the molecules are illustrated in Fig. 6.6. For both

molecules, the current density around the nitrogen is quite strong and wrapped tightly around

the atom with many weaker weak diatropic bond currents passing through the molecule. The

current density inside the NBCCB molecule is strongly paratropic, which diminishes as we
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go away from the center of the molecule. The surrounding ring current around the perimeter
of both molecules is a weaker diatropic current. The net current for the whole molecule
is paratropic, which suggests that both molecules are anti-aromatic. The profiles of the
current strength analysed from the centre of the five-membered ring through a C-C bond

and reaching far from the molecule are presented in Fig. 6.7.

(b)
Figure 6.6: Magnitude of the current densities in (a) NBBCC and (b) NBaCBH5 molecules

6.00 T — : 8.00 - . 3
Positive Positive
4.00 Negative | 6.00 Negative =
2.00 } 4.00
% 0.00 - e i % 2.00
S 200 S 000 .
"_‘: - E -2.00 |
E 400 £
5 5 400
3 o 3 600
-8.00 | 800 |
-10.00 4 -10.00
12,00 - . . " . 4200 i : ) i
0.00 2.00 4.00 6.00 8.00 10.00 0.00 2.00 4.00 6.00 8.00 10.00
Distance [bohr] Distance [bohr]
(a) (b)

Figure 6.7: Strength of currents in (a)NBBCC and (b) NBCCB molecules along the C—C bond

Caffeine

Caffeine is an interesting molecule as it contains two rings along with heteroatoms in both
of the rings. The five-membered ring containing two nitrogen atoms while the six-member
ring contains two nitrogen and two carbonyl carbons, which all have an interesting effect on

the current density in the molecule.
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Figure 6.8: Magnitude of current density in caffeine

From the current density data, we can see that the six-membered ring contains a very
weak diatropic current density, while the five-membered ring contains a stronger diatropic
current density with a large current density surrounding the whole molecule. Current
strength calculation on caffeine shows that the six-member ring contains a weak paratropic
current of -6.66 nA T~! inside the ring and an almost equally weak diatropic current of 7.44
nA 7! along the ring. Due to this, the net current in the six-member ring is close to zero,
making the ring non-aromatic. However, a weak diatropic current is present around the
whole molecule with a strength of 6.16 nA T~!. The five-membered ring sustains a stronger
diatropic current of 12.88 nA T~! making the ring aromatic, which is enveloped by the
stronger molecule-wide current. The global molecular current for caffeine is 11.02 nA 7!

with the five-membered ring being aromatic while the 6 membered ring being non-aromatic.
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Figure 6.9: Strength of currents in (a) five-membered ring (b) six-membered ring in caffeine
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Methane, tetrafluoromethane and their trivalent anions

The shielding of carbon and fluorine in CF4 and CF3  are surprisingly different from each
other as is reported in Ref. [47]. As the molecules are charged, the employed basis set is
the valence triple-( with two sets of polarization functions and a set of diffuse functions
(def2-TZVPPD) for the calculations on CHx? and CFx? (where X = 4;3 and ¢ = 0;—1
respectively). The DFT calculations were performed using the Minnesota 06 functional with
54% HF exchange (M06-2X) [48, 49] and the m5 grid. The isotropic shielding constants
obtained with TURBOMOLE are listed in Table 6.6.

Table 6.6: The calculated isotropic magnetic shielding constants of CFs~, CHs~, CF,; and CH,

(a) CX5~ (b) CX4

Atom Isotropic Atom | Isotropic
C(CF3) -3.66 C(CFy) 57.41
F(CF;) 200.08 F(CFy) 242.86
C(CH;3") 230.22 C(CHy) 194.02
H(CH3 ") 34.59 H(CHy) 31.80

Subsequently the GIMIC method was employed to calculate the diatropic and paratropic

contributions to the shielding constants. The results are listed in Table 6.7.

Table 6.7: The isotropic magnetic shielding decomposed into paratropic and diatropic contributions

(a) CX5~ (b) CX4

Atom Paratropic | Diatropic Atom | Paratropic | Diatropic
C(CH3 ) 3.57 226.50 C(CHy) -0.12 194.14
H(CHj3 ) 0.00025 34.56 H(CH,) 0.00014 31.79
C(CF3") -1.57 -2.17 C(CFy) -39.89 97.21
F(CF3") 0.69 200.52 F(CFy) 241 240.34

For CHy, removing one hydrogen reduces the shielding by 40 ppm. As carbon is more
electronegative than hydrogen, it withdraws electron density from hydrogen. On removing
one hydrogen atom, the electron density on the carbon decreases, and hence the shielding
of the nucleus is reduced. This can also be seen for the hydrogen atoms as their electron
density also decreases and their shielding constants decrease because the carbon pulls more

electron density when there is a lesser number of substituents bonded to it.

For CFx, removing one fluorine has the opposite effect on the shielding compared to

CHx. The electron density on fluorine when there are only three fluorine atoms bonded
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(a) (b)

Figure 6.10: Spatial contribution to the isotropic magnetic shielding constant of the carbon atom
in (a) CF3~ (b) CHs along a C—X bond ( X= F or H)

(b)

Figure 6.11: Spatial contribution to the isotropic magnetic shielding constant for ‘X’ in (a) CF4
(b) CH4 along the X-C—-X plane (X= F or H)

to the carbon is higher compared to the case when four fluorine atoms are present in the
molecule. For carbon, however, this effect is not seen. From the isotropic contributions to the
shielding, we can see that the paramagnetic contribution increases, however, the diatropic

contribution decreases by about 100 ppm.

The shielding constant depends on the paratropic as well as the diatropic contributions
to the nuclear shielding. This decomposition shows that the diatropic contribution to the
shielding of the carbon lone pair is mainly responsible for the increase of this component
in both the anions. However, similar decomposition for paratropic contribution is more
complex as it involves the coupling of occupied and unoccupied orbitals [47]. The strength
depends mainly on the strength of the magnetic coupling and energy gap between the coupled

orbitals.
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() (b)

Figure 6.12: Spatial contribution to the isotropic magnetic shielding constant of the carbon atom
in (a) CF4 (b) CHy along a X-C-X plane ( X= F or H)

(a) (b)

Figure 6.13: Spatial contribution to the isotropic magnetic shielding constant for "X’ in (a) CF3~
(b) CHs  along the C-X bond (X= F or H)

The overlap related to magnetic coupling is more substantial in CF3~ than in CH3 ™ due to
dependency between the paratropic contribution and the electron nucleus distance. Although
oc—x orbital contributions are essential to the total of opara, the lone pair contributions are
essential to understand the unexpected de-shielding effect for the CF3  molecule. When
the carbanion is bonded to a fluorine atom, coupling between the lone pair of carbon and
unoccupied sigma orbital is induced by the magnetic field producing a paramagnetic shielding

on carbon.
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